Abstract

Bioluminescence tomography (BLT) has been a valuable optical molecular imaging technique to non-invasively depict the cellular and molecular processes in living animals with high sensitivity and specificity. Due to the inherent ill-posedness of BLT, a priori information of anatomical structure is usually incorporated into the reconstruction. The structural information is usually provided by computed tomography (CT) or magnetic resonance imaging (MRI). In order to obtain better quantitative results, BLT reconstruction with heterogeneous tissues needs to segment the internal organs and discretize them into meshes with the finite element method (FEM). It is time-consuming and difficult to handle the segmentation and discretization problems. In this paper, we present a fast reconstruction method for BLT based on multi-atlas registration and adaptive voxel discretization to relieve the complicated data processing procedure involved in the hybrid BLT/CT system. A multi-atlas registration method is first adopted to estimate the internal organ distribution of the imaged animal. Then, the animal volume is adaptively discretized into hexahedral voxels, which are fed into FEM for the following BLT reconstruction. The proposed method is validated in both numerical simulation and an in vivo study. The results demonstrate that the proposed method can reconstruct the bioluminescence source efficiently with satisfactory accuracy.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Bioluminescence tomography with structural information estimated via statistical mouse atlas registration

Bin Zhang, Wanzhou Yin, Hao Liu, Xu Cao, and Hongkai Wang
Biomed. Opt. Express 9(8) 3544-3558 (2018)

Incorporating MRI structural information into bioluminescence tomography: system, heterogeneous reconstruction and in vivo quantification

Jun Zhang, Duofang Chen, Jimin Liang, Huadan Xue, Jing Lei, Qin Wang, Dongmei Chen, Ming Meng, Zhengyu Jin, and Jie Tian
Biomed. Opt. Express 5(6) 1861-1876 (2014)

Three-dimensional Bioluminescence Tomography based on Bayesian Approach

Jinchao Feng, Kebin Jia, Chenghu Qin, Guorui Yan, Shouping Zhu, Xing Zhang, Junting Liu, and Jie Tian
Opt. Express 17(19) 16834-16848 (2009)

References

  • View by:
  • |
  • |
  • |

  1. V. Ntziachristos, J. Ripoll, L. V. Wang, and R. Weissleder, “Looking and listening to light: the evolution of whole-body photonic imaging,” Nat. Biotechnol. 23(3), 313–320 (2005).
    [Crossref] [PubMed]
  2. G. Wang, E. Hoffman, G. McLennan, L. Wang, M. Suter, and J. Meinel, “Development of the first bioluminescent CT scanner,” Radiology 229, 566 (2003).
  3. J. K. Willmann, N. van Bruggen, L. M. Dinkelborg, and S. S. Gambhir, “Molecular imaging in drug development,” Nat. Rev. Drug Discov. 7(7), 591–607 (2008).
    [Crossref] [PubMed]
  4. A. Söling and N. G. Rainov, “Bioluminescence imaging in vivo - application to cancer research,” Expert Opin. Biol. Ther. 3(7), 1163–1172 (2003).
    [PubMed]
  5. C. E. Badr and B. A. Tannous, “Bioluminescence imaging: progress and applications,” Trends Biotechnol. 29(12), 624–633 (2011).
    [Crossref] [PubMed]
  6. J. Liu, D. Chen, X. Li, X. Ma, H. Chen, W. Fan, F. Wang, X. Qu, J. Liang, F. Cao, and J. Tian, “In vivo quantitative reconstruction studies of bioluminescence tomography: effects of peak-wavelength shift and model deviation,” IEEE Trans. Biomed. Eng. 57(10), 2579–2582 (2010).
    [Crossref] [PubMed]
  7. J. Liu, Y. Wang, X. Qu, X. Li, X. Ma, R. Han, Z. Hu, X. Chen, D. Sun, R. Zhang, D. Chen, D. Chen, X. Chen, J. Liang, F. Cao, and J. Tian, “In vivo quantitative bioluminescence tomography using heterogeneous and homogeneous mouse models,” Opt. Express 18(12), 13102–13113 (2010).
    [Crossref] [PubMed]
  8. G. Wang, W. Cong, K. Durairaj, X. Qian, H. Shen, P. Sinn, E. Hoffman, G. McLennan, and M. Henry, “In vivo mouse studies with bioluminescence tomography,” Opt. Express 14(17), 7801–7809 (2006).
    [Crossref] [PubMed]
  9. G. Wang, H. Shen, Y. Liu, A. Cong, W. Cong, Y. Wang, and P. Dubey, “Digital spectral separation methods and systems for bioluminescence imaging,” Opt. Express 16(3), 1719–1732 (2008).
    [Crossref] [PubMed]
  10. W. Cong, G. Wang, D. Kumar, Y. Liu, M. Jiang, L. Wang, E. Hoffman, G. McLennan, P. McCray, J. Zabner, and A. Cong, “Practical reconstruction method for bioluminescence tomography,” Opt. Express 13(18), 6756–6771 (2005).
    [Crossref] [PubMed]
  11. L. Wu, H. Zhao, X. Wang, X. Yi, W. Chen, and F. Gao, “Enhancement of fluorescence molecular tomography with structural-prior-based diffuse optical tomography: combating optical background uncertainty,” Appl. Opt. 53(30), 6970–6982 (2014).
    [Crossref] [PubMed]
  12. P. Wu, K. Liu, Q. Zhang, Z. Xue, Y. Li, N. Ning, X. Yang, X. Li, and J. Tian, “Detection of mouse liver cancer via a parallel iterative shrinkage method in hybrid optical/microcomputed tomography imaging,” J. Biomed. Opt. 17(12), 126012 (2012).
    [Crossref] [PubMed]
  13. I. Willekens, T. Lahoutte, N. Buls, C. Vanhove, R. Deklerck, A. Bossuyt, and J. de Mey, “Time-Course of Contrast Enhancement in Spleen and Liver with Exia 160, Fenestra LC, and VC,” Mol. Imaging Biol. 11(2), 128–135 (2009).
    [Crossref] [PubMed]
  14. H. Park, P. H. Bland, and C. R. Meyer, “Construction of an abdominal Probabilistic atlas and its application in segmentation,” IEEE Trans. Med. Imaging 22(4), 483–492 (2003).
    [Crossref] [PubMed]
  15. I. Isgum, M. Staring, A. Rutten, M. Prokop, M. A. Viergever, and B. van Ginneken, “Multi-Atlas-Based Segmentation With Local Decision Fusion-Application to Cardiac and Aortic Segmentation in CT Scans,” IEEE Trans. Med. Imaging 28(7), 1000–1010 (2009).
    [Crossref] [PubMed]
  16. C. Platero and M. C. Tobar, “A multiatlas segmentation using graph cuts with applications to liver segmentation in CT scans,” Comput. Math. Methods Med. 2014, 182909 (2014).
    [Crossref] [PubMed]
  17. M. Baiker, M. Staring, C. W. G. M. Lowik, J. H. C. Reiber, and B. P. F. Lelieveldt, “Automated Registration of Whole-Body Follow-Up MicroCT Data of Mice,” Medical Image Computing and Computer-Assisted Intervention 6892, 516–523 (2011).
  18. H. Wang, D. B. Stout, and A. F. Chatziioannou, “Estimation of Mouse Organ Locations Through Registration of a Statistical Mouse Atlas With Micro-CT Images,” IEEE Trans. Med. Imaging 31(1), 88–102 (2012).
    [Crossref] [PubMed]
  19. Q. Fang and D. A. Boas, “Monte Carlo Simulation of Photon Migration in 3D Turbid Media Accelerated by Graphics Processing Units,” Opt. Express 17(22), 20178–20190 (2009).
    [Crossref] [PubMed]
  20. H. Shen and G. Wang, “A tetrahedron-based inhomogeneous Monte Carlo optical simulator,” Phys. Med. Biol. 55(4), 947–962 (2010).
    [Crossref] [PubMed]
  21. S. Ren, X. Chen, H. Wang, X. Qu, G. Wang, J. Liang, and J. Tian, “Molecular Optical Simulation Environment (MOSE): A Platform for the Simulation of Light Propagation in Turbid Media,” PLoS One 8(4), e61304 (2013).
    [Crossref] [PubMed]
  22. Y. Lu, H. B. Machado, A. Douraghy, D. Stout, H. Herschman, and A. F. Chatziioannou, “Experimental Bioluminescence Tomography with Fully Parallel Radiative-transfer-Based Reconstruction Framework,” Opt. Express 17(19), 16681–16695 (2009).
    [Crossref] [PubMed]
  23. T. J. Farrell, M. S. Patterson, and B. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19(4), 879–888 (1992).
    [Crossref] [PubMed]
  24. Z. Yuan, Q. Zhang, E. Sobel, and H. Jiang, “Comparison of diffusion approximation and higher order diffusion equations for optical tomography of osteoarthritis,” J. Biomed. Opt. 14(5), 054013 (2009).
    [Crossref] [PubMed]
  25. K. Liu, Y. Lu, J. Tian, C. Qin, X. Yang, S. Zhu, X. Yang, Q. Gao, and D. Han, “Evaluation of the simplified spherical harmonics approximation in bioluminescence tomography through heterogeneous mouse models,” Opt. Express 18(20), 20988–21002 (2010).
    [Crossref] [PubMed]
  26. S. R. Arridge, M. Schweiger, M. Hiraoka, and D. T. Delpy, “A finite element approach for modeling photon transport in tissue,” Med. Phys. 20(2), 299–309 (1993).
    [Crossref] [PubMed]
  27. Y. J. Lu, A. F. Chatziioannou, and IEEE, “Parallel Adaptive Finite Element Simulation for Optical Molecular Imaging with Simplified Spherical Harmonics Approximation,” in 2008 IEEE Nuclear Science Symposium and Medical Imaging Conference(2009), pp. 3314–3317.
  28. S. E. Benzley, E. Perry, K. Merkley, B. Clark, and G. Sjaardama, “A comparison of all hexagonal and all tetrahedral finite element meshes for elastic and elasto-plastic analysis,” in Proceedings, 4th International Meshing Roundtable(Sandia National Laboratories Albuquerque, NM1995), pp. 179–191.
  29. A. Ramos and J. A. Simões, “Tetrahedral versus hexahedral finite elements in numerical modelling of the proximal femur,” Med. Eng. Phys. 28(9), 916–924 (2006).
    [Crossref] [PubMed]
  30. G. R. Joldes, A. Wittek, and K. Miller, “Real-time nonlinear finite element computations on GPU - Application to neurosurgical simulation,” Comput. Methods Appl. Mech. Eng. 199(49-52), 3305–3314 (2010).
    [Crossref] [PubMed]
  31. G. Yan, J. Tian, S. Zhu, Y. Dai, and C. Qin, “Fast cone-beam CT image reconstruction using GPU hardware,” J. XRay Sci. Technol. 16(4), 225–234 (2008).
  32. X. Chen, X. Gao, X. Qu, J. Liang, L. Wang, D. Yang, A. Garofalakis, J. Ripoll, and J. Tian, “A study of photon propagation in free-space based on hybrid radiosity-radiance theorem,” Opt. Express 17(18), 16266–16280 (2009).
    [Crossref] [PubMed]
  33. X. He, J. Liang, X. Wang, J. Yu, X. Qu, X. Wang, Y. Hou, D. Chen, F. Liu, and J. Tian, “Sparse reconstruction for quantitative bioluminescence tomography based on the incomplete variables truncated conjugate gradient method,” Opt. Express 18(24), 24825–24841 (2010).
    [Crossref] [PubMed]
  34. B. Dogdas, D. Stout, A. F. Chatziioannou, and R. M. Leahy, “Digimouse: a 3D whole body mouse atlas from CT and cryosection data,” Phys. Med. Biol. 52(3), 577–587 (2007).
    [Crossref] [PubMed]
  35. H. Zhao, T. C. Doyle, O. Coquoz, F. Kalish, B. W. Rice, and C. H. Contag, “Emission spectra of bioluminescent reporters and interaction with mammalian tissue determine the sensitivity of detection in vivo,” J. Biomed. Opt. 10(4), 041210 (2005).
    [Crossref] [PubMed]
  36. Q. Zhang, X. Chen, X. Qu, J. Liang, and J. Tian, “Comparative studies of l(p)-regularization-based reconstruction algorithms for bioluminescence tomography,” Biomed. Opt. Express 3(11), 2916–2936 (2012).
    [Crossref] [PubMed]
  37. I. Loris, G. Nolet, I. Daubechies, and F. A. Dahlen, “Tomographic inversion using l(1)-norm regularization of wavelet coefficients,” Geophys. J. Int. 170(1), 359–370 (2007).
    [Crossref]

2014 (2)

2013 (1)

S. Ren, X. Chen, H. Wang, X. Qu, G. Wang, J. Liang, and J. Tian, “Molecular Optical Simulation Environment (MOSE): A Platform for the Simulation of Light Propagation in Turbid Media,” PLoS One 8(4), e61304 (2013).
[Crossref] [PubMed]

2012 (3)

H. Wang, D. B. Stout, and A. F. Chatziioannou, “Estimation of Mouse Organ Locations Through Registration of a Statistical Mouse Atlas With Micro-CT Images,” IEEE Trans. Med. Imaging 31(1), 88–102 (2012).
[Crossref] [PubMed]

Q. Zhang, X. Chen, X. Qu, J. Liang, and J. Tian, “Comparative studies of l(p)-regularization-based reconstruction algorithms for bioluminescence tomography,” Biomed. Opt. Express 3(11), 2916–2936 (2012).
[Crossref] [PubMed]

P. Wu, K. Liu, Q. Zhang, Z. Xue, Y. Li, N. Ning, X. Yang, X. Li, and J. Tian, “Detection of mouse liver cancer via a parallel iterative shrinkage method in hybrid optical/microcomputed tomography imaging,” J. Biomed. Opt. 17(12), 126012 (2012).
[Crossref] [PubMed]

2011 (2)

M. Baiker, M. Staring, C. W. G. M. Lowik, J. H. C. Reiber, and B. P. F. Lelieveldt, “Automated Registration of Whole-Body Follow-Up MicroCT Data of Mice,” Medical Image Computing and Computer-Assisted Intervention 6892, 516–523 (2011).

C. E. Badr and B. A. Tannous, “Bioluminescence imaging: progress and applications,” Trends Biotechnol. 29(12), 624–633 (2011).
[Crossref] [PubMed]

2010 (6)

J. Liu, D. Chen, X. Li, X. Ma, H. Chen, W. Fan, F. Wang, X. Qu, J. Liang, F. Cao, and J. Tian, “In vivo quantitative reconstruction studies of bioluminescence tomography: effects of peak-wavelength shift and model deviation,” IEEE Trans. Biomed. Eng. 57(10), 2579–2582 (2010).
[Crossref] [PubMed]

J. Liu, Y. Wang, X. Qu, X. Li, X. Ma, R. Han, Z. Hu, X. Chen, D. Sun, R. Zhang, D. Chen, D. Chen, X. Chen, J. Liang, F. Cao, and J. Tian, “In vivo quantitative bioluminescence tomography using heterogeneous and homogeneous mouse models,” Opt. Express 18(12), 13102–13113 (2010).
[Crossref] [PubMed]

X. He, J. Liang, X. Wang, J. Yu, X. Qu, X. Wang, Y. Hou, D. Chen, F. Liu, and J. Tian, “Sparse reconstruction for quantitative bioluminescence tomography based on the incomplete variables truncated conjugate gradient method,” Opt. Express 18(24), 24825–24841 (2010).
[Crossref] [PubMed]

G. R. Joldes, A. Wittek, and K. Miller, “Real-time nonlinear finite element computations on GPU - Application to neurosurgical simulation,” Comput. Methods Appl. Mech. Eng. 199(49-52), 3305–3314 (2010).
[Crossref] [PubMed]

H. Shen and G. Wang, “A tetrahedron-based inhomogeneous Monte Carlo optical simulator,” Phys. Med. Biol. 55(4), 947–962 (2010).
[Crossref] [PubMed]

K. Liu, Y. Lu, J. Tian, C. Qin, X. Yang, S. Zhu, X. Yang, Q. Gao, and D. Han, “Evaluation of the simplified spherical harmonics approximation in bioluminescence tomography through heterogeneous mouse models,” Opt. Express 18(20), 20988–21002 (2010).
[Crossref] [PubMed]

2009 (6)

Y. Lu, H. B. Machado, A. Douraghy, D. Stout, H. Herschman, and A. F. Chatziioannou, “Experimental Bioluminescence Tomography with Fully Parallel Radiative-transfer-Based Reconstruction Framework,” Opt. Express 17(19), 16681–16695 (2009).
[Crossref] [PubMed]

I. Isgum, M. Staring, A. Rutten, M. Prokop, M. A. Viergever, and B. van Ginneken, “Multi-Atlas-Based Segmentation With Local Decision Fusion-Application to Cardiac and Aortic Segmentation in CT Scans,” IEEE Trans. Med. Imaging 28(7), 1000–1010 (2009).
[Crossref] [PubMed]

Q. Fang and D. A. Boas, “Monte Carlo Simulation of Photon Migration in 3D Turbid Media Accelerated by Graphics Processing Units,” Opt. Express 17(22), 20178–20190 (2009).
[Crossref] [PubMed]

Z. Yuan, Q. Zhang, E. Sobel, and H. Jiang, “Comparison of diffusion approximation and higher order diffusion equations for optical tomography of osteoarthritis,” J. Biomed. Opt. 14(5), 054013 (2009).
[Crossref] [PubMed]

I. Willekens, T. Lahoutte, N. Buls, C. Vanhove, R. Deklerck, A. Bossuyt, and J. de Mey, “Time-Course of Contrast Enhancement in Spleen and Liver with Exia 160, Fenestra LC, and VC,” Mol. Imaging Biol. 11(2), 128–135 (2009).
[Crossref] [PubMed]

X. Chen, X. Gao, X. Qu, J. Liang, L. Wang, D. Yang, A. Garofalakis, J. Ripoll, and J. Tian, “A study of photon propagation in free-space based on hybrid radiosity-radiance theorem,” Opt. Express 17(18), 16266–16280 (2009).
[Crossref] [PubMed]

2008 (3)

G. Wang, H. Shen, Y. Liu, A. Cong, W. Cong, Y. Wang, and P. Dubey, “Digital spectral separation methods and systems for bioluminescence imaging,” Opt. Express 16(3), 1719–1732 (2008).
[Crossref] [PubMed]

J. K. Willmann, N. van Bruggen, L. M. Dinkelborg, and S. S. Gambhir, “Molecular imaging in drug development,” Nat. Rev. Drug Discov. 7(7), 591–607 (2008).
[Crossref] [PubMed]

G. Yan, J. Tian, S. Zhu, Y. Dai, and C. Qin, “Fast cone-beam CT image reconstruction using GPU hardware,” J. XRay Sci. Technol. 16(4), 225–234 (2008).

2007 (2)

B. Dogdas, D. Stout, A. F. Chatziioannou, and R. M. Leahy, “Digimouse: a 3D whole body mouse atlas from CT and cryosection data,” Phys. Med. Biol. 52(3), 577–587 (2007).
[Crossref] [PubMed]

I. Loris, G. Nolet, I. Daubechies, and F. A. Dahlen, “Tomographic inversion using l(1)-norm regularization of wavelet coefficients,” Geophys. J. Int. 170(1), 359–370 (2007).
[Crossref]

2006 (2)

A. Ramos and J. A. Simões, “Tetrahedral versus hexahedral finite elements in numerical modelling of the proximal femur,” Med. Eng. Phys. 28(9), 916–924 (2006).
[Crossref] [PubMed]

G. Wang, W. Cong, K. Durairaj, X. Qian, H. Shen, P. Sinn, E. Hoffman, G. McLennan, and M. Henry, “In vivo mouse studies with bioluminescence tomography,” Opt. Express 14(17), 7801–7809 (2006).
[Crossref] [PubMed]

2005 (3)

V. Ntziachristos, J. Ripoll, L. V. Wang, and R. Weissleder, “Looking and listening to light: the evolution of whole-body photonic imaging,” Nat. Biotechnol. 23(3), 313–320 (2005).
[Crossref] [PubMed]

W. Cong, G. Wang, D. Kumar, Y. Liu, M. Jiang, L. Wang, E. Hoffman, G. McLennan, P. McCray, J. Zabner, and A. Cong, “Practical reconstruction method for bioluminescence tomography,” Opt. Express 13(18), 6756–6771 (2005).
[Crossref] [PubMed]

H. Zhao, T. C. Doyle, O. Coquoz, F. Kalish, B. W. Rice, and C. H. Contag, “Emission spectra of bioluminescent reporters and interaction with mammalian tissue determine the sensitivity of detection in vivo,” J. Biomed. Opt. 10(4), 041210 (2005).
[Crossref] [PubMed]

2003 (3)

H. Park, P. H. Bland, and C. R. Meyer, “Construction of an abdominal Probabilistic atlas and its application in segmentation,” IEEE Trans. Med. Imaging 22(4), 483–492 (2003).
[Crossref] [PubMed]

G. Wang, E. Hoffman, G. McLennan, L. Wang, M. Suter, and J. Meinel, “Development of the first bioluminescent CT scanner,” Radiology 229, 566 (2003).

A. Söling and N. G. Rainov, “Bioluminescence imaging in vivo - application to cancer research,” Expert Opin. Biol. Ther. 3(7), 1163–1172 (2003).
[PubMed]

1993 (1)

S. R. Arridge, M. Schweiger, M. Hiraoka, and D. T. Delpy, “A finite element approach for modeling photon transport in tissue,” Med. Phys. 20(2), 299–309 (1993).
[Crossref] [PubMed]

1992 (1)

T. J. Farrell, M. S. Patterson, and B. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19(4), 879–888 (1992).
[Crossref] [PubMed]

Arridge, S. R.

S. R. Arridge, M. Schweiger, M. Hiraoka, and D. T. Delpy, “A finite element approach for modeling photon transport in tissue,” Med. Phys. 20(2), 299–309 (1993).
[Crossref] [PubMed]

Badr, C. E.

C. E. Badr and B. A. Tannous, “Bioluminescence imaging: progress and applications,” Trends Biotechnol. 29(12), 624–633 (2011).
[Crossref] [PubMed]

Baiker, M.

M. Baiker, M. Staring, C. W. G. M. Lowik, J. H. C. Reiber, and B. P. F. Lelieveldt, “Automated Registration of Whole-Body Follow-Up MicroCT Data of Mice,” Medical Image Computing and Computer-Assisted Intervention 6892, 516–523 (2011).

Bland, P. H.

H. Park, P. H. Bland, and C. R. Meyer, “Construction of an abdominal Probabilistic atlas and its application in segmentation,” IEEE Trans. Med. Imaging 22(4), 483–492 (2003).
[Crossref] [PubMed]

Boas, D. A.

Bossuyt, A.

I. Willekens, T. Lahoutte, N. Buls, C. Vanhove, R. Deklerck, A. Bossuyt, and J. de Mey, “Time-Course of Contrast Enhancement in Spleen and Liver with Exia 160, Fenestra LC, and VC,” Mol. Imaging Biol. 11(2), 128–135 (2009).
[Crossref] [PubMed]

Buls, N.

I. Willekens, T. Lahoutte, N. Buls, C. Vanhove, R. Deklerck, A. Bossuyt, and J. de Mey, “Time-Course of Contrast Enhancement in Spleen and Liver with Exia 160, Fenestra LC, and VC,” Mol. Imaging Biol. 11(2), 128–135 (2009).
[Crossref] [PubMed]

Cao, F.

J. Liu, D. Chen, X. Li, X. Ma, H. Chen, W. Fan, F. Wang, X. Qu, J. Liang, F. Cao, and J. Tian, “In vivo quantitative reconstruction studies of bioluminescence tomography: effects of peak-wavelength shift and model deviation,” IEEE Trans. Biomed. Eng. 57(10), 2579–2582 (2010).
[Crossref] [PubMed]

J. Liu, Y. Wang, X. Qu, X. Li, X. Ma, R. Han, Z. Hu, X. Chen, D. Sun, R. Zhang, D. Chen, D. Chen, X. Chen, J. Liang, F. Cao, and J. Tian, “In vivo quantitative bioluminescence tomography using heterogeneous and homogeneous mouse models,” Opt. Express 18(12), 13102–13113 (2010).
[Crossref] [PubMed]

Chatziioannou, A. F.

H. Wang, D. B. Stout, and A. F. Chatziioannou, “Estimation of Mouse Organ Locations Through Registration of a Statistical Mouse Atlas With Micro-CT Images,” IEEE Trans. Med. Imaging 31(1), 88–102 (2012).
[Crossref] [PubMed]

Y. Lu, H. B. Machado, A. Douraghy, D. Stout, H. Herschman, and A. F. Chatziioannou, “Experimental Bioluminescence Tomography with Fully Parallel Radiative-transfer-Based Reconstruction Framework,” Opt. Express 17(19), 16681–16695 (2009).
[Crossref] [PubMed]

B. Dogdas, D. Stout, A. F. Chatziioannou, and R. M. Leahy, “Digimouse: a 3D whole body mouse atlas from CT and cryosection data,” Phys. Med. Biol. 52(3), 577–587 (2007).
[Crossref] [PubMed]

Chen, D.

Chen, H.

J. Liu, D. Chen, X. Li, X. Ma, H. Chen, W. Fan, F. Wang, X. Qu, J. Liang, F. Cao, and J. Tian, “In vivo quantitative reconstruction studies of bioluminescence tomography: effects of peak-wavelength shift and model deviation,” IEEE Trans. Biomed. Eng. 57(10), 2579–2582 (2010).
[Crossref] [PubMed]

Chen, W.

Chen, X.

Cong, A.

Cong, W.

Contag, C. H.

H. Zhao, T. C. Doyle, O. Coquoz, F. Kalish, B. W. Rice, and C. H. Contag, “Emission spectra of bioluminescent reporters and interaction with mammalian tissue determine the sensitivity of detection in vivo,” J. Biomed. Opt. 10(4), 041210 (2005).
[Crossref] [PubMed]

Coquoz, O.

H. Zhao, T. C. Doyle, O. Coquoz, F. Kalish, B. W. Rice, and C. H. Contag, “Emission spectra of bioluminescent reporters and interaction with mammalian tissue determine the sensitivity of detection in vivo,” J. Biomed. Opt. 10(4), 041210 (2005).
[Crossref] [PubMed]

Dahlen, F. A.

I. Loris, G. Nolet, I. Daubechies, and F. A. Dahlen, “Tomographic inversion using l(1)-norm regularization of wavelet coefficients,” Geophys. J. Int. 170(1), 359–370 (2007).
[Crossref]

Dai, Y.

G. Yan, J. Tian, S. Zhu, Y. Dai, and C. Qin, “Fast cone-beam CT image reconstruction using GPU hardware,” J. XRay Sci. Technol. 16(4), 225–234 (2008).

Daubechies, I.

I. Loris, G. Nolet, I. Daubechies, and F. A. Dahlen, “Tomographic inversion using l(1)-norm regularization of wavelet coefficients,” Geophys. J. Int. 170(1), 359–370 (2007).
[Crossref]

de Mey, J.

I. Willekens, T. Lahoutte, N. Buls, C. Vanhove, R. Deklerck, A. Bossuyt, and J. de Mey, “Time-Course of Contrast Enhancement in Spleen and Liver with Exia 160, Fenestra LC, and VC,” Mol. Imaging Biol. 11(2), 128–135 (2009).
[Crossref] [PubMed]

Deklerck, R.

I. Willekens, T. Lahoutte, N. Buls, C. Vanhove, R. Deklerck, A. Bossuyt, and J. de Mey, “Time-Course of Contrast Enhancement in Spleen and Liver with Exia 160, Fenestra LC, and VC,” Mol. Imaging Biol. 11(2), 128–135 (2009).
[Crossref] [PubMed]

Delpy, D. T.

S. R. Arridge, M. Schweiger, M. Hiraoka, and D. T. Delpy, “A finite element approach for modeling photon transport in tissue,” Med. Phys. 20(2), 299–309 (1993).
[Crossref] [PubMed]

Dinkelborg, L. M.

J. K. Willmann, N. van Bruggen, L. M. Dinkelborg, and S. S. Gambhir, “Molecular imaging in drug development,” Nat. Rev. Drug Discov. 7(7), 591–607 (2008).
[Crossref] [PubMed]

Dogdas, B.

B. Dogdas, D. Stout, A. F. Chatziioannou, and R. M. Leahy, “Digimouse: a 3D whole body mouse atlas from CT and cryosection data,” Phys. Med. Biol. 52(3), 577–587 (2007).
[Crossref] [PubMed]

Douraghy, A.

Doyle, T. C.

H. Zhao, T. C. Doyle, O. Coquoz, F. Kalish, B. W. Rice, and C. H. Contag, “Emission spectra of bioluminescent reporters and interaction with mammalian tissue determine the sensitivity of detection in vivo,” J. Biomed. Opt. 10(4), 041210 (2005).
[Crossref] [PubMed]

Dubey, P.

Durairaj, K.

Fan, W.

J. Liu, D. Chen, X. Li, X. Ma, H. Chen, W. Fan, F. Wang, X. Qu, J. Liang, F. Cao, and J. Tian, “In vivo quantitative reconstruction studies of bioluminescence tomography: effects of peak-wavelength shift and model deviation,” IEEE Trans. Biomed. Eng. 57(10), 2579–2582 (2010).
[Crossref] [PubMed]

Fang, Q.

Farrell, T. J.

T. J. Farrell, M. S. Patterson, and B. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19(4), 879–888 (1992).
[Crossref] [PubMed]

Gambhir, S. S.

J. K. Willmann, N. van Bruggen, L. M. Dinkelborg, and S. S. Gambhir, “Molecular imaging in drug development,” Nat. Rev. Drug Discov. 7(7), 591–607 (2008).
[Crossref] [PubMed]

Gao, F.

Gao, Q.

Gao, X.

Garofalakis, A.

Han, D.

Han, R.

He, X.

Henry, M.

Herschman, H.

Hiraoka, M.

S. R. Arridge, M. Schweiger, M. Hiraoka, and D. T. Delpy, “A finite element approach for modeling photon transport in tissue,” Med. Phys. 20(2), 299–309 (1993).
[Crossref] [PubMed]

Hoffman, E.

Hou, Y.

Hu, Z.

Isgum, I.

I. Isgum, M. Staring, A. Rutten, M. Prokop, M. A. Viergever, and B. van Ginneken, “Multi-Atlas-Based Segmentation With Local Decision Fusion-Application to Cardiac and Aortic Segmentation in CT Scans,” IEEE Trans. Med. Imaging 28(7), 1000–1010 (2009).
[Crossref] [PubMed]

Jiang, H.

Z. Yuan, Q. Zhang, E. Sobel, and H. Jiang, “Comparison of diffusion approximation and higher order diffusion equations for optical tomography of osteoarthritis,” J. Biomed. Opt. 14(5), 054013 (2009).
[Crossref] [PubMed]

Jiang, M.

Joldes, G. R.

G. R. Joldes, A. Wittek, and K. Miller, “Real-time nonlinear finite element computations on GPU - Application to neurosurgical simulation,” Comput. Methods Appl. Mech. Eng. 199(49-52), 3305–3314 (2010).
[Crossref] [PubMed]

Kalish, F.

H. Zhao, T. C. Doyle, O. Coquoz, F. Kalish, B. W. Rice, and C. H. Contag, “Emission spectra of bioluminescent reporters and interaction with mammalian tissue determine the sensitivity of detection in vivo,” J. Biomed. Opt. 10(4), 041210 (2005).
[Crossref] [PubMed]

Kumar, D.

Lahoutte, T.

I. Willekens, T. Lahoutte, N. Buls, C. Vanhove, R. Deklerck, A. Bossuyt, and J. de Mey, “Time-Course of Contrast Enhancement in Spleen and Liver with Exia 160, Fenestra LC, and VC,” Mol. Imaging Biol. 11(2), 128–135 (2009).
[Crossref] [PubMed]

Leahy, R. M.

B. Dogdas, D. Stout, A. F. Chatziioannou, and R. M. Leahy, “Digimouse: a 3D whole body mouse atlas from CT and cryosection data,” Phys. Med. Biol. 52(3), 577–587 (2007).
[Crossref] [PubMed]

Lelieveldt, B. P. F.

M. Baiker, M. Staring, C. W. G. M. Lowik, J. H. C. Reiber, and B. P. F. Lelieveldt, “Automated Registration of Whole-Body Follow-Up MicroCT Data of Mice,” Medical Image Computing and Computer-Assisted Intervention 6892, 516–523 (2011).

Li, X.

P. Wu, K. Liu, Q. Zhang, Z. Xue, Y. Li, N. Ning, X. Yang, X. Li, and J. Tian, “Detection of mouse liver cancer via a parallel iterative shrinkage method in hybrid optical/microcomputed tomography imaging,” J. Biomed. Opt. 17(12), 126012 (2012).
[Crossref] [PubMed]

J. Liu, D. Chen, X. Li, X. Ma, H. Chen, W. Fan, F. Wang, X. Qu, J. Liang, F. Cao, and J. Tian, “In vivo quantitative reconstruction studies of bioluminescence tomography: effects of peak-wavelength shift and model deviation,” IEEE Trans. Biomed. Eng. 57(10), 2579–2582 (2010).
[Crossref] [PubMed]

J. Liu, Y. Wang, X. Qu, X. Li, X. Ma, R. Han, Z. Hu, X. Chen, D. Sun, R. Zhang, D. Chen, D. Chen, X. Chen, J. Liang, F. Cao, and J. Tian, “In vivo quantitative bioluminescence tomography using heterogeneous and homogeneous mouse models,” Opt. Express 18(12), 13102–13113 (2010).
[Crossref] [PubMed]

Li, Y.

P. Wu, K. Liu, Q. Zhang, Z. Xue, Y. Li, N. Ning, X. Yang, X. Li, and J. Tian, “Detection of mouse liver cancer via a parallel iterative shrinkage method in hybrid optical/microcomputed tomography imaging,” J. Biomed. Opt. 17(12), 126012 (2012).
[Crossref] [PubMed]

Liang, J.

S. Ren, X. Chen, H. Wang, X. Qu, G. Wang, J. Liang, and J. Tian, “Molecular Optical Simulation Environment (MOSE): A Platform for the Simulation of Light Propagation in Turbid Media,” PLoS One 8(4), e61304 (2013).
[Crossref] [PubMed]

Q. Zhang, X. Chen, X. Qu, J. Liang, and J. Tian, “Comparative studies of l(p)-regularization-based reconstruction algorithms for bioluminescence tomography,” Biomed. Opt. Express 3(11), 2916–2936 (2012).
[Crossref] [PubMed]

X. He, J. Liang, X. Wang, J. Yu, X. Qu, X. Wang, Y. Hou, D. Chen, F. Liu, and J. Tian, “Sparse reconstruction for quantitative bioluminescence tomography based on the incomplete variables truncated conjugate gradient method,” Opt. Express 18(24), 24825–24841 (2010).
[Crossref] [PubMed]

J. Liu, D. Chen, X. Li, X. Ma, H. Chen, W. Fan, F. Wang, X. Qu, J. Liang, F. Cao, and J. Tian, “In vivo quantitative reconstruction studies of bioluminescence tomography: effects of peak-wavelength shift and model deviation,” IEEE Trans. Biomed. Eng. 57(10), 2579–2582 (2010).
[Crossref] [PubMed]

J. Liu, Y. Wang, X. Qu, X. Li, X. Ma, R. Han, Z. Hu, X. Chen, D. Sun, R. Zhang, D. Chen, D. Chen, X. Chen, J. Liang, F. Cao, and J. Tian, “In vivo quantitative bioluminescence tomography using heterogeneous and homogeneous mouse models,” Opt. Express 18(12), 13102–13113 (2010).
[Crossref] [PubMed]

X. Chen, X. Gao, X. Qu, J. Liang, L. Wang, D. Yang, A. Garofalakis, J. Ripoll, and J. Tian, “A study of photon propagation in free-space based on hybrid radiosity-radiance theorem,” Opt. Express 17(18), 16266–16280 (2009).
[Crossref] [PubMed]

Liu, F.

Liu, J.

J. Liu, Y. Wang, X. Qu, X. Li, X. Ma, R. Han, Z. Hu, X. Chen, D. Sun, R. Zhang, D. Chen, D. Chen, X. Chen, J. Liang, F. Cao, and J. Tian, “In vivo quantitative bioluminescence tomography using heterogeneous and homogeneous mouse models,” Opt. Express 18(12), 13102–13113 (2010).
[Crossref] [PubMed]

J. Liu, D. Chen, X. Li, X. Ma, H. Chen, W. Fan, F. Wang, X. Qu, J. Liang, F. Cao, and J. Tian, “In vivo quantitative reconstruction studies of bioluminescence tomography: effects of peak-wavelength shift and model deviation,” IEEE Trans. Biomed. Eng. 57(10), 2579–2582 (2010).
[Crossref] [PubMed]

Liu, K.

P. Wu, K. Liu, Q. Zhang, Z. Xue, Y. Li, N. Ning, X. Yang, X. Li, and J. Tian, “Detection of mouse liver cancer via a parallel iterative shrinkage method in hybrid optical/microcomputed tomography imaging,” J. Biomed. Opt. 17(12), 126012 (2012).
[Crossref] [PubMed]

K. Liu, Y. Lu, J. Tian, C. Qin, X. Yang, S. Zhu, X. Yang, Q. Gao, and D. Han, “Evaluation of the simplified spherical harmonics approximation in bioluminescence tomography through heterogeneous mouse models,” Opt. Express 18(20), 20988–21002 (2010).
[Crossref] [PubMed]

Liu, Y.

Loris, I.

I. Loris, G. Nolet, I. Daubechies, and F. A. Dahlen, “Tomographic inversion using l(1)-norm regularization of wavelet coefficients,” Geophys. J. Int. 170(1), 359–370 (2007).
[Crossref]

Lowik, C. W. G. M.

M. Baiker, M. Staring, C. W. G. M. Lowik, J. H. C. Reiber, and B. P. F. Lelieveldt, “Automated Registration of Whole-Body Follow-Up MicroCT Data of Mice,” Medical Image Computing and Computer-Assisted Intervention 6892, 516–523 (2011).

Lu, Y.

Ma, X.

J. Liu, D. Chen, X. Li, X. Ma, H. Chen, W. Fan, F. Wang, X. Qu, J. Liang, F. Cao, and J. Tian, “In vivo quantitative reconstruction studies of bioluminescence tomography: effects of peak-wavelength shift and model deviation,” IEEE Trans. Biomed. Eng. 57(10), 2579–2582 (2010).
[Crossref] [PubMed]

J. Liu, Y. Wang, X. Qu, X. Li, X. Ma, R. Han, Z. Hu, X. Chen, D. Sun, R. Zhang, D. Chen, D. Chen, X. Chen, J. Liang, F. Cao, and J. Tian, “In vivo quantitative bioluminescence tomography using heterogeneous and homogeneous mouse models,” Opt. Express 18(12), 13102–13113 (2010).
[Crossref] [PubMed]

Machado, H. B.

McCray, P.

McLennan, G.

Meinel, J.

G. Wang, E. Hoffman, G. McLennan, L. Wang, M. Suter, and J. Meinel, “Development of the first bioluminescent CT scanner,” Radiology 229, 566 (2003).

Meyer, C. R.

H. Park, P. H. Bland, and C. R. Meyer, “Construction of an abdominal Probabilistic atlas and its application in segmentation,” IEEE Trans. Med. Imaging 22(4), 483–492 (2003).
[Crossref] [PubMed]

Miller, K.

G. R. Joldes, A. Wittek, and K. Miller, “Real-time nonlinear finite element computations on GPU - Application to neurosurgical simulation,” Comput. Methods Appl. Mech. Eng. 199(49-52), 3305–3314 (2010).
[Crossref] [PubMed]

Ning, N.

P. Wu, K. Liu, Q. Zhang, Z. Xue, Y. Li, N. Ning, X. Yang, X. Li, and J. Tian, “Detection of mouse liver cancer via a parallel iterative shrinkage method in hybrid optical/microcomputed tomography imaging,” J. Biomed. Opt. 17(12), 126012 (2012).
[Crossref] [PubMed]

Nolet, G.

I. Loris, G. Nolet, I. Daubechies, and F. A. Dahlen, “Tomographic inversion using l(1)-norm regularization of wavelet coefficients,” Geophys. J. Int. 170(1), 359–370 (2007).
[Crossref]

Ntziachristos, V.

V. Ntziachristos, J. Ripoll, L. V. Wang, and R. Weissleder, “Looking and listening to light: the evolution of whole-body photonic imaging,” Nat. Biotechnol. 23(3), 313–320 (2005).
[Crossref] [PubMed]

Park, H.

H. Park, P. H. Bland, and C. R. Meyer, “Construction of an abdominal Probabilistic atlas and its application in segmentation,” IEEE Trans. Med. Imaging 22(4), 483–492 (2003).
[Crossref] [PubMed]

Patterson, M. S.

T. J. Farrell, M. S. Patterson, and B. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19(4), 879–888 (1992).
[Crossref] [PubMed]

Platero, C.

C. Platero and M. C. Tobar, “A multiatlas segmentation using graph cuts with applications to liver segmentation in CT scans,” Comput. Math. Methods Med. 2014, 182909 (2014).
[Crossref] [PubMed]

Prokop, M.

I. Isgum, M. Staring, A. Rutten, M. Prokop, M. A. Viergever, and B. van Ginneken, “Multi-Atlas-Based Segmentation With Local Decision Fusion-Application to Cardiac and Aortic Segmentation in CT Scans,” IEEE Trans. Med. Imaging 28(7), 1000–1010 (2009).
[Crossref] [PubMed]

Qian, X.

Qin, C.

Qu, X.

S. Ren, X. Chen, H. Wang, X. Qu, G. Wang, J. Liang, and J. Tian, “Molecular Optical Simulation Environment (MOSE): A Platform for the Simulation of Light Propagation in Turbid Media,” PLoS One 8(4), e61304 (2013).
[Crossref] [PubMed]

Q. Zhang, X. Chen, X. Qu, J. Liang, and J. Tian, “Comparative studies of l(p)-regularization-based reconstruction algorithms for bioluminescence tomography,” Biomed. Opt. Express 3(11), 2916–2936 (2012).
[Crossref] [PubMed]

X. He, J. Liang, X. Wang, J. Yu, X. Qu, X. Wang, Y. Hou, D. Chen, F. Liu, and J. Tian, “Sparse reconstruction for quantitative bioluminescence tomography based on the incomplete variables truncated conjugate gradient method,” Opt. Express 18(24), 24825–24841 (2010).
[Crossref] [PubMed]

J. Liu, D. Chen, X. Li, X. Ma, H. Chen, W. Fan, F. Wang, X. Qu, J. Liang, F. Cao, and J. Tian, “In vivo quantitative reconstruction studies of bioluminescence tomography: effects of peak-wavelength shift and model deviation,” IEEE Trans. Biomed. Eng. 57(10), 2579–2582 (2010).
[Crossref] [PubMed]

J. Liu, Y. Wang, X. Qu, X. Li, X. Ma, R. Han, Z. Hu, X. Chen, D. Sun, R. Zhang, D. Chen, D. Chen, X. Chen, J. Liang, F. Cao, and J. Tian, “In vivo quantitative bioluminescence tomography using heterogeneous and homogeneous mouse models,” Opt. Express 18(12), 13102–13113 (2010).
[Crossref] [PubMed]

X. Chen, X. Gao, X. Qu, J. Liang, L. Wang, D. Yang, A. Garofalakis, J. Ripoll, and J. Tian, “A study of photon propagation in free-space based on hybrid radiosity-radiance theorem,” Opt. Express 17(18), 16266–16280 (2009).
[Crossref] [PubMed]

Rainov, N. G.

A. Söling and N. G. Rainov, “Bioluminescence imaging in vivo - application to cancer research,” Expert Opin. Biol. Ther. 3(7), 1163–1172 (2003).
[PubMed]

Ramos, A.

A. Ramos and J. A. Simões, “Tetrahedral versus hexahedral finite elements in numerical modelling of the proximal femur,” Med. Eng. Phys. 28(9), 916–924 (2006).
[Crossref] [PubMed]

Reiber, J. H. C.

M. Baiker, M. Staring, C. W. G. M. Lowik, J. H. C. Reiber, and B. P. F. Lelieveldt, “Automated Registration of Whole-Body Follow-Up MicroCT Data of Mice,” Medical Image Computing and Computer-Assisted Intervention 6892, 516–523 (2011).

Ren, S.

S. Ren, X. Chen, H. Wang, X. Qu, G. Wang, J. Liang, and J. Tian, “Molecular Optical Simulation Environment (MOSE): A Platform for the Simulation of Light Propagation in Turbid Media,” PLoS One 8(4), e61304 (2013).
[Crossref] [PubMed]

Rice, B. W.

H. Zhao, T. C. Doyle, O. Coquoz, F. Kalish, B. W. Rice, and C. H. Contag, “Emission spectra of bioluminescent reporters and interaction with mammalian tissue determine the sensitivity of detection in vivo,” J. Biomed. Opt. 10(4), 041210 (2005).
[Crossref] [PubMed]

Ripoll, J.

X. Chen, X. Gao, X. Qu, J. Liang, L. Wang, D. Yang, A. Garofalakis, J. Ripoll, and J. Tian, “A study of photon propagation in free-space based on hybrid radiosity-radiance theorem,” Opt. Express 17(18), 16266–16280 (2009).
[Crossref] [PubMed]

V. Ntziachristos, J. Ripoll, L. V. Wang, and R. Weissleder, “Looking and listening to light: the evolution of whole-body photonic imaging,” Nat. Biotechnol. 23(3), 313–320 (2005).
[Crossref] [PubMed]

Rutten, A.

I. Isgum, M. Staring, A. Rutten, M. Prokop, M. A. Viergever, and B. van Ginneken, “Multi-Atlas-Based Segmentation With Local Decision Fusion-Application to Cardiac and Aortic Segmentation in CT Scans,” IEEE Trans. Med. Imaging 28(7), 1000–1010 (2009).
[Crossref] [PubMed]

Schweiger, M.

S. R. Arridge, M. Schweiger, M. Hiraoka, and D. T. Delpy, “A finite element approach for modeling photon transport in tissue,” Med. Phys. 20(2), 299–309 (1993).
[Crossref] [PubMed]

Shen, H.

Simões, J. A.

A. Ramos and J. A. Simões, “Tetrahedral versus hexahedral finite elements in numerical modelling of the proximal femur,” Med. Eng. Phys. 28(9), 916–924 (2006).
[Crossref] [PubMed]

Sinn, P.

Sobel, E.

Z. Yuan, Q. Zhang, E. Sobel, and H. Jiang, “Comparison of diffusion approximation and higher order diffusion equations for optical tomography of osteoarthritis,” J. Biomed. Opt. 14(5), 054013 (2009).
[Crossref] [PubMed]

Söling, A.

A. Söling and N. G. Rainov, “Bioluminescence imaging in vivo - application to cancer research,” Expert Opin. Biol. Ther. 3(7), 1163–1172 (2003).
[PubMed]

Staring, M.

M. Baiker, M. Staring, C. W. G. M. Lowik, J. H. C. Reiber, and B. P. F. Lelieveldt, “Automated Registration of Whole-Body Follow-Up MicroCT Data of Mice,” Medical Image Computing and Computer-Assisted Intervention 6892, 516–523 (2011).

I. Isgum, M. Staring, A. Rutten, M. Prokop, M. A. Viergever, and B. van Ginneken, “Multi-Atlas-Based Segmentation With Local Decision Fusion-Application to Cardiac and Aortic Segmentation in CT Scans,” IEEE Trans. Med. Imaging 28(7), 1000–1010 (2009).
[Crossref] [PubMed]

Stout, D.

Stout, D. B.

H. Wang, D. B. Stout, and A. F. Chatziioannou, “Estimation of Mouse Organ Locations Through Registration of a Statistical Mouse Atlas With Micro-CT Images,” IEEE Trans. Med. Imaging 31(1), 88–102 (2012).
[Crossref] [PubMed]

Sun, D.

Suter, M.

G. Wang, E. Hoffman, G. McLennan, L. Wang, M. Suter, and J. Meinel, “Development of the first bioluminescent CT scanner,” Radiology 229, 566 (2003).

Tannous, B. A.

C. E. Badr and B. A. Tannous, “Bioluminescence imaging: progress and applications,” Trends Biotechnol. 29(12), 624–633 (2011).
[Crossref] [PubMed]

Tian, J.

S. Ren, X. Chen, H. Wang, X. Qu, G. Wang, J. Liang, and J. Tian, “Molecular Optical Simulation Environment (MOSE): A Platform for the Simulation of Light Propagation in Turbid Media,” PLoS One 8(4), e61304 (2013).
[Crossref] [PubMed]

P. Wu, K. Liu, Q. Zhang, Z. Xue, Y. Li, N. Ning, X. Yang, X. Li, and J. Tian, “Detection of mouse liver cancer via a parallel iterative shrinkage method in hybrid optical/microcomputed tomography imaging,” J. Biomed. Opt. 17(12), 126012 (2012).
[Crossref] [PubMed]

Q. Zhang, X. Chen, X. Qu, J. Liang, and J. Tian, “Comparative studies of l(p)-regularization-based reconstruction algorithms for bioluminescence tomography,” Biomed. Opt. Express 3(11), 2916–2936 (2012).
[Crossref] [PubMed]

K. Liu, Y. Lu, J. Tian, C. Qin, X. Yang, S. Zhu, X. Yang, Q. Gao, and D. Han, “Evaluation of the simplified spherical harmonics approximation in bioluminescence tomography through heterogeneous mouse models,” Opt. Express 18(20), 20988–21002 (2010).
[Crossref] [PubMed]

X. He, J. Liang, X. Wang, J. Yu, X. Qu, X. Wang, Y. Hou, D. Chen, F. Liu, and J. Tian, “Sparse reconstruction for quantitative bioluminescence tomography based on the incomplete variables truncated conjugate gradient method,” Opt. Express 18(24), 24825–24841 (2010).
[Crossref] [PubMed]

J. Liu, D. Chen, X. Li, X. Ma, H. Chen, W. Fan, F. Wang, X. Qu, J. Liang, F. Cao, and J. Tian, “In vivo quantitative reconstruction studies of bioluminescence tomography: effects of peak-wavelength shift and model deviation,” IEEE Trans. Biomed. Eng. 57(10), 2579–2582 (2010).
[Crossref] [PubMed]

J. Liu, Y. Wang, X. Qu, X. Li, X. Ma, R. Han, Z. Hu, X. Chen, D. Sun, R. Zhang, D. Chen, D. Chen, X. Chen, J. Liang, F. Cao, and J. Tian, “In vivo quantitative bioluminescence tomography using heterogeneous and homogeneous mouse models,” Opt. Express 18(12), 13102–13113 (2010).
[Crossref] [PubMed]

X. Chen, X. Gao, X. Qu, J. Liang, L. Wang, D. Yang, A. Garofalakis, J. Ripoll, and J. Tian, “A study of photon propagation in free-space based on hybrid radiosity-radiance theorem,” Opt. Express 17(18), 16266–16280 (2009).
[Crossref] [PubMed]

G. Yan, J. Tian, S. Zhu, Y. Dai, and C. Qin, “Fast cone-beam CT image reconstruction using GPU hardware,” J. XRay Sci. Technol. 16(4), 225–234 (2008).

Tobar, M. C.

C. Platero and M. C. Tobar, “A multiatlas segmentation using graph cuts with applications to liver segmentation in CT scans,” Comput. Math. Methods Med. 2014, 182909 (2014).
[Crossref] [PubMed]

van Bruggen, N.

J. K. Willmann, N. van Bruggen, L. M. Dinkelborg, and S. S. Gambhir, “Molecular imaging in drug development,” Nat. Rev. Drug Discov. 7(7), 591–607 (2008).
[Crossref] [PubMed]

van Ginneken, B.

I. Isgum, M. Staring, A. Rutten, M. Prokop, M. A. Viergever, and B. van Ginneken, “Multi-Atlas-Based Segmentation With Local Decision Fusion-Application to Cardiac and Aortic Segmentation in CT Scans,” IEEE Trans. Med. Imaging 28(7), 1000–1010 (2009).
[Crossref] [PubMed]

Vanhove, C.

I. Willekens, T. Lahoutte, N. Buls, C. Vanhove, R. Deklerck, A. Bossuyt, and J. de Mey, “Time-Course of Contrast Enhancement in Spleen and Liver with Exia 160, Fenestra LC, and VC,” Mol. Imaging Biol. 11(2), 128–135 (2009).
[Crossref] [PubMed]

Viergever, M. A.

I. Isgum, M. Staring, A. Rutten, M. Prokop, M. A. Viergever, and B. van Ginneken, “Multi-Atlas-Based Segmentation With Local Decision Fusion-Application to Cardiac and Aortic Segmentation in CT Scans,” IEEE Trans. Med. Imaging 28(7), 1000–1010 (2009).
[Crossref] [PubMed]

Wang, F.

J. Liu, D. Chen, X. Li, X. Ma, H. Chen, W. Fan, F. Wang, X. Qu, J. Liang, F. Cao, and J. Tian, “In vivo quantitative reconstruction studies of bioluminescence tomography: effects of peak-wavelength shift and model deviation,” IEEE Trans. Biomed. Eng. 57(10), 2579–2582 (2010).
[Crossref] [PubMed]

Wang, G.

S. Ren, X. Chen, H. Wang, X. Qu, G. Wang, J. Liang, and J. Tian, “Molecular Optical Simulation Environment (MOSE): A Platform for the Simulation of Light Propagation in Turbid Media,” PLoS One 8(4), e61304 (2013).
[Crossref] [PubMed]

H. Shen and G. Wang, “A tetrahedron-based inhomogeneous Monte Carlo optical simulator,” Phys. Med. Biol. 55(4), 947–962 (2010).
[Crossref] [PubMed]

G. Wang, H. Shen, Y. Liu, A. Cong, W. Cong, Y. Wang, and P. Dubey, “Digital spectral separation methods and systems for bioluminescence imaging,” Opt. Express 16(3), 1719–1732 (2008).
[Crossref] [PubMed]

G. Wang, W. Cong, K. Durairaj, X. Qian, H. Shen, P. Sinn, E. Hoffman, G. McLennan, and M. Henry, “In vivo mouse studies with bioluminescence tomography,” Opt. Express 14(17), 7801–7809 (2006).
[Crossref] [PubMed]

W. Cong, G. Wang, D. Kumar, Y. Liu, M. Jiang, L. Wang, E. Hoffman, G. McLennan, P. McCray, J. Zabner, and A. Cong, “Practical reconstruction method for bioluminescence tomography,” Opt. Express 13(18), 6756–6771 (2005).
[Crossref] [PubMed]

G. Wang, E. Hoffman, G. McLennan, L. Wang, M. Suter, and J. Meinel, “Development of the first bioluminescent CT scanner,” Radiology 229, 566 (2003).

Wang, H.

S. Ren, X. Chen, H. Wang, X. Qu, G. Wang, J. Liang, and J. Tian, “Molecular Optical Simulation Environment (MOSE): A Platform for the Simulation of Light Propagation in Turbid Media,” PLoS One 8(4), e61304 (2013).
[Crossref] [PubMed]

H. Wang, D. B. Stout, and A. F. Chatziioannou, “Estimation of Mouse Organ Locations Through Registration of a Statistical Mouse Atlas With Micro-CT Images,” IEEE Trans. Med. Imaging 31(1), 88–102 (2012).
[Crossref] [PubMed]

Wang, L.

Wang, L. V.

V. Ntziachristos, J. Ripoll, L. V. Wang, and R. Weissleder, “Looking and listening to light: the evolution of whole-body photonic imaging,” Nat. Biotechnol. 23(3), 313–320 (2005).
[Crossref] [PubMed]

Wang, X.

Wang, Y.

Weissleder, R.

V. Ntziachristos, J. Ripoll, L. V. Wang, and R. Weissleder, “Looking and listening to light: the evolution of whole-body photonic imaging,” Nat. Biotechnol. 23(3), 313–320 (2005).
[Crossref] [PubMed]

Willekens, I.

I. Willekens, T. Lahoutte, N. Buls, C. Vanhove, R. Deklerck, A. Bossuyt, and J. de Mey, “Time-Course of Contrast Enhancement in Spleen and Liver with Exia 160, Fenestra LC, and VC,” Mol. Imaging Biol. 11(2), 128–135 (2009).
[Crossref] [PubMed]

Willmann, J. K.

J. K. Willmann, N. van Bruggen, L. M. Dinkelborg, and S. S. Gambhir, “Molecular imaging in drug development,” Nat. Rev. Drug Discov. 7(7), 591–607 (2008).
[Crossref] [PubMed]

Wilson, B.

T. J. Farrell, M. S. Patterson, and B. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19(4), 879–888 (1992).
[Crossref] [PubMed]

Wittek, A.

G. R. Joldes, A. Wittek, and K. Miller, “Real-time nonlinear finite element computations on GPU - Application to neurosurgical simulation,” Comput. Methods Appl. Mech. Eng. 199(49-52), 3305–3314 (2010).
[Crossref] [PubMed]

Wu, L.

Wu, P.

P. Wu, K. Liu, Q. Zhang, Z. Xue, Y. Li, N. Ning, X. Yang, X. Li, and J. Tian, “Detection of mouse liver cancer via a parallel iterative shrinkage method in hybrid optical/microcomputed tomography imaging,” J. Biomed. Opt. 17(12), 126012 (2012).
[Crossref] [PubMed]

Xue, Z.

P. Wu, K. Liu, Q. Zhang, Z. Xue, Y. Li, N. Ning, X. Yang, X. Li, and J. Tian, “Detection of mouse liver cancer via a parallel iterative shrinkage method in hybrid optical/microcomputed tomography imaging,” J. Biomed. Opt. 17(12), 126012 (2012).
[Crossref] [PubMed]

Yan, G.

G. Yan, J. Tian, S. Zhu, Y. Dai, and C. Qin, “Fast cone-beam CT image reconstruction using GPU hardware,” J. XRay Sci. Technol. 16(4), 225–234 (2008).

Yang, D.

Yang, X.

Yi, X.

Yu, J.

Yuan, Z.

Z. Yuan, Q. Zhang, E. Sobel, and H. Jiang, “Comparison of diffusion approximation and higher order diffusion equations for optical tomography of osteoarthritis,” J. Biomed. Opt. 14(5), 054013 (2009).
[Crossref] [PubMed]

Zabner, J.

Zhang, Q.

P. Wu, K. Liu, Q. Zhang, Z. Xue, Y. Li, N. Ning, X. Yang, X. Li, and J. Tian, “Detection of mouse liver cancer via a parallel iterative shrinkage method in hybrid optical/microcomputed tomography imaging,” J. Biomed. Opt. 17(12), 126012 (2012).
[Crossref] [PubMed]

Q. Zhang, X. Chen, X. Qu, J. Liang, and J. Tian, “Comparative studies of l(p)-regularization-based reconstruction algorithms for bioluminescence tomography,” Biomed. Opt. Express 3(11), 2916–2936 (2012).
[Crossref] [PubMed]

Z. Yuan, Q. Zhang, E. Sobel, and H. Jiang, “Comparison of diffusion approximation and higher order diffusion equations for optical tomography of osteoarthritis,” J. Biomed. Opt. 14(5), 054013 (2009).
[Crossref] [PubMed]

Zhang, R.

Zhao, H.

L. Wu, H. Zhao, X. Wang, X. Yi, W. Chen, and F. Gao, “Enhancement of fluorescence molecular tomography with structural-prior-based diffuse optical tomography: combating optical background uncertainty,” Appl. Opt. 53(30), 6970–6982 (2014).
[Crossref] [PubMed]

H. Zhao, T. C. Doyle, O. Coquoz, F. Kalish, B. W. Rice, and C. H. Contag, “Emission spectra of bioluminescent reporters and interaction with mammalian tissue determine the sensitivity of detection in vivo,” J. Biomed. Opt. 10(4), 041210 (2005).
[Crossref] [PubMed]

Zhu, S.

Appl. Opt. (1)

Biomed. Opt. Express (1)

Comput. Math. Methods Med. (1)

C. Platero and M. C. Tobar, “A multiatlas segmentation using graph cuts with applications to liver segmentation in CT scans,” Comput. Math. Methods Med. 2014, 182909 (2014).
[Crossref] [PubMed]

Comput. Methods Appl. Mech. Eng. (1)

G. R. Joldes, A. Wittek, and K. Miller, “Real-time nonlinear finite element computations on GPU - Application to neurosurgical simulation,” Comput. Methods Appl. Mech. Eng. 199(49-52), 3305–3314 (2010).
[Crossref] [PubMed]

Expert Opin. Biol. Ther. (1)

A. Söling and N. G. Rainov, “Bioluminescence imaging in vivo - application to cancer research,” Expert Opin. Biol. Ther. 3(7), 1163–1172 (2003).
[PubMed]

Geophys. J. Int. (1)

I. Loris, G. Nolet, I. Daubechies, and F. A. Dahlen, “Tomographic inversion using l(1)-norm regularization of wavelet coefficients,” Geophys. J. Int. 170(1), 359–370 (2007).
[Crossref]

IEEE Trans. Biomed. Eng. (1)

J. Liu, D. Chen, X. Li, X. Ma, H. Chen, W. Fan, F. Wang, X. Qu, J. Liang, F. Cao, and J. Tian, “In vivo quantitative reconstruction studies of bioluminescence tomography: effects of peak-wavelength shift and model deviation,” IEEE Trans. Biomed. Eng. 57(10), 2579–2582 (2010).
[Crossref] [PubMed]

IEEE Trans. Med. Imaging (3)

H. Park, P. H. Bland, and C. R. Meyer, “Construction of an abdominal Probabilistic atlas and its application in segmentation,” IEEE Trans. Med. Imaging 22(4), 483–492 (2003).
[Crossref] [PubMed]

I. Isgum, M. Staring, A. Rutten, M. Prokop, M. A. Viergever, and B. van Ginneken, “Multi-Atlas-Based Segmentation With Local Decision Fusion-Application to Cardiac and Aortic Segmentation in CT Scans,” IEEE Trans. Med. Imaging 28(7), 1000–1010 (2009).
[Crossref] [PubMed]

H. Wang, D. B. Stout, and A. F. Chatziioannou, “Estimation of Mouse Organ Locations Through Registration of a Statistical Mouse Atlas With Micro-CT Images,” IEEE Trans. Med. Imaging 31(1), 88–102 (2012).
[Crossref] [PubMed]

J. Biomed. Opt. (3)

P. Wu, K. Liu, Q. Zhang, Z. Xue, Y. Li, N. Ning, X. Yang, X. Li, and J. Tian, “Detection of mouse liver cancer via a parallel iterative shrinkage method in hybrid optical/microcomputed tomography imaging,” J. Biomed. Opt. 17(12), 126012 (2012).
[Crossref] [PubMed]

Z. Yuan, Q. Zhang, E. Sobel, and H. Jiang, “Comparison of diffusion approximation and higher order diffusion equations for optical tomography of osteoarthritis,” J. Biomed. Opt. 14(5), 054013 (2009).
[Crossref] [PubMed]

H. Zhao, T. C. Doyle, O. Coquoz, F. Kalish, B. W. Rice, and C. H. Contag, “Emission spectra of bioluminescent reporters and interaction with mammalian tissue determine the sensitivity of detection in vivo,” J. Biomed. Opt. 10(4), 041210 (2005).
[Crossref] [PubMed]

J. XRay Sci. Technol. (1)

G. Yan, J. Tian, S. Zhu, Y. Dai, and C. Qin, “Fast cone-beam CT image reconstruction using GPU hardware,” J. XRay Sci. Technol. 16(4), 225–234 (2008).

Med. Eng. Phys. (1)

A. Ramos and J. A. Simões, “Tetrahedral versus hexahedral finite elements in numerical modelling of the proximal femur,” Med. Eng. Phys. 28(9), 916–924 (2006).
[Crossref] [PubMed]

Med. Phys. (2)

S. R. Arridge, M. Schweiger, M. Hiraoka, and D. T. Delpy, “A finite element approach for modeling photon transport in tissue,” Med. Phys. 20(2), 299–309 (1993).
[Crossref] [PubMed]

T. J. Farrell, M. S. Patterson, and B. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19(4), 879–888 (1992).
[Crossref] [PubMed]

Medical Image Computing and Computer-Assisted Intervention (1)

M. Baiker, M. Staring, C. W. G. M. Lowik, J. H. C. Reiber, and B. P. F. Lelieveldt, “Automated Registration of Whole-Body Follow-Up MicroCT Data of Mice,” Medical Image Computing and Computer-Assisted Intervention 6892, 516–523 (2011).

Mol. Imaging Biol. (1)

I. Willekens, T. Lahoutte, N. Buls, C. Vanhove, R. Deklerck, A. Bossuyt, and J. de Mey, “Time-Course of Contrast Enhancement in Spleen and Liver with Exia 160, Fenestra LC, and VC,” Mol. Imaging Biol. 11(2), 128–135 (2009).
[Crossref] [PubMed]

Nat. Biotechnol. (1)

V. Ntziachristos, J. Ripoll, L. V. Wang, and R. Weissleder, “Looking and listening to light: the evolution of whole-body photonic imaging,” Nat. Biotechnol. 23(3), 313–320 (2005).
[Crossref] [PubMed]

Nat. Rev. Drug Discov. (1)

J. K. Willmann, N. van Bruggen, L. M. Dinkelborg, and S. S. Gambhir, “Molecular imaging in drug development,” Nat. Rev. Drug Discov. 7(7), 591–607 (2008).
[Crossref] [PubMed]

Opt. Express (9)

W. Cong, G. Wang, D. Kumar, Y. Liu, M. Jiang, L. Wang, E. Hoffman, G. McLennan, P. McCray, J. Zabner, and A. Cong, “Practical reconstruction method for bioluminescence tomography,” Opt. Express 13(18), 6756–6771 (2005).
[Crossref] [PubMed]

G. Wang, W. Cong, K. Durairaj, X. Qian, H. Shen, P. Sinn, E. Hoffman, G. McLennan, and M. Henry, “In vivo mouse studies with bioluminescence tomography,” Opt. Express 14(17), 7801–7809 (2006).
[Crossref] [PubMed]

G. Wang, H. Shen, Y. Liu, A. Cong, W. Cong, Y. Wang, and P. Dubey, “Digital spectral separation methods and systems for bioluminescence imaging,” Opt. Express 16(3), 1719–1732 (2008).
[Crossref] [PubMed]

X. Chen, X. Gao, X. Qu, J. Liang, L. Wang, D. Yang, A. Garofalakis, J. Ripoll, and J. Tian, “A study of photon propagation in free-space based on hybrid radiosity-radiance theorem,” Opt. Express 17(18), 16266–16280 (2009).
[Crossref] [PubMed]

Y. Lu, H. B. Machado, A. Douraghy, D. Stout, H. Herschman, and A. F. Chatziioannou, “Experimental Bioluminescence Tomography with Fully Parallel Radiative-transfer-Based Reconstruction Framework,” Opt. Express 17(19), 16681–16695 (2009).
[Crossref] [PubMed]

Q. Fang and D. A. Boas, “Monte Carlo Simulation of Photon Migration in 3D Turbid Media Accelerated by Graphics Processing Units,” Opt. Express 17(22), 20178–20190 (2009).
[Crossref] [PubMed]

J. Liu, Y. Wang, X. Qu, X. Li, X. Ma, R. Han, Z. Hu, X. Chen, D. Sun, R. Zhang, D. Chen, D. Chen, X. Chen, J. Liang, F. Cao, and J. Tian, “In vivo quantitative bioluminescence tomography using heterogeneous and homogeneous mouse models,” Opt. Express 18(12), 13102–13113 (2010).
[Crossref] [PubMed]

K. Liu, Y. Lu, J. Tian, C. Qin, X. Yang, S. Zhu, X. Yang, Q. Gao, and D. Han, “Evaluation of the simplified spherical harmonics approximation in bioluminescence tomography through heterogeneous mouse models,” Opt. Express 18(20), 20988–21002 (2010).
[Crossref] [PubMed]

X. He, J. Liang, X. Wang, J. Yu, X. Qu, X. Wang, Y. Hou, D. Chen, F. Liu, and J. Tian, “Sparse reconstruction for quantitative bioluminescence tomography based on the incomplete variables truncated conjugate gradient method,” Opt. Express 18(24), 24825–24841 (2010).
[Crossref] [PubMed]

Phys. Med. Biol. (2)

B. Dogdas, D. Stout, A. F. Chatziioannou, and R. M. Leahy, “Digimouse: a 3D whole body mouse atlas from CT and cryosection data,” Phys. Med. Biol. 52(3), 577–587 (2007).
[Crossref] [PubMed]

H. Shen and G. Wang, “A tetrahedron-based inhomogeneous Monte Carlo optical simulator,” Phys. Med. Biol. 55(4), 947–962 (2010).
[Crossref] [PubMed]

PLoS One (1)

S. Ren, X. Chen, H. Wang, X. Qu, G. Wang, J. Liang, and J. Tian, “Molecular Optical Simulation Environment (MOSE): A Platform for the Simulation of Light Propagation in Turbid Media,” PLoS One 8(4), e61304 (2013).
[Crossref] [PubMed]

Radiology (1)

G. Wang, E. Hoffman, G. McLennan, L. Wang, M. Suter, and J. Meinel, “Development of the first bioluminescent CT scanner,” Radiology 229, 566 (2003).

Trends Biotechnol. (1)

C. E. Badr and B. A. Tannous, “Bioluminescence imaging: progress and applications,” Trends Biotechnol. 29(12), 624–633 (2011).
[Crossref] [PubMed]

Other (2)

Y. J. Lu, A. F. Chatziioannou, and IEEE, “Parallel Adaptive Finite Element Simulation for Optical Molecular Imaging with Simplified Spherical Harmonics Approximation,” in 2008 IEEE Nuclear Science Symposium and Medical Imaging Conference(2009), pp. 3314–3317.

S. E. Benzley, E. Perry, K. Merkley, B. Clark, and G. Sjaardama, “A comparison of all hexagonal and all tetrahedral finite element meshes for elastic and elasto-plastic analysis,” in Proceedings, 4th International Meshing Roundtable(Sandia National Laboratories Albuquerque, NM1995), pp. 179–191.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Optical/CT combined BLT system and the flow chart of BLT reconstruction.
Fig. 2
Fig. 2 Adaptive voxel generation of the mouse. (a) Sketch map of the generated voxels near the organ boundary where A and B stand for different organs. (b) Flow chart of the adaptive voxel generation.
Fig. 3
Fig. 3 Normalized multi-atlas data.
Fig. 4
Fig. 4 Registration results of multi-atlas and single-atlas registration. (a) Surface of the observed mouse. (b) Internal organs of the observed mouse by manual segmentation. (c) Volume rendering of the fused multi-atlas registration result. (d) Final segmentation result based on multi-atlas registration. (e) Structure of the Digimouse. (f) Segmentation result based on the Digimouse registration.
Fig. 5
Fig. 5 Reconstruction results of BLT with numerical simulation. (a) Structure of the digital mouse. (b) Transmittance result of the Monte Carlo simulation of BLT; (c) Volume rendering of the reconstructed result. The reconstructed light source and the real one are colored in blue and red respectively. (d) Sectional view of the reconstructed bioluminescent source. The position of the real light source and reconstructed light source are labeled by the red dashed line and yellow dashed line respectively.
Fig. 6
Fig. 6 Reconstruction results of the in vivo study. (a) Detected bioluminescent image by the CCD camera. (b) Segmented results based on the multi-atlases registration. (c) Result of surface mapping of the bioluminescent image. (d) Volume rendering of the reconstructed result: the reconstructed light source and the real one are colored in blue and red respectively. (e) Sectional view of the reconstructed bioluminescent source. The position of the real light source and reconstructed light source are labeled by a green dashed line and yellow dashed line respectively.

Tables (2)

Tables Icon

Table 1 Registration results of mouse organs based on the multi-atlas and single atlas

Tables Icon

Table 2 Optical parameters of mouse organs

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

( D(x)Φ(x) )+ μ a (x)Φ(x)=Q(x), xΩ ,
Φ(x)+2A(x;n, n ' )D(x)( v(x)Φ(x) )=0, xΩ ,
A(x;n, n ' )= 1+R(x,n, n ) 1R(x,n, n ) ,
M k Φ k b = F k S k ,
Φ k b = M k 1 F k S k = A k S k .
min 0 s k s sup f( S k )={ A k S k Φ meas Λ + λ k η( S k ) },
Sim=αDice+β D axial ,
D axial = i=1 n I Ri 2 + I Si 2 ,
Dice=2 | R R R S | | R R |+| R S | ,

Metrics