Abstract

Optical tweezers have emerged as a prominent light-based tool for pico-Newton (pN) force microscopy in mechanobiological studies. However, the efficacy of optical tweezers are limited in applications where concurrent metrology of the nano-sized structures under interrogation is essential to the quantitative analysis of its mechanical properties and various mechanotransduction events. We have developed an all-optical platform delivering pN force resolution in parallel with nano-scale structural imaging of the biological sample by combining optical tweezers with interferometric quantitative phase microscopy. These capabilities allow real-time micromanipulation and label-free measurement of sample’s nanostructures and nanomechanical responses, opening avenues to a wide range of new research possibilities and applications in biology.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Visualization and measurement of the local absorption coefficients of single bilayer phospholipid membranes using scanning near-field optical microscopy

Arif M. Siddiquee, Imad Younus Hasan, Shibiao Wei, Daniel Langley, Eugeniu Balaur, Chen Liu, Jiao Lin, Brian Abbey, Adam Mechler, and Shanshan Kou
Biomed. Opt. Express 10(12) 6569-6579 (2019)

Intracellular dynamics measurements with full field optical coherence tomography suggest hindering effect of actomyosin contractility on organelle transport

Charles-Edouard Leroux, Fabien Bertillot, Olivier Thouvenin, and Albert-Claude Boccara
Biomed. Opt. Express 7(11) 4501-4513 (2016)

Alterations of filopodia by near infrared photoimmunotherapy: evaluation with 3D low-coherent quantitative phase microscopy

Yuko Nakamura, Tadanobu Nagaya, Kazuhide Sato, Toshiko Harada, Shuhei Okuyama, Peter L. Choyke, Toyohiko Yamauchi, and Hisataka Kobayashi
Biomed. Opt. Express 7(7) 2738-2748 (2016)

References

  • View by:
  • |
  • |
  • |

  1. A. Ashkin, K. Schütze, J. M. Dziedzic, U. Euteneuer, and M. Schliwa, “Force generation of organelle transport measured in vivo by an infrared laser trap,” Nature 348(6299), 346–348 (1990).
    [Crossref] [PubMed]
  2. B. H. Blehm and P. R. Selvin, “Single-molecule fluorescence and in vivo optical traps: how multiple dyneins and kinesins interact,” Chem. Rev. 114(6), 3335–3352 (2014).
    [Crossref] [PubMed]
  3. F. M. Fazal and S. M. Block, “Optical tweezers study life under tension,” Nat. Photonics 5(6), 318–321 (2011).
    [Crossref] [PubMed]
  4. M. J. Siedlik, V. D. Varner, and C. M. Nelson, “Pushing, pulling, and squeezing our way to understanding mechanotransduction,” Methods 94, 4–12 (2016).
    [PubMed]
  5. T. Iskratsch, H. Wolfenson, and M. P. Sheetz, “Appreciating force and shape—the rise of mechanotransduction in cell biology,” Nat. Rev. Mol. Cell Biol. 15(12), 825–833 (2014).
    [Crossref] [PubMed]
  6. W. E. Brownell, F. Qian, and B. Anvari, “Cell membrane tethers generate mechanical force in response to electrical stimulation,” Biophys. J. 99(3), 845–852 (2010).
    [Crossref] [PubMed]
  7. N. C. Gauthier, M. A. Fardin, P. Roca-Cusachs, and M. P. Sheetz, “Temporary increase in plasma membrane tension coordinates the activation of exocytosis and contraction during cell spreading,” Proc. Natl. Acad. Sci. U.S.A. 108(35), 14467–14472 (2011).
    [Crossref] [PubMed]
  8. D. Raucher, T. Stauffer, W. Chen, K. Shen, S. Guo, J. D. York, M. P. Sheetz, and T. Meyer, “Phosphatidylinositol 4,5-bisphosphate functions as a second messenger that regulates cytoskeleton-plasma membrane adhesion,” Cell 100(2), 221–228 (2000).
    [Crossref] [PubMed]
  9. N. Khatibzadeh, A. A. Spector, W. E. Brownell, and B. Anvari, “Effects of plasma membrane cholesterol level and cytoskeleton F-actin on cell protrusion mechanics,” PLoS One 8(2), e57147 (2013).
    [Crossref] [PubMed]
  10. H. Bouvrais, T. Pott, L. A. Bagatolli, J. H. Ipsen, and P. Méléard, “Impact of membrane-anchored fluorescent probes on the mechanical properties of lipid bilayers,” Biochim. Biophys. Acta 1798(7), 1333–1337 (2010).
    [Crossref] [PubMed]
  11. V. Lulevich, Y. P. Shih, S. H. Lo, and G. Y. Liu, “Cell tracing dyes significantly change single cell mechanics,” J. Phys. Chem. B 113(18), 6511–6519 (2009).
    [Crossref] [PubMed]
  12. D. J. Müller and Y. F. Dufrêne, “Atomic force microscopy as a multifunctional molecular toolbox in nanobiotechnology,” Nat. Nanotechnol. 3(5), 261–269 (2008).
    [Crossref] [PubMed]
  13. N. Mauser and A. Hartschuh, “Tip-enhanced near-field optical microscopy,” Chem. Soc. Rev. 43(4), 1248–1262 (2014).
    [Crossref] [PubMed]
  14. L. Friedrich and A. Rohrbach, “Surface imaging beyond the diffraction limit with optically trapped spheres,” Nat. Nanotechnol. 10(12), 1064–1069 (2015).
    [Crossref] [PubMed]
  15. S. Thiberge, A. Nechushtan, D. Sprinzak, O. Gileadi, V. Behar, O. Zik, Y. Chowers, S. Michaeli, J. Schlessinger, and E. Moses, “Scanning electron microscopy of cells and tissues under fully hydrated conditions,” Proc. Natl. Acad. Sci. U.S.A. 101(10), 3346–3351 (2004).
    [Crossref] [PubMed]
  16. N. de Jonge and F. M. Ross, “Electron microscopy of specimens in liquid,” Nat. Nanotechnol. 6(11), 695–704 (2011).
    [Crossref] [PubMed]
  17. B. Kemper and G. von Bally, “Digital holographic microscopy for live cell applications and technical inspection,” Appl. Opt. 47(4), A52–A61 (2008).
    [Crossref] [PubMed]
  18. G. Popescu, L. P. Deflores, J. C. Vaughan, K. Badizadegan, H. Iwai, R. R. Dasari, and M. S. Feld, “Fourier phase microscopy for investigation of biological structures and dynamics,” Opt. Lett. 29(21), 2503–2505 (2004).
    [Crossref] [PubMed]
  19. S. Sridharan, V. Macias, K. Tangella, A. Kajdacsy-Balla, and G. Popescu, “Prediction of prostate cancer recurrence using quantitative phase imaging,” Sci. Rep. 5, 9976 (2015).
    [Crossref] [PubMed]
  20. Z. Wang, L. Millet, M. Mir, H. Ding, S. Unarunotai, J. Rogers, M. U. Gillette, and G. Popescu, “Spatial light interference microscopy (SLIM),” Opt. Express 19(2), 1016–1026 (2011).
    [Crossref] [PubMed]
  21. B. Kemper, A. Vollmer, C. E. Rommel, J. Schnekenburger, and G. von Bally, “Simplified approach for quantitative digital holographic phase contrast imaging of living cells,” J. Biomed. Opt. 16(2), 026014 (2011).
    [Crossref] [PubMed]
  22. M. Sarshar, W. T. Wong, and B. Anvari, “Comparative study of methods to calibrate the stiffness of a single-beam gradient-force optical tweezers over various laser trapping powers,” J. Biomed. Opt. 19(11), 115001 (2014).
    [Crossref] [PubMed]
  23. R. Parthasarathy, “Rapid, accurate particle tracking by calculation of radial symmetry centers,” Nat. Methods 9(7), 724–726 (2012).
    [Crossref] [PubMed]
  24. T. Wilson and C. J. Sheppard, “The halo effect of image processing by spatial frequency filtering,” Optik (Stuttg.) 59(1), 19–23 (1981).
  25. R. E. Waugh and R. M. Hochmuth, “Mechanical equilibrium of thick, hollow, liquid membrane cylinders,” Biophys. J. 52(3), 391–400 (1987).
    [Crossref] [PubMed]
  26. F. Brochard-Wyart, N. Borghi, D. Cuvelier, and P. Nassoy, “Hydrodynamic narrowing of tubes extruded from cells,” Proc. Natl. Acad. Sci. U.S.A. 103(20), 7660–7663 (2006).
    [Crossref] [PubMed]
  27. N. Khatibzadeh, S. Gupta, B. Farrell, W. E. Brownell, and B. Anvari, “Effects of cholesterol on nano-mechanical properties of the living cell plasma membrane,” Soft Matter 8(32), 8350–8360 (2012).
    [Crossref] [PubMed]
  28. M. P. Sheetz, “Cell control by membrane-cytoskeleton adhesion,” Nat. Rev. Mol. Cell Biol. 2(5), 392–396 (2001).
    [Crossref] [PubMed]
  29. S. Baoukina, S. J. Marrink, and D. P. Tieleman, “Molecular structure of membrane tethers,” Biophys. J. 102(8), 1866–1871 (2012).
    [Crossref] [PubMed]
  30. Z. Wang, I. S. Chun, X. Li, Z.-Y. Ong, E. Pop, L. Millet, M. Gillette, and G. Popescu, “Topography and refractometry of nanostructures using spatial light interference microscopy,” Opt. Lett. 35(2), 208–210 (2010).
    [Crossref] [PubMed]
  31. C. L. Curl, C. J. Bellair, T. Harris, B. E. Allman, P. J. Harris, A. G. Stewart, A. Roberts, K. A. Nugent, and L. M. D. Delbridge, “Refractive index measurement in viable cells using quantitative phase-amplitude microscopy and confocal microscopy,” Cytometry A 65(1), 88–92 (2005).
    [Crossref] [PubMed]
  32. S. Przibilla, S. Dartmann, A. Vollmer, S. Ketelhut, B. Greve, G. von Bally, and B. Kemper, “Sensing dynamic cytoplasm refractive index changes of adherent cells with quantitative phase microscopy using incorporated microspheres as optical probes,” J. Biomed. Opt. 17(9), 097001 (2012).
    [Crossref] [PubMed]
  33. B. Rappaz, A. Barbul, A. Hoffmann, D. Boss, R. Korenstein, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Spatial analysis of erythrocyte membrane fluctuations by digital holographic microscopy,” Blood Cells Mol. Dis. 42(3), 228–232 (2009).
    [Crossref] [PubMed]
  34. G. Morfini, G. Pigino, N. Mizuno, M. Kikkawa, and S. T. Brady, “Tau binding to microtubules does not directly affect microtubule-based vesicle motility,” J. Neurosci. Res. 85(12), 2620–2630 (2007).
    [Crossref] [PubMed]
  35. T. Bornschlögl, S. Romero, C. L. Vestergaard, J. F. Joanny, G. T. Van Nhieu, and P. Bassereau, “Filopodial retraction force is generated by cortical actin dynamics and controlled by reversible tethering at the tip,” Proc. Natl. Acad. Sci. U.S.A. 110(47), 18928–18933 (2013).
    [Crossref] [PubMed]
  36. D. B. Chithrani, M. Dunne, J. Stewart, C. Allen, and D. A. Jaffray, “Cellular uptake and transport of gold nanoparticles incorporated in a liposomal carrier,” Nanomedicine (Lond.) 6(1), 161–169 (2010).
    [PubMed]
  37. J. Mueller, J. Pfanzelter, C. Winkler, A. Narita, C. Le Clainche, M. Nemethova, M. F. Carlier, Y. Maeda, M. D. Welch, T. Ohkawa, C. Schmeiser, G. P. Resch, and J. V. Small, “Electron tomography and simulation of baculovirus actin comet tails support a tethered filament model of pathogen propulsion,” PLoS Biol. 12(1), e1001765 (2014).
    [Crossref] [PubMed]
  38. S. I. Fraley, Y. Feng, R. Krishnamurthy, D. H. Kim, A. Celedon, G. D. Longmore, and D. Wirtz, “A distinctive role for focal adhesion proteins in three-dimensional cell motility,” Nat. Cell Biol. 12(6), 598–604 (2010).
    [Crossref] [PubMed]
  39. N. Cardenas and S. K. Mohanty, “Optical tweezers assisted quantitative phase imaging led to thickness mapping of red blood cells,” Appl. Phys. Lett. 103(1), 013703 (2013).
    [Crossref]
  40. F. Merola, L. Miccio, P. Memmolo, G. Di Caprio, A. Galli, R. Puglisi, D. Balduzzi, G. Coppola, P. Netti, and P. Ferraro, “Digital holography as a method for 3D imaging and estimating the biovolume of motile cells,” Lab Chip 13(23), 4512–4516 (2013).
    [Crossref] [PubMed]
  41. V. Mico, Z. Zalevsky, and J. García, “Common-path phase-shifting digital holographic microscopy: A way to quantitative phase imaging and superresolution,” Opt. Commun. 281(17), 4273–4281 (2008).
    [Crossref]
  42. S. E. Cross, Y. S. Jin, J. Rao, and J. K. Gimzewski, “Nanomechanical analysis of cells from cancer patients,” Nat. Nanotechnol. 2(12), 780–783 (2007).
    [Crossref] [PubMed]
  43. J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J. 88(5), 3689–3698 (2005).
    [Crossref] [PubMed]
  44. J. D. Szafranski, A. J. Grodzinsky, E. Burger, V. Gaschen, H.-H. Hung, and E. B. Hunziker, “Chondrocyte mechanotransduction: effects of compression on deformation of intracellular organelles and relevance to cellular biosynthesis,” Osteoarthritis Cartilage 12(12), 937–946 (2004).
    [Crossref] [PubMed]
  45. S. Denniss and J. Rush, “Polyvinylpyrrolidone can be used to cost-effectively increase the viscosity of culture media,” FASEB J. 29(1 Supplement), 1029.1019 (2015).

2016 (1)

M. J. Siedlik, V. D. Varner, and C. M. Nelson, “Pushing, pulling, and squeezing our way to understanding mechanotransduction,” Methods 94, 4–12 (2016).
[PubMed]

2015 (2)

L. Friedrich and A. Rohrbach, “Surface imaging beyond the diffraction limit with optically trapped spheres,” Nat. Nanotechnol. 10(12), 1064–1069 (2015).
[Crossref] [PubMed]

S. Sridharan, V. Macias, K. Tangella, A. Kajdacsy-Balla, and G. Popescu, “Prediction of prostate cancer recurrence using quantitative phase imaging,” Sci. Rep. 5, 9976 (2015).
[Crossref] [PubMed]

2014 (5)

M. Sarshar, W. T. Wong, and B. Anvari, “Comparative study of methods to calibrate the stiffness of a single-beam gradient-force optical tweezers over various laser trapping powers,” J. Biomed. Opt. 19(11), 115001 (2014).
[Crossref] [PubMed]

J. Mueller, J. Pfanzelter, C. Winkler, A. Narita, C. Le Clainche, M. Nemethova, M. F. Carlier, Y. Maeda, M. D. Welch, T. Ohkawa, C. Schmeiser, G. P. Resch, and J. V. Small, “Electron tomography and simulation of baculovirus actin comet tails support a tethered filament model of pathogen propulsion,” PLoS Biol. 12(1), e1001765 (2014).
[Crossref] [PubMed]

N. Mauser and A. Hartschuh, “Tip-enhanced near-field optical microscopy,” Chem. Soc. Rev. 43(4), 1248–1262 (2014).
[Crossref] [PubMed]

T. Iskratsch, H. Wolfenson, and M. P. Sheetz, “Appreciating force and shape—the rise of mechanotransduction in cell biology,” Nat. Rev. Mol. Cell Biol. 15(12), 825–833 (2014).
[Crossref] [PubMed]

B. H. Blehm and P. R. Selvin, “Single-molecule fluorescence and in vivo optical traps: how multiple dyneins and kinesins interact,” Chem. Rev. 114(6), 3335–3352 (2014).
[Crossref] [PubMed]

2013 (4)

N. Khatibzadeh, A. A. Spector, W. E. Brownell, and B. Anvari, “Effects of plasma membrane cholesterol level and cytoskeleton F-actin on cell protrusion mechanics,” PLoS One 8(2), e57147 (2013).
[Crossref] [PubMed]

T. Bornschlögl, S. Romero, C. L. Vestergaard, J. F. Joanny, G. T. Van Nhieu, and P. Bassereau, “Filopodial retraction force is generated by cortical actin dynamics and controlled by reversible tethering at the tip,” Proc. Natl. Acad. Sci. U.S.A. 110(47), 18928–18933 (2013).
[Crossref] [PubMed]

N. Cardenas and S. K. Mohanty, “Optical tweezers assisted quantitative phase imaging led to thickness mapping of red blood cells,” Appl. Phys. Lett. 103(1), 013703 (2013).
[Crossref]

F. Merola, L. Miccio, P. Memmolo, G. Di Caprio, A. Galli, R. Puglisi, D. Balduzzi, G. Coppola, P. Netti, and P. Ferraro, “Digital holography as a method for 3D imaging and estimating the biovolume of motile cells,” Lab Chip 13(23), 4512–4516 (2013).
[Crossref] [PubMed]

2012 (4)

S. Baoukina, S. J. Marrink, and D. P. Tieleman, “Molecular structure of membrane tethers,” Biophys. J. 102(8), 1866–1871 (2012).
[Crossref] [PubMed]

S. Przibilla, S. Dartmann, A. Vollmer, S. Ketelhut, B. Greve, G. von Bally, and B. Kemper, “Sensing dynamic cytoplasm refractive index changes of adherent cells with quantitative phase microscopy using incorporated microspheres as optical probes,” J. Biomed. Opt. 17(9), 097001 (2012).
[Crossref] [PubMed]

R. Parthasarathy, “Rapid, accurate particle tracking by calculation of radial symmetry centers,” Nat. Methods 9(7), 724–726 (2012).
[Crossref] [PubMed]

N. Khatibzadeh, S. Gupta, B. Farrell, W. E. Brownell, and B. Anvari, “Effects of cholesterol on nano-mechanical properties of the living cell plasma membrane,” Soft Matter 8(32), 8350–8360 (2012).
[Crossref] [PubMed]

2011 (5)

Z. Wang, L. Millet, M. Mir, H. Ding, S. Unarunotai, J. Rogers, M. U. Gillette, and G. Popescu, “Spatial light interference microscopy (SLIM),” Opt. Express 19(2), 1016–1026 (2011).
[Crossref] [PubMed]

B. Kemper, A. Vollmer, C. E. Rommel, J. Schnekenburger, and G. von Bally, “Simplified approach for quantitative digital holographic phase contrast imaging of living cells,” J. Biomed. Opt. 16(2), 026014 (2011).
[Crossref] [PubMed]

F. M. Fazal and S. M. Block, “Optical tweezers study life under tension,” Nat. Photonics 5(6), 318–321 (2011).
[Crossref] [PubMed]

N. C. Gauthier, M. A. Fardin, P. Roca-Cusachs, and M. P. Sheetz, “Temporary increase in plasma membrane tension coordinates the activation of exocytosis and contraction during cell spreading,” Proc. Natl. Acad. Sci. U.S.A. 108(35), 14467–14472 (2011).
[Crossref] [PubMed]

N. de Jonge and F. M. Ross, “Electron microscopy of specimens in liquid,” Nat. Nanotechnol. 6(11), 695–704 (2011).
[Crossref] [PubMed]

2010 (5)

W. E. Brownell, F. Qian, and B. Anvari, “Cell membrane tethers generate mechanical force in response to electrical stimulation,” Biophys. J. 99(3), 845–852 (2010).
[Crossref] [PubMed]

H. Bouvrais, T. Pott, L. A. Bagatolli, J. H. Ipsen, and P. Méléard, “Impact of membrane-anchored fluorescent probes on the mechanical properties of lipid bilayers,” Biochim. Biophys. Acta 1798(7), 1333–1337 (2010).
[Crossref] [PubMed]

Z. Wang, I. S. Chun, X. Li, Z.-Y. Ong, E. Pop, L. Millet, M. Gillette, and G. Popescu, “Topography and refractometry of nanostructures using spatial light interference microscopy,” Opt. Lett. 35(2), 208–210 (2010).
[Crossref] [PubMed]

D. B. Chithrani, M. Dunne, J. Stewart, C. Allen, and D. A. Jaffray, “Cellular uptake and transport of gold nanoparticles incorporated in a liposomal carrier,” Nanomedicine (Lond.) 6(1), 161–169 (2010).
[PubMed]

S. I. Fraley, Y. Feng, R. Krishnamurthy, D. H. Kim, A. Celedon, G. D. Longmore, and D. Wirtz, “A distinctive role for focal adhesion proteins in three-dimensional cell motility,” Nat. Cell Biol. 12(6), 598–604 (2010).
[Crossref] [PubMed]

2009 (2)

B. Rappaz, A. Barbul, A. Hoffmann, D. Boss, R. Korenstein, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Spatial analysis of erythrocyte membrane fluctuations by digital holographic microscopy,” Blood Cells Mol. Dis. 42(3), 228–232 (2009).
[Crossref] [PubMed]

V. Lulevich, Y. P. Shih, S. H. Lo, and G. Y. Liu, “Cell tracing dyes significantly change single cell mechanics,” J. Phys. Chem. B 113(18), 6511–6519 (2009).
[Crossref] [PubMed]

2008 (3)

D. J. Müller and Y. F. Dufrêne, “Atomic force microscopy as a multifunctional molecular toolbox in nanobiotechnology,” Nat. Nanotechnol. 3(5), 261–269 (2008).
[Crossref] [PubMed]

B. Kemper and G. von Bally, “Digital holographic microscopy for live cell applications and technical inspection,” Appl. Opt. 47(4), A52–A61 (2008).
[Crossref] [PubMed]

V. Mico, Z. Zalevsky, and J. García, “Common-path phase-shifting digital holographic microscopy: A way to quantitative phase imaging and superresolution,” Opt. Commun. 281(17), 4273–4281 (2008).
[Crossref]

2007 (2)

S. E. Cross, Y. S. Jin, J. Rao, and J. K. Gimzewski, “Nanomechanical analysis of cells from cancer patients,” Nat. Nanotechnol. 2(12), 780–783 (2007).
[Crossref] [PubMed]

G. Morfini, G. Pigino, N. Mizuno, M. Kikkawa, and S. T. Brady, “Tau binding to microtubules does not directly affect microtubule-based vesicle motility,” J. Neurosci. Res. 85(12), 2620–2630 (2007).
[Crossref] [PubMed]

2006 (1)

F. Brochard-Wyart, N. Borghi, D. Cuvelier, and P. Nassoy, “Hydrodynamic narrowing of tubes extruded from cells,” Proc. Natl. Acad. Sci. U.S.A. 103(20), 7660–7663 (2006).
[Crossref] [PubMed]

2005 (2)

C. L. Curl, C. J. Bellair, T. Harris, B. E. Allman, P. J. Harris, A. G. Stewart, A. Roberts, K. A. Nugent, and L. M. D. Delbridge, “Refractive index measurement in viable cells using quantitative phase-amplitude microscopy and confocal microscopy,” Cytometry A 65(1), 88–92 (2005).
[Crossref] [PubMed]

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J. 88(5), 3689–3698 (2005).
[Crossref] [PubMed]

2004 (3)

J. D. Szafranski, A. J. Grodzinsky, E. Burger, V. Gaschen, H.-H. Hung, and E. B. Hunziker, “Chondrocyte mechanotransduction: effects of compression on deformation of intracellular organelles and relevance to cellular biosynthesis,” Osteoarthritis Cartilage 12(12), 937–946 (2004).
[Crossref] [PubMed]

G. Popescu, L. P. Deflores, J. C. Vaughan, K. Badizadegan, H. Iwai, R. R. Dasari, and M. S. Feld, “Fourier phase microscopy for investigation of biological structures and dynamics,” Opt. Lett. 29(21), 2503–2505 (2004).
[Crossref] [PubMed]

S. Thiberge, A. Nechushtan, D. Sprinzak, O. Gileadi, V. Behar, O. Zik, Y. Chowers, S. Michaeli, J. Schlessinger, and E. Moses, “Scanning electron microscopy of cells and tissues under fully hydrated conditions,” Proc. Natl. Acad. Sci. U.S.A. 101(10), 3346–3351 (2004).
[Crossref] [PubMed]

2001 (1)

M. P. Sheetz, “Cell control by membrane-cytoskeleton adhesion,” Nat. Rev. Mol. Cell Biol. 2(5), 392–396 (2001).
[Crossref] [PubMed]

2000 (1)

D. Raucher, T. Stauffer, W. Chen, K. Shen, S. Guo, J. D. York, M. P. Sheetz, and T. Meyer, “Phosphatidylinositol 4,5-bisphosphate functions as a second messenger that regulates cytoskeleton-plasma membrane adhesion,” Cell 100(2), 221–228 (2000).
[Crossref] [PubMed]

1990 (1)

A. Ashkin, K. Schütze, J. M. Dziedzic, U. Euteneuer, and M. Schliwa, “Force generation of organelle transport measured in vivo by an infrared laser trap,” Nature 348(6299), 346–348 (1990).
[Crossref] [PubMed]

1987 (1)

R. E. Waugh and R. M. Hochmuth, “Mechanical equilibrium of thick, hollow, liquid membrane cylinders,” Biophys. J. 52(3), 391–400 (1987).
[Crossref] [PubMed]

1981 (1)

T. Wilson and C. J. Sheppard, “The halo effect of image processing by spatial frequency filtering,” Optik (Stuttg.) 59(1), 19–23 (1981).

Allen, C.

D. B. Chithrani, M. Dunne, J. Stewart, C. Allen, and D. A. Jaffray, “Cellular uptake and transport of gold nanoparticles incorporated in a liposomal carrier,” Nanomedicine (Lond.) 6(1), 161–169 (2010).
[PubMed]

Allman, B. E.

C. L. Curl, C. J. Bellair, T. Harris, B. E. Allman, P. J. Harris, A. G. Stewart, A. Roberts, K. A. Nugent, and L. M. D. Delbridge, “Refractive index measurement in viable cells using quantitative phase-amplitude microscopy and confocal microscopy,” Cytometry A 65(1), 88–92 (2005).
[Crossref] [PubMed]

Ananthakrishnan, R.

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J. 88(5), 3689–3698 (2005).
[Crossref] [PubMed]

Anvari, B.

M. Sarshar, W. T. Wong, and B. Anvari, “Comparative study of methods to calibrate the stiffness of a single-beam gradient-force optical tweezers over various laser trapping powers,” J. Biomed. Opt. 19(11), 115001 (2014).
[Crossref] [PubMed]

N. Khatibzadeh, A. A. Spector, W. E. Brownell, and B. Anvari, “Effects of plasma membrane cholesterol level and cytoskeleton F-actin on cell protrusion mechanics,” PLoS One 8(2), e57147 (2013).
[Crossref] [PubMed]

N. Khatibzadeh, S. Gupta, B. Farrell, W. E. Brownell, and B. Anvari, “Effects of cholesterol on nano-mechanical properties of the living cell plasma membrane,” Soft Matter 8(32), 8350–8360 (2012).
[Crossref] [PubMed]

W. E. Brownell, F. Qian, and B. Anvari, “Cell membrane tethers generate mechanical force in response to electrical stimulation,” Biophys. J. 99(3), 845–852 (2010).
[Crossref] [PubMed]

Ashkin, A.

A. Ashkin, K. Schütze, J. M. Dziedzic, U. Euteneuer, and M. Schliwa, “Force generation of organelle transport measured in vivo by an infrared laser trap,” Nature 348(6299), 346–348 (1990).
[Crossref] [PubMed]

Badizadegan, K.

Bagatolli, L. A.

H. Bouvrais, T. Pott, L. A. Bagatolli, J. H. Ipsen, and P. Méléard, “Impact of membrane-anchored fluorescent probes on the mechanical properties of lipid bilayers,” Biochim. Biophys. Acta 1798(7), 1333–1337 (2010).
[Crossref] [PubMed]

Balduzzi, D.

F. Merola, L. Miccio, P. Memmolo, G. Di Caprio, A. Galli, R. Puglisi, D. Balduzzi, G. Coppola, P. Netti, and P. Ferraro, “Digital holography as a method for 3D imaging and estimating the biovolume of motile cells,” Lab Chip 13(23), 4512–4516 (2013).
[Crossref] [PubMed]

Baoukina, S.

S. Baoukina, S. J. Marrink, and D. P. Tieleman, “Molecular structure of membrane tethers,” Biophys. J. 102(8), 1866–1871 (2012).
[Crossref] [PubMed]

Barbul, A.

B. Rappaz, A. Barbul, A. Hoffmann, D. Boss, R. Korenstein, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Spatial analysis of erythrocyte membrane fluctuations by digital holographic microscopy,” Blood Cells Mol. Dis. 42(3), 228–232 (2009).
[Crossref] [PubMed]

Bassereau, P.

T. Bornschlögl, S. Romero, C. L. Vestergaard, J. F. Joanny, G. T. Van Nhieu, and P. Bassereau, “Filopodial retraction force is generated by cortical actin dynamics and controlled by reversible tethering at the tip,” Proc. Natl. Acad. Sci. U.S.A. 110(47), 18928–18933 (2013).
[Crossref] [PubMed]

Behar, V.

S. Thiberge, A. Nechushtan, D. Sprinzak, O. Gileadi, V. Behar, O. Zik, Y. Chowers, S. Michaeli, J. Schlessinger, and E. Moses, “Scanning electron microscopy of cells and tissues under fully hydrated conditions,” Proc. Natl. Acad. Sci. U.S.A. 101(10), 3346–3351 (2004).
[Crossref] [PubMed]

Bellair, C. J.

C. L. Curl, C. J. Bellair, T. Harris, B. E. Allman, P. J. Harris, A. G. Stewart, A. Roberts, K. A. Nugent, and L. M. D. Delbridge, “Refractive index measurement in viable cells using quantitative phase-amplitude microscopy and confocal microscopy,” Cytometry A 65(1), 88–92 (2005).
[Crossref] [PubMed]

Bilby, C.

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J. 88(5), 3689–3698 (2005).
[Crossref] [PubMed]

Blehm, B. H.

B. H. Blehm and P. R. Selvin, “Single-molecule fluorescence and in vivo optical traps: how multiple dyneins and kinesins interact,” Chem. Rev. 114(6), 3335–3352 (2014).
[Crossref] [PubMed]

Block, S. M.

F. M. Fazal and S. M. Block, “Optical tweezers study life under tension,” Nat. Photonics 5(6), 318–321 (2011).
[Crossref] [PubMed]

Borghi, N.

F. Brochard-Wyart, N. Borghi, D. Cuvelier, and P. Nassoy, “Hydrodynamic narrowing of tubes extruded from cells,” Proc. Natl. Acad. Sci. U.S.A. 103(20), 7660–7663 (2006).
[Crossref] [PubMed]

Bornschlögl, T.

T. Bornschlögl, S. Romero, C. L. Vestergaard, J. F. Joanny, G. T. Van Nhieu, and P. Bassereau, “Filopodial retraction force is generated by cortical actin dynamics and controlled by reversible tethering at the tip,” Proc. Natl. Acad. Sci. U.S.A. 110(47), 18928–18933 (2013).
[Crossref] [PubMed]

Boss, D.

B. Rappaz, A. Barbul, A. Hoffmann, D. Boss, R. Korenstein, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Spatial analysis of erythrocyte membrane fluctuations by digital holographic microscopy,” Blood Cells Mol. Dis. 42(3), 228–232 (2009).
[Crossref] [PubMed]

Bouvrais, H.

H. Bouvrais, T. Pott, L. A. Bagatolli, J. H. Ipsen, and P. Méléard, “Impact of membrane-anchored fluorescent probes on the mechanical properties of lipid bilayers,” Biochim. Biophys. Acta 1798(7), 1333–1337 (2010).
[Crossref] [PubMed]

Brady, S. T.

G. Morfini, G. Pigino, N. Mizuno, M. Kikkawa, and S. T. Brady, “Tau binding to microtubules does not directly affect microtubule-based vesicle motility,” J. Neurosci. Res. 85(12), 2620–2630 (2007).
[Crossref] [PubMed]

Brochard-Wyart, F.

F. Brochard-Wyart, N. Borghi, D. Cuvelier, and P. Nassoy, “Hydrodynamic narrowing of tubes extruded from cells,” Proc. Natl. Acad. Sci. U.S.A. 103(20), 7660–7663 (2006).
[Crossref] [PubMed]

Brownell, W. E.

N. Khatibzadeh, A. A. Spector, W. E. Brownell, and B. Anvari, “Effects of plasma membrane cholesterol level and cytoskeleton F-actin on cell protrusion mechanics,” PLoS One 8(2), e57147 (2013).
[Crossref] [PubMed]

N. Khatibzadeh, S. Gupta, B. Farrell, W. E. Brownell, and B. Anvari, “Effects of cholesterol on nano-mechanical properties of the living cell plasma membrane,” Soft Matter 8(32), 8350–8360 (2012).
[Crossref] [PubMed]

W. E. Brownell, F. Qian, and B. Anvari, “Cell membrane tethers generate mechanical force in response to electrical stimulation,” Biophys. J. 99(3), 845–852 (2010).
[Crossref] [PubMed]

Burger, E.

J. D. Szafranski, A. J. Grodzinsky, E. Burger, V. Gaschen, H.-H. Hung, and E. B. Hunziker, “Chondrocyte mechanotransduction: effects of compression on deformation of intracellular organelles and relevance to cellular biosynthesis,” Osteoarthritis Cartilage 12(12), 937–946 (2004).
[Crossref] [PubMed]

Cardenas, N.

N. Cardenas and S. K. Mohanty, “Optical tweezers assisted quantitative phase imaging led to thickness mapping of red blood cells,” Appl. Phys. Lett. 103(1), 013703 (2013).
[Crossref]

Carlier, M. F.

J. Mueller, J. Pfanzelter, C. Winkler, A. Narita, C. Le Clainche, M. Nemethova, M. F. Carlier, Y. Maeda, M. D. Welch, T. Ohkawa, C. Schmeiser, G. P. Resch, and J. V. Small, “Electron tomography and simulation of baculovirus actin comet tails support a tethered filament model of pathogen propulsion,” PLoS Biol. 12(1), e1001765 (2014).
[Crossref] [PubMed]

Celedon, A.

S. I. Fraley, Y. Feng, R. Krishnamurthy, D. H. Kim, A. Celedon, G. D. Longmore, and D. Wirtz, “A distinctive role for focal adhesion proteins in three-dimensional cell motility,” Nat. Cell Biol. 12(6), 598–604 (2010).
[Crossref] [PubMed]

Chen, W.

D. Raucher, T. Stauffer, W. Chen, K. Shen, S. Guo, J. D. York, M. P. Sheetz, and T. Meyer, “Phosphatidylinositol 4,5-bisphosphate functions as a second messenger that regulates cytoskeleton-plasma membrane adhesion,” Cell 100(2), 221–228 (2000).
[Crossref] [PubMed]

Chithrani, D. B.

D. B. Chithrani, M. Dunne, J. Stewart, C. Allen, and D. A. Jaffray, “Cellular uptake and transport of gold nanoparticles incorporated in a liposomal carrier,” Nanomedicine (Lond.) 6(1), 161–169 (2010).
[PubMed]

Chowers, Y.

S. Thiberge, A. Nechushtan, D. Sprinzak, O. Gileadi, V. Behar, O. Zik, Y. Chowers, S. Michaeli, J. Schlessinger, and E. Moses, “Scanning electron microscopy of cells and tissues under fully hydrated conditions,” Proc. Natl. Acad. Sci. U.S.A. 101(10), 3346–3351 (2004).
[Crossref] [PubMed]

Chun, I. S.

Coppola, G.

F. Merola, L. Miccio, P. Memmolo, G. Di Caprio, A. Galli, R. Puglisi, D. Balduzzi, G. Coppola, P. Netti, and P. Ferraro, “Digital holography as a method for 3D imaging and estimating the biovolume of motile cells,” Lab Chip 13(23), 4512–4516 (2013).
[Crossref] [PubMed]

Cross, S. E.

S. E. Cross, Y. S. Jin, J. Rao, and J. K. Gimzewski, “Nanomechanical analysis of cells from cancer patients,” Nat. Nanotechnol. 2(12), 780–783 (2007).
[Crossref] [PubMed]

Curl, C. L.

C. L. Curl, C. J. Bellair, T. Harris, B. E. Allman, P. J. Harris, A. G. Stewart, A. Roberts, K. A. Nugent, and L. M. D. Delbridge, “Refractive index measurement in viable cells using quantitative phase-amplitude microscopy and confocal microscopy,” Cytometry A 65(1), 88–92 (2005).
[Crossref] [PubMed]

Cuvelier, D.

F. Brochard-Wyart, N. Borghi, D. Cuvelier, and P. Nassoy, “Hydrodynamic narrowing of tubes extruded from cells,” Proc. Natl. Acad. Sci. U.S.A. 103(20), 7660–7663 (2006).
[Crossref] [PubMed]

Dartmann, S.

S. Przibilla, S. Dartmann, A. Vollmer, S. Ketelhut, B. Greve, G. von Bally, and B. Kemper, “Sensing dynamic cytoplasm refractive index changes of adherent cells with quantitative phase microscopy using incorporated microspheres as optical probes,” J. Biomed. Opt. 17(9), 097001 (2012).
[Crossref] [PubMed]

Dasari, R. R.

de Jonge, N.

N. de Jonge and F. M. Ross, “Electron microscopy of specimens in liquid,” Nat. Nanotechnol. 6(11), 695–704 (2011).
[Crossref] [PubMed]

Deflores, L. P.

Delbridge, L. M. D.

C. L. Curl, C. J. Bellair, T. Harris, B. E. Allman, P. J. Harris, A. G. Stewart, A. Roberts, K. A. Nugent, and L. M. D. Delbridge, “Refractive index measurement in viable cells using quantitative phase-amplitude microscopy and confocal microscopy,” Cytometry A 65(1), 88–92 (2005).
[Crossref] [PubMed]

Depeursinge, C.

B. Rappaz, A. Barbul, A. Hoffmann, D. Boss, R. Korenstein, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Spatial analysis of erythrocyte membrane fluctuations by digital holographic microscopy,” Blood Cells Mol. Dis. 42(3), 228–232 (2009).
[Crossref] [PubMed]

Di Caprio, G.

F. Merola, L. Miccio, P. Memmolo, G. Di Caprio, A. Galli, R. Puglisi, D. Balduzzi, G. Coppola, P. Netti, and P. Ferraro, “Digital holography as a method for 3D imaging and estimating the biovolume of motile cells,” Lab Chip 13(23), 4512–4516 (2013).
[Crossref] [PubMed]

Ding, H.

Dufrêne, Y. F.

D. J. Müller and Y. F. Dufrêne, “Atomic force microscopy as a multifunctional molecular toolbox in nanobiotechnology,” Nat. Nanotechnol. 3(5), 261–269 (2008).
[Crossref] [PubMed]

Dunne, M.

D. B. Chithrani, M. Dunne, J. Stewart, C. Allen, and D. A. Jaffray, “Cellular uptake and transport of gold nanoparticles incorporated in a liposomal carrier,” Nanomedicine (Lond.) 6(1), 161–169 (2010).
[PubMed]

Dziedzic, J. M.

A. Ashkin, K. Schütze, J. M. Dziedzic, U. Euteneuer, and M. Schliwa, “Force generation of organelle transport measured in vivo by an infrared laser trap,” Nature 348(6299), 346–348 (1990).
[Crossref] [PubMed]

Ebert, S.

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J. 88(5), 3689–3698 (2005).
[Crossref] [PubMed]

Erickson, H. M.

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J. 88(5), 3689–3698 (2005).
[Crossref] [PubMed]

Euteneuer, U.

A. Ashkin, K. Schütze, J. M. Dziedzic, U. Euteneuer, and M. Schliwa, “Force generation of organelle transport measured in vivo by an infrared laser trap,” Nature 348(6299), 346–348 (1990).
[Crossref] [PubMed]

Fardin, M. A.

N. C. Gauthier, M. A. Fardin, P. Roca-Cusachs, and M. P. Sheetz, “Temporary increase in plasma membrane tension coordinates the activation of exocytosis and contraction during cell spreading,” Proc. Natl. Acad. Sci. U.S.A. 108(35), 14467–14472 (2011).
[Crossref] [PubMed]

Farrell, B.

N. Khatibzadeh, S. Gupta, B. Farrell, W. E. Brownell, and B. Anvari, “Effects of cholesterol on nano-mechanical properties of the living cell plasma membrane,” Soft Matter 8(32), 8350–8360 (2012).
[Crossref] [PubMed]

Fazal, F. M.

F. M. Fazal and S. M. Block, “Optical tweezers study life under tension,” Nat. Photonics 5(6), 318–321 (2011).
[Crossref] [PubMed]

Feld, M. S.

Feng, Y.

S. I. Fraley, Y. Feng, R. Krishnamurthy, D. H. Kim, A. Celedon, G. D. Longmore, and D. Wirtz, “A distinctive role for focal adhesion proteins in three-dimensional cell motility,” Nat. Cell Biol. 12(6), 598–604 (2010).
[Crossref] [PubMed]

Ferraro, P.

F. Merola, L. Miccio, P. Memmolo, G. Di Caprio, A. Galli, R. Puglisi, D. Balduzzi, G. Coppola, P. Netti, and P. Ferraro, “Digital holography as a method for 3D imaging and estimating the biovolume of motile cells,” Lab Chip 13(23), 4512–4516 (2013).
[Crossref] [PubMed]

Fraley, S. I.

S. I. Fraley, Y. Feng, R. Krishnamurthy, D. H. Kim, A. Celedon, G. D. Longmore, and D. Wirtz, “A distinctive role for focal adhesion proteins in three-dimensional cell motility,” Nat. Cell Biol. 12(6), 598–604 (2010).
[Crossref] [PubMed]

Friedrich, L.

L. Friedrich and A. Rohrbach, “Surface imaging beyond the diffraction limit with optically trapped spheres,” Nat. Nanotechnol. 10(12), 1064–1069 (2015).
[Crossref] [PubMed]

Galli, A.

F. Merola, L. Miccio, P. Memmolo, G. Di Caprio, A. Galli, R. Puglisi, D. Balduzzi, G. Coppola, P. Netti, and P. Ferraro, “Digital holography as a method for 3D imaging and estimating the biovolume of motile cells,” Lab Chip 13(23), 4512–4516 (2013).
[Crossref] [PubMed]

García, J.

V. Mico, Z. Zalevsky, and J. García, “Common-path phase-shifting digital holographic microscopy: A way to quantitative phase imaging and superresolution,” Opt. Commun. 281(17), 4273–4281 (2008).
[Crossref]

Gaschen, V.

J. D. Szafranski, A. J. Grodzinsky, E. Burger, V. Gaschen, H.-H. Hung, and E. B. Hunziker, “Chondrocyte mechanotransduction: effects of compression on deformation of intracellular organelles and relevance to cellular biosynthesis,” Osteoarthritis Cartilage 12(12), 937–946 (2004).
[Crossref] [PubMed]

Gauthier, N. C.

N. C. Gauthier, M. A. Fardin, P. Roca-Cusachs, and M. P. Sheetz, “Temporary increase in plasma membrane tension coordinates the activation of exocytosis and contraction during cell spreading,” Proc. Natl. Acad. Sci. U.S.A. 108(35), 14467–14472 (2011).
[Crossref] [PubMed]

Gileadi, O.

S. Thiberge, A. Nechushtan, D. Sprinzak, O. Gileadi, V. Behar, O. Zik, Y. Chowers, S. Michaeli, J. Schlessinger, and E. Moses, “Scanning electron microscopy of cells and tissues under fully hydrated conditions,” Proc. Natl. Acad. Sci. U.S.A. 101(10), 3346–3351 (2004).
[Crossref] [PubMed]

Gillette, M.

Gillette, M. U.

Gimzewski, J. K.

S. E. Cross, Y. S. Jin, J. Rao, and J. K. Gimzewski, “Nanomechanical analysis of cells from cancer patients,” Nat. Nanotechnol. 2(12), 780–783 (2007).
[Crossref] [PubMed]

Greve, B.

S. Przibilla, S. Dartmann, A. Vollmer, S. Ketelhut, B. Greve, G. von Bally, and B. Kemper, “Sensing dynamic cytoplasm refractive index changes of adherent cells with quantitative phase microscopy using incorporated microspheres as optical probes,” J. Biomed. Opt. 17(9), 097001 (2012).
[Crossref] [PubMed]

Grodzinsky, A. J.

J. D. Szafranski, A. J. Grodzinsky, E. Burger, V. Gaschen, H.-H. Hung, and E. B. Hunziker, “Chondrocyte mechanotransduction: effects of compression on deformation of intracellular organelles and relevance to cellular biosynthesis,” Osteoarthritis Cartilage 12(12), 937–946 (2004).
[Crossref] [PubMed]

Guck, J.

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J. 88(5), 3689–3698 (2005).
[Crossref] [PubMed]

Guo, S.

D. Raucher, T. Stauffer, W. Chen, K. Shen, S. Guo, J. D. York, M. P. Sheetz, and T. Meyer, “Phosphatidylinositol 4,5-bisphosphate functions as a second messenger that regulates cytoskeleton-plasma membrane adhesion,” Cell 100(2), 221–228 (2000).
[Crossref] [PubMed]

Gupta, S.

N. Khatibzadeh, S. Gupta, B. Farrell, W. E. Brownell, and B. Anvari, “Effects of cholesterol on nano-mechanical properties of the living cell plasma membrane,” Soft Matter 8(32), 8350–8360 (2012).
[Crossref] [PubMed]

Harris, P. J.

C. L. Curl, C. J. Bellair, T. Harris, B. E. Allman, P. J. Harris, A. G. Stewart, A. Roberts, K. A. Nugent, and L. M. D. Delbridge, “Refractive index measurement in viable cells using quantitative phase-amplitude microscopy and confocal microscopy,” Cytometry A 65(1), 88–92 (2005).
[Crossref] [PubMed]

Harris, T.

C. L. Curl, C. J. Bellair, T. Harris, B. E. Allman, P. J. Harris, A. G. Stewart, A. Roberts, K. A. Nugent, and L. M. D. Delbridge, “Refractive index measurement in viable cells using quantitative phase-amplitude microscopy and confocal microscopy,” Cytometry A 65(1), 88–92 (2005).
[Crossref] [PubMed]

Hartschuh, A.

N. Mauser and A. Hartschuh, “Tip-enhanced near-field optical microscopy,” Chem. Soc. Rev. 43(4), 1248–1262 (2014).
[Crossref] [PubMed]

Hochmuth, R. M.

R. E. Waugh and R. M. Hochmuth, “Mechanical equilibrium of thick, hollow, liquid membrane cylinders,” Biophys. J. 52(3), 391–400 (1987).
[Crossref] [PubMed]

Hoffmann, A.

B. Rappaz, A. Barbul, A. Hoffmann, D. Boss, R. Korenstein, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Spatial analysis of erythrocyte membrane fluctuations by digital holographic microscopy,” Blood Cells Mol. Dis. 42(3), 228–232 (2009).
[Crossref] [PubMed]

Hung, H.-H.

J. D. Szafranski, A. J. Grodzinsky, E. Burger, V. Gaschen, H.-H. Hung, and E. B. Hunziker, “Chondrocyte mechanotransduction: effects of compression on deformation of intracellular organelles and relevance to cellular biosynthesis,” Osteoarthritis Cartilage 12(12), 937–946 (2004).
[Crossref] [PubMed]

Hunziker, E. B.

J. D. Szafranski, A. J. Grodzinsky, E. Burger, V. Gaschen, H.-H. Hung, and E. B. Hunziker, “Chondrocyte mechanotransduction: effects of compression on deformation of intracellular organelles and relevance to cellular biosynthesis,” Osteoarthritis Cartilage 12(12), 937–946 (2004).
[Crossref] [PubMed]

Ipsen, J. H.

H. Bouvrais, T. Pott, L. A. Bagatolli, J. H. Ipsen, and P. Méléard, “Impact of membrane-anchored fluorescent probes on the mechanical properties of lipid bilayers,” Biochim. Biophys. Acta 1798(7), 1333–1337 (2010).
[Crossref] [PubMed]

Iskratsch, T.

T. Iskratsch, H. Wolfenson, and M. P. Sheetz, “Appreciating force and shape—the rise of mechanotransduction in cell biology,” Nat. Rev. Mol. Cell Biol. 15(12), 825–833 (2014).
[Crossref] [PubMed]

Iwai, H.

Jaffray, D. A.

D. B. Chithrani, M. Dunne, J. Stewart, C. Allen, and D. A. Jaffray, “Cellular uptake and transport of gold nanoparticles incorporated in a liposomal carrier,” Nanomedicine (Lond.) 6(1), 161–169 (2010).
[PubMed]

Jin, Y. S.

S. E. Cross, Y. S. Jin, J. Rao, and J. K. Gimzewski, “Nanomechanical analysis of cells from cancer patients,” Nat. Nanotechnol. 2(12), 780–783 (2007).
[Crossref] [PubMed]

Joanny, J. F.

T. Bornschlögl, S. Romero, C. L. Vestergaard, J. F. Joanny, G. T. Van Nhieu, and P. Bassereau, “Filopodial retraction force is generated by cortical actin dynamics and controlled by reversible tethering at the tip,” Proc. Natl. Acad. Sci. U.S.A. 110(47), 18928–18933 (2013).
[Crossref] [PubMed]

Kajdacsy-Balla, A.

S. Sridharan, V. Macias, K. Tangella, A. Kajdacsy-Balla, and G. Popescu, “Prediction of prostate cancer recurrence using quantitative phase imaging,” Sci. Rep. 5, 9976 (2015).
[Crossref] [PubMed]

Käs, J.

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J. 88(5), 3689–3698 (2005).
[Crossref] [PubMed]

Kemper, B.

S. Przibilla, S. Dartmann, A. Vollmer, S. Ketelhut, B. Greve, G. von Bally, and B. Kemper, “Sensing dynamic cytoplasm refractive index changes of adherent cells with quantitative phase microscopy using incorporated microspheres as optical probes,” J. Biomed. Opt. 17(9), 097001 (2012).
[Crossref] [PubMed]

B. Kemper, A. Vollmer, C. E. Rommel, J. Schnekenburger, and G. von Bally, “Simplified approach for quantitative digital holographic phase contrast imaging of living cells,” J. Biomed. Opt. 16(2), 026014 (2011).
[Crossref] [PubMed]

B. Kemper and G. von Bally, “Digital holographic microscopy for live cell applications and technical inspection,” Appl. Opt. 47(4), A52–A61 (2008).
[Crossref] [PubMed]

Ketelhut, S.

S. Przibilla, S. Dartmann, A. Vollmer, S. Ketelhut, B. Greve, G. von Bally, and B. Kemper, “Sensing dynamic cytoplasm refractive index changes of adherent cells with quantitative phase microscopy using incorporated microspheres as optical probes,” J. Biomed. Opt. 17(9), 097001 (2012).
[Crossref] [PubMed]

Khatibzadeh, N.

N. Khatibzadeh, A. A. Spector, W. E. Brownell, and B. Anvari, “Effects of plasma membrane cholesterol level and cytoskeleton F-actin on cell protrusion mechanics,” PLoS One 8(2), e57147 (2013).
[Crossref] [PubMed]

N. Khatibzadeh, S. Gupta, B. Farrell, W. E. Brownell, and B. Anvari, “Effects of cholesterol on nano-mechanical properties of the living cell plasma membrane,” Soft Matter 8(32), 8350–8360 (2012).
[Crossref] [PubMed]

Kikkawa, M.

G. Morfini, G. Pigino, N. Mizuno, M. Kikkawa, and S. T. Brady, “Tau binding to microtubules does not directly affect microtubule-based vesicle motility,” J. Neurosci. Res. 85(12), 2620–2630 (2007).
[Crossref] [PubMed]

Kim, D. H.

S. I. Fraley, Y. Feng, R. Krishnamurthy, D. H. Kim, A. Celedon, G. D. Longmore, and D. Wirtz, “A distinctive role for focal adhesion proteins in three-dimensional cell motility,” Nat. Cell Biol. 12(6), 598–604 (2010).
[Crossref] [PubMed]

Korenstein, R.

B. Rappaz, A. Barbul, A. Hoffmann, D. Boss, R. Korenstein, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Spatial analysis of erythrocyte membrane fluctuations by digital holographic microscopy,” Blood Cells Mol. Dis. 42(3), 228–232 (2009).
[Crossref] [PubMed]

Krishnamurthy, R.

S. I. Fraley, Y. Feng, R. Krishnamurthy, D. H. Kim, A. Celedon, G. D. Longmore, and D. Wirtz, “A distinctive role for focal adhesion proteins in three-dimensional cell motility,” Nat. Cell Biol. 12(6), 598–604 (2010).
[Crossref] [PubMed]

Le Clainche, C.

J. Mueller, J. Pfanzelter, C. Winkler, A. Narita, C. Le Clainche, M. Nemethova, M. F. Carlier, Y. Maeda, M. D. Welch, T. Ohkawa, C. Schmeiser, G. P. Resch, and J. V. Small, “Electron tomography and simulation of baculovirus actin comet tails support a tethered filament model of pathogen propulsion,” PLoS Biol. 12(1), e1001765 (2014).
[Crossref] [PubMed]

Lenz, D.

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J. 88(5), 3689–3698 (2005).
[Crossref] [PubMed]

Li, X.

Lincoln, B.

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J. 88(5), 3689–3698 (2005).
[Crossref] [PubMed]

Liu, G. Y.

V. Lulevich, Y. P. Shih, S. H. Lo, and G. Y. Liu, “Cell tracing dyes significantly change single cell mechanics,” J. Phys. Chem. B 113(18), 6511–6519 (2009).
[Crossref] [PubMed]

Lo, S. H.

V. Lulevich, Y. P. Shih, S. H. Lo, and G. Y. Liu, “Cell tracing dyes significantly change single cell mechanics,” J. Phys. Chem. B 113(18), 6511–6519 (2009).
[Crossref] [PubMed]

Longmore, G. D.

S. I. Fraley, Y. Feng, R. Krishnamurthy, D. H. Kim, A. Celedon, G. D. Longmore, and D. Wirtz, “A distinctive role for focal adhesion proteins in three-dimensional cell motility,” Nat. Cell Biol. 12(6), 598–604 (2010).
[Crossref] [PubMed]

Lulevich, V.

V. Lulevich, Y. P. Shih, S. H. Lo, and G. Y. Liu, “Cell tracing dyes significantly change single cell mechanics,” J. Phys. Chem. B 113(18), 6511–6519 (2009).
[Crossref] [PubMed]

Macias, V.

S. Sridharan, V. Macias, K. Tangella, A. Kajdacsy-Balla, and G. Popescu, “Prediction of prostate cancer recurrence using quantitative phase imaging,” Sci. Rep. 5, 9976 (2015).
[Crossref] [PubMed]

Maeda, Y.

J. Mueller, J. Pfanzelter, C. Winkler, A. Narita, C. Le Clainche, M. Nemethova, M. F. Carlier, Y. Maeda, M. D. Welch, T. Ohkawa, C. Schmeiser, G. P. Resch, and J. V. Small, “Electron tomography and simulation of baculovirus actin comet tails support a tethered filament model of pathogen propulsion,” PLoS Biol. 12(1), e1001765 (2014).
[Crossref] [PubMed]

Magistretti, P. J.

B. Rappaz, A. Barbul, A. Hoffmann, D. Boss, R. Korenstein, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Spatial analysis of erythrocyte membrane fluctuations by digital holographic microscopy,” Blood Cells Mol. Dis. 42(3), 228–232 (2009).
[Crossref] [PubMed]

Marquet, P.

B. Rappaz, A. Barbul, A. Hoffmann, D. Boss, R. Korenstein, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Spatial analysis of erythrocyte membrane fluctuations by digital holographic microscopy,” Blood Cells Mol. Dis. 42(3), 228–232 (2009).
[Crossref] [PubMed]

Marrink, S. J.

S. Baoukina, S. J. Marrink, and D. P. Tieleman, “Molecular structure of membrane tethers,” Biophys. J. 102(8), 1866–1871 (2012).
[Crossref] [PubMed]

Mauser, N.

N. Mauser and A. Hartschuh, “Tip-enhanced near-field optical microscopy,” Chem. Soc. Rev. 43(4), 1248–1262 (2014).
[Crossref] [PubMed]

Méléard, P.

H. Bouvrais, T. Pott, L. A. Bagatolli, J. H. Ipsen, and P. Méléard, “Impact of membrane-anchored fluorescent probes on the mechanical properties of lipid bilayers,” Biochim. Biophys. Acta 1798(7), 1333–1337 (2010).
[Crossref] [PubMed]

Memmolo, P.

F. Merola, L. Miccio, P. Memmolo, G. Di Caprio, A. Galli, R. Puglisi, D. Balduzzi, G. Coppola, P. Netti, and P. Ferraro, “Digital holography as a method for 3D imaging and estimating the biovolume of motile cells,” Lab Chip 13(23), 4512–4516 (2013).
[Crossref] [PubMed]

Merola, F.

F. Merola, L. Miccio, P. Memmolo, G. Di Caprio, A. Galli, R. Puglisi, D. Balduzzi, G. Coppola, P. Netti, and P. Ferraro, “Digital holography as a method for 3D imaging and estimating the biovolume of motile cells,” Lab Chip 13(23), 4512–4516 (2013).
[Crossref] [PubMed]

Meyer, T.

D. Raucher, T. Stauffer, W. Chen, K. Shen, S. Guo, J. D. York, M. P. Sheetz, and T. Meyer, “Phosphatidylinositol 4,5-bisphosphate functions as a second messenger that regulates cytoskeleton-plasma membrane adhesion,” Cell 100(2), 221–228 (2000).
[Crossref] [PubMed]

Miccio, L.

F. Merola, L. Miccio, P. Memmolo, G. Di Caprio, A. Galli, R. Puglisi, D. Balduzzi, G. Coppola, P. Netti, and P. Ferraro, “Digital holography as a method for 3D imaging and estimating the biovolume of motile cells,” Lab Chip 13(23), 4512–4516 (2013).
[Crossref] [PubMed]

Michaeli, S.

S. Thiberge, A. Nechushtan, D. Sprinzak, O. Gileadi, V. Behar, O. Zik, Y. Chowers, S. Michaeli, J. Schlessinger, and E. Moses, “Scanning electron microscopy of cells and tissues under fully hydrated conditions,” Proc. Natl. Acad. Sci. U.S.A. 101(10), 3346–3351 (2004).
[Crossref] [PubMed]

Mico, V.

V. Mico, Z. Zalevsky, and J. García, “Common-path phase-shifting digital holographic microscopy: A way to quantitative phase imaging and superresolution,” Opt. Commun. 281(17), 4273–4281 (2008).
[Crossref]

Millet, L.

Mir, M.

Mitchell, D.

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J. 88(5), 3689–3698 (2005).
[Crossref] [PubMed]

Mizuno, N.

G. Morfini, G. Pigino, N. Mizuno, M. Kikkawa, and S. T. Brady, “Tau binding to microtubules does not directly affect microtubule-based vesicle motility,” J. Neurosci. Res. 85(12), 2620–2630 (2007).
[Crossref] [PubMed]

Mohanty, S. K.

N. Cardenas and S. K. Mohanty, “Optical tweezers assisted quantitative phase imaging led to thickness mapping of red blood cells,” Appl. Phys. Lett. 103(1), 013703 (2013).
[Crossref]

Morfini, G.

G. Morfini, G. Pigino, N. Mizuno, M. Kikkawa, and S. T. Brady, “Tau binding to microtubules does not directly affect microtubule-based vesicle motility,” J. Neurosci. Res. 85(12), 2620–2630 (2007).
[Crossref] [PubMed]

Moses, E.

S. Thiberge, A. Nechushtan, D. Sprinzak, O. Gileadi, V. Behar, O. Zik, Y. Chowers, S. Michaeli, J. Schlessinger, and E. Moses, “Scanning electron microscopy of cells and tissues under fully hydrated conditions,” Proc. Natl. Acad. Sci. U.S.A. 101(10), 3346–3351 (2004).
[Crossref] [PubMed]

Mueller, J.

J. Mueller, J. Pfanzelter, C. Winkler, A. Narita, C. Le Clainche, M. Nemethova, M. F. Carlier, Y. Maeda, M. D. Welch, T. Ohkawa, C. Schmeiser, G. P. Resch, and J. V. Small, “Electron tomography and simulation of baculovirus actin comet tails support a tethered filament model of pathogen propulsion,” PLoS Biol. 12(1), e1001765 (2014).
[Crossref] [PubMed]

Müller, D. J.

D. J. Müller and Y. F. Dufrêne, “Atomic force microscopy as a multifunctional molecular toolbox in nanobiotechnology,” Nat. Nanotechnol. 3(5), 261–269 (2008).
[Crossref] [PubMed]

Narita, A.

J. Mueller, J. Pfanzelter, C. Winkler, A. Narita, C. Le Clainche, M. Nemethova, M. F. Carlier, Y. Maeda, M. D. Welch, T. Ohkawa, C. Schmeiser, G. P. Resch, and J. V. Small, “Electron tomography and simulation of baculovirus actin comet tails support a tethered filament model of pathogen propulsion,” PLoS Biol. 12(1), e1001765 (2014).
[Crossref] [PubMed]

Nassoy, P.

F. Brochard-Wyart, N. Borghi, D. Cuvelier, and P. Nassoy, “Hydrodynamic narrowing of tubes extruded from cells,” Proc. Natl. Acad. Sci. U.S.A. 103(20), 7660–7663 (2006).
[Crossref] [PubMed]

Nechushtan, A.

S. Thiberge, A. Nechushtan, D. Sprinzak, O. Gileadi, V. Behar, O. Zik, Y. Chowers, S. Michaeli, J. Schlessinger, and E. Moses, “Scanning electron microscopy of cells and tissues under fully hydrated conditions,” Proc. Natl. Acad. Sci. U.S.A. 101(10), 3346–3351 (2004).
[Crossref] [PubMed]

Nelson, C. M.

M. J. Siedlik, V. D. Varner, and C. M. Nelson, “Pushing, pulling, and squeezing our way to understanding mechanotransduction,” Methods 94, 4–12 (2016).
[PubMed]

Nemethova, M.

J. Mueller, J. Pfanzelter, C. Winkler, A. Narita, C. Le Clainche, M. Nemethova, M. F. Carlier, Y. Maeda, M. D. Welch, T. Ohkawa, C. Schmeiser, G. P. Resch, and J. V. Small, “Electron tomography and simulation of baculovirus actin comet tails support a tethered filament model of pathogen propulsion,” PLoS Biol. 12(1), e1001765 (2014).
[Crossref] [PubMed]

Netti, P.

F. Merola, L. Miccio, P. Memmolo, G. Di Caprio, A. Galli, R. Puglisi, D. Balduzzi, G. Coppola, P. Netti, and P. Ferraro, “Digital holography as a method for 3D imaging and estimating the biovolume of motile cells,” Lab Chip 13(23), 4512–4516 (2013).
[Crossref] [PubMed]

Nugent, K. A.

C. L. Curl, C. J. Bellair, T. Harris, B. E. Allman, P. J. Harris, A. G. Stewart, A. Roberts, K. A. Nugent, and L. M. D. Delbridge, “Refractive index measurement in viable cells using quantitative phase-amplitude microscopy and confocal microscopy,” Cytometry A 65(1), 88–92 (2005).
[Crossref] [PubMed]

Ohkawa, T.

J. Mueller, J. Pfanzelter, C. Winkler, A. Narita, C. Le Clainche, M. Nemethova, M. F. Carlier, Y. Maeda, M. D. Welch, T. Ohkawa, C. Schmeiser, G. P. Resch, and J. V. Small, “Electron tomography and simulation of baculovirus actin comet tails support a tethered filament model of pathogen propulsion,” PLoS Biol. 12(1), e1001765 (2014).
[Crossref] [PubMed]

Ong, Z.-Y.

Parthasarathy, R.

R. Parthasarathy, “Rapid, accurate particle tracking by calculation of radial symmetry centers,” Nat. Methods 9(7), 724–726 (2012).
[Crossref] [PubMed]

Pfanzelter, J.

J. Mueller, J. Pfanzelter, C. Winkler, A. Narita, C. Le Clainche, M. Nemethova, M. F. Carlier, Y. Maeda, M. D. Welch, T. Ohkawa, C. Schmeiser, G. P. Resch, and J. V. Small, “Electron tomography and simulation of baculovirus actin comet tails support a tethered filament model of pathogen propulsion,” PLoS Biol. 12(1), e1001765 (2014).
[Crossref] [PubMed]

Pigino, G.

G. Morfini, G. Pigino, N. Mizuno, M. Kikkawa, and S. T. Brady, “Tau binding to microtubules does not directly affect microtubule-based vesicle motility,” J. Neurosci. Res. 85(12), 2620–2630 (2007).
[Crossref] [PubMed]

Pop, E.

Popescu, G.

Pott, T.

H. Bouvrais, T. Pott, L. A. Bagatolli, J. H. Ipsen, and P. Méléard, “Impact of membrane-anchored fluorescent probes on the mechanical properties of lipid bilayers,” Biochim. Biophys. Acta 1798(7), 1333–1337 (2010).
[Crossref] [PubMed]

Przibilla, S.

S. Przibilla, S. Dartmann, A. Vollmer, S. Ketelhut, B. Greve, G. von Bally, and B. Kemper, “Sensing dynamic cytoplasm refractive index changes of adherent cells with quantitative phase microscopy using incorporated microspheres as optical probes,” J. Biomed. Opt. 17(9), 097001 (2012).
[Crossref] [PubMed]

Puglisi, R.

F. Merola, L. Miccio, P. Memmolo, G. Di Caprio, A. Galli, R. Puglisi, D. Balduzzi, G. Coppola, P. Netti, and P. Ferraro, “Digital holography as a method for 3D imaging and estimating the biovolume of motile cells,” Lab Chip 13(23), 4512–4516 (2013).
[Crossref] [PubMed]

Qian, F.

W. E. Brownell, F. Qian, and B. Anvari, “Cell membrane tethers generate mechanical force in response to electrical stimulation,” Biophys. J. 99(3), 845–852 (2010).
[Crossref] [PubMed]

Rao, J.

S. E. Cross, Y. S. Jin, J. Rao, and J. K. Gimzewski, “Nanomechanical analysis of cells from cancer patients,” Nat. Nanotechnol. 2(12), 780–783 (2007).
[Crossref] [PubMed]

Rappaz, B.

B. Rappaz, A. Barbul, A. Hoffmann, D. Boss, R. Korenstein, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Spatial analysis of erythrocyte membrane fluctuations by digital holographic microscopy,” Blood Cells Mol. Dis. 42(3), 228–232 (2009).
[Crossref] [PubMed]

Raucher, D.

D. Raucher, T. Stauffer, W. Chen, K. Shen, S. Guo, J. D. York, M. P. Sheetz, and T. Meyer, “Phosphatidylinositol 4,5-bisphosphate functions as a second messenger that regulates cytoskeleton-plasma membrane adhesion,” Cell 100(2), 221–228 (2000).
[Crossref] [PubMed]

Resch, G. P.

J. Mueller, J. Pfanzelter, C. Winkler, A. Narita, C. Le Clainche, M. Nemethova, M. F. Carlier, Y. Maeda, M. D. Welch, T. Ohkawa, C. Schmeiser, G. P. Resch, and J. V. Small, “Electron tomography and simulation of baculovirus actin comet tails support a tethered filament model of pathogen propulsion,” PLoS Biol. 12(1), e1001765 (2014).
[Crossref] [PubMed]

Roberts, A.

C. L. Curl, C. J. Bellair, T. Harris, B. E. Allman, P. J. Harris, A. G. Stewart, A. Roberts, K. A. Nugent, and L. M. D. Delbridge, “Refractive index measurement in viable cells using quantitative phase-amplitude microscopy and confocal microscopy,” Cytometry A 65(1), 88–92 (2005).
[Crossref] [PubMed]

Roca-Cusachs, P.

N. C. Gauthier, M. A. Fardin, P. Roca-Cusachs, and M. P. Sheetz, “Temporary increase in plasma membrane tension coordinates the activation of exocytosis and contraction during cell spreading,” Proc. Natl. Acad. Sci. U.S.A. 108(35), 14467–14472 (2011).
[Crossref] [PubMed]

Rogers, J.

Rohrbach, A.

L. Friedrich and A. Rohrbach, “Surface imaging beyond the diffraction limit with optically trapped spheres,” Nat. Nanotechnol. 10(12), 1064–1069 (2015).
[Crossref] [PubMed]

Romero, S.

T. Bornschlögl, S. Romero, C. L. Vestergaard, J. F. Joanny, G. T. Van Nhieu, and P. Bassereau, “Filopodial retraction force is generated by cortical actin dynamics and controlled by reversible tethering at the tip,” Proc. Natl. Acad. Sci. U.S.A. 110(47), 18928–18933 (2013).
[Crossref] [PubMed]

Romeyke, M.

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J. 88(5), 3689–3698 (2005).
[Crossref] [PubMed]

Rommel, C. E.

B. Kemper, A. Vollmer, C. E. Rommel, J. Schnekenburger, and G. von Bally, “Simplified approach for quantitative digital holographic phase contrast imaging of living cells,” J. Biomed. Opt. 16(2), 026014 (2011).
[Crossref] [PubMed]

Ross, F. M.

N. de Jonge and F. M. Ross, “Electron microscopy of specimens in liquid,” Nat. Nanotechnol. 6(11), 695–704 (2011).
[Crossref] [PubMed]

Sarshar, M.

M. Sarshar, W. T. Wong, and B. Anvari, “Comparative study of methods to calibrate the stiffness of a single-beam gradient-force optical tweezers over various laser trapping powers,” J. Biomed. Opt. 19(11), 115001 (2014).
[Crossref] [PubMed]

Schinkinger, S.

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J. 88(5), 3689–3698 (2005).
[Crossref] [PubMed]

Schlessinger, J.

S. Thiberge, A. Nechushtan, D. Sprinzak, O. Gileadi, V. Behar, O. Zik, Y. Chowers, S. Michaeli, J. Schlessinger, and E. Moses, “Scanning electron microscopy of cells and tissues under fully hydrated conditions,” Proc. Natl. Acad. Sci. U.S.A. 101(10), 3346–3351 (2004).
[Crossref] [PubMed]

Schliwa, M.

A. Ashkin, K. Schütze, J. M. Dziedzic, U. Euteneuer, and M. Schliwa, “Force generation of organelle transport measured in vivo by an infrared laser trap,” Nature 348(6299), 346–348 (1990).
[Crossref] [PubMed]

Schmeiser, C.

J. Mueller, J. Pfanzelter, C. Winkler, A. Narita, C. Le Clainche, M. Nemethova, M. F. Carlier, Y. Maeda, M. D. Welch, T. Ohkawa, C. Schmeiser, G. P. Resch, and J. V. Small, “Electron tomography and simulation of baculovirus actin comet tails support a tethered filament model of pathogen propulsion,” PLoS Biol. 12(1), e1001765 (2014).
[Crossref] [PubMed]

Schnekenburger, J.

B. Kemper, A. Vollmer, C. E. Rommel, J. Schnekenburger, and G. von Bally, “Simplified approach for quantitative digital holographic phase contrast imaging of living cells,” J. Biomed. Opt. 16(2), 026014 (2011).
[Crossref] [PubMed]

Schütze, K.

A. Ashkin, K. Schütze, J. M. Dziedzic, U. Euteneuer, and M. Schliwa, “Force generation of organelle transport measured in vivo by an infrared laser trap,” Nature 348(6299), 346–348 (1990).
[Crossref] [PubMed]

Selvin, P. R.

B. H. Blehm and P. R. Selvin, “Single-molecule fluorescence and in vivo optical traps: how multiple dyneins and kinesins interact,” Chem. Rev. 114(6), 3335–3352 (2014).
[Crossref] [PubMed]

Sheetz, M. P.

T. Iskratsch, H. Wolfenson, and M. P. Sheetz, “Appreciating force and shape—the rise of mechanotransduction in cell biology,” Nat. Rev. Mol. Cell Biol. 15(12), 825–833 (2014).
[Crossref] [PubMed]

N. C. Gauthier, M. A. Fardin, P. Roca-Cusachs, and M. P. Sheetz, “Temporary increase in plasma membrane tension coordinates the activation of exocytosis and contraction during cell spreading,” Proc. Natl. Acad. Sci. U.S.A. 108(35), 14467–14472 (2011).
[Crossref] [PubMed]

M. P. Sheetz, “Cell control by membrane-cytoskeleton adhesion,” Nat. Rev. Mol. Cell Biol. 2(5), 392–396 (2001).
[Crossref] [PubMed]

D. Raucher, T. Stauffer, W. Chen, K. Shen, S. Guo, J. D. York, M. P. Sheetz, and T. Meyer, “Phosphatidylinositol 4,5-bisphosphate functions as a second messenger that regulates cytoskeleton-plasma membrane adhesion,” Cell 100(2), 221–228 (2000).
[Crossref] [PubMed]

Shen, K.

D. Raucher, T. Stauffer, W. Chen, K. Shen, S. Guo, J. D. York, M. P. Sheetz, and T. Meyer, “Phosphatidylinositol 4,5-bisphosphate functions as a second messenger that regulates cytoskeleton-plasma membrane adhesion,” Cell 100(2), 221–228 (2000).
[Crossref] [PubMed]

Sheppard, C. J.

T. Wilson and C. J. Sheppard, “The halo effect of image processing by spatial frequency filtering,” Optik (Stuttg.) 59(1), 19–23 (1981).

Shih, Y. P.

V. Lulevich, Y. P. Shih, S. H. Lo, and G. Y. Liu, “Cell tracing dyes significantly change single cell mechanics,” J. Phys. Chem. B 113(18), 6511–6519 (2009).
[Crossref] [PubMed]

Siedlik, M. J.

M. J. Siedlik, V. D. Varner, and C. M. Nelson, “Pushing, pulling, and squeezing our way to understanding mechanotransduction,” Methods 94, 4–12 (2016).
[PubMed]

Small, J. V.

J. Mueller, J. Pfanzelter, C. Winkler, A. Narita, C. Le Clainche, M. Nemethova, M. F. Carlier, Y. Maeda, M. D. Welch, T. Ohkawa, C. Schmeiser, G. P. Resch, and J. V. Small, “Electron tomography and simulation of baculovirus actin comet tails support a tethered filament model of pathogen propulsion,” PLoS Biol. 12(1), e1001765 (2014).
[Crossref] [PubMed]

Spector, A. A.

N. Khatibzadeh, A. A. Spector, W. E. Brownell, and B. Anvari, “Effects of plasma membrane cholesterol level and cytoskeleton F-actin on cell protrusion mechanics,” PLoS One 8(2), e57147 (2013).
[Crossref] [PubMed]

Sprinzak, D.

S. Thiberge, A. Nechushtan, D. Sprinzak, O. Gileadi, V. Behar, O. Zik, Y. Chowers, S. Michaeli, J. Schlessinger, and E. Moses, “Scanning electron microscopy of cells and tissues under fully hydrated conditions,” Proc. Natl. Acad. Sci. U.S.A. 101(10), 3346–3351 (2004).
[Crossref] [PubMed]

Sridharan, S.

S. Sridharan, V. Macias, K. Tangella, A. Kajdacsy-Balla, and G. Popescu, “Prediction of prostate cancer recurrence using quantitative phase imaging,” Sci. Rep. 5, 9976 (2015).
[Crossref] [PubMed]

Stauffer, T.

D. Raucher, T. Stauffer, W. Chen, K. Shen, S. Guo, J. D. York, M. P. Sheetz, and T. Meyer, “Phosphatidylinositol 4,5-bisphosphate functions as a second messenger that regulates cytoskeleton-plasma membrane adhesion,” Cell 100(2), 221–228 (2000).
[Crossref] [PubMed]

Stewart, A. G.

C. L. Curl, C. J. Bellair, T. Harris, B. E. Allman, P. J. Harris, A. G. Stewart, A. Roberts, K. A. Nugent, and L. M. D. Delbridge, “Refractive index measurement in viable cells using quantitative phase-amplitude microscopy and confocal microscopy,” Cytometry A 65(1), 88–92 (2005).
[Crossref] [PubMed]

Stewart, J.

D. B. Chithrani, M. Dunne, J. Stewart, C. Allen, and D. A. Jaffray, “Cellular uptake and transport of gold nanoparticles incorporated in a liposomal carrier,” Nanomedicine (Lond.) 6(1), 161–169 (2010).
[PubMed]

Szafranski, J. D.

J. D. Szafranski, A. J. Grodzinsky, E. Burger, V. Gaschen, H.-H. Hung, and E. B. Hunziker, “Chondrocyte mechanotransduction: effects of compression on deformation of intracellular organelles and relevance to cellular biosynthesis,” Osteoarthritis Cartilage 12(12), 937–946 (2004).
[Crossref] [PubMed]

Tangella, K.

S. Sridharan, V. Macias, K. Tangella, A. Kajdacsy-Balla, and G. Popescu, “Prediction of prostate cancer recurrence using quantitative phase imaging,” Sci. Rep. 5, 9976 (2015).
[Crossref] [PubMed]

Thiberge, S.

S. Thiberge, A. Nechushtan, D. Sprinzak, O. Gileadi, V. Behar, O. Zik, Y. Chowers, S. Michaeli, J. Schlessinger, and E. Moses, “Scanning electron microscopy of cells and tissues under fully hydrated conditions,” Proc. Natl. Acad. Sci. U.S.A. 101(10), 3346–3351 (2004).
[Crossref] [PubMed]

Tieleman, D. P.

S. Baoukina, S. J. Marrink, and D. P. Tieleman, “Molecular structure of membrane tethers,” Biophys. J. 102(8), 1866–1871 (2012).
[Crossref] [PubMed]

Ulvick, S.

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J. 88(5), 3689–3698 (2005).
[Crossref] [PubMed]

Unarunotai, S.

Van Nhieu, G. T.

T. Bornschlögl, S. Romero, C. L. Vestergaard, J. F. Joanny, G. T. Van Nhieu, and P. Bassereau, “Filopodial retraction force is generated by cortical actin dynamics and controlled by reversible tethering at the tip,” Proc. Natl. Acad. Sci. U.S.A. 110(47), 18928–18933 (2013).
[Crossref] [PubMed]

Varner, V. D.

M. J. Siedlik, V. D. Varner, and C. M. Nelson, “Pushing, pulling, and squeezing our way to understanding mechanotransduction,” Methods 94, 4–12 (2016).
[PubMed]

Vaughan, J. C.

Vestergaard, C. L.

T. Bornschlögl, S. Romero, C. L. Vestergaard, J. F. Joanny, G. T. Van Nhieu, and P. Bassereau, “Filopodial retraction force is generated by cortical actin dynamics and controlled by reversible tethering at the tip,” Proc. Natl. Acad. Sci. U.S.A. 110(47), 18928–18933 (2013).
[Crossref] [PubMed]

Vollmer, A.

S. Przibilla, S. Dartmann, A. Vollmer, S. Ketelhut, B. Greve, G. von Bally, and B. Kemper, “Sensing dynamic cytoplasm refractive index changes of adherent cells with quantitative phase microscopy using incorporated microspheres as optical probes,” J. Biomed. Opt. 17(9), 097001 (2012).
[Crossref] [PubMed]

B. Kemper, A. Vollmer, C. E. Rommel, J. Schnekenburger, and G. von Bally, “Simplified approach for quantitative digital holographic phase contrast imaging of living cells,” J. Biomed. Opt. 16(2), 026014 (2011).
[Crossref] [PubMed]

von Bally, G.

S. Przibilla, S. Dartmann, A. Vollmer, S. Ketelhut, B. Greve, G. von Bally, and B. Kemper, “Sensing dynamic cytoplasm refractive index changes of adherent cells with quantitative phase microscopy using incorporated microspheres as optical probes,” J. Biomed. Opt. 17(9), 097001 (2012).
[Crossref] [PubMed]

B. Kemper, A. Vollmer, C. E. Rommel, J. Schnekenburger, and G. von Bally, “Simplified approach for quantitative digital holographic phase contrast imaging of living cells,” J. Biomed. Opt. 16(2), 026014 (2011).
[Crossref] [PubMed]

B. Kemper and G. von Bally, “Digital holographic microscopy for live cell applications and technical inspection,” Appl. Opt. 47(4), A52–A61 (2008).
[Crossref] [PubMed]

Wang, Z.

Waugh, R. E.

R. E. Waugh and R. M. Hochmuth, “Mechanical equilibrium of thick, hollow, liquid membrane cylinders,” Biophys. J. 52(3), 391–400 (1987).
[Crossref] [PubMed]

Welch, M. D.

J. Mueller, J. Pfanzelter, C. Winkler, A. Narita, C. Le Clainche, M. Nemethova, M. F. Carlier, Y. Maeda, M. D. Welch, T. Ohkawa, C. Schmeiser, G. P. Resch, and J. V. Small, “Electron tomography and simulation of baculovirus actin comet tails support a tethered filament model of pathogen propulsion,” PLoS Biol. 12(1), e1001765 (2014).
[Crossref] [PubMed]

Wilson, T.

T. Wilson and C. J. Sheppard, “The halo effect of image processing by spatial frequency filtering,” Optik (Stuttg.) 59(1), 19–23 (1981).

Winkler, C.

J. Mueller, J. Pfanzelter, C. Winkler, A. Narita, C. Le Clainche, M. Nemethova, M. F. Carlier, Y. Maeda, M. D. Welch, T. Ohkawa, C. Schmeiser, G. P. Resch, and J. V. Small, “Electron tomography and simulation of baculovirus actin comet tails support a tethered filament model of pathogen propulsion,” PLoS Biol. 12(1), e1001765 (2014).
[Crossref] [PubMed]

Wirtz, D.

S. I. Fraley, Y. Feng, R. Krishnamurthy, D. H. Kim, A. Celedon, G. D. Longmore, and D. Wirtz, “A distinctive role for focal adhesion proteins in three-dimensional cell motility,” Nat. Cell Biol. 12(6), 598–604 (2010).
[Crossref] [PubMed]

Wolfenson, H.

T. Iskratsch, H. Wolfenson, and M. P. Sheetz, “Appreciating force and shape—the rise of mechanotransduction in cell biology,” Nat. Rev. Mol. Cell Biol. 15(12), 825–833 (2014).
[Crossref] [PubMed]

Wong, W. T.

M. Sarshar, W. T. Wong, and B. Anvari, “Comparative study of methods to calibrate the stiffness of a single-beam gradient-force optical tweezers over various laser trapping powers,” J. Biomed. Opt. 19(11), 115001 (2014).
[Crossref] [PubMed]

Wottawah, F.

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J. 88(5), 3689–3698 (2005).
[Crossref] [PubMed]

York, J. D.

D. Raucher, T. Stauffer, W. Chen, K. Shen, S. Guo, J. D. York, M. P. Sheetz, and T. Meyer, “Phosphatidylinositol 4,5-bisphosphate functions as a second messenger that regulates cytoskeleton-plasma membrane adhesion,” Cell 100(2), 221–228 (2000).
[Crossref] [PubMed]

Zalevsky, Z.

V. Mico, Z. Zalevsky, and J. García, “Common-path phase-shifting digital holographic microscopy: A way to quantitative phase imaging and superresolution,” Opt. Commun. 281(17), 4273–4281 (2008).
[Crossref]

Zik, O.

S. Thiberge, A. Nechushtan, D. Sprinzak, O. Gileadi, V. Behar, O. Zik, Y. Chowers, S. Michaeli, J. Schlessinger, and E. Moses, “Scanning electron microscopy of cells and tissues under fully hydrated conditions,” Proc. Natl. Acad. Sci. U.S.A. 101(10), 3346–3351 (2004).
[Crossref] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

N. Cardenas and S. K. Mohanty, “Optical tweezers assisted quantitative phase imaging led to thickness mapping of red blood cells,” Appl. Phys. Lett. 103(1), 013703 (2013).
[Crossref]

Biochim. Biophys. Acta (1)

H. Bouvrais, T. Pott, L. A. Bagatolli, J. H. Ipsen, and P. Méléard, “Impact of membrane-anchored fluorescent probes on the mechanical properties of lipid bilayers,” Biochim. Biophys. Acta 1798(7), 1333–1337 (2010).
[Crossref] [PubMed]

Biophys. J. (4)

W. E. Brownell, F. Qian, and B. Anvari, “Cell membrane tethers generate mechanical force in response to electrical stimulation,” Biophys. J. 99(3), 845–852 (2010).
[Crossref] [PubMed]

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J. 88(5), 3689–3698 (2005).
[Crossref] [PubMed]

R. E. Waugh and R. M. Hochmuth, “Mechanical equilibrium of thick, hollow, liquid membrane cylinders,” Biophys. J. 52(3), 391–400 (1987).
[Crossref] [PubMed]

S. Baoukina, S. J. Marrink, and D. P. Tieleman, “Molecular structure of membrane tethers,” Biophys. J. 102(8), 1866–1871 (2012).
[Crossref] [PubMed]

Blood Cells Mol. Dis. (1)

B. Rappaz, A. Barbul, A. Hoffmann, D. Boss, R. Korenstein, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Spatial analysis of erythrocyte membrane fluctuations by digital holographic microscopy,” Blood Cells Mol. Dis. 42(3), 228–232 (2009).
[Crossref] [PubMed]

Cell (1)

D. Raucher, T. Stauffer, W. Chen, K. Shen, S. Guo, J. D. York, M. P. Sheetz, and T. Meyer, “Phosphatidylinositol 4,5-bisphosphate functions as a second messenger that regulates cytoskeleton-plasma membrane adhesion,” Cell 100(2), 221–228 (2000).
[Crossref] [PubMed]

Chem. Rev. (1)

B. H. Blehm and P. R. Selvin, “Single-molecule fluorescence and in vivo optical traps: how multiple dyneins and kinesins interact,” Chem. Rev. 114(6), 3335–3352 (2014).
[Crossref] [PubMed]

Chem. Soc. Rev. (1)

N. Mauser and A. Hartschuh, “Tip-enhanced near-field optical microscopy,” Chem. Soc. Rev. 43(4), 1248–1262 (2014).
[Crossref] [PubMed]

Cytometry A (1)

C. L. Curl, C. J. Bellair, T. Harris, B. E. Allman, P. J. Harris, A. G. Stewart, A. Roberts, K. A. Nugent, and L. M. D. Delbridge, “Refractive index measurement in viable cells using quantitative phase-amplitude microscopy and confocal microscopy,” Cytometry A 65(1), 88–92 (2005).
[Crossref] [PubMed]

J. Biomed. Opt. (3)

S. Przibilla, S. Dartmann, A. Vollmer, S. Ketelhut, B. Greve, G. von Bally, and B. Kemper, “Sensing dynamic cytoplasm refractive index changes of adherent cells with quantitative phase microscopy using incorporated microspheres as optical probes,” J. Biomed. Opt. 17(9), 097001 (2012).
[Crossref] [PubMed]

B. Kemper, A. Vollmer, C. E. Rommel, J. Schnekenburger, and G. von Bally, “Simplified approach for quantitative digital holographic phase contrast imaging of living cells,” J. Biomed. Opt. 16(2), 026014 (2011).
[Crossref] [PubMed]

M. Sarshar, W. T. Wong, and B. Anvari, “Comparative study of methods to calibrate the stiffness of a single-beam gradient-force optical tweezers over various laser trapping powers,” J. Biomed. Opt. 19(11), 115001 (2014).
[Crossref] [PubMed]

J. Neurosci. Res. (1)

G. Morfini, G. Pigino, N. Mizuno, M. Kikkawa, and S. T. Brady, “Tau binding to microtubules does not directly affect microtubule-based vesicle motility,” J. Neurosci. Res. 85(12), 2620–2630 (2007).
[Crossref] [PubMed]

J. Phys. Chem. B (1)

V. Lulevich, Y. P. Shih, S. H. Lo, and G. Y. Liu, “Cell tracing dyes significantly change single cell mechanics,” J. Phys. Chem. B 113(18), 6511–6519 (2009).
[Crossref] [PubMed]

Lab Chip (1)

F. Merola, L. Miccio, P. Memmolo, G. Di Caprio, A. Galli, R. Puglisi, D. Balduzzi, G. Coppola, P. Netti, and P. Ferraro, “Digital holography as a method for 3D imaging and estimating the biovolume of motile cells,” Lab Chip 13(23), 4512–4516 (2013).
[Crossref] [PubMed]

Methods (1)

M. J. Siedlik, V. D. Varner, and C. M. Nelson, “Pushing, pulling, and squeezing our way to understanding mechanotransduction,” Methods 94, 4–12 (2016).
[PubMed]

Nanomedicine (Lond.) (1)

D. B. Chithrani, M. Dunne, J. Stewart, C. Allen, and D. A. Jaffray, “Cellular uptake and transport of gold nanoparticles incorporated in a liposomal carrier,” Nanomedicine (Lond.) 6(1), 161–169 (2010).
[PubMed]

Nat. Cell Biol. (1)

S. I. Fraley, Y. Feng, R. Krishnamurthy, D. H. Kim, A. Celedon, G. D. Longmore, and D. Wirtz, “A distinctive role for focal adhesion proteins in three-dimensional cell motility,” Nat. Cell Biol. 12(6), 598–604 (2010).
[Crossref] [PubMed]

Nat. Methods (1)

R. Parthasarathy, “Rapid, accurate particle tracking by calculation of radial symmetry centers,” Nat. Methods 9(7), 724–726 (2012).
[Crossref] [PubMed]

Nat. Nanotechnol. (4)

D. J. Müller and Y. F. Dufrêne, “Atomic force microscopy as a multifunctional molecular toolbox in nanobiotechnology,” Nat. Nanotechnol. 3(5), 261–269 (2008).
[Crossref] [PubMed]

L. Friedrich and A. Rohrbach, “Surface imaging beyond the diffraction limit with optically trapped spheres,” Nat. Nanotechnol. 10(12), 1064–1069 (2015).
[Crossref] [PubMed]

N. de Jonge and F. M. Ross, “Electron microscopy of specimens in liquid,” Nat. Nanotechnol. 6(11), 695–704 (2011).
[Crossref] [PubMed]

S. E. Cross, Y. S. Jin, J. Rao, and J. K. Gimzewski, “Nanomechanical analysis of cells from cancer patients,” Nat. Nanotechnol. 2(12), 780–783 (2007).
[Crossref] [PubMed]

Nat. Photonics (1)

F. M. Fazal and S. M. Block, “Optical tweezers study life under tension,” Nat. Photonics 5(6), 318–321 (2011).
[Crossref] [PubMed]

Nat. Rev. Mol. Cell Biol. (2)

T. Iskratsch, H. Wolfenson, and M. P. Sheetz, “Appreciating force and shape—the rise of mechanotransduction in cell biology,” Nat. Rev. Mol. Cell Biol. 15(12), 825–833 (2014).
[Crossref] [PubMed]

M. P. Sheetz, “Cell control by membrane-cytoskeleton adhesion,” Nat. Rev. Mol. Cell Biol. 2(5), 392–396 (2001).
[Crossref] [PubMed]

Nature (1)

A. Ashkin, K. Schütze, J. M. Dziedzic, U. Euteneuer, and M. Schliwa, “Force generation of organelle transport measured in vivo by an infrared laser trap,” Nature 348(6299), 346–348 (1990).
[Crossref] [PubMed]

Opt. Commun. (1)

V. Mico, Z. Zalevsky, and J. García, “Common-path phase-shifting digital holographic microscopy: A way to quantitative phase imaging and superresolution,” Opt. Commun. 281(17), 4273–4281 (2008).
[Crossref]

Opt. Express (1)

Opt. Lett. (2)

Optik (Stuttg.) (1)

T. Wilson and C. J. Sheppard, “The halo effect of image processing by spatial frequency filtering,” Optik (Stuttg.) 59(1), 19–23 (1981).

Osteoarthritis Cartilage (1)

J. D. Szafranski, A. J. Grodzinsky, E. Burger, V. Gaschen, H.-H. Hung, and E. B. Hunziker, “Chondrocyte mechanotransduction: effects of compression on deformation of intracellular organelles and relevance to cellular biosynthesis,” Osteoarthritis Cartilage 12(12), 937–946 (2004).
[Crossref] [PubMed]

PLoS Biol. (1)

J. Mueller, J. Pfanzelter, C. Winkler, A. Narita, C. Le Clainche, M. Nemethova, M. F. Carlier, Y. Maeda, M. D. Welch, T. Ohkawa, C. Schmeiser, G. P. Resch, and J. V. Small, “Electron tomography and simulation of baculovirus actin comet tails support a tethered filament model of pathogen propulsion,” PLoS Biol. 12(1), e1001765 (2014).
[Crossref] [PubMed]

PLoS One (1)

N. Khatibzadeh, A. A. Spector, W. E. Brownell, and B. Anvari, “Effects of plasma membrane cholesterol level and cytoskeleton F-actin on cell protrusion mechanics,” PLoS One 8(2), e57147 (2013).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (4)

N. C. Gauthier, M. A. Fardin, P. Roca-Cusachs, and M. P. Sheetz, “Temporary increase in plasma membrane tension coordinates the activation of exocytosis and contraction during cell spreading,” Proc. Natl. Acad. Sci. U.S.A. 108(35), 14467–14472 (2011).
[Crossref] [PubMed]

S. Thiberge, A. Nechushtan, D. Sprinzak, O. Gileadi, V. Behar, O. Zik, Y. Chowers, S. Michaeli, J. Schlessinger, and E. Moses, “Scanning electron microscopy of cells and tissues under fully hydrated conditions,” Proc. Natl. Acad. Sci. U.S.A. 101(10), 3346–3351 (2004).
[Crossref] [PubMed]

F. Brochard-Wyart, N. Borghi, D. Cuvelier, and P. Nassoy, “Hydrodynamic narrowing of tubes extruded from cells,” Proc. Natl. Acad. Sci. U.S.A. 103(20), 7660–7663 (2006).
[Crossref] [PubMed]

T. Bornschlögl, S. Romero, C. L. Vestergaard, J. F. Joanny, G. T. Van Nhieu, and P. Bassereau, “Filopodial retraction force is generated by cortical actin dynamics and controlled by reversible tethering at the tip,” Proc. Natl. Acad. Sci. U.S.A. 110(47), 18928–18933 (2013).
[Crossref] [PubMed]

Sci. Rep. (1)

S. Sridharan, V. Macias, K. Tangella, A. Kajdacsy-Balla, and G. Popescu, “Prediction of prostate cancer recurrence using quantitative phase imaging,” Sci. Rep. 5, 9976 (2015).
[Crossref] [PubMed]

Soft Matter (1)

N. Khatibzadeh, S. Gupta, B. Farrell, W. E. Brownell, and B. Anvari, “Effects of cholesterol on nano-mechanical properties of the living cell plasma membrane,” Soft Matter 8(32), 8350–8360 (2012).
[Crossref] [PubMed]

Other (1)

S. Denniss and J. Rush, “Polyvinylpyrrolidone can be used to cost-effectively increase the viscosity of culture media,” FASEB J. 29(1 Supplement), 1029.1019 (2015).

Supplementary Material (1)

NameDescription
» Visualization 1: MOV (3591 KB)      Dynamic visualization of membrane nanotube structure. QPM was performed at 3 fps. The playback is slowed to 2 fps for enhanced viewing. The arrow represents the magnitude and direction of tether reaction force. Color bar is in radians. Scale bar = 10

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Schematic of the COMMIT platform. HL: Halogen lamp. CA: Condenser annulus. CL: Condenser lens. C: PZT controller. MO: Microscope objective. L: Nd:YVO4 laser. BE: Beam expander. M: Mirror. DM: Dichroic mirror. TL: Tube lens. BS: Beam splitter. FL: Focusing lens and IR filter. IP: Image plane and polarizer. L1 and L2: Achromatic doublets, f = 500 mm. SLM: Spatial light modulator. QPD: Quadrant photodetector. PZT: Piezoelectric translation stage.
Fig. 2
Fig. 2 (a): Comparison between topographical results of AFM and QPM for a custom made microchip. (ai): Inverted AFM image of the custom made microchip; the color bar is in nanometers. (aii): QPM-resolved image of the region shown in (ai); color bar is in radians. (aiii): Overlapped cross sections of (ai) and (aii) along the dotted lines. Scale bars in panels (ai) and (aii) = 2 µm. (bi): Pseudo-3D representation of a quantitative phase image of two sets of polystyrene nanospheres. (bii): Phase profile of 400 nm diameter nanospheres. (biii): Phase profile of 630 nm diameter nanospheres. Manufacturer-reported mean ± SD diameters of the nanospheres were 400 ± 17 nm and 630 ± 16 nm. Diameters measured using QPM were 425 ± 13 nm and 616 ± 16 nm. Color bar is in radians. Scale bar = 5 µm.
Fig. 3
Fig. 3 Pseudo-3D representation of the quantitative phase image of a tether extracted from a HEK-293 cell ≈ 40 s after elongation had stopped. Thinning along the tether axis results in a catenoid-like contour. Tether diameters at the A, B, and C boxed sections are measured as 456 nm, 253 nm, and 497 nm, respectively. Color bar is in radians. Scale bar = 5 µm.
Fig. 4
Fig. 4 Dynamic quantitative measurement of membrane tether structure and reaction force during various time intervals (see Visualization 1). (a): Tether formation interval. (b): Tether elongation interval. Tether reaction force decreased following the formation interval. (c): Increased pulling force resulted in tether rupture. (d): Lipid membrane reassembled on both ends of the ruptured tether and the direction of the reaction force was momentarily reversed (recoil). Increased diameters at both ends were resolved as a result of membrane folding. The arrows represent the magnitude and direction of tether reaction force. Color bars are in radians. Scale bars = 10 µm.
Fig. 5
Fig. 5 QPD voltage readout in response to a 20 nm PZT-controlled displacement of a 4.2 µm diameter microsphere through the focal spot of the laser beam, providing a signal-to-the-noise ratio of >2.
Fig. 6
Fig. 6 Stiffness calibration of the OTs. The Hookean stiffness (k) of the OTs is calculated as the slope of the linear fit to the displacement-force graph (F = kx).

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

Δφ= tan 1 [ ( I 1 I 3 ) ( I 2 I 4 ) ]
φ= tan 1 [ βsin( Δφ ) 1+βcos( Δφ ) ]
β= | U 1 | | U 0 | .
φ= 2π λ ( n r n s ) d z .
F drag = 6πηνr 1 9 16 ( r h )+ 1 8 ( r h ) 3 45 256 ( r h ) 4 1 16 ( r h ) 5

Metrics