Abstract

Diffuse reflectance spectroscopy (DRS) has been utilized to study biological tissues for a variety of applications. However, many DRS systems are not designed for handheld use and/or relatively expensive which limit the extensive clinical use of this technique. In this paper, we report a handheld, low-cost DRS system consisting of a light source, optical switch, and a spectrometer, that can precisely quantify the optical properties of tissue samples in the clinical setting. The handheld DRS system was employed to determine the skin chromophore concentrations, absorption and scattering properties of 11 patients with psoriasis. The measurement results were compared to the clinical severity of psoriasis as evaluated by dermatologist using PASI (Psoriasis Area and Severity Index) scores. Our statistical analyses indicated that the handheld DRS system could be a useful non-invasive tool for objective evaluation of the severity of psoriasis. It is expected that the handheld system can be used for the objective evaluation and monitoring of various skin diseases such as keloid and psoriasis.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Non-invasive evaluation of therapeutic response in keloid scar using diffuse reflectance spectroscopy

Chao-Kai Hsu, Shih-Yu Tzeng, Chao-Chun Yang, Julia Yu-Yun Lee, Lynn Ling-Huei Huang, Wan-Rung Chen, Michael Hughes, Yu-Wen Chen, Yu-Kai Liao, and Sheng-Hao Tseng
Biomed. Opt. Express 6(2) 390-404 (2015)

Toward reliable retrieval of functional information of papillary dermis using spatially resolved diffuse reflectance spectroscopy

Yu-Wen Chen, Jun-Yen Guo, Shih-Yu Tzeng, Ting-Chun Chou, Ming-Jen Lin, Lynn Ling-Huei Huang, Chao-Chun Yang, Chao-Kai Hsu, and Sheng-Hao Tseng
Biomed. Opt. Express 7(2) 542-558 (2016)

Critical comparison of diffuse reflectance spectroscopy and colorimetry as dermatological diagnostic tools for acanthosis nigricans: a chemometric approach

Suneetha Devpura, Bensachee Pattamadilok, Zain U. Syed, Pranita Vemulapalli, Marsha Henderson, Steven J. Rehse, Iltefat Hamzavi, Henry W. Lim, and Ratna Naik
Biomed. Opt. Express 2(6) 1664-1673 (2011)

References

  • View by:
  • |
  • |
  • |

  1. D. J. Cappon, T. J. Farrell, Q. Fang, and J. E. Hayward, “Fiber-optic probe design and optical property recovery algorithm for optical biopsy of brain tissue,” J. Biomed. Opt. 18(10), 107004 (2013).
    [Crossref] [PubMed]
  2. A. Cerussi, N. Shah, D. Hsiang, A. Durkin, J. Butler, and B. J. Tromberg, “In vivo absorption, scattering, and physiologic properties of 58 malignant breast tumors determined by broadband diffuse optical spectroscopy,” J. Biomed. Opt. 11(4), 044005 (2006).
    [Crossref] [PubMed]
  3. C. K. Hsu, S. Y. Tzeng, C. C. Yang, J. Y. Lee, L. L. Huang, W. R. Chen, M. Hughes, Y. W. Chen, Y. K. Liao, and S. H. Tseng, “Non-invasive evaluation of therapeutic response in keloid scar using diffuse reflectance spectroscopy,” Biomed. Opt. Express 6(2), 390–404 (2015).
    [Crossref] [PubMed]
  4. A. Kim, M. Roy, F. Dadani, and B. C. Wilson, “A fiberoptic reflectance probe with multiple source-collector separations to increase the dynamic range of derived tissue optical absorption and scattering coefficients,” Opt. Express 18(6), 5580–5594 (2010).
    [Crossref] [PubMed]
  5. R. Nachabé, D. J. Evers, B. H. Hendriks, G. W. Lucassen, M. van der Voort, J. Wesseling, and T. J. Ruers, “Effect of bile absorption coefficients on the estimation of liver tissue optical properties and related implications in discriminating healthy and tumorous samples,” Biomed. Opt. Express 2(3), 600–614 (2011).
    [Crossref] [PubMed]
  6. Q. Liu and N. Ramanujam, “Sequential estimation of optical properties of a two-layered epithelial tissue model from depth-resolved ultraviolet-visible diffuse reflectance spectra,” Appl. Opt. 45(19), 4776–4790 (2006).
    [Crossref] [PubMed]
  7. R. Bays, G. Wagnières, D. Robert, D. Braichotte, J. F. Savary, P. Monnier, and H. van den Bergh, “Clinical determination of tissue optical properties by endoscopic spatially resolved reflectometry,” Appl. Opt. 35(10), 1756–1766 (1996).
    [Crossref] [PubMed]
  8. R. M. Doornbos, R. Lang, M. C. Aalders, F. W. Cross, and H. J. Sterenborg, “The determination of in vivo human tissue optical properties and absolute chromophore concentrations using spatially resolved steady-state diffuse reflectance spectroscopy,” Phys. Med. Biol. 44(4), 967–981 (1999).
    [Crossref] [PubMed]
  9. T. J. Farrell, M. S. Patterson, and B. Wilson, “A Diffusion Theory Model of Spatially Resolved, Steady-State Diffuse Reflectance for the Noninvasive Determination of Tissue Optical Properties Invivo,” Med. Phys. 19(4), 879–888 (1992).
    [Crossref] [PubMed]
  10. M. Pilz, S. Honold, and A. Kienle, “Determination of the optical properties of turbid media by measurements of the spatially resolved reflectance considering the point-spread function of the camera system,” J. Biomed. Opt. 13(5), 054047 (2008).
    [Crossref] [PubMed]
  11. Y. W. Chen and S. H. Tseng, “Efficient construction of robust artificial neural networks for accurate determination of superficial sample optical properties,” Biomed. Opt. Express 6(3), 747–760 (2015).
    [Crossref] [PubMed]
  12. S. Coimbra, A. Santos-Silva, A. Figueiredo, H. Oliveira, and P. Rocha-Pereira, Psoriasis: Epidemiology, Clinical and Histological Features, Triggering Factors, Assessment of Severity and Psychosocial Aspects (INTECH Open Access Publisher, 2012).
  13. S. R. Feldman and G. G. Krueger, “Psoriasis assessment tools in clinical trials,” Ann. Rheum. Dis. 64(Suppl 2), ii65–ii73 (2005).
    [Crossref] [PubMed]
  14. S. A. Prahl, M. J. van Gemert, and A. J. Welch, “Determining the optical properties of turbid mediaby using the adding-doubling method,” Appl. Opt. 32(4), 559–568 (1993).
    [Crossref] [PubMed]
  15. A. N. Bashkatov, E. A. Genina, V. I. Kochubey, and V. V. Tuchin, “Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm,” J. Phys. D Appl. Phys. 38(15), 2543–2555 (2005).
    [Crossref]
  16. S. H. Tseng, C. K. Hsu, J. Yu-Yun Lee, S. Y. Tzeng, W. R. Chen, and Y. K. Liaw, “Noninvasive evaluation of collagen and hemoglobin contents and scattering property of in vivo keloid scars and normal skin using diffuse reflectance spectroscopy: pilot study,” J. Biomed. Opt. 17(7), 077005 (2012).
    [Crossref] [PubMed]
  17. S. Jacques, “Melanosome absorption coefficient,” (1998), http://omlc.org/spectra/melanin/index.html .
  18. S. Prahl, “Hemoglobin absorption coefficient,” (1999), http://omlc.org/spectra/hemoglobin/summary.html .
  19. P. Taroni, A. Bassi, D. Comelli, A. Farina, R. Cubeddu, and A. Pifferi, “Diffuse optical spectroscopy of breast tissue extended to 1100 nm,” J. Biomed. Opt. 14(5), 054030 (2009).
    [Crossref] [PubMed]
  20. S. H. Tseng, P. Bargo, A. Durkin, and N. Kollias, “Chromophore concentrations, absorption and scattering properties of human skin in-vivo,” Opt. Express 17(17), 14599–14617 (2009).
    [Crossref] [PubMed]
  21. M. A. Lowes, A. M. Bowcock, and J. G. Krueger, “Pathogenesis and therapy of psoriasis,” Nature 445(7130), 866–873 (2007).
    [Crossref] [PubMed]
  22. V. Koivukangas, M. Kallionen, J. Karvonen, H. Autio-Harmainen, J. Risteli, L. Risteli, and A. Oikarinen, “Increased collagen synthesis in psoriasis in vivo,” Arch. Dermatol. Res. 287(2), 171–175 (1995).
    [Crossref] [PubMed]
  23. L. Panzella, K. Wakamatsu, G. Monfrecola, S. Ito, F. Ayala, and A. Napolitano, “Increased cysteinyldopa plasma levels hint to melanocyte as stress sensor in psoriasis,” Exp. Dermatol. 20(3), 288–290 (2011).
    [Crossref] [PubMed]
  24. M. Leroy, T. Lefèvre, R. Pouliot, M. Auger, and G. Laroche, “Using infrared and Raman microspectroscopies to compare ex vivo involved psoriatic skin with normal human skin,” J. Biomed. Opt. 20(6), 067004 (2015).
    [Crossref] [PubMed]
  25. C. Q. F. Wang, Y. T. Akalu, M. Suarez-Farinas, J. Gonzalez, H. Mitsui, M. A. Lowes, S. J. Orlow, P. Manga, and J. G. Krueger, “IL-17 and TNF Synergistically Modulate Cytokine Expression while Suppressing Melanogenesis: Potential Relevance to Psoriasis,” J. Invest. Dermatol. 133(12), 2741–2752 (2013).
    [Crossref] [PubMed]
  26. I. Flisiak, P. Porebski, and B. Chodynicka, “Effect of psoriasis activity on metalloproteinase-1 and tissue inhibitor of metalloproteinase-1 in plasma and lesional scales,” Acta Derm. Venereol. 86(1), 17–21 (2006).
    [PubMed]
  27. L. Z. Carrenho, C. G. Moreira, C. C. Vandresen, R. Gomes Junior, A. G. Gonçalves, S. M. Barreira, M. D. Noseda, M. E. Duarte, D. R. Ducatti, M. Dietrich, K. Paludo, D. A. Cabrini, and M. F. Otuki, “Investigation of anti-inflammatory and anti-proliferative activities promoted by photoactivated cationic porphyrin,” Photodiagn. Photodyn. Ther. 12(3), 444–458 (2015).
    [Crossref] [PubMed]

2015 (4)

C. K. Hsu, S. Y. Tzeng, C. C. Yang, J. Y. Lee, L. L. Huang, W. R. Chen, M. Hughes, Y. W. Chen, Y. K. Liao, and S. H. Tseng, “Non-invasive evaluation of therapeutic response in keloid scar using diffuse reflectance spectroscopy,” Biomed. Opt. Express 6(2), 390–404 (2015).
[Crossref] [PubMed]

Y. W. Chen and S. H. Tseng, “Efficient construction of robust artificial neural networks for accurate determination of superficial sample optical properties,” Biomed. Opt. Express 6(3), 747–760 (2015).
[Crossref] [PubMed]

M. Leroy, T. Lefèvre, R. Pouliot, M. Auger, and G. Laroche, “Using infrared and Raman microspectroscopies to compare ex vivo involved psoriatic skin with normal human skin,” J. Biomed. Opt. 20(6), 067004 (2015).
[Crossref] [PubMed]

L. Z. Carrenho, C. G. Moreira, C. C. Vandresen, R. Gomes Junior, A. G. Gonçalves, S. M. Barreira, M. D. Noseda, M. E. Duarte, D. R. Ducatti, M. Dietrich, K. Paludo, D. A. Cabrini, and M. F. Otuki, “Investigation of anti-inflammatory and anti-proliferative activities promoted by photoactivated cationic porphyrin,” Photodiagn. Photodyn. Ther. 12(3), 444–458 (2015).
[Crossref] [PubMed]

2013 (2)

C. Q. F. Wang, Y. T. Akalu, M. Suarez-Farinas, J. Gonzalez, H. Mitsui, M. A. Lowes, S. J. Orlow, P. Manga, and J. G. Krueger, “IL-17 and TNF Synergistically Modulate Cytokine Expression while Suppressing Melanogenesis: Potential Relevance to Psoriasis,” J. Invest. Dermatol. 133(12), 2741–2752 (2013).
[Crossref] [PubMed]

D. J. Cappon, T. J. Farrell, Q. Fang, and J. E. Hayward, “Fiber-optic probe design and optical property recovery algorithm for optical biopsy of brain tissue,” J. Biomed. Opt. 18(10), 107004 (2013).
[Crossref] [PubMed]

2012 (1)

S. H. Tseng, C. K. Hsu, J. Yu-Yun Lee, S. Y. Tzeng, W. R. Chen, and Y. K. Liaw, “Noninvasive evaluation of collagen and hemoglobin contents and scattering property of in vivo keloid scars and normal skin using diffuse reflectance spectroscopy: pilot study,” J. Biomed. Opt. 17(7), 077005 (2012).
[Crossref] [PubMed]

2011 (2)

2010 (1)

2009 (2)

P. Taroni, A. Bassi, D. Comelli, A. Farina, R. Cubeddu, and A. Pifferi, “Diffuse optical spectroscopy of breast tissue extended to 1100 nm,” J. Biomed. Opt. 14(5), 054030 (2009).
[Crossref] [PubMed]

S. H. Tseng, P. Bargo, A. Durkin, and N. Kollias, “Chromophore concentrations, absorption and scattering properties of human skin in-vivo,” Opt. Express 17(17), 14599–14617 (2009).
[Crossref] [PubMed]

2008 (1)

M. Pilz, S. Honold, and A. Kienle, “Determination of the optical properties of turbid media by measurements of the spatially resolved reflectance considering the point-spread function of the camera system,” J. Biomed. Opt. 13(5), 054047 (2008).
[Crossref] [PubMed]

2007 (1)

M. A. Lowes, A. M. Bowcock, and J. G. Krueger, “Pathogenesis and therapy of psoriasis,” Nature 445(7130), 866–873 (2007).
[Crossref] [PubMed]

2006 (3)

A. Cerussi, N. Shah, D. Hsiang, A. Durkin, J. Butler, and B. J. Tromberg, “In vivo absorption, scattering, and physiologic properties of 58 malignant breast tumors determined by broadband diffuse optical spectroscopy,” J. Biomed. Opt. 11(4), 044005 (2006).
[Crossref] [PubMed]

Q. Liu and N. Ramanujam, “Sequential estimation of optical properties of a two-layered epithelial tissue model from depth-resolved ultraviolet-visible diffuse reflectance spectra,” Appl. Opt. 45(19), 4776–4790 (2006).
[Crossref] [PubMed]

I. Flisiak, P. Porebski, and B. Chodynicka, “Effect of psoriasis activity on metalloproteinase-1 and tissue inhibitor of metalloproteinase-1 in plasma and lesional scales,” Acta Derm. Venereol. 86(1), 17–21 (2006).
[PubMed]

2005 (2)

A. N. Bashkatov, E. A. Genina, V. I. Kochubey, and V. V. Tuchin, “Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm,” J. Phys. D Appl. Phys. 38(15), 2543–2555 (2005).
[Crossref]

S. R. Feldman and G. G. Krueger, “Psoriasis assessment tools in clinical trials,” Ann. Rheum. Dis. 64(Suppl 2), ii65–ii73 (2005).
[Crossref] [PubMed]

1999 (1)

R. M. Doornbos, R. Lang, M. C. Aalders, F. W. Cross, and H. J. Sterenborg, “The determination of in vivo human tissue optical properties and absolute chromophore concentrations using spatially resolved steady-state diffuse reflectance spectroscopy,” Phys. Med. Biol. 44(4), 967–981 (1999).
[Crossref] [PubMed]

1996 (1)

1995 (1)

V. Koivukangas, M. Kallionen, J. Karvonen, H. Autio-Harmainen, J. Risteli, L. Risteli, and A. Oikarinen, “Increased collagen synthesis in psoriasis in vivo,” Arch. Dermatol. Res. 287(2), 171–175 (1995).
[Crossref] [PubMed]

1993 (1)

1992 (1)

T. J. Farrell, M. S. Patterson, and B. Wilson, “A Diffusion Theory Model of Spatially Resolved, Steady-State Diffuse Reflectance for the Noninvasive Determination of Tissue Optical Properties Invivo,” Med. Phys. 19(4), 879–888 (1992).
[Crossref] [PubMed]

Aalders, M. C.

R. M. Doornbos, R. Lang, M. C. Aalders, F. W. Cross, and H. J. Sterenborg, “The determination of in vivo human tissue optical properties and absolute chromophore concentrations using spatially resolved steady-state diffuse reflectance spectroscopy,” Phys. Med. Biol. 44(4), 967–981 (1999).
[Crossref] [PubMed]

Akalu, Y. T.

C. Q. F. Wang, Y. T. Akalu, M. Suarez-Farinas, J. Gonzalez, H. Mitsui, M. A. Lowes, S. J. Orlow, P. Manga, and J. G. Krueger, “IL-17 and TNF Synergistically Modulate Cytokine Expression while Suppressing Melanogenesis: Potential Relevance to Psoriasis,” J. Invest. Dermatol. 133(12), 2741–2752 (2013).
[Crossref] [PubMed]

Auger, M.

M. Leroy, T. Lefèvre, R. Pouliot, M. Auger, and G. Laroche, “Using infrared and Raman microspectroscopies to compare ex vivo involved psoriatic skin with normal human skin,” J. Biomed. Opt. 20(6), 067004 (2015).
[Crossref] [PubMed]

Autio-Harmainen, H.

V. Koivukangas, M. Kallionen, J. Karvonen, H. Autio-Harmainen, J. Risteli, L. Risteli, and A. Oikarinen, “Increased collagen synthesis in psoriasis in vivo,” Arch. Dermatol. Res. 287(2), 171–175 (1995).
[Crossref] [PubMed]

Ayala, F.

L. Panzella, K. Wakamatsu, G. Monfrecola, S. Ito, F. Ayala, and A. Napolitano, “Increased cysteinyldopa plasma levels hint to melanocyte as stress sensor in psoriasis,” Exp. Dermatol. 20(3), 288–290 (2011).
[Crossref] [PubMed]

Bargo, P.

Barreira, S. M.

L. Z. Carrenho, C. G. Moreira, C. C. Vandresen, R. Gomes Junior, A. G. Gonçalves, S. M. Barreira, M. D. Noseda, M. E. Duarte, D. R. Ducatti, M. Dietrich, K. Paludo, D. A. Cabrini, and M. F. Otuki, “Investigation of anti-inflammatory and anti-proliferative activities promoted by photoactivated cationic porphyrin,” Photodiagn. Photodyn. Ther. 12(3), 444–458 (2015).
[Crossref] [PubMed]

Bashkatov, A. N.

A. N. Bashkatov, E. A. Genina, V. I. Kochubey, and V. V. Tuchin, “Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm,” J. Phys. D Appl. Phys. 38(15), 2543–2555 (2005).
[Crossref]

Bassi, A.

P. Taroni, A. Bassi, D. Comelli, A. Farina, R. Cubeddu, and A. Pifferi, “Diffuse optical spectroscopy of breast tissue extended to 1100 nm,” J. Biomed. Opt. 14(5), 054030 (2009).
[Crossref] [PubMed]

Bays, R.

Bowcock, A. M.

M. A. Lowes, A. M. Bowcock, and J. G. Krueger, “Pathogenesis and therapy of psoriasis,” Nature 445(7130), 866–873 (2007).
[Crossref] [PubMed]

Braichotte, D.

Butler, J.

A. Cerussi, N. Shah, D. Hsiang, A. Durkin, J. Butler, and B. J. Tromberg, “In vivo absorption, scattering, and physiologic properties of 58 malignant breast tumors determined by broadband diffuse optical spectroscopy,” J. Biomed. Opt. 11(4), 044005 (2006).
[Crossref] [PubMed]

Cabrini, D. A.

L. Z. Carrenho, C. G. Moreira, C. C. Vandresen, R. Gomes Junior, A. G. Gonçalves, S. M. Barreira, M. D. Noseda, M. E. Duarte, D. R. Ducatti, M. Dietrich, K. Paludo, D. A. Cabrini, and M. F. Otuki, “Investigation of anti-inflammatory and anti-proliferative activities promoted by photoactivated cationic porphyrin,” Photodiagn. Photodyn. Ther. 12(3), 444–458 (2015).
[Crossref] [PubMed]

Cappon, D. J.

D. J. Cappon, T. J. Farrell, Q. Fang, and J. E. Hayward, “Fiber-optic probe design and optical property recovery algorithm for optical biopsy of brain tissue,” J. Biomed. Opt. 18(10), 107004 (2013).
[Crossref] [PubMed]

Carrenho, L. Z.

L. Z. Carrenho, C. G. Moreira, C. C. Vandresen, R. Gomes Junior, A. G. Gonçalves, S. M. Barreira, M. D. Noseda, M. E. Duarte, D. R. Ducatti, M. Dietrich, K. Paludo, D. A. Cabrini, and M. F. Otuki, “Investigation of anti-inflammatory and anti-proliferative activities promoted by photoactivated cationic porphyrin,” Photodiagn. Photodyn. Ther. 12(3), 444–458 (2015).
[Crossref] [PubMed]

Cerussi, A.

A. Cerussi, N. Shah, D. Hsiang, A. Durkin, J. Butler, and B. J. Tromberg, “In vivo absorption, scattering, and physiologic properties of 58 malignant breast tumors determined by broadband diffuse optical spectroscopy,” J. Biomed. Opt. 11(4), 044005 (2006).
[Crossref] [PubMed]

Chen, W. R.

C. K. Hsu, S. Y. Tzeng, C. C. Yang, J. Y. Lee, L. L. Huang, W. R. Chen, M. Hughes, Y. W. Chen, Y. K. Liao, and S. H. Tseng, “Non-invasive evaluation of therapeutic response in keloid scar using diffuse reflectance spectroscopy,” Biomed. Opt. Express 6(2), 390–404 (2015).
[Crossref] [PubMed]

S. H. Tseng, C. K. Hsu, J. Yu-Yun Lee, S. Y. Tzeng, W. R. Chen, and Y. K. Liaw, “Noninvasive evaluation of collagen and hemoglobin contents and scattering property of in vivo keloid scars and normal skin using diffuse reflectance spectroscopy: pilot study,” J. Biomed. Opt. 17(7), 077005 (2012).
[Crossref] [PubMed]

Chen, Y. W.

Chodynicka, B.

I. Flisiak, P. Porebski, and B. Chodynicka, “Effect of psoriasis activity on metalloproteinase-1 and tissue inhibitor of metalloproteinase-1 in plasma and lesional scales,” Acta Derm. Venereol. 86(1), 17–21 (2006).
[PubMed]

Comelli, D.

P. Taroni, A. Bassi, D. Comelli, A. Farina, R. Cubeddu, and A. Pifferi, “Diffuse optical spectroscopy of breast tissue extended to 1100 nm,” J. Biomed. Opt. 14(5), 054030 (2009).
[Crossref] [PubMed]

Cross, F. W.

R. M. Doornbos, R. Lang, M. C. Aalders, F. W. Cross, and H. J. Sterenborg, “The determination of in vivo human tissue optical properties and absolute chromophore concentrations using spatially resolved steady-state diffuse reflectance spectroscopy,” Phys. Med. Biol. 44(4), 967–981 (1999).
[Crossref] [PubMed]

Cubeddu, R.

P. Taroni, A. Bassi, D. Comelli, A. Farina, R. Cubeddu, and A. Pifferi, “Diffuse optical spectroscopy of breast tissue extended to 1100 nm,” J. Biomed. Opt. 14(5), 054030 (2009).
[Crossref] [PubMed]

Dadani, F.

Dietrich, M.

L. Z. Carrenho, C. G. Moreira, C. C. Vandresen, R. Gomes Junior, A. G. Gonçalves, S. M. Barreira, M. D. Noseda, M. E. Duarte, D. R. Ducatti, M. Dietrich, K. Paludo, D. A. Cabrini, and M. F. Otuki, “Investigation of anti-inflammatory and anti-proliferative activities promoted by photoactivated cationic porphyrin,” Photodiagn. Photodyn. Ther. 12(3), 444–458 (2015).
[Crossref] [PubMed]

Doornbos, R. M.

R. M. Doornbos, R. Lang, M. C. Aalders, F. W. Cross, and H. J. Sterenborg, “The determination of in vivo human tissue optical properties and absolute chromophore concentrations using spatially resolved steady-state diffuse reflectance spectroscopy,” Phys. Med. Biol. 44(4), 967–981 (1999).
[Crossref] [PubMed]

Duarte, M. E.

L. Z. Carrenho, C. G. Moreira, C. C. Vandresen, R. Gomes Junior, A. G. Gonçalves, S. M. Barreira, M. D. Noseda, M. E. Duarte, D. R. Ducatti, M. Dietrich, K. Paludo, D. A. Cabrini, and M. F. Otuki, “Investigation of anti-inflammatory and anti-proliferative activities promoted by photoactivated cationic porphyrin,” Photodiagn. Photodyn. Ther. 12(3), 444–458 (2015).
[Crossref] [PubMed]

Ducatti, D. R.

L. Z. Carrenho, C. G. Moreira, C. C. Vandresen, R. Gomes Junior, A. G. Gonçalves, S. M. Barreira, M. D. Noseda, M. E. Duarte, D. R. Ducatti, M. Dietrich, K. Paludo, D. A. Cabrini, and M. F. Otuki, “Investigation of anti-inflammatory and anti-proliferative activities promoted by photoactivated cationic porphyrin,” Photodiagn. Photodyn. Ther. 12(3), 444–458 (2015).
[Crossref] [PubMed]

Durkin, A.

S. H. Tseng, P. Bargo, A. Durkin, and N. Kollias, “Chromophore concentrations, absorption and scattering properties of human skin in-vivo,” Opt. Express 17(17), 14599–14617 (2009).
[Crossref] [PubMed]

A. Cerussi, N. Shah, D. Hsiang, A. Durkin, J. Butler, and B. J. Tromberg, “In vivo absorption, scattering, and physiologic properties of 58 malignant breast tumors determined by broadband diffuse optical spectroscopy,” J. Biomed. Opt. 11(4), 044005 (2006).
[Crossref] [PubMed]

Evers, D. J.

Fang, Q.

D. J. Cappon, T. J. Farrell, Q. Fang, and J. E. Hayward, “Fiber-optic probe design and optical property recovery algorithm for optical biopsy of brain tissue,” J. Biomed. Opt. 18(10), 107004 (2013).
[Crossref] [PubMed]

Farina, A.

P. Taroni, A. Bassi, D. Comelli, A. Farina, R. Cubeddu, and A. Pifferi, “Diffuse optical spectroscopy of breast tissue extended to 1100 nm,” J. Biomed. Opt. 14(5), 054030 (2009).
[Crossref] [PubMed]

Farrell, T. J.

D. J. Cappon, T. J. Farrell, Q. Fang, and J. E. Hayward, “Fiber-optic probe design and optical property recovery algorithm for optical biopsy of brain tissue,” J. Biomed. Opt. 18(10), 107004 (2013).
[Crossref] [PubMed]

T. J. Farrell, M. S. Patterson, and B. Wilson, “A Diffusion Theory Model of Spatially Resolved, Steady-State Diffuse Reflectance for the Noninvasive Determination of Tissue Optical Properties Invivo,” Med. Phys. 19(4), 879–888 (1992).
[Crossref] [PubMed]

Feldman, S. R.

S. R. Feldman and G. G. Krueger, “Psoriasis assessment tools in clinical trials,” Ann. Rheum. Dis. 64(Suppl 2), ii65–ii73 (2005).
[Crossref] [PubMed]

Flisiak, I.

I. Flisiak, P. Porebski, and B. Chodynicka, “Effect of psoriasis activity on metalloproteinase-1 and tissue inhibitor of metalloproteinase-1 in plasma and lesional scales,” Acta Derm. Venereol. 86(1), 17–21 (2006).
[PubMed]

Genina, E. A.

A. N. Bashkatov, E. A. Genina, V. I. Kochubey, and V. V. Tuchin, “Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm,” J. Phys. D Appl. Phys. 38(15), 2543–2555 (2005).
[Crossref]

Gomes Junior, R.

L. Z. Carrenho, C. G. Moreira, C. C. Vandresen, R. Gomes Junior, A. G. Gonçalves, S. M. Barreira, M. D. Noseda, M. E. Duarte, D. R. Ducatti, M. Dietrich, K. Paludo, D. A. Cabrini, and M. F. Otuki, “Investigation of anti-inflammatory and anti-proliferative activities promoted by photoactivated cationic porphyrin,” Photodiagn. Photodyn. Ther. 12(3), 444–458 (2015).
[Crossref] [PubMed]

Gonçalves, A. G.

L. Z. Carrenho, C. G. Moreira, C. C. Vandresen, R. Gomes Junior, A. G. Gonçalves, S. M. Barreira, M. D. Noseda, M. E. Duarte, D. R. Ducatti, M. Dietrich, K. Paludo, D. A. Cabrini, and M. F. Otuki, “Investigation of anti-inflammatory and anti-proliferative activities promoted by photoactivated cationic porphyrin,” Photodiagn. Photodyn. Ther. 12(3), 444–458 (2015).
[Crossref] [PubMed]

Gonzalez, J.

C. Q. F. Wang, Y. T. Akalu, M. Suarez-Farinas, J. Gonzalez, H. Mitsui, M. A. Lowes, S. J. Orlow, P. Manga, and J. G. Krueger, “IL-17 and TNF Synergistically Modulate Cytokine Expression while Suppressing Melanogenesis: Potential Relevance to Psoriasis,” J. Invest. Dermatol. 133(12), 2741–2752 (2013).
[Crossref] [PubMed]

Hayward, J. E.

D. J. Cappon, T. J. Farrell, Q. Fang, and J. E. Hayward, “Fiber-optic probe design and optical property recovery algorithm for optical biopsy of brain tissue,” J. Biomed. Opt. 18(10), 107004 (2013).
[Crossref] [PubMed]

Hendriks, B. H.

Honold, S.

M. Pilz, S. Honold, and A. Kienle, “Determination of the optical properties of turbid media by measurements of the spatially resolved reflectance considering the point-spread function of the camera system,” J. Biomed. Opt. 13(5), 054047 (2008).
[Crossref] [PubMed]

Hsiang, D.

A. Cerussi, N. Shah, D. Hsiang, A. Durkin, J. Butler, and B. J. Tromberg, “In vivo absorption, scattering, and physiologic properties of 58 malignant breast tumors determined by broadband diffuse optical spectroscopy,” J. Biomed. Opt. 11(4), 044005 (2006).
[Crossref] [PubMed]

Hsu, C. K.

C. K. Hsu, S. Y. Tzeng, C. C. Yang, J. Y. Lee, L. L. Huang, W. R. Chen, M. Hughes, Y. W. Chen, Y. K. Liao, and S. H. Tseng, “Non-invasive evaluation of therapeutic response in keloid scar using diffuse reflectance spectroscopy,” Biomed. Opt. Express 6(2), 390–404 (2015).
[Crossref] [PubMed]

S. H. Tseng, C. K. Hsu, J. Yu-Yun Lee, S. Y. Tzeng, W. R. Chen, and Y. K. Liaw, “Noninvasive evaluation of collagen and hemoglobin contents and scattering property of in vivo keloid scars and normal skin using diffuse reflectance spectroscopy: pilot study,” J. Biomed. Opt. 17(7), 077005 (2012).
[Crossref] [PubMed]

Huang, L. L.

Hughes, M.

Ito, S.

L. Panzella, K. Wakamatsu, G. Monfrecola, S. Ito, F. Ayala, and A. Napolitano, “Increased cysteinyldopa plasma levels hint to melanocyte as stress sensor in psoriasis,” Exp. Dermatol. 20(3), 288–290 (2011).
[Crossref] [PubMed]

Kallionen, M.

V. Koivukangas, M. Kallionen, J. Karvonen, H. Autio-Harmainen, J. Risteli, L. Risteli, and A. Oikarinen, “Increased collagen synthesis in psoriasis in vivo,” Arch. Dermatol. Res. 287(2), 171–175 (1995).
[Crossref] [PubMed]

Karvonen, J.

V. Koivukangas, M. Kallionen, J. Karvonen, H. Autio-Harmainen, J. Risteli, L. Risteli, and A. Oikarinen, “Increased collagen synthesis in psoriasis in vivo,” Arch. Dermatol. Res. 287(2), 171–175 (1995).
[Crossref] [PubMed]

Kienle, A.

M. Pilz, S. Honold, and A. Kienle, “Determination of the optical properties of turbid media by measurements of the spatially resolved reflectance considering the point-spread function of the camera system,” J. Biomed. Opt. 13(5), 054047 (2008).
[Crossref] [PubMed]

Kim, A.

Kochubey, V. I.

A. N. Bashkatov, E. A. Genina, V. I. Kochubey, and V. V. Tuchin, “Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm,” J. Phys. D Appl. Phys. 38(15), 2543–2555 (2005).
[Crossref]

Koivukangas, V.

V. Koivukangas, M. Kallionen, J. Karvonen, H. Autio-Harmainen, J. Risteli, L. Risteli, and A. Oikarinen, “Increased collagen synthesis in psoriasis in vivo,” Arch. Dermatol. Res. 287(2), 171–175 (1995).
[Crossref] [PubMed]

Kollias, N.

Krueger, G. G.

S. R. Feldman and G. G. Krueger, “Psoriasis assessment tools in clinical trials,” Ann. Rheum. Dis. 64(Suppl 2), ii65–ii73 (2005).
[Crossref] [PubMed]

Krueger, J. G.

C. Q. F. Wang, Y. T. Akalu, M. Suarez-Farinas, J. Gonzalez, H. Mitsui, M. A. Lowes, S. J. Orlow, P. Manga, and J. G. Krueger, “IL-17 and TNF Synergistically Modulate Cytokine Expression while Suppressing Melanogenesis: Potential Relevance to Psoriasis,” J. Invest. Dermatol. 133(12), 2741–2752 (2013).
[Crossref] [PubMed]

M. A. Lowes, A. M. Bowcock, and J. G. Krueger, “Pathogenesis and therapy of psoriasis,” Nature 445(7130), 866–873 (2007).
[Crossref] [PubMed]

Lang, R.

R. M. Doornbos, R. Lang, M. C. Aalders, F. W. Cross, and H. J. Sterenborg, “The determination of in vivo human tissue optical properties and absolute chromophore concentrations using spatially resolved steady-state diffuse reflectance spectroscopy,” Phys. Med. Biol. 44(4), 967–981 (1999).
[Crossref] [PubMed]

Laroche, G.

M. Leroy, T. Lefèvre, R. Pouliot, M. Auger, and G. Laroche, “Using infrared and Raman microspectroscopies to compare ex vivo involved psoriatic skin with normal human skin,” J. Biomed. Opt. 20(6), 067004 (2015).
[Crossref] [PubMed]

Lee, J. Y.

Lefèvre, T.

M. Leroy, T. Lefèvre, R. Pouliot, M. Auger, and G. Laroche, “Using infrared and Raman microspectroscopies to compare ex vivo involved psoriatic skin with normal human skin,” J. Biomed. Opt. 20(6), 067004 (2015).
[Crossref] [PubMed]

Leroy, M.

M. Leroy, T. Lefèvre, R. Pouliot, M. Auger, and G. Laroche, “Using infrared and Raman microspectroscopies to compare ex vivo involved psoriatic skin with normal human skin,” J. Biomed. Opt. 20(6), 067004 (2015).
[Crossref] [PubMed]

Liao, Y. K.

Liaw, Y. K.

S. H. Tseng, C. K. Hsu, J. Yu-Yun Lee, S. Y. Tzeng, W. R. Chen, and Y. K. Liaw, “Noninvasive evaluation of collagen and hemoglobin contents and scattering property of in vivo keloid scars and normal skin using diffuse reflectance spectroscopy: pilot study,” J. Biomed. Opt. 17(7), 077005 (2012).
[Crossref] [PubMed]

Liu, Q.

Lowes, M. A.

C. Q. F. Wang, Y. T. Akalu, M. Suarez-Farinas, J. Gonzalez, H. Mitsui, M. A. Lowes, S. J. Orlow, P. Manga, and J. G. Krueger, “IL-17 and TNF Synergistically Modulate Cytokine Expression while Suppressing Melanogenesis: Potential Relevance to Psoriasis,” J. Invest. Dermatol. 133(12), 2741–2752 (2013).
[Crossref] [PubMed]

M. A. Lowes, A. M. Bowcock, and J. G. Krueger, “Pathogenesis and therapy of psoriasis,” Nature 445(7130), 866–873 (2007).
[Crossref] [PubMed]

Lucassen, G. W.

Manga, P.

C. Q. F. Wang, Y. T. Akalu, M. Suarez-Farinas, J. Gonzalez, H. Mitsui, M. A. Lowes, S. J. Orlow, P. Manga, and J. G. Krueger, “IL-17 and TNF Synergistically Modulate Cytokine Expression while Suppressing Melanogenesis: Potential Relevance to Psoriasis,” J. Invest. Dermatol. 133(12), 2741–2752 (2013).
[Crossref] [PubMed]

Mitsui, H.

C. Q. F. Wang, Y. T. Akalu, M. Suarez-Farinas, J. Gonzalez, H. Mitsui, M. A. Lowes, S. J. Orlow, P. Manga, and J. G. Krueger, “IL-17 and TNF Synergistically Modulate Cytokine Expression while Suppressing Melanogenesis: Potential Relevance to Psoriasis,” J. Invest. Dermatol. 133(12), 2741–2752 (2013).
[Crossref] [PubMed]

Monfrecola, G.

L. Panzella, K. Wakamatsu, G. Monfrecola, S. Ito, F. Ayala, and A. Napolitano, “Increased cysteinyldopa plasma levels hint to melanocyte as stress sensor in psoriasis,” Exp. Dermatol. 20(3), 288–290 (2011).
[Crossref] [PubMed]

Monnier, P.

Moreira, C. G.

L. Z. Carrenho, C. G. Moreira, C. C. Vandresen, R. Gomes Junior, A. G. Gonçalves, S. M. Barreira, M. D. Noseda, M. E. Duarte, D. R. Ducatti, M. Dietrich, K. Paludo, D. A. Cabrini, and M. F. Otuki, “Investigation of anti-inflammatory and anti-proliferative activities promoted by photoactivated cationic porphyrin,” Photodiagn. Photodyn. Ther. 12(3), 444–458 (2015).
[Crossref] [PubMed]

Nachabé, R.

Napolitano, A.

L. Panzella, K. Wakamatsu, G. Monfrecola, S. Ito, F. Ayala, and A. Napolitano, “Increased cysteinyldopa plasma levels hint to melanocyte as stress sensor in psoriasis,” Exp. Dermatol. 20(3), 288–290 (2011).
[Crossref] [PubMed]

Noseda, M. D.

L. Z. Carrenho, C. G. Moreira, C. C. Vandresen, R. Gomes Junior, A. G. Gonçalves, S. M. Barreira, M. D. Noseda, M. E. Duarte, D. R. Ducatti, M. Dietrich, K. Paludo, D. A. Cabrini, and M. F. Otuki, “Investigation of anti-inflammatory and anti-proliferative activities promoted by photoactivated cationic porphyrin,” Photodiagn. Photodyn. Ther. 12(3), 444–458 (2015).
[Crossref] [PubMed]

Oikarinen, A.

V. Koivukangas, M. Kallionen, J. Karvonen, H. Autio-Harmainen, J. Risteli, L. Risteli, and A. Oikarinen, “Increased collagen synthesis in psoriasis in vivo,” Arch. Dermatol. Res. 287(2), 171–175 (1995).
[Crossref] [PubMed]

Orlow, S. J.

C. Q. F. Wang, Y. T. Akalu, M. Suarez-Farinas, J. Gonzalez, H. Mitsui, M. A. Lowes, S. J. Orlow, P. Manga, and J. G. Krueger, “IL-17 and TNF Synergistically Modulate Cytokine Expression while Suppressing Melanogenesis: Potential Relevance to Psoriasis,” J. Invest. Dermatol. 133(12), 2741–2752 (2013).
[Crossref] [PubMed]

Otuki, M. F.

L. Z. Carrenho, C. G. Moreira, C. C. Vandresen, R. Gomes Junior, A. G. Gonçalves, S. M. Barreira, M. D. Noseda, M. E. Duarte, D. R. Ducatti, M. Dietrich, K. Paludo, D. A. Cabrini, and M. F. Otuki, “Investigation of anti-inflammatory and anti-proliferative activities promoted by photoactivated cationic porphyrin,” Photodiagn. Photodyn. Ther. 12(3), 444–458 (2015).
[Crossref] [PubMed]

Paludo, K.

L. Z. Carrenho, C. G. Moreira, C. C. Vandresen, R. Gomes Junior, A. G. Gonçalves, S. M. Barreira, M. D. Noseda, M. E. Duarte, D. R. Ducatti, M. Dietrich, K. Paludo, D. A. Cabrini, and M. F. Otuki, “Investigation of anti-inflammatory and anti-proliferative activities promoted by photoactivated cationic porphyrin,” Photodiagn. Photodyn. Ther. 12(3), 444–458 (2015).
[Crossref] [PubMed]

Panzella, L.

L. Panzella, K. Wakamatsu, G. Monfrecola, S. Ito, F. Ayala, and A. Napolitano, “Increased cysteinyldopa plasma levels hint to melanocyte as stress sensor in psoriasis,” Exp. Dermatol. 20(3), 288–290 (2011).
[Crossref] [PubMed]

Patterson, M. S.

T. J. Farrell, M. S. Patterson, and B. Wilson, “A Diffusion Theory Model of Spatially Resolved, Steady-State Diffuse Reflectance for the Noninvasive Determination of Tissue Optical Properties Invivo,” Med. Phys. 19(4), 879–888 (1992).
[Crossref] [PubMed]

Pifferi, A.

P. Taroni, A. Bassi, D. Comelli, A. Farina, R. Cubeddu, and A. Pifferi, “Diffuse optical spectroscopy of breast tissue extended to 1100 nm,” J. Biomed. Opt. 14(5), 054030 (2009).
[Crossref] [PubMed]

Pilz, M.

M. Pilz, S. Honold, and A. Kienle, “Determination of the optical properties of turbid media by measurements of the spatially resolved reflectance considering the point-spread function of the camera system,” J. Biomed. Opt. 13(5), 054047 (2008).
[Crossref] [PubMed]

Porebski, P.

I. Flisiak, P. Porebski, and B. Chodynicka, “Effect of psoriasis activity on metalloproteinase-1 and tissue inhibitor of metalloproteinase-1 in plasma and lesional scales,” Acta Derm. Venereol. 86(1), 17–21 (2006).
[PubMed]

Pouliot, R.

M. Leroy, T. Lefèvre, R. Pouliot, M. Auger, and G. Laroche, “Using infrared and Raman microspectroscopies to compare ex vivo involved psoriatic skin with normal human skin,” J. Biomed. Opt. 20(6), 067004 (2015).
[Crossref] [PubMed]

Prahl, S. A.

Ramanujam, N.

Risteli, J.

V. Koivukangas, M. Kallionen, J. Karvonen, H. Autio-Harmainen, J. Risteli, L. Risteli, and A. Oikarinen, “Increased collagen synthesis in psoriasis in vivo,” Arch. Dermatol. Res. 287(2), 171–175 (1995).
[Crossref] [PubMed]

Risteli, L.

V. Koivukangas, M. Kallionen, J. Karvonen, H. Autio-Harmainen, J. Risteli, L. Risteli, and A. Oikarinen, “Increased collagen synthesis in psoriasis in vivo,” Arch. Dermatol. Res. 287(2), 171–175 (1995).
[Crossref] [PubMed]

Robert, D.

Roy, M.

Ruers, T. J.

Savary, J. F.

Shah, N.

A. Cerussi, N. Shah, D. Hsiang, A. Durkin, J. Butler, and B. J. Tromberg, “In vivo absorption, scattering, and physiologic properties of 58 malignant breast tumors determined by broadband diffuse optical spectroscopy,” J. Biomed. Opt. 11(4), 044005 (2006).
[Crossref] [PubMed]

Sterenborg, H. J.

R. M. Doornbos, R. Lang, M. C. Aalders, F. W. Cross, and H. J. Sterenborg, “The determination of in vivo human tissue optical properties and absolute chromophore concentrations using spatially resolved steady-state diffuse reflectance spectroscopy,” Phys. Med. Biol. 44(4), 967–981 (1999).
[Crossref] [PubMed]

Suarez-Farinas, M.

C. Q. F. Wang, Y. T. Akalu, M. Suarez-Farinas, J. Gonzalez, H. Mitsui, M. A. Lowes, S. J. Orlow, P. Manga, and J. G. Krueger, “IL-17 and TNF Synergistically Modulate Cytokine Expression while Suppressing Melanogenesis: Potential Relevance to Psoriasis,” J. Invest. Dermatol. 133(12), 2741–2752 (2013).
[Crossref] [PubMed]

Taroni, P.

P. Taroni, A. Bassi, D. Comelli, A. Farina, R. Cubeddu, and A. Pifferi, “Diffuse optical spectroscopy of breast tissue extended to 1100 nm,” J. Biomed. Opt. 14(5), 054030 (2009).
[Crossref] [PubMed]

Tromberg, B. J.

A. Cerussi, N. Shah, D. Hsiang, A. Durkin, J. Butler, and B. J. Tromberg, “In vivo absorption, scattering, and physiologic properties of 58 malignant breast tumors determined by broadband diffuse optical spectroscopy,” J. Biomed. Opt. 11(4), 044005 (2006).
[Crossref] [PubMed]

Tseng, S. H.

Tuchin, V. V.

A. N. Bashkatov, E. A. Genina, V. I. Kochubey, and V. V. Tuchin, “Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm,” J. Phys. D Appl. Phys. 38(15), 2543–2555 (2005).
[Crossref]

Tzeng, S. Y.

C. K. Hsu, S. Y. Tzeng, C. C. Yang, J. Y. Lee, L. L. Huang, W. R. Chen, M. Hughes, Y. W. Chen, Y. K. Liao, and S. H. Tseng, “Non-invasive evaluation of therapeutic response in keloid scar using diffuse reflectance spectroscopy,” Biomed. Opt. Express 6(2), 390–404 (2015).
[Crossref] [PubMed]

S. H. Tseng, C. K. Hsu, J. Yu-Yun Lee, S. Y. Tzeng, W. R. Chen, and Y. K. Liaw, “Noninvasive evaluation of collagen and hemoglobin contents and scattering property of in vivo keloid scars and normal skin using diffuse reflectance spectroscopy: pilot study,” J. Biomed. Opt. 17(7), 077005 (2012).
[Crossref] [PubMed]

van den Bergh, H.

van der Voort, M.

van Gemert, M. J.

Vandresen, C. C.

L. Z. Carrenho, C. G. Moreira, C. C. Vandresen, R. Gomes Junior, A. G. Gonçalves, S. M. Barreira, M. D. Noseda, M. E. Duarte, D. R. Ducatti, M. Dietrich, K. Paludo, D. A. Cabrini, and M. F. Otuki, “Investigation of anti-inflammatory and anti-proliferative activities promoted by photoactivated cationic porphyrin,” Photodiagn. Photodyn. Ther. 12(3), 444–458 (2015).
[Crossref] [PubMed]

Wagnières, G.

Wakamatsu, K.

L. Panzella, K. Wakamatsu, G. Monfrecola, S. Ito, F. Ayala, and A. Napolitano, “Increased cysteinyldopa plasma levels hint to melanocyte as stress sensor in psoriasis,” Exp. Dermatol. 20(3), 288–290 (2011).
[Crossref] [PubMed]

Wang, C. Q. F.

C. Q. F. Wang, Y. T. Akalu, M. Suarez-Farinas, J. Gonzalez, H. Mitsui, M. A. Lowes, S. J. Orlow, P. Manga, and J. G. Krueger, “IL-17 and TNF Synergistically Modulate Cytokine Expression while Suppressing Melanogenesis: Potential Relevance to Psoriasis,” J. Invest. Dermatol. 133(12), 2741–2752 (2013).
[Crossref] [PubMed]

Welch, A. J.

Wesseling, J.

Wilson, B.

T. J. Farrell, M. S. Patterson, and B. Wilson, “A Diffusion Theory Model of Spatially Resolved, Steady-State Diffuse Reflectance for the Noninvasive Determination of Tissue Optical Properties Invivo,” Med. Phys. 19(4), 879–888 (1992).
[Crossref] [PubMed]

Wilson, B. C.

Yang, C. C.

Yu-Yun Lee, J.

S. H. Tseng, C. K. Hsu, J. Yu-Yun Lee, S. Y. Tzeng, W. R. Chen, and Y. K. Liaw, “Noninvasive evaluation of collagen and hemoglobin contents and scattering property of in vivo keloid scars and normal skin using diffuse reflectance spectroscopy: pilot study,” J. Biomed. Opt. 17(7), 077005 (2012).
[Crossref] [PubMed]

Acta Derm. Venereol. (1)

I. Flisiak, P. Porebski, and B. Chodynicka, “Effect of psoriasis activity on metalloproteinase-1 and tissue inhibitor of metalloproteinase-1 in plasma and lesional scales,” Acta Derm. Venereol. 86(1), 17–21 (2006).
[PubMed]

Ann. Rheum. Dis. (1)

S. R. Feldman and G. G. Krueger, “Psoriasis assessment tools in clinical trials,” Ann. Rheum. Dis. 64(Suppl 2), ii65–ii73 (2005).
[Crossref] [PubMed]

Appl. Opt. (3)

Arch. Dermatol. Res. (1)

V. Koivukangas, M. Kallionen, J. Karvonen, H. Autio-Harmainen, J. Risteli, L. Risteli, and A. Oikarinen, “Increased collagen synthesis in psoriasis in vivo,” Arch. Dermatol. Res. 287(2), 171–175 (1995).
[Crossref] [PubMed]

Biomed. Opt. Express (3)

Exp. Dermatol. (1)

L. Panzella, K. Wakamatsu, G. Monfrecola, S. Ito, F. Ayala, and A. Napolitano, “Increased cysteinyldopa plasma levels hint to melanocyte as stress sensor in psoriasis,” Exp. Dermatol. 20(3), 288–290 (2011).
[Crossref] [PubMed]

J. Biomed. Opt. (6)

M. Leroy, T. Lefèvre, R. Pouliot, M. Auger, and G. Laroche, “Using infrared and Raman microspectroscopies to compare ex vivo involved psoriatic skin with normal human skin,” J. Biomed. Opt. 20(6), 067004 (2015).
[Crossref] [PubMed]

S. H. Tseng, C. K. Hsu, J. Yu-Yun Lee, S. Y. Tzeng, W. R. Chen, and Y. K. Liaw, “Noninvasive evaluation of collagen and hemoglobin contents and scattering property of in vivo keloid scars and normal skin using diffuse reflectance spectroscopy: pilot study,” J. Biomed. Opt. 17(7), 077005 (2012).
[Crossref] [PubMed]

P. Taroni, A. Bassi, D. Comelli, A. Farina, R. Cubeddu, and A. Pifferi, “Diffuse optical spectroscopy of breast tissue extended to 1100 nm,” J. Biomed. Opt. 14(5), 054030 (2009).
[Crossref] [PubMed]

D. J. Cappon, T. J. Farrell, Q. Fang, and J. E. Hayward, “Fiber-optic probe design and optical property recovery algorithm for optical biopsy of brain tissue,” J. Biomed. Opt. 18(10), 107004 (2013).
[Crossref] [PubMed]

A. Cerussi, N. Shah, D. Hsiang, A. Durkin, J. Butler, and B. J. Tromberg, “In vivo absorption, scattering, and physiologic properties of 58 malignant breast tumors determined by broadband diffuse optical spectroscopy,” J. Biomed. Opt. 11(4), 044005 (2006).
[Crossref] [PubMed]

M. Pilz, S. Honold, and A. Kienle, “Determination of the optical properties of turbid media by measurements of the spatially resolved reflectance considering the point-spread function of the camera system,” J. Biomed. Opt. 13(5), 054047 (2008).
[Crossref] [PubMed]

J. Invest. Dermatol. (1)

C. Q. F. Wang, Y. T. Akalu, M. Suarez-Farinas, J. Gonzalez, H. Mitsui, M. A. Lowes, S. J. Orlow, P. Manga, and J. G. Krueger, “IL-17 and TNF Synergistically Modulate Cytokine Expression while Suppressing Melanogenesis: Potential Relevance to Psoriasis,” J. Invest. Dermatol. 133(12), 2741–2752 (2013).
[Crossref] [PubMed]

J. Phys. D Appl. Phys. (1)

A. N. Bashkatov, E. A. Genina, V. I. Kochubey, and V. V. Tuchin, “Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm,” J. Phys. D Appl. Phys. 38(15), 2543–2555 (2005).
[Crossref]

Med. Phys. (1)

T. J. Farrell, M. S. Patterson, and B. Wilson, “A Diffusion Theory Model of Spatially Resolved, Steady-State Diffuse Reflectance for the Noninvasive Determination of Tissue Optical Properties Invivo,” Med. Phys. 19(4), 879–888 (1992).
[Crossref] [PubMed]

Nature (1)

M. A. Lowes, A. M. Bowcock, and J. G. Krueger, “Pathogenesis and therapy of psoriasis,” Nature 445(7130), 866–873 (2007).
[Crossref] [PubMed]

Opt. Express (2)

Photodiagn. Photodyn. Ther. (1)

L. Z. Carrenho, C. G. Moreira, C. C. Vandresen, R. Gomes Junior, A. G. Gonçalves, S. M. Barreira, M. D. Noseda, M. E. Duarte, D. R. Ducatti, M. Dietrich, K. Paludo, D. A. Cabrini, and M. F. Otuki, “Investigation of anti-inflammatory and anti-proliferative activities promoted by photoactivated cationic porphyrin,” Photodiagn. Photodyn. Ther. 12(3), 444–458 (2015).
[Crossref] [PubMed]

Phys. Med. Biol. (1)

R. M. Doornbos, R. Lang, M. C. Aalders, F. W. Cross, and H. J. Sterenborg, “The determination of in vivo human tissue optical properties and absolute chromophore concentrations using spatially resolved steady-state diffuse reflectance spectroscopy,” Phys. Med. Biol. 44(4), 967–981 (1999).
[Crossref] [PubMed]

Other (3)

S. Coimbra, A. Santos-Silva, A. Figueiredo, H. Oliveira, and P. Rocha-Pereira, Psoriasis: Epidemiology, Clinical and Histological Features, Triggering Factors, Assessment of Severity and Psychosocial Aspects (INTECH Open Access Publisher, 2012).

S. Jacques, “Melanosome absorption coefficient,” (1998), http://omlc.org/spectra/melanin/index.html .

S. Prahl, “Hemoglobin absorption coefficient,” (1999), http://omlc.org/spectra/hemoglobin/summary.html .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) The handheld DRS system consists of spectrometer, a relay, a microcontroller board, and a custom gadget. (b) Schematics of the system configuration. A relay passes the Arduino control signal to the solenoid valve to change the position of a slim shield to switch light output. A step-up transformer converts the 5V supplied by the microcontroller board to 24V to drive the miniature filament bulb. An optical fiber directs the reflectance to a mini-spectrometer. The spectrometer and the Arduino board are connected to a laptop through USB cables. (c) A 3D model that illustrates the function of the slim metal sheet (green part) that attached to a metal rod. In one of its two default positions, the metal sheet prevents the light emitting from one of the two cylindrical channels. Inset shows the metal sheet in another default position. (d) Illustration of a medical professional using the handheld DRS system to examine the skin of a patient in the clinical setting.
Fig. 2
Fig. 2 Pictures of the psoriatic lesion of the 11 subjects recruited in this study. Arrows indicate the measurement sites. The green rectangle shows the probe contact area and the short red line represents the source-detector separation of 2mm.
Fig. 3
Fig. 3 (a) Absorption and (b) reduced scattering spectra of a silicone phantom. Black lines represent the benchmark values, and red dash and blue dot lines represent the values recovered from the benchtop and handheld systems, respectively.
Fig. 4
Fig. 4 Absorption spectra of (a) subject PS08 and (b) subject PS02. Black and red dot lines represent the absorption spectra recovered from normal and lesion sites, respectively. Error bars represent the standard deviation of the derived absorption spectra of a set of measurements.
Fig. 5
Fig. 5 Reduced scattering spectra of (a) subject P08 and (b) subject P02. Black and red dot lines represent the reduced scattering spectra recovered from normal and lesion sites, respectively. Error bars represent the standard deviation of the derived absorption spectra of a set of measurements.

Tables (8)

Tables Icon

Table 1 The erythema, thickness, and scaling scores of the 11 subjects rated by 3 independent dermatologists.

Tables Icon

Table 2 Absorption coefficients of the lesion (P) and normal skin (N) at 550 and 800 nm of the 11 subjects. The absorption differences (Δ) between the lesion and normal skin are also listed.

Tables Icon

Table 3 Correlation coefficients of absorption differences at 550 and 800 nm and the erythema scores rated by 3 clinicians.

Tables Icon

Table 4 Reduced scattering coefficients and the wavelength exponent “-b” of the lesion (P) and normal skin (N) of the 11 subjects. The scattering property differences (Δ) between the lesion and normal skin are also listed.

Tables Icon

Table 5 Correlation coefficients of scattering property differences and the appearance scores rated by 3 clinicians.

Tables Icon

Table 6 Chromophore concentrations including oxy-hemoglobin, deoxy-hemoglobin, melanin, and collagen, of the lesion (P) and normal skin (N) of the 11 subjects. The chromophore concentration differences (Δ) between the lesion and normal skin are also listed.

Tables Icon

Table 7 Correlation coefficients of hemoglobin related property differences between the lesion and normal sites and the erythema scores rated by 3 clinicians.

Tables Icon

Table 8 Correlation coefficients of melanin and collagen concentration differences between the lesion and normal sites and the appearance scores rated by 3 clinicians.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

μ a(skin) (λ)= C Hb O 2 × ε Hb O 2 (λ)+ C Hb × ε Hb (λ) + C melanin × ε melanin (λ)+ C collagen × ε collagen (λ),

Metrics