Abstract

Second harmonic generation (SHG) microscopy is a powerful tool for label free ex vivo or in vivo imaging, widely used to investigate structure and organization of endogenous SHG emitting proteins such as myosin or collagen. Polarization resolved SHG microscopy renders supplementary information and is used to probe different molecular states. This development towards functional SHG microscopy is calling for new methods for high speed functional imaging of dynamic processes. In this work we present two approaches with linear polarized light and demonstrate high speed line scan measurements of the molecular dynamics of the motor protein myosin with a time resolution of 1 ms in mammalian muscle cells. Such a high speed functional SHG microscopy has high potential to deliver new insights into structural and temporal molecular dynamics under ex vivo or in vivo conditions.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Imaging skeletal muscle using second harmonic generation and coherent anti-Stokes Raman scattering microscopy

Christian P. Pfeffer, Bjorn R. Olsen, Feruz Ganikhanov, and François Légaré
Biomed. Opt. Express 2(5) 1366-1376 (2011)

Imaging the bipolarity of myosin filaments with Interferometric Second Harmonic Generation microscopy

Maxime Rivard, Charles-André Couture, Amir K. Miri, Mathieu Laliberté, Antony Bertrand-Grenier, Luc Mongeau, and François Légaré
Biomed. Opt. Express 4(10) 2078-2086 (2013)

Polarization-resolved second harmonic microscopy of skeletal muscle in sepsis

Matthieu Dubreuil, Florine Tissier, Lucas Le Roy, Jean-Pierre Pennec, Sylvain Rivet, Marie-Agnès Giroux-Metges, and Yann Le Grand
Biomed. Opt. Express 9(12) 6350-6358 (2018)

References

  • View by:
  • |
  • |
  • |

  1. Y. Guo, P. P. Ho, H. Savage, D. Harris, P. Sacks, S. Schantz, F. Liu, N. Zhadin, and R. R. Alfano, “Second-harmonic tomography of tissues,” Opt. Lett. 22(17), 1323–1325 (1997).
    [Crossref] [PubMed]
  2. P. J. Campagnola, A. C. Millard, M. Terasaki, P. E. Hoppe, C. J. Malone, and W. A. Mohler, “Three-dimensional high-resolution second-harmonic generation imaging of endogenous structural proteins in biological tissues,” Biophys. J. 82(1), 493–508 (2002).
    [Crossref] [PubMed]
  3. M. Both, M. Vogel, R. H. Fink, and D. Uttenweiler, “Second harmonic generation imaging in muscle fibers,” Proc. SPIE 5139, 112–120 (2003).
    [Crossref]
  4. M. Both, M. Vogel, O. Friedrich, F. von Wegner, T. Künsting, R. H. Fink, and D. Uttenweiler, “Second harmonic imaging of intrinsic signals in muscle fibers in situ,” J. Biomed. Opt. 9(5), 882–892 (2004).
    [Crossref] [PubMed]
  5. S. V. Plotnikov, A. C. Millard, P. J. Campagnola, and W. A. Mohler, “Characterization of the myosin-based source for second-harmonic generation from muscle sarcomeres,” Biophys. J. 90(2), 693–703 (2006).
    [Crossref] [PubMed]
  6. S. Schürmann, F. von Wegner, R. H. Fink, O. Friedrich, and M. Vogel, “Second harmonic generation microscopy probes different states of motor protein interaction in myofibrils,” Biophys. J. 99(6), 1842–1851 (2010).
    [Crossref] [PubMed]
  7. S. Roth and I. Freund, “Second harmonic generation in collagen,” J. Chem. Phys. 70(4), 1637–1643 (1979).
    [Crossref]
  8. M. E. Llewellyn, R. P. Barretto, S. L. Delp, and M. J. Schnitzer, “Minimally invasive high-speed imaging of sarcomere contractile dynamics in mice and humans,” Nature 454(7205), 784–788 (2008).
    [PubMed]
  9. S. V. Plotnikov, A. M. Kenny, S. J. Walsh, B. Zubrowski, C. Joseph, V. L. Scranton, G. A. Kuchel, D. Dauser, M. Xu, C. C. Pilbeam, D. J. Adams, R. P. Dougherty, P. J. Campagnola, and W. A. Mohler, “Measurement of muscle disease by quantitative second-harmonic generation imaging,” J. Biomed. Opt. 13(4), 044018 (2008).
    [Crossref] [PubMed]
  10. A. Buttgereit, C. Weber, C. S. Garbe, and O. Friedrich, “From chaos to split-ups--SHG microscopy reveals a specific remodelling mechanism in ageing dystrophic muscle,” J. Pathol. 229(3), 477–485 (2013).
    [Crossref] [PubMed]
  11. W. Liu, N. Raben, and E. Ralston, “Quantitative evaluation of skeletal muscle defects in second harmonic generation images,” J. Biomed. Opt. 18(2), 026005 (2013).
    [Crossref] [PubMed]
  12. G. Recher, P. Coumailleau, D. Rouède, and F. Tiaho, “Structural origin of the drastic modification of second harmonic generation intensity pattern occurring in tail muscles of climax stages xenopus tadpoles,” J. Struct. Biol. 190(1), 1–10 (2015).
    [Crossref] [PubMed]
  13. E. Ralston, B. Swaim, M. Czapiga, W. L. Hwu, Y. H. Chien, M. G. Pittis, B. Bembi, O. Schwartz, P. Plotz, and N. Raben, “Detection and imaging of non-contractile inclusions and sarcomeric anomalies in skeletal muscle by second harmonic generation combined with two-photon excited fluorescence,” J. Struct. Biol. 162(3), 500–508 (2008).
    [Crossref] [PubMed]
  14. F. Légaré, C. Pfeffer, and B. R. Olsen, “The role of backscattering in SHG tissue imaging,” Biophys. J. 93(4), 1312–1320 (2007).
    [Crossref] [PubMed]
  15. A. Wingert, H. Seim, S. Schürmann, R. H. A. Fink, and M. Vogel, “Signal Efficiency in Gradient Index Lens Based Two Photon Microscopy,” Open J. Biophys. 3(1), 43–50 (2013).
    [Crossref]
  16. T. Boulesteix, E. Beaurepaire, M. P. Sauviat, and M. C. Schanne-Klein, “Second-harmonic microscopy of unstained living cardiac myocytes: measurements of sarcomere length with 20-nm accuracy,” Opt. Lett. 29(17), 2031–2033 (2004).
    [Crossref] [PubMed]
  17. S. J. Wallace, J. L. Morrison, K. J. Botting, and T. W. Kee, “Second-harmonic generation and two-photon-excited autofluorescence microscopy of cardiomyocytes: quantification of cell volume and myosin filaments,” J. Biomed. Opt. 13(6), 064018 (2008).
    [Crossref] [PubMed]
  18. S. Psilodimitrakopoulos, D. Artigas, G. Soria, I. Amat-Roldan, A. M. Planas, and P. Loza-Alvarez, “Quantitative discrimination between endogenous SHG sources in mammalian tissue, based on their polarization response,” Opt. Express 17(12), 10168–10176 (2009).
    [Crossref] [PubMed]
  19. C. Odin, T. Guilbert, A. Alkilani, O. P. Boryskina, V. Fleury, and Y. Le Grand, “Collagen and myosin characterization by orientation field second harmonic microscopy,” Opt. Express 16(20), 16151–16165 (2008).
    [Crossref] [PubMed]
  20. S. Psilodimitrakopoulos, S. I. Santos, I. Amat-Roldan, A. K. Thayil, D. Artigas, and P. Loza-Alvarez, “In vivo, pixel-resolution mapping of thick filaments’ orientation in nonfibrilar muscle using polarization-sensitive second harmonic generation microscopy,” J. Biomed. Opt. 14(1), 014001 (2009).
    [Crossref] [PubMed]
  21. G. Recher, D. Rouède, P. Richard, A. Simon, J. J. Bellanger, and F. Tiaho, “Three distinct sarcomeric patterns of skeletal muscle revealed by SHG and TPEF microscopy,” Opt. Express 17(22), 19763–19777 (2009).
    [Crossref] [PubMed]
  22. D. G. Winters, D. R. Smith, P. Schlup, and R. A. Bartels, “Measurement of orientation and susceptibility ratios using a polarization-resolved second-harmonic generation holographic microscope,” Biomed. Opt. Express 3(9), 2004–2011 (2012).
    [Crossref] [PubMed]
  23. S. Brasselet, “Polarization-resolved nonlinear microscopy: application to structural molecular and biological imaging,” Adv. Opt. Photonics 3(3), 205–271 (2011).
    [Crossref]
  24. N. Mazumder, C. W. Hu, J. Qiu, M. R. Foreman, C. M. Romero, P. Török, and F. J. Kao, “Revealing molecular structure and orientation with Stokes vector resolved second harmonic generation microscopy,” Methods 66(2), 237–245 (2014).
    [Crossref] [PubMed]
  25. V. Nucciotti, C. Stringari, L. Sacconi, F. Vanzi, L. Fusi, M. Linari, G. Piazzesi, V. Lombardi, and F. S. Pavone, “Probing myosin structural conformation in vivo by second-harmonic generation microscopy,” Proc. Natl. Acad. Sci. U.S.A. 107(17), 7763–7768 (2010).
    [Crossref] [PubMed]
  26. J. R. Blinks, R. Rüdel, and S. R. Taylor, “Calcium transients in isolated amphibian skeletal muscle fibres: detection with aequorin,” J. Physiol. 277(1), 291–323 (1978).
    [Crossref] [PubMed]
  27. C. H. Lien, K. Tilbury, S. J. Chen, and P. J. Campagnola, “Precise, motion-free polarization control in Second Harmonic Generation microscopy using a liquid crystal modulator in the infinity space,” Biomed. Opt. Express 4(10), 1991–2002 (2013).
    [Crossref] [PubMed]
  28. S. Psilodimitrakopoulos, P. Loza-Alvarez, and D. Artigas, “Fast monitoring of in-vivo conformational changes in myosin using single scan polarization-SHG microscopy,” Biomed. Opt. Express 5(12), 4362–4373 (2014).
    [Crossref] [PubMed]
  29. D. A. Kleinman, “Nonlinear dielectric polarization in optical media,” Phys. Rev. 126(6), 1977–1979 (1962).
    [Crossref]
  30. F. Tiaho, G. Recher, and D. Rouède, “Estimation of helical angles of myosin and collagen by second harmonic generation imaging microscopy,” Opt. Express 15(19), 12286–12295 (2007).
    [Crossref] [PubMed]
  31. C. Teulon, I. Gusachenko, G. Latour, and M. C. Schanne-Klein, “Theoretical, numerical and experimental study of geometrical parameters that affect anisotropy measurements in polarization-resolved SHG microscopy,” Opt. Express 23(7), 9313–9328 (2015).
    [Crossref] [PubMed]
  32. I. Gusachenko, G. Latour, and M. C. Schanne-Klein, “Polarization-resolved Second Harmonic microscopy in anisotropic thick tissues,” Opt. Express 18(18), 19339–19352 (2010).
    [Crossref] [PubMed]
  33. S. Brasselet, D. Aït-Belkacem, A. Gasecka, F. Munhoz, S. Brustlein, and S. Brasselet, “Influence of birefringence on polarization resolved nonlinear microscopy and collagen SHG structural imaging,” Opt. Express 18(14), 14859–14870 (2010).
    [Crossref] [PubMed]
  34. O. Friedrich, T. Ehmer, and R. H. A. Fink, “Calcium currents during contraction and shortening in enzymatically isolated murine skeletal muscle fibres,” J. Physiol. 517(3), 757–770 (1999).
    [Crossref] [PubMed]
  35. A. Leray, L. Leroy, Y. Le Grand, C. Odin, A. Renault, V. Vié, D. Rouède, T. Mallegol, O. Mongin, M. H. V. Werts, and M. Blanchard-Desce, “Organization and orientation of amphiphilic push-pull chromophores deposited in Langmuir-Blodgett monolayers studied by second harmonic generation and atomic force microscopy,” Langmuir 20(19), 8165–8171 (2004).
    [Crossref] [PubMed]
  36. D. Rouède, J. J. Bellanger, J. Bomo, G. Baffet, and F. Tiaho, “Linear least square (LLS) method for pixel-resolution analysis of polarization dependent SHG images of collagen fibrils,” Opt. Express 23(10), 13309–13319 (2015).
    [Crossref] [PubMed]
  37. C. K. Chou, W. L. Chen, P. T. Fwu, S. J. Lin, H. S. Lee, and C. Y. Dong, “Polarization ellipticity compensation in polarization second-harmonic generation microscopy without specimen rotation,” J. Biomed. Opt. 13(1), 014005 (2008).
    [Crossref] [PubMed]
  38. A. E. Tuer, M. K. Akens, S. Krouglov, D. Sandkuijl, B. C. Wilson, C. M. Whyne, and V. Barzda, “Hierarchical model of fibrillar collagen organization for interpreting the second-order susceptibility tensors in biological tissue,” Biophys. J. 103(10), 2093–2105 (2012).
    [Crossref] [PubMed]

2015 (3)

2014 (2)

S. Psilodimitrakopoulos, P. Loza-Alvarez, and D. Artigas, “Fast monitoring of in-vivo conformational changes in myosin using single scan polarization-SHG microscopy,” Biomed. Opt. Express 5(12), 4362–4373 (2014).
[Crossref] [PubMed]

N. Mazumder, C. W. Hu, J. Qiu, M. R. Foreman, C. M. Romero, P. Török, and F. J. Kao, “Revealing molecular structure and orientation with Stokes vector resolved second harmonic generation microscopy,” Methods 66(2), 237–245 (2014).
[Crossref] [PubMed]

2013 (4)

C. H. Lien, K. Tilbury, S. J. Chen, and P. J. Campagnola, “Precise, motion-free polarization control in Second Harmonic Generation microscopy using a liquid crystal modulator in the infinity space,” Biomed. Opt. Express 4(10), 1991–2002 (2013).
[Crossref] [PubMed]

A. Buttgereit, C. Weber, C. S. Garbe, and O. Friedrich, “From chaos to split-ups--SHG microscopy reveals a specific remodelling mechanism in ageing dystrophic muscle,” J. Pathol. 229(3), 477–485 (2013).
[Crossref] [PubMed]

W. Liu, N. Raben, and E. Ralston, “Quantitative evaluation of skeletal muscle defects in second harmonic generation images,” J. Biomed. Opt. 18(2), 026005 (2013).
[Crossref] [PubMed]

A. Wingert, H. Seim, S. Schürmann, R. H. A. Fink, and M. Vogel, “Signal Efficiency in Gradient Index Lens Based Two Photon Microscopy,” Open J. Biophys. 3(1), 43–50 (2013).
[Crossref]

2012 (2)

D. G. Winters, D. R. Smith, P. Schlup, and R. A. Bartels, “Measurement of orientation and susceptibility ratios using a polarization-resolved second-harmonic generation holographic microscope,” Biomed. Opt. Express 3(9), 2004–2011 (2012).
[Crossref] [PubMed]

A. E. Tuer, M. K. Akens, S. Krouglov, D. Sandkuijl, B. C. Wilson, C. M. Whyne, and V. Barzda, “Hierarchical model of fibrillar collagen organization for interpreting the second-order susceptibility tensors in biological tissue,” Biophys. J. 103(10), 2093–2105 (2012).
[Crossref] [PubMed]

2011 (1)

S. Brasselet, “Polarization-resolved nonlinear microscopy: application to structural molecular and biological imaging,” Adv. Opt. Photonics 3(3), 205–271 (2011).
[Crossref]

2010 (4)

V. Nucciotti, C. Stringari, L. Sacconi, F. Vanzi, L. Fusi, M. Linari, G. Piazzesi, V. Lombardi, and F. S. Pavone, “Probing myosin structural conformation in vivo by second-harmonic generation microscopy,” Proc. Natl. Acad. Sci. U.S.A. 107(17), 7763–7768 (2010).
[Crossref] [PubMed]

I. Gusachenko, G. Latour, and M. C. Schanne-Klein, “Polarization-resolved Second Harmonic microscopy in anisotropic thick tissues,” Opt. Express 18(18), 19339–19352 (2010).
[Crossref] [PubMed]

S. Brasselet, D. Aït-Belkacem, A. Gasecka, F. Munhoz, S. Brustlein, and S. Brasselet, “Influence of birefringence on polarization resolved nonlinear microscopy and collagen SHG structural imaging,” Opt. Express 18(14), 14859–14870 (2010).
[Crossref] [PubMed]

S. Schürmann, F. von Wegner, R. H. Fink, O. Friedrich, and M. Vogel, “Second harmonic generation microscopy probes different states of motor protein interaction in myofibrils,” Biophys. J. 99(6), 1842–1851 (2010).
[Crossref] [PubMed]

2009 (3)

2008 (6)

C. Odin, T. Guilbert, A. Alkilani, O. P. Boryskina, V. Fleury, and Y. Le Grand, “Collagen and myosin characterization by orientation field second harmonic microscopy,” Opt. Express 16(20), 16151–16165 (2008).
[Crossref] [PubMed]

M. E. Llewellyn, R. P. Barretto, S. L. Delp, and M. J. Schnitzer, “Minimally invasive high-speed imaging of sarcomere contractile dynamics in mice and humans,” Nature 454(7205), 784–788 (2008).
[PubMed]

S. V. Plotnikov, A. M. Kenny, S. J. Walsh, B. Zubrowski, C. Joseph, V. L. Scranton, G. A. Kuchel, D. Dauser, M. Xu, C. C. Pilbeam, D. J. Adams, R. P. Dougherty, P. J. Campagnola, and W. A. Mohler, “Measurement of muscle disease by quantitative second-harmonic generation imaging,” J. Biomed. Opt. 13(4), 044018 (2008).
[Crossref] [PubMed]

S. J. Wallace, J. L. Morrison, K. J. Botting, and T. W. Kee, “Second-harmonic generation and two-photon-excited autofluorescence microscopy of cardiomyocytes: quantification of cell volume and myosin filaments,” J. Biomed. Opt. 13(6), 064018 (2008).
[Crossref] [PubMed]

E. Ralston, B. Swaim, M. Czapiga, W. L. Hwu, Y. H. Chien, M. G. Pittis, B. Bembi, O. Schwartz, P. Plotz, and N. Raben, “Detection and imaging of non-contractile inclusions and sarcomeric anomalies in skeletal muscle by second harmonic generation combined with two-photon excited fluorescence,” J. Struct. Biol. 162(3), 500–508 (2008).
[Crossref] [PubMed]

C. K. Chou, W. L. Chen, P. T. Fwu, S. J. Lin, H. S. Lee, and C. Y. Dong, “Polarization ellipticity compensation in polarization second-harmonic generation microscopy without specimen rotation,” J. Biomed. Opt. 13(1), 014005 (2008).
[Crossref] [PubMed]

2007 (2)

2006 (1)

S. V. Plotnikov, A. C. Millard, P. J. Campagnola, and W. A. Mohler, “Characterization of the myosin-based source for second-harmonic generation from muscle sarcomeres,” Biophys. J. 90(2), 693–703 (2006).
[Crossref] [PubMed]

2004 (3)

T. Boulesteix, E. Beaurepaire, M. P. Sauviat, and M. C. Schanne-Klein, “Second-harmonic microscopy of unstained living cardiac myocytes: measurements of sarcomere length with 20-nm accuracy,” Opt. Lett. 29(17), 2031–2033 (2004).
[Crossref] [PubMed]

M. Both, M. Vogel, O. Friedrich, F. von Wegner, T. Künsting, R. H. Fink, and D. Uttenweiler, “Second harmonic imaging of intrinsic signals in muscle fibers in situ,” J. Biomed. Opt. 9(5), 882–892 (2004).
[Crossref] [PubMed]

A. Leray, L. Leroy, Y. Le Grand, C. Odin, A. Renault, V. Vié, D. Rouède, T. Mallegol, O. Mongin, M. H. V. Werts, and M. Blanchard-Desce, “Organization and orientation of amphiphilic push-pull chromophores deposited in Langmuir-Blodgett monolayers studied by second harmonic generation and atomic force microscopy,” Langmuir 20(19), 8165–8171 (2004).
[Crossref] [PubMed]

2003 (1)

M. Both, M. Vogel, R. H. Fink, and D. Uttenweiler, “Second harmonic generation imaging in muscle fibers,” Proc. SPIE 5139, 112–120 (2003).
[Crossref]

2002 (1)

P. J. Campagnola, A. C. Millard, M. Terasaki, P. E. Hoppe, C. J. Malone, and W. A. Mohler, “Three-dimensional high-resolution second-harmonic generation imaging of endogenous structural proteins in biological tissues,” Biophys. J. 82(1), 493–508 (2002).
[Crossref] [PubMed]

1999 (1)

O. Friedrich, T. Ehmer, and R. H. A. Fink, “Calcium currents during contraction and shortening in enzymatically isolated murine skeletal muscle fibres,” J. Physiol. 517(3), 757–770 (1999).
[Crossref] [PubMed]

1997 (1)

1979 (1)

S. Roth and I. Freund, “Second harmonic generation in collagen,” J. Chem. Phys. 70(4), 1637–1643 (1979).
[Crossref]

1978 (1)

J. R. Blinks, R. Rüdel, and S. R. Taylor, “Calcium transients in isolated amphibian skeletal muscle fibres: detection with aequorin,” J. Physiol. 277(1), 291–323 (1978).
[Crossref] [PubMed]

1962 (1)

D. A. Kleinman, “Nonlinear dielectric polarization in optical media,” Phys. Rev. 126(6), 1977–1979 (1962).
[Crossref]

Adams, D. J.

S. V. Plotnikov, A. M. Kenny, S. J. Walsh, B. Zubrowski, C. Joseph, V. L. Scranton, G. A. Kuchel, D. Dauser, M. Xu, C. C. Pilbeam, D. J. Adams, R. P. Dougherty, P. J. Campagnola, and W. A. Mohler, “Measurement of muscle disease by quantitative second-harmonic generation imaging,” J. Biomed. Opt. 13(4), 044018 (2008).
[Crossref] [PubMed]

Aït-Belkacem, D.

Akens, M. K.

A. E. Tuer, M. K. Akens, S. Krouglov, D. Sandkuijl, B. C. Wilson, C. M. Whyne, and V. Barzda, “Hierarchical model of fibrillar collagen organization for interpreting the second-order susceptibility tensors in biological tissue,” Biophys. J. 103(10), 2093–2105 (2012).
[Crossref] [PubMed]

Alfano, R. R.

Alkilani, A.

Amat-Roldan, I.

S. Psilodimitrakopoulos, S. I. Santos, I. Amat-Roldan, A. K. Thayil, D. Artigas, and P. Loza-Alvarez, “In vivo, pixel-resolution mapping of thick filaments’ orientation in nonfibrilar muscle using polarization-sensitive second harmonic generation microscopy,” J. Biomed. Opt. 14(1), 014001 (2009).
[Crossref] [PubMed]

S. Psilodimitrakopoulos, D. Artigas, G. Soria, I. Amat-Roldan, A. M. Planas, and P. Loza-Alvarez, “Quantitative discrimination between endogenous SHG sources in mammalian tissue, based on their polarization response,” Opt. Express 17(12), 10168–10176 (2009).
[Crossref] [PubMed]

Artigas, D.

Baffet, G.

Barretto, R. P.

M. E. Llewellyn, R. P. Barretto, S. L. Delp, and M. J. Schnitzer, “Minimally invasive high-speed imaging of sarcomere contractile dynamics in mice and humans,” Nature 454(7205), 784–788 (2008).
[PubMed]

Bartels, R. A.

Barzda, V.

A. E. Tuer, M. K. Akens, S. Krouglov, D. Sandkuijl, B. C. Wilson, C. M. Whyne, and V. Barzda, “Hierarchical model of fibrillar collagen organization for interpreting the second-order susceptibility tensors in biological tissue,” Biophys. J. 103(10), 2093–2105 (2012).
[Crossref] [PubMed]

Beaurepaire, E.

Bellanger, J. J.

Bembi, B.

E. Ralston, B. Swaim, M. Czapiga, W. L. Hwu, Y. H. Chien, M. G. Pittis, B. Bembi, O. Schwartz, P. Plotz, and N. Raben, “Detection and imaging of non-contractile inclusions and sarcomeric anomalies in skeletal muscle by second harmonic generation combined with two-photon excited fluorescence,” J. Struct. Biol. 162(3), 500–508 (2008).
[Crossref] [PubMed]

Blanchard-Desce, M.

A. Leray, L. Leroy, Y. Le Grand, C. Odin, A. Renault, V. Vié, D. Rouède, T. Mallegol, O. Mongin, M. H. V. Werts, and M. Blanchard-Desce, “Organization and orientation of amphiphilic push-pull chromophores deposited in Langmuir-Blodgett monolayers studied by second harmonic generation and atomic force microscopy,” Langmuir 20(19), 8165–8171 (2004).
[Crossref] [PubMed]

Blinks, J. R.

J. R. Blinks, R. Rüdel, and S. R. Taylor, “Calcium transients in isolated amphibian skeletal muscle fibres: detection with aequorin,” J. Physiol. 277(1), 291–323 (1978).
[Crossref] [PubMed]

Bomo, J.

Boryskina, O. P.

Both, M.

M. Both, M. Vogel, O. Friedrich, F. von Wegner, T. Künsting, R. H. Fink, and D. Uttenweiler, “Second harmonic imaging of intrinsic signals in muscle fibers in situ,” J. Biomed. Opt. 9(5), 882–892 (2004).
[Crossref] [PubMed]

M. Both, M. Vogel, R. H. Fink, and D. Uttenweiler, “Second harmonic generation imaging in muscle fibers,” Proc. SPIE 5139, 112–120 (2003).
[Crossref]

Botting, K. J.

S. J. Wallace, J. L. Morrison, K. J. Botting, and T. W. Kee, “Second-harmonic generation and two-photon-excited autofluorescence microscopy of cardiomyocytes: quantification of cell volume and myosin filaments,” J. Biomed. Opt. 13(6), 064018 (2008).
[Crossref] [PubMed]

Boulesteix, T.

Brasselet, S.

Brustlein, S.

Buttgereit, A.

A. Buttgereit, C. Weber, C. S. Garbe, and O. Friedrich, “From chaos to split-ups--SHG microscopy reveals a specific remodelling mechanism in ageing dystrophic muscle,” J. Pathol. 229(3), 477–485 (2013).
[Crossref] [PubMed]

Campagnola, P. J.

C. H. Lien, K. Tilbury, S. J. Chen, and P. J. Campagnola, “Precise, motion-free polarization control in Second Harmonic Generation microscopy using a liquid crystal modulator in the infinity space,” Biomed. Opt. Express 4(10), 1991–2002 (2013).
[Crossref] [PubMed]

S. V. Plotnikov, A. M. Kenny, S. J. Walsh, B. Zubrowski, C. Joseph, V. L. Scranton, G. A. Kuchel, D. Dauser, M. Xu, C. C. Pilbeam, D. J. Adams, R. P. Dougherty, P. J. Campagnola, and W. A. Mohler, “Measurement of muscle disease by quantitative second-harmonic generation imaging,” J. Biomed. Opt. 13(4), 044018 (2008).
[Crossref] [PubMed]

S. V. Plotnikov, A. C. Millard, P. J. Campagnola, and W. A. Mohler, “Characterization of the myosin-based source for second-harmonic generation from muscle sarcomeres,” Biophys. J. 90(2), 693–703 (2006).
[Crossref] [PubMed]

P. J. Campagnola, A. C. Millard, M. Terasaki, P. E. Hoppe, C. J. Malone, and W. A. Mohler, “Three-dimensional high-resolution second-harmonic generation imaging of endogenous structural proteins in biological tissues,” Biophys. J. 82(1), 493–508 (2002).
[Crossref] [PubMed]

Chen, S. J.

Chen, W. L.

C. K. Chou, W. L. Chen, P. T. Fwu, S. J. Lin, H. S. Lee, and C. Y. Dong, “Polarization ellipticity compensation in polarization second-harmonic generation microscopy without specimen rotation,” J. Biomed. Opt. 13(1), 014005 (2008).
[Crossref] [PubMed]

Chien, Y. H.

E. Ralston, B. Swaim, M. Czapiga, W. L. Hwu, Y. H. Chien, M. G. Pittis, B. Bembi, O. Schwartz, P. Plotz, and N. Raben, “Detection and imaging of non-contractile inclusions and sarcomeric anomalies in skeletal muscle by second harmonic generation combined with two-photon excited fluorescence,” J. Struct. Biol. 162(3), 500–508 (2008).
[Crossref] [PubMed]

Chou, C. K.

C. K. Chou, W. L. Chen, P. T. Fwu, S. J. Lin, H. S. Lee, and C. Y. Dong, “Polarization ellipticity compensation in polarization second-harmonic generation microscopy without specimen rotation,” J. Biomed. Opt. 13(1), 014005 (2008).
[Crossref] [PubMed]

Coumailleau, P.

G. Recher, P. Coumailleau, D. Rouède, and F. Tiaho, “Structural origin of the drastic modification of second harmonic generation intensity pattern occurring in tail muscles of climax stages xenopus tadpoles,” J. Struct. Biol. 190(1), 1–10 (2015).
[Crossref] [PubMed]

Czapiga, M.

E. Ralston, B. Swaim, M. Czapiga, W. L. Hwu, Y. H. Chien, M. G. Pittis, B. Bembi, O. Schwartz, P. Plotz, and N. Raben, “Detection and imaging of non-contractile inclusions and sarcomeric anomalies in skeletal muscle by second harmonic generation combined with two-photon excited fluorescence,” J. Struct. Biol. 162(3), 500–508 (2008).
[Crossref] [PubMed]

Dauser, D.

S. V. Plotnikov, A. M. Kenny, S. J. Walsh, B. Zubrowski, C. Joseph, V. L. Scranton, G. A. Kuchel, D. Dauser, M. Xu, C. C. Pilbeam, D. J. Adams, R. P. Dougherty, P. J. Campagnola, and W. A. Mohler, “Measurement of muscle disease by quantitative second-harmonic generation imaging,” J. Biomed. Opt. 13(4), 044018 (2008).
[Crossref] [PubMed]

Delp, S. L.

M. E. Llewellyn, R. P. Barretto, S. L. Delp, and M. J. Schnitzer, “Minimally invasive high-speed imaging of sarcomere contractile dynamics in mice and humans,” Nature 454(7205), 784–788 (2008).
[PubMed]

Dong, C. Y.

C. K. Chou, W. L. Chen, P. T. Fwu, S. J. Lin, H. S. Lee, and C. Y. Dong, “Polarization ellipticity compensation in polarization second-harmonic generation microscopy without specimen rotation,” J. Biomed. Opt. 13(1), 014005 (2008).
[Crossref] [PubMed]

Dougherty, R. P.

S. V. Plotnikov, A. M. Kenny, S. J. Walsh, B. Zubrowski, C. Joseph, V. L. Scranton, G. A. Kuchel, D. Dauser, M. Xu, C. C. Pilbeam, D. J. Adams, R. P. Dougherty, P. J. Campagnola, and W. A. Mohler, “Measurement of muscle disease by quantitative second-harmonic generation imaging,” J. Biomed. Opt. 13(4), 044018 (2008).
[Crossref] [PubMed]

Ehmer, T.

O. Friedrich, T. Ehmer, and R. H. A. Fink, “Calcium currents during contraction and shortening in enzymatically isolated murine skeletal muscle fibres,” J. Physiol. 517(3), 757–770 (1999).
[Crossref] [PubMed]

Fink, R. H.

S. Schürmann, F. von Wegner, R. H. Fink, O. Friedrich, and M. Vogel, “Second harmonic generation microscopy probes different states of motor protein interaction in myofibrils,” Biophys. J. 99(6), 1842–1851 (2010).
[Crossref] [PubMed]

M. Both, M. Vogel, O. Friedrich, F. von Wegner, T. Künsting, R. H. Fink, and D. Uttenweiler, “Second harmonic imaging of intrinsic signals in muscle fibers in situ,” J. Biomed. Opt. 9(5), 882–892 (2004).
[Crossref] [PubMed]

M. Both, M. Vogel, R. H. Fink, and D. Uttenweiler, “Second harmonic generation imaging in muscle fibers,” Proc. SPIE 5139, 112–120 (2003).
[Crossref]

Fink, R. H. A.

A. Wingert, H. Seim, S. Schürmann, R. H. A. Fink, and M. Vogel, “Signal Efficiency in Gradient Index Lens Based Two Photon Microscopy,” Open J. Biophys. 3(1), 43–50 (2013).
[Crossref]

O. Friedrich, T. Ehmer, and R. H. A. Fink, “Calcium currents during contraction and shortening in enzymatically isolated murine skeletal muscle fibres,” J. Physiol. 517(3), 757–770 (1999).
[Crossref] [PubMed]

Fleury, V.

Foreman, M. R.

N. Mazumder, C. W. Hu, J. Qiu, M. R. Foreman, C. M. Romero, P. Török, and F. J. Kao, “Revealing molecular structure and orientation with Stokes vector resolved second harmonic generation microscopy,” Methods 66(2), 237–245 (2014).
[Crossref] [PubMed]

Freund, I.

S. Roth and I. Freund, “Second harmonic generation in collagen,” J. Chem. Phys. 70(4), 1637–1643 (1979).
[Crossref]

Friedrich, O.

A. Buttgereit, C. Weber, C. S. Garbe, and O. Friedrich, “From chaos to split-ups--SHG microscopy reveals a specific remodelling mechanism in ageing dystrophic muscle,” J. Pathol. 229(3), 477–485 (2013).
[Crossref] [PubMed]

S. Schürmann, F. von Wegner, R. H. Fink, O. Friedrich, and M. Vogel, “Second harmonic generation microscopy probes different states of motor protein interaction in myofibrils,” Biophys. J. 99(6), 1842–1851 (2010).
[Crossref] [PubMed]

M. Both, M. Vogel, O. Friedrich, F. von Wegner, T. Künsting, R. H. Fink, and D. Uttenweiler, “Second harmonic imaging of intrinsic signals in muscle fibers in situ,” J. Biomed. Opt. 9(5), 882–892 (2004).
[Crossref] [PubMed]

O. Friedrich, T. Ehmer, and R. H. A. Fink, “Calcium currents during contraction and shortening in enzymatically isolated murine skeletal muscle fibres,” J. Physiol. 517(3), 757–770 (1999).
[Crossref] [PubMed]

Fusi, L.

V. Nucciotti, C. Stringari, L. Sacconi, F. Vanzi, L. Fusi, M. Linari, G. Piazzesi, V. Lombardi, and F. S. Pavone, “Probing myosin structural conformation in vivo by second-harmonic generation microscopy,” Proc. Natl. Acad. Sci. U.S.A. 107(17), 7763–7768 (2010).
[Crossref] [PubMed]

Fwu, P. T.

C. K. Chou, W. L. Chen, P. T. Fwu, S. J. Lin, H. S. Lee, and C. Y. Dong, “Polarization ellipticity compensation in polarization second-harmonic generation microscopy without specimen rotation,” J. Biomed. Opt. 13(1), 014005 (2008).
[Crossref] [PubMed]

Garbe, C. S.

A. Buttgereit, C. Weber, C. S. Garbe, and O. Friedrich, “From chaos to split-ups--SHG microscopy reveals a specific remodelling mechanism in ageing dystrophic muscle,” J. Pathol. 229(3), 477–485 (2013).
[Crossref] [PubMed]

Gasecka, A.

Guilbert, T.

Guo, Y.

Gusachenko, I.

Harris, D.

Ho, P. P.

Hoppe, P. E.

P. J. Campagnola, A. C. Millard, M. Terasaki, P. E. Hoppe, C. J. Malone, and W. A. Mohler, “Three-dimensional high-resolution second-harmonic generation imaging of endogenous structural proteins in biological tissues,” Biophys. J. 82(1), 493–508 (2002).
[Crossref] [PubMed]

Hu, C. W.

N. Mazumder, C. W. Hu, J. Qiu, M. R. Foreman, C. M. Romero, P. Török, and F. J. Kao, “Revealing molecular structure and orientation with Stokes vector resolved second harmonic generation microscopy,” Methods 66(2), 237–245 (2014).
[Crossref] [PubMed]

Hwu, W. L.

E. Ralston, B. Swaim, M. Czapiga, W. L. Hwu, Y. H. Chien, M. G. Pittis, B. Bembi, O. Schwartz, P. Plotz, and N. Raben, “Detection and imaging of non-contractile inclusions and sarcomeric anomalies in skeletal muscle by second harmonic generation combined with two-photon excited fluorescence,” J. Struct. Biol. 162(3), 500–508 (2008).
[Crossref] [PubMed]

Joseph, C.

S. V. Plotnikov, A. M. Kenny, S. J. Walsh, B. Zubrowski, C. Joseph, V. L. Scranton, G. A. Kuchel, D. Dauser, M. Xu, C. C. Pilbeam, D. J. Adams, R. P. Dougherty, P. J. Campagnola, and W. A. Mohler, “Measurement of muscle disease by quantitative second-harmonic generation imaging,” J. Biomed. Opt. 13(4), 044018 (2008).
[Crossref] [PubMed]

Kao, F. J.

N. Mazumder, C. W. Hu, J. Qiu, M. R. Foreman, C. M. Romero, P. Török, and F. J. Kao, “Revealing molecular structure and orientation with Stokes vector resolved second harmonic generation microscopy,” Methods 66(2), 237–245 (2014).
[Crossref] [PubMed]

Kee, T. W.

S. J. Wallace, J. L. Morrison, K. J. Botting, and T. W. Kee, “Second-harmonic generation and two-photon-excited autofluorescence microscopy of cardiomyocytes: quantification of cell volume and myosin filaments,” J. Biomed. Opt. 13(6), 064018 (2008).
[Crossref] [PubMed]

Kenny, A. M.

S. V. Plotnikov, A. M. Kenny, S. J. Walsh, B. Zubrowski, C. Joseph, V. L. Scranton, G. A. Kuchel, D. Dauser, M. Xu, C. C. Pilbeam, D. J. Adams, R. P. Dougherty, P. J. Campagnola, and W. A. Mohler, “Measurement of muscle disease by quantitative second-harmonic generation imaging,” J. Biomed. Opt. 13(4), 044018 (2008).
[Crossref] [PubMed]

Kleinman, D. A.

D. A. Kleinman, “Nonlinear dielectric polarization in optical media,” Phys. Rev. 126(6), 1977–1979 (1962).
[Crossref]

Krouglov, S.

A. E. Tuer, M. K. Akens, S. Krouglov, D. Sandkuijl, B. C. Wilson, C. M. Whyne, and V. Barzda, “Hierarchical model of fibrillar collagen organization for interpreting the second-order susceptibility tensors in biological tissue,” Biophys. J. 103(10), 2093–2105 (2012).
[Crossref] [PubMed]

Kuchel, G. A.

S. V. Plotnikov, A. M. Kenny, S. J. Walsh, B. Zubrowski, C. Joseph, V. L. Scranton, G. A. Kuchel, D. Dauser, M. Xu, C. C. Pilbeam, D. J. Adams, R. P. Dougherty, P. J. Campagnola, and W. A. Mohler, “Measurement of muscle disease by quantitative second-harmonic generation imaging,” J. Biomed. Opt. 13(4), 044018 (2008).
[Crossref] [PubMed]

Künsting, T.

M. Both, M. Vogel, O. Friedrich, F. von Wegner, T. Künsting, R. H. Fink, and D. Uttenweiler, “Second harmonic imaging of intrinsic signals in muscle fibers in situ,” J. Biomed. Opt. 9(5), 882–892 (2004).
[Crossref] [PubMed]

Latour, G.

Le Grand, Y.

C. Odin, T. Guilbert, A. Alkilani, O. P. Boryskina, V. Fleury, and Y. Le Grand, “Collagen and myosin characterization by orientation field second harmonic microscopy,” Opt. Express 16(20), 16151–16165 (2008).
[Crossref] [PubMed]

A. Leray, L. Leroy, Y. Le Grand, C. Odin, A. Renault, V. Vié, D. Rouède, T. Mallegol, O. Mongin, M. H. V. Werts, and M. Blanchard-Desce, “Organization and orientation of amphiphilic push-pull chromophores deposited in Langmuir-Blodgett monolayers studied by second harmonic generation and atomic force microscopy,” Langmuir 20(19), 8165–8171 (2004).
[Crossref] [PubMed]

Lee, H. S.

C. K. Chou, W. L. Chen, P. T. Fwu, S. J. Lin, H. S. Lee, and C. Y. Dong, “Polarization ellipticity compensation in polarization second-harmonic generation microscopy without specimen rotation,” J. Biomed. Opt. 13(1), 014005 (2008).
[Crossref] [PubMed]

Légaré, F.

F. Légaré, C. Pfeffer, and B. R. Olsen, “The role of backscattering in SHG tissue imaging,” Biophys. J. 93(4), 1312–1320 (2007).
[Crossref] [PubMed]

Leray, A.

A. Leray, L. Leroy, Y. Le Grand, C. Odin, A. Renault, V. Vié, D. Rouède, T. Mallegol, O. Mongin, M. H. V. Werts, and M. Blanchard-Desce, “Organization and orientation of amphiphilic push-pull chromophores deposited in Langmuir-Blodgett monolayers studied by second harmonic generation and atomic force microscopy,” Langmuir 20(19), 8165–8171 (2004).
[Crossref] [PubMed]

Leroy, L.

A. Leray, L. Leroy, Y. Le Grand, C. Odin, A. Renault, V. Vié, D. Rouède, T. Mallegol, O. Mongin, M. H. V. Werts, and M. Blanchard-Desce, “Organization and orientation of amphiphilic push-pull chromophores deposited in Langmuir-Blodgett monolayers studied by second harmonic generation and atomic force microscopy,” Langmuir 20(19), 8165–8171 (2004).
[Crossref] [PubMed]

Lien, C. H.

Lin, S. J.

C. K. Chou, W. L. Chen, P. T. Fwu, S. J. Lin, H. S. Lee, and C. Y. Dong, “Polarization ellipticity compensation in polarization second-harmonic generation microscopy without specimen rotation,” J. Biomed. Opt. 13(1), 014005 (2008).
[Crossref] [PubMed]

Linari, M.

V. Nucciotti, C. Stringari, L. Sacconi, F. Vanzi, L. Fusi, M. Linari, G. Piazzesi, V. Lombardi, and F. S. Pavone, “Probing myosin structural conformation in vivo by second-harmonic generation microscopy,” Proc. Natl. Acad. Sci. U.S.A. 107(17), 7763–7768 (2010).
[Crossref] [PubMed]

Liu, F.

Liu, W.

W. Liu, N. Raben, and E. Ralston, “Quantitative evaluation of skeletal muscle defects in second harmonic generation images,” J. Biomed. Opt. 18(2), 026005 (2013).
[Crossref] [PubMed]

Llewellyn, M. E.

M. E. Llewellyn, R. P. Barretto, S. L. Delp, and M. J. Schnitzer, “Minimally invasive high-speed imaging of sarcomere contractile dynamics in mice and humans,” Nature 454(7205), 784–788 (2008).
[PubMed]

Lombardi, V.

V. Nucciotti, C. Stringari, L. Sacconi, F. Vanzi, L. Fusi, M. Linari, G. Piazzesi, V. Lombardi, and F. S. Pavone, “Probing myosin structural conformation in vivo by second-harmonic generation microscopy,” Proc. Natl. Acad. Sci. U.S.A. 107(17), 7763–7768 (2010).
[Crossref] [PubMed]

Loza-Alvarez, P.

Mallegol, T.

A. Leray, L. Leroy, Y. Le Grand, C. Odin, A. Renault, V. Vié, D. Rouède, T. Mallegol, O. Mongin, M. H. V. Werts, and M. Blanchard-Desce, “Organization and orientation of amphiphilic push-pull chromophores deposited in Langmuir-Blodgett monolayers studied by second harmonic generation and atomic force microscopy,” Langmuir 20(19), 8165–8171 (2004).
[Crossref] [PubMed]

Malone, C. J.

P. J. Campagnola, A. C. Millard, M. Terasaki, P. E. Hoppe, C. J. Malone, and W. A. Mohler, “Three-dimensional high-resolution second-harmonic generation imaging of endogenous structural proteins in biological tissues,” Biophys. J. 82(1), 493–508 (2002).
[Crossref] [PubMed]

Mazumder, N.

N. Mazumder, C. W. Hu, J. Qiu, M. R. Foreman, C. M. Romero, P. Török, and F. J. Kao, “Revealing molecular structure and orientation with Stokes vector resolved second harmonic generation microscopy,” Methods 66(2), 237–245 (2014).
[Crossref] [PubMed]

Millard, A. C.

S. V. Plotnikov, A. C. Millard, P. J. Campagnola, and W. A. Mohler, “Characterization of the myosin-based source for second-harmonic generation from muscle sarcomeres,” Biophys. J. 90(2), 693–703 (2006).
[Crossref] [PubMed]

P. J. Campagnola, A. C. Millard, M. Terasaki, P. E. Hoppe, C. J. Malone, and W. A. Mohler, “Three-dimensional high-resolution second-harmonic generation imaging of endogenous structural proteins in biological tissues,” Biophys. J. 82(1), 493–508 (2002).
[Crossref] [PubMed]

Mohler, W. A.

S. V. Plotnikov, A. M. Kenny, S. J. Walsh, B. Zubrowski, C. Joseph, V. L. Scranton, G. A. Kuchel, D. Dauser, M. Xu, C. C. Pilbeam, D. J. Adams, R. P. Dougherty, P. J. Campagnola, and W. A. Mohler, “Measurement of muscle disease by quantitative second-harmonic generation imaging,” J. Biomed. Opt. 13(4), 044018 (2008).
[Crossref] [PubMed]

S. V. Plotnikov, A. C. Millard, P. J. Campagnola, and W. A. Mohler, “Characterization of the myosin-based source for second-harmonic generation from muscle sarcomeres,” Biophys. J. 90(2), 693–703 (2006).
[Crossref] [PubMed]

P. J. Campagnola, A. C. Millard, M. Terasaki, P. E. Hoppe, C. J. Malone, and W. A. Mohler, “Three-dimensional high-resolution second-harmonic generation imaging of endogenous structural proteins in biological tissues,” Biophys. J. 82(1), 493–508 (2002).
[Crossref] [PubMed]

Mongin, O.

A. Leray, L. Leroy, Y. Le Grand, C. Odin, A. Renault, V. Vié, D. Rouède, T. Mallegol, O. Mongin, M. H. V. Werts, and M. Blanchard-Desce, “Organization and orientation of amphiphilic push-pull chromophores deposited in Langmuir-Blodgett monolayers studied by second harmonic generation and atomic force microscopy,” Langmuir 20(19), 8165–8171 (2004).
[Crossref] [PubMed]

Morrison, J. L.

S. J. Wallace, J. L. Morrison, K. J. Botting, and T. W. Kee, “Second-harmonic generation and two-photon-excited autofluorescence microscopy of cardiomyocytes: quantification of cell volume and myosin filaments,” J. Biomed. Opt. 13(6), 064018 (2008).
[Crossref] [PubMed]

Munhoz, F.

Nucciotti, V.

V. Nucciotti, C. Stringari, L. Sacconi, F. Vanzi, L. Fusi, M. Linari, G. Piazzesi, V. Lombardi, and F. S. Pavone, “Probing myosin structural conformation in vivo by second-harmonic generation microscopy,” Proc. Natl. Acad. Sci. U.S.A. 107(17), 7763–7768 (2010).
[Crossref] [PubMed]

Odin, C.

C. Odin, T. Guilbert, A. Alkilani, O. P. Boryskina, V. Fleury, and Y. Le Grand, “Collagen and myosin characterization by orientation field second harmonic microscopy,” Opt. Express 16(20), 16151–16165 (2008).
[Crossref] [PubMed]

A. Leray, L. Leroy, Y. Le Grand, C. Odin, A. Renault, V. Vié, D. Rouède, T. Mallegol, O. Mongin, M. H. V. Werts, and M. Blanchard-Desce, “Organization and orientation of amphiphilic push-pull chromophores deposited in Langmuir-Blodgett monolayers studied by second harmonic generation and atomic force microscopy,” Langmuir 20(19), 8165–8171 (2004).
[Crossref] [PubMed]

Olsen, B. R.

F. Légaré, C. Pfeffer, and B. R. Olsen, “The role of backscattering in SHG tissue imaging,” Biophys. J. 93(4), 1312–1320 (2007).
[Crossref] [PubMed]

Pavone, F. S.

V. Nucciotti, C. Stringari, L. Sacconi, F. Vanzi, L. Fusi, M. Linari, G. Piazzesi, V. Lombardi, and F. S. Pavone, “Probing myosin structural conformation in vivo by second-harmonic generation microscopy,” Proc. Natl. Acad. Sci. U.S.A. 107(17), 7763–7768 (2010).
[Crossref] [PubMed]

Pfeffer, C.

F. Légaré, C. Pfeffer, and B. R. Olsen, “The role of backscattering in SHG tissue imaging,” Biophys. J. 93(4), 1312–1320 (2007).
[Crossref] [PubMed]

Piazzesi, G.

V. Nucciotti, C. Stringari, L. Sacconi, F. Vanzi, L. Fusi, M. Linari, G. Piazzesi, V. Lombardi, and F. S. Pavone, “Probing myosin structural conformation in vivo by second-harmonic generation microscopy,” Proc. Natl. Acad. Sci. U.S.A. 107(17), 7763–7768 (2010).
[Crossref] [PubMed]

Pilbeam, C. C.

S. V. Plotnikov, A. M. Kenny, S. J. Walsh, B. Zubrowski, C. Joseph, V. L. Scranton, G. A. Kuchel, D. Dauser, M. Xu, C. C. Pilbeam, D. J. Adams, R. P. Dougherty, P. J. Campagnola, and W. A. Mohler, “Measurement of muscle disease by quantitative second-harmonic generation imaging,” J. Biomed. Opt. 13(4), 044018 (2008).
[Crossref] [PubMed]

Pittis, M. G.

E. Ralston, B. Swaim, M. Czapiga, W. L. Hwu, Y. H. Chien, M. G. Pittis, B. Bembi, O. Schwartz, P. Plotz, and N. Raben, “Detection and imaging of non-contractile inclusions and sarcomeric anomalies in skeletal muscle by second harmonic generation combined with two-photon excited fluorescence,” J. Struct. Biol. 162(3), 500–508 (2008).
[Crossref] [PubMed]

Planas, A. M.

Plotnikov, S. V.

S. V. Plotnikov, A. M. Kenny, S. J. Walsh, B. Zubrowski, C. Joseph, V. L. Scranton, G. A. Kuchel, D. Dauser, M. Xu, C. C. Pilbeam, D. J. Adams, R. P. Dougherty, P. J. Campagnola, and W. A. Mohler, “Measurement of muscle disease by quantitative second-harmonic generation imaging,” J. Biomed. Opt. 13(4), 044018 (2008).
[Crossref] [PubMed]

S. V. Plotnikov, A. C. Millard, P. J. Campagnola, and W. A. Mohler, “Characterization of the myosin-based source for second-harmonic generation from muscle sarcomeres,” Biophys. J. 90(2), 693–703 (2006).
[Crossref] [PubMed]

Plotz, P.

E. Ralston, B. Swaim, M. Czapiga, W. L. Hwu, Y. H. Chien, M. G. Pittis, B. Bembi, O. Schwartz, P. Plotz, and N. Raben, “Detection and imaging of non-contractile inclusions and sarcomeric anomalies in skeletal muscle by second harmonic generation combined with two-photon excited fluorescence,” J. Struct. Biol. 162(3), 500–508 (2008).
[Crossref] [PubMed]

Psilodimitrakopoulos, S.

Qiu, J.

N. Mazumder, C. W. Hu, J. Qiu, M. R. Foreman, C. M. Romero, P. Török, and F. J. Kao, “Revealing molecular structure and orientation with Stokes vector resolved second harmonic generation microscopy,” Methods 66(2), 237–245 (2014).
[Crossref] [PubMed]

Raben, N.

W. Liu, N. Raben, and E. Ralston, “Quantitative evaluation of skeletal muscle defects in second harmonic generation images,” J. Biomed. Opt. 18(2), 026005 (2013).
[Crossref] [PubMed]

E. Ralston, B. Swaim, M. Czapiga, W. L. Hwu, Y. H. Chien, M. G. Pittis, B. Bembi, O. Schwartz, P. Plotz, and N. Raben, “Detection and imaging of non-contractile inclusions and sarcomeric anomalies in skeletal muscle by second harmonic generation combined with two-photon excited fluorescence,” J. Struct. Biol. 162(3), 500–508 (2008).
[Crossref] [PubMed]

Ralston, E.

W. Liu, N. Raben, and E. Ralston, “Quantitative evaluation of skeletal muscle defects in second harmonic generation images,” J. Biomed. Opt. 18(2), 026005 (2013).
[Crossref] [PubMed]

E. Ralston, B. Swaim, M. Czapiga, W. L. Hwu, Y. H. Chien, M. G. Pittis, B. Bembi, O. Schwartz, P. Plotz, and N. Raben, “Detection and imaging of non-contractile inclusions and sarcomeric anomalies in skeletal muscle by second harmonic generation combined with two-photon excited fluorescence,” J. Struct. Biol. 162(3), 500–508 (2008).
[Crossref] [PubMed]

Recher, G.

Renault, A.

A. Leray, L. Leroy, Y. Le Grand, C. Odin, A. Renault, V. Vié, D. Rouède, T. Mallegol, O. Mongin, M. H. V. Werts, and M. Blanchard-Desce, “Organization and orientation of amphiphilic push-pull chromophores deposited in Langmuir-Blodgett monolayers studied by second harmonic generation and atomic force microscopy,” Langmuir 20(19), 8165–8171 (2004).
[Crossref] [PubMed]

Richard, P.

Romero, C. M.

N. Mazumder, C. W. Hu, J. Qiu, M. R. Foreman, C. M. Romero, P. Török, and F. J. Kao, “Revealing molecular structure and orientation with Stokes vector resolved second harmonic generation microscopy,” Methods 66(2), 237–245 (2014).
[Crossref] [PubMed]

Roth, S.

S. Roth and I. Freund, “Second harmonic generation in collagen,” J. Chem. Phys. 70(4), 1637–1643 (1979).
[Crossref]

Rouède, D.

G. Recher, P. Coumailleau, D. Rouède, and F. Tiaho, “Structural origin of the drastic modification of second harmonic generation intensity pattern occurring in tail muscles of climax stages xenopus tadpoles,” J. Struct. Biol. 190(1), 1–10 (2015).
[Crossref] [PubMed]

D. Rouède, J. J. Bellanger, J. Bomo, G. Baffet, and F. Tiaho, “Linear least square (LLS) method for pixel-resolution analysis of polarization dependent SHG images of collagen fibrils,” Opt. Express 23(10), 13309–13319 (2015).
[Crossref] [PubMed]

G. Recher, D. Rouède, P. Richard, A. Simon, J. J. Bellanger, and F. Tiaho, “Three distinct sarcomeric patterns of skeletal muscle revealed by SHG and TPEF microscopy,” Opt. Express 17(22), 19763–19777 (2009).
[Crossref] [PubMed]

F. Tiaho, G. Recher, and D. Rouède, “Estimation of helical angles of myosin and collagen by second harmonic generation imaging microscopy,” Opt. Express 15(19), 12286–12295 (2007).
[Crossref] [PubMed]

A. Leray, L. Leroy, Y. Le Grand, C. Odin, A. Renault, V. Vié, D. Rouède, T. Mallegol, O. Mongin, M. H. V. Werts, and M. Blanchard-Desce, “Organization and orientation of amphiphilic push-pull chromophores deposited in Langmuir-Blodgett monolayers studied by second harmonic generation and atomic force microscopy,” Langmuir 20(19), 8165–8171 (2004).
[Crossref] [PubMed]

Rüdel, R.

J. R. Blinks, R. Rüdel, and S. R. Taylor, “Calcium transients in isolated amphibian skeletal muscle fibres: detection with aequorin,” J. Physiol. 277(1), 291–323 (1978).
[Crossref] [PubMed]

Sacconi, L.

V. Nucciotti, C. Stringari, L. Sacconi, F. Vanzi, L. Fusi, M. Linari, G. Piazzesi, V. Lombardi, and F. S. Pavone, “Probing myosin structural conformation in vivo by second-harmonic generation microscopy,” Proc. Natl. Acad. Sci. U.S.A. 107(17), 7763–7768 (2010).
[Crossref] [PubMed]

Sacks, P.

Sandkuijl, D.

A. E. Tuer, M. K. Akens, S. Krouglov, D. Sandkuijl, B. C. Wilson, C. M. Whyne, and V. Barzda, “Hierarchical model of fibrillar collagen organization for interpreting the second-order susceptibility tensors in biological tissue,” Biophys. J. 103(10), 2093–2105 (2012).
[Crossref] [PubMed]

Santos, S. I.

S. Psilodimitrakopoulos, S. I. Santos, I. Amat-Roldan, A. K. Thayil, D. Artigas, and P. Loza-Alvarez, “In vivo, pixel-resolution mapping of thick filaments’ orientation in nonfibrilar muscle using polarization-sensitive second harmonic generation microscopy,” J. Biomed. Opt. 14(1), 014001 (2009).
[Crossref] [PubMed]

Sauviat, M. P.

Savage, H.

Schanne-Klein, M. C.

Schantz, S.

Schlup, P.

Schnitzer, M. J.

M. E. Llewellyn, R. P. Barretto, S. L. Delp, and M. J. Schnitzer, “Minimally invasive high-speed imaging of sarcomere contractile dynamics in mice and humans,” Nature 454(7205), 784–788 (2008).
[PubMed]

Schürmann, S.

A. Wingert, H. Seim, S. Schürmann, R. H. A. Fink, and M. Vogel, “Signal Efficiency in Gradient Index Lens Based Two Photon Microscopy,” Open J. Biophys. 3(1), 43–50 (2013).
[Crossref]

S. Schürmann, F. von Wegner, R. H. Fink, O. Friedrich, and M. Vogel, “Second harmonic generation microscopy probes different states of motor protein interaction in myofibrils,” Biophys. J. 99(6), 1842–1851 (2010).
[Crossref] [PubMed]

Schwartz, O.

E. Ralston, B. Swaim, M. Czapiga, W. L. Hwu, Y. H. Chien, M. G. Pittis, B. Bembi, O. Schwartz, P. Plotz, and N. Raben, “Detection and imaging of non-contractile inclusions and sarcomeric anomalies in skeletal muscle by second harmonic generation combined with two-photon excited fluorescence,” J. Struct. Biol. 162(3), 500–508 (2008).
[Crossref] [PubMed]

Scranton, V. L.

S. V. Plotnikov, A. M. Kenny, S. J. Walsh, B. Zubrowski, C. Joseph, V. L. Scranton, G. A. Kuchel, D. Dauser, M. Xu, C. C. Pilbeam, D. J. Adams, R. P. Dougherty, P. J. Campagnola, and W. A. Mohler, “Measurement of muscle disease by quantitative second-harmonic generation imaging,” J. Biomed. Opt. 13(4), 044018 (2008).
[Crossref] [PubMed]

Seim, H.

A. Wingert, H. Seim, S. Schürmann, R. H. A. Fink, and M. Vogel, “Signal Efficiency in Gradient Index Lens Based Two Photon Microscopy,” Open J. Biophys. 3(1), 43–50 (2013).
[Crossref]

Simon, A.

Smith, D. R.

Soria, G.

Stringari, C.

V. Nucciotti, C. Stringari, L. Sacconi, F. Vanzi, L. Fusi, M. Linari, G. Piazzesi, V. Lombardi, and F. S. Pavone, “Probing myosin structural conformation in vivo by second-harmonic generation microscopy,” Proc. Natl. Acad. Sci. U.S.A. 107(17), 7763–7768 (2010).
[Crossref] [PubMed]

Swaim, B.

E. Ralston, B. Swaim, M. Czapiga, W. L. Hwu, Y. H. Chien, M. G. Pittis, B. Bembi, O. Schwartz, P. Plotz, and N. Raben, “Detection and imaging of non-contractile inclusions and sarcomeric anomalies in skeletal muscle by second harmonic generation combined with two-photon excited fluorescence,” J. Struct. Biol. 162(3), 500–508 (2008).
[Crossref] [PubMed]

Taylor, S. R.

J. R. Blinks, R. Rüdel, and S. R. Taylor, “Calcium transients in isolated amphibian skeletal muscle fibres: detection with aequorin,” J. Physiol. 277(1), 291–323 (1978).
[Crossref] [PubMed]

Terasaki, M.

P. J. Campagnola, A. C. Millard, M. Terasaki, P. E. Hoppe, C. J. Malone, and W. A. Mohler, “Three-dimensional high-resolution second-harmonic generation imaging of endogenous structural proteins in biological tissues,” Biophys. J. 82(1), 493–508 (2002).
[Crossref] [PubMed]

Teulon, C.

Thayil, A. K.

S. Psilodimitrakopoulos, S. I. Santos, I. Amat-Roldan, A. K. Thayil, D. Artigas, and P. Loza-Alvarez, “In vivo, pixel-resolution mapping of thick filaments’ orientation in nonfibrilar muscle using polarization-sensitive second harmonic generation microscopy,” J. Biomed. Opt. 14(1), 014001 (2009).
[Crossref] [PubMed]

Tiaho, F.

Tilbury, K.

Török, P.

N. Mazumder, C. W. Hu, J. Qiu, M. R. Foreman, C. M. Romero, P. Török, and F. J. Kao, “Revealing molecular structure and orientation with Stokes vector resolved second harmonic generation microscopy,” Methods 66(2), 237–245 (2014).
[Crossref] [PubMed]

Tuer, A. E.

A. E. Tuer, M. K. Akens, S. Krouglov, D. Sandkuijl, B. C. Wilson, C. M. Whyne, and V. Barzda, “Hierarchical model of fibrillar collagen organization for interpreting the second-order susceptibility tensors in biological tissue,” Biophys. J. 103(10), 2093–2105 (2012).
[Crossref] [PubMed]

Uttenweiler, D.

M. Both, M. Vogel, O. Friedrich, F. von Wegner, T. Künsting, R. H. Fink, and D. Uttenweiler, “Second harmonic imaging of intrinsic signals in muscle fibers in situ,” J. Biomed. Opt. 9(5), 882–892 (2004).
[Crossref] [PubMed]

M. Both, M. Vogel, R. H. Fink, and D. Uttenweiler, “Second harmonic generation imaging in muscle fibers,” Proc. SPIE 5139, 112–120 (2003).
[Crossref]

Vanzi, F.

V. Nucciotti, C. Stringari, L. Sacconi, F. Vanzi, L. Fusi, M. Linari, G. Piazzesi, V. Lombardi, and F. S. Pavone, “Probing myosin structural conformation in vivo by second-harmonic generation microscopy,” Proc. Natl. Acad. Sci. U.S.A. 107(17), 7763–7768 (2010).
[Crossref] [PubMed]

Vié, V.

A. Leray, L. Leroy, Y. Le Grand, C. Odin, A. Renault, V. Vié, D. Rouède, T. Mallegol, O. Mongin, M. H. V. Werts, and M. Blanchard-Desce, “Organization and orientation of amphiphilic push-pull chromophores deposited in Langmuir-Blodgett monolayers studied by second harmonic generation and atomic force microscopy,” Langmuir 20(19), 8165–8171 (2004).
[Crossref] [PubMed]

Vogel, M.

A. Wingert, H. Seim, S. Schürmann, R. H. A. Fink, and M. Vogel, “Signal Efficiency in Gradient Index Lens Based Two Photon Microscopy,” Open J. Biophys. 3(1), 43–50 (2013).
[Crossref]

S. Schürmann, F. von Wegner, R. H. Fink, O. Friedrich, and M. Vogel, “Second harmonic generation microscopy probes different states of motor protein interaction in myofibrils,” Biophys. J. 99(6), 1842–1851 (2010).
[Crossref] [PubMed]

M. Both, M. Vogel, O. Friedrich, F. von Wegner, T. Künsting, R. H. Fink, and D. Uttenweiler, “Second harmonic imaging of intrinsic signals in muscle fibers in situ,” J. Biomed. Opt. 9(5), 882–892 (2004).
[Crossref] [PubMed]

M. Both, M. Vogel, R. H. Fink, and D. Uttenweiler, “Second harmonic generation imaging in muscle fibers,” Proc. SPIE 5139, 112–120 (2003).
[Crossref]

von Wegner, F.

S. Schürmann, F. von Wegner, R. H. Fink, O. Friedrich, and M. Vogel, “Second harmonic generation microscopy probes different states of motor protein interaction in myofibrils,” Biophys. J. 99(6), 1842–1851 (2010).
[Crossref] [PubMed]

M. Both, M. Vogel, O. Friedrich, F. von Wegner, T. Künsting, R. H. Fink, and D. Uttenweiler, “Second harmonic imaging of intrinsic signals in muscle fibers in situ,” J. Biomed. Opt. 9(5), 882–892 (2004).
[Crossref] [PubMed]

Wallace, S. J.

S. J. Wallace, J. L. Morrison, K. J. Botting, and T. W. Kee, “Second-harmonic generation and two-photon-excited autofluorescence microscopy of cardiomyocytes: quantification of cell volume and myosin filaments,” J. Biomed. Opt. 13(6), 064018 (2008).
[Crossref] [PubMed]

Walsh, S. J.

S. V. Plotnikov, A. M. Kenny, S. J. Walsh, B. Zubrowski, C. Joseph, V. L. Scranton, G. A. Kuchel, D. Dauser, M. Xu, C. C. Pilbeam, D. J. Adams, R. P. Dougherty, P. J. Campagnola, and W. A. Mohler, “Measurement of muscle disease by quantitative second-harmonic generation imaging,” J. Biomed. Opt. 13(4), 044018 (2008).
[Crossref] [PubMed]

Weber, C.

A. Buttgereit, C. Weber, C. S. Garbe, and O. Friedrich, “From chaos to split-ups--SHG microscopy reveals a specific remodelling mechanism in ageing dystrophic muscle,” J. Pathol. 229(3), 477–485 (2013).
[Crossref] [PubMed]

Werts, M. H. V.

A. Leray, L. Leroy, Y. Le Grand, C. Odin, A. Renault, V. Vié, D. Rouède, T. Mallegol, O. Mongin, M. H. V. Werts, and M. Blanchard-Desce, “Organization and orientation of amphiphilic push-pull chromophores deposited in Langmuir-Blodgett monolayers studied by second harmonic generation and atomic force microscopy,” Langmuir 20(19), 8165–8171 (2004).
[Crossref] [PubMed]

Whyne, C. M.

A. E. Tuer, M. K. Akens, S. Krouglov, D. Sandkuijl, B. C. Wilson, C. M. Whyne, and V. Barzda, “Hierarchical model of fibrillar collagen organization for interpreting the second-order susceptibility tensors in biological tissue,” Biophys. J. 103(10), 2093–2105 (2012).
[Crossref] [PubMed]

Wilson, B. C.

A. E. Tuer, M. K. Akens, S. Krouglov, D. Sandkuijl, B. C. Wilson, C. M. Whyne, and V. Barzda, “Hierarchical model of fibrillar collagen organization for interpreting the second-order susceptibility tensors in biological tissue,” Biophys. J. 103(10), 2093–2105 (2012).
[Crossref] [PubMed]

Wingert, A.

A. Wingert, H. Seim, S. Schürmann, R. H. A. Fink, and M. Vogel, “Signal Efficiency in Gradient Index Lens Based Two Photon Microscopy,” Open J. Biophys. 3(1), 43–50 (2013).
[Crossref]

Winters, D. G.

Xu, M.

S. V. Plotnikov, A. M. Kenny, S. J. Walsh, B. Zubrowski, C. Joseph, V. L. Scranton, G. A. Kuchel, D. Dauser, M. Xu, C. C. Pilbeam, D. J. Adams, R. P. Dougherty, P. J. Campagnola, and W. A. Mohler, “Measurement of muscle disease by quantitative second-harmonic generation imaging,” J. Biomed. Opt. 13(4), 044018 (2008).
[Crossref] [PubMed]

Zhadin, N.

Zubrowski, B.

S. V. Plotnikov, A. M. Kenny, S. J. Walsh, B. Zubrowski, C. Joseph, V. L. Scranton, G. A. Kuchel, D. Dauser, M. Xu, C. C. Pilbeam, D. J. Adams, R. P. Dougherty, P. J. Campagnola, and W. A. Mohler, “Measurement of muscle disease by quantitative second-harmonic generation imaging,” J. Biomed. Opt. 13(4), 044018 (2008).
[Crossref] [PubMed]

Adv. Opt. Photonics (1)

S. Brasselet, “Polarization-resolved nonlinear microscopy: application to structural molecular and biological imaging,” Adv. Opt. Photonics 3(3), 205–271 (2011).
[Crossref]

Biomed. Opt. Express (3)

Biophys. J. (5)

A. E. Tuer, M. K. Akens, S. Krouglov, D. Sandkuijl, B. C. Wilson, C. M. Whyne, and V. Barzda, “Hierarchical model of fibrillar collagen organization for interpreting the second-order susceptibility tensors in biological tissue,” Biophys. J. 103(10), 2093–2105 (2012).
[Crossref] [PubMed]

F. Légaré, C. Pfeffer, and B. R. Olsen, “The role of backscattering in SHG tissue imaging,” Biophys. J. 93(4), 1312–1320 (2007).
[Crossref] [PubMed]

S. V. Plotnikov, A. C. Millard, P. J. Campagnola, and W. A. Mohler, “Characterization of the myosin-based source for second-harmonic generation from muscle sarcomeres,” Biophys. J. 90(2), 693–703 (2006).
[Crossref] [PubMed]

S. Schürmann, F. von Wegner, R. H. Fink, O. Friedrich, and M. Vogel, “Second harmonic generation microscopy probes different states of motor protein interaction in myofibrils,” Biophys. J. 99(6), 1842–1851 (2010).
[Crossref] [PubMed]

P. J. Campagnola, A. C. Millard, M. Terasaki, P. E. Hoppe, C. J. Malone, and W. A. Mohler, “Three-dimensional high-resolution second-harmonic generation imaging of endogenous structural proteins in biological tissues,” Biophys. J. 82(1), 493–508 (2002).
[Crossref] [PubMed]

J. Biomed. Opt. (6)

S. V. Plotnikov, A. M. Kenny, S. J. Walsh, B. Zubrowski, C. Joseph, V. L. Scranton, G. A. Kuchel, D. Dauser, M. Xu, C. C. Pilbeam, D. J. Adams, R. P. Dougherty, P. J. Campagnola, and W. A. Mohler, “Measurement of muscle disease by quantitative second-harmonic generation imaging,” J. Biomed. Opt. 13(4), 044018 (2008).
[Crossref] [PubMed]

W. Liu, N. Raben, and E. Ralston, “Quantitative evaluation of skeletal muscle defects in second harmonic generation images,” J. Biomed. Opt. 18(2), 026005 (2013).
[Crossref] [PubMed]

M. Both, M. Vogel, O. Friedrich, F. von Wegner, T. Künsting, R. H. Fink, and D. Uttenweiler, “Second harmonic imaging of intrinsic signals in muscle fibers in situ,” J. Biomed. Opt. 9(5), 882–892 (2004).
[Crossref] [PubMed]

S. J. Wallace, J. L. Morrison, K. J. Botting, and T. W. Kee, “Second-harmonic generation and two-photon-excited autofluorescence microscopy of cardiomyocytes: quantification of cell volume and myosin filaments,” J. Biomed. Opt. 13(6), 064018 (2008).
[Crossref] [PubMed]

C. K. Chou, W. L. Chen, P. T. Fwu, S. J. Lin, H. S. Lee, and C. Y. Dong, “Polarization ellipticity compensation in polarization second-harmonic generation microscopy without specimen rotation,” J. Biomed. Opt. 13(1), 014005 (2008).
[Crossref] [PubMed]

S. Psilodimitrakopoulos, S. I. Santos, I. Amat-Roldan, A. K. Thayil, D. Artigas, and P. Loza-Alvarez, “In vivo, pixel-resolution mapping of thick filaments’ orientation in nonfibrilar muscle using polarization-sensitive second harmonic generation microscopy,” J. Biomed. Opt. 14(1), 014001 (2009).
[Crossref] [PubMed]

J. Chem. Phys. (1)

S. Roth and I. Freund, “Second harmonic generation in collagen,” J. Chem. Phys. 70(4), 1637–1643 (1979).
[Crossref]

J. Pathol. (1)

A. Buttgereit, C. Weber, C. S. Garbe, and O. Friedrich, “From chaos to split-ups--SHG microscopy reveals a specific remodelling mechanism in ageing dystrophic muscle,” J. Pathol. 229(3), 477–485 (2013).
[Crossref] [PubMed]

J. Physiol. (2)

O. Friedrich, T. Ehmer, and R. H. A. Fink, “Calcium currents during contraction and shortening in enzymatically isolated murine skeletal muscle fibres,” J. Physiol. 517(3), 757–770 (1999).
[Crossref] [PubMed]

J. R. Blinks, R. Rüdel, and S. R. Taylor, “Calcium transients in isolated amphibian skeletal muscle fibres: detection with aequorin,” J. Physiol. 277(1), 291–323 (1978).
[Crossref] [PubMed]

J. Struct. Biol. (2)

G. Recher, P. Coumailleau, D. Rouède, and F. Tiaho, “Structural origin of the drastic modification of second harmonic generation intensity pattern occurring in tail muscles of climax stages xenopus tadpoles,” J. Struct. Biol. 190(1), 1–10 (2015).
[Crossref] [PubMed]

E. Ralston, B. Swaim, M. Czapiga, W. L. Hwu, Y. H. Chien, M. G. Pittis, B. Bembi, O. Schwartz, P. Plotz, and N. Raben, “Detection and imaging of non-contractile inclusions and sarcomeric anomalies in skeletal muscle by second harmonic generation combined with two-photon excited fluorescence,” J. Struct. Biol. 162(3), 500–508 (2008).
[Crossref] [PubMed]

Langmuir (1)

A. Leray, L. Leroy, Y. Le Grand, C. Odin, A. Renault, V. Vié, D. Rouède, T. Mallegol, O. Mongin, M. H. V. Werts, and M. Blanchard-Desce, “Organization and orientation of amphiphilic push-pull chromophores deposited in Langmuir-Blodgett monolayers studied by second harmonic generation and atomic force microscopy,” Langmuir 20(19), 8165–8171 (2004).
[Crossref] [PubMed]

Methods (1)

N. Mazumder, C. W. Hu, J. Qiu, M. R. Foreman, C. M. Romero, P. Török, and F. J. Kao, “Revealing molecular structure and orientation with Stokes vector resolved second harmonic generation microscopy,” Methods 66(2), 237–245 (2014).
[Crossref] [PubMed]

Nature (1)

M. E. Llewellyn, R. P. Barretto, S. L. Delp, and M. J. Schnitzer, “Minimally invasive high-speed imaging of sarcomere contractile dynamics in mice and humans,” Nature 454(7205), 784–788 (2008).
[PubMed]

Open J. Biophys. (1)

A. Wingert, H. Seim, S. Schürmann, R. H. A. Fink, and M. Vogel, “Signal Efficiency in Gradient Index Lens Based Two Photon Microscopy,” Open J. Biophys. 3(1), 43–50 (2013).
[Crossref]

Opt. Express (8)

C. Teulon, I. Gusachenko, G. Latour, and M. C. Schanne-Klein, “Theoretical, numerical and experimental study of geometrical parameters that affect anisotropy measurements in polarization-resolved SHG microscopy,” Opt. Express 23(7), 9313–9328 (2015).
[Crossref] [PubMed]

D. Rouède, J. J. Bellanger, J. Bomo, G. Baffet, and F. Tiaho, “Linear least square (LLS) method for pixel-resolution analysis of polarization dependent SHG images of collagen fibrils,” Opt. Express 23(10), 13309–13319 (2015).
[Crossref] [PubMed]

F. Tiaho, G. Recher, and D. Rouède, “Estimation of helical angles of myosin and collagen by second harmonic generation imaging microscopy,” Opt. Express 15(19), 12286–12295 (2007).
[Crossref] [PubMed]

C. Odin, T. Guilbert, A. Alkilani, O. P. Boryskina, V. Fleury, and Y. Le Grand, “Collagen and myosin characterization by orientation field second harmonic microscopy,” Opt. Express 16(20), 16151–16165 (2008).
[Crossref] [PubMed]

S. Psilodimitrakopoulos, D. Artigas, G. Soria, I. Amat-Roldan, A. M. Planas, and P. Loza-Alvarez, “Quantitative discrimination between endogenous SHG sources in mammalian tissue, based on their polarization response,” Opt. Express 17(12), 10168–10176 (2009).
[Crossref] [PubMed]

G. Recher, D. Rouède, P. Richard, A. Simon, J. J. Bellanger, and F. Tiaho, “Three distinct sarcomeric patterns of skeletal muscle revealed by SHG and TPEF microscopy,” Opt. Express 17(22), 19763–19777 (2009).
[Crossref] [PubMed]

S. Brasselet, D. Aït-Belkacem, A. Gasecka, F. Munhoz, S. Brustlein, and S. Brasselet, “Influence of birefringence on polarization resolved nonlinear microscopy and collagen SHG structural imaging,” Opt. Express 18(14), 14859–14870 (2010).
[Crossref] [PubMed]

I. Gusachenko, G. Latour, and M. C. Schanne-Klein, “Polarization-resolved Second Harmonic microscopy in anisotropic thick tissues,” Opt. Express 18(18), 19339–19352 (2010).
[Crossref] [PubMed]

Opt. Lett. (2)

Phys. Rev. (1)

D. A. Kleinman, “Nonlinear dielectric polarization in optical media,” Phys. Rev. 126(6), 1977–1979 (1962).
[Crossref]

Proc. Natl. Acad. Sci. U.S.A. (1)

V. Nucciotti, C. Stringari, L. Sacconi, F. Vanzi, L. Fusi, M. Linari, G. Piazzesi, V. Lombardi, and F. S. Pavone, “Probing myosin structural conformation in vivo by second-harmonic generation microscopy,” Proc. Natl. Acad. Sci. U.S.A. 107(17), 7763–7768 (2010).
[Crossref] [PubMed]

Proc. SPIE (1)

M. Both, M. Vogel, R. H. Fink, and D. Uttenweiler, “Second harmonic generation imaging in muscle fibers,” Proc. SPIE 5139, 112–120 (2003).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 (A) Setup configuration prepared to detect the Ix and Iy components of the SHG signal. (B) Sample image of the Ix SHG signal generated in a skinned EDL fiber bundle in relaxed state with a sample ROI (marked in yellow). (C) Sample image of the Iy SHG signal generated in a resting intact IO fiber with a sample ROI. For visualization purposes, pixels with very large gray values are displayed in white (occurrence <0.01% of total number of pixels).
Fig. 2
Fig. 2 Measurement results gathered with method #1. (A) Relative change of the tensor components χ(xxx) (blue) and χ(xyy) (green) following a conformational change in EDL fiber bundles from rigor to relaxed state. Mean values of the ratios were 2.3 ± 0.4 (mean ± standard deviation) for the χ(xxx) and 1.5 ± 0.2 for the χ(xyy) tensor component (see Eq. (4), the rigor state is defined as S2). (B) Control values of γ for relaxed (black dots) and rigor state (red dots) of the same ROIs calculated with Eq. (8).
Fig. 3
Fig. 3 Measurement results gathered with method #2 (single angle polarimetric approach) at a polarization angle of 18°. (A) Parameter γ on EDL fiber bundles in relaxed and rigor state. Results were 0.45 ± 0.08 (mean ± standard deviation) for relaxed state (black line) and 0.70 ± 0.08 for rigor state (red line), respectively. (B) Control values for γ: 0.45 ± 0.04 for relaxed state, 0.75 ± 0.06 for rigor state.
Fig. 4
Fig. 4 Analysis of the impact of sideways shifts of the sample on the parameter γ in resting IO fibers with method #2 for angular errors of −10° to + 10°: the polarization angle and the PBS were simultaneously turned from + 10 to −10°. (A) Mean values and standard deviations of parameter γ at different angular errors of the sample (black) and the modeled values γ* (red) calculated with Eq. (7) assuming an inaccuracy of −1.5° for the polarization angle and −2° for the PBS and using the γ(0°) value of the experimental data. Ix and Iy were calculated with Eq. (2) by setting Bχ2(xyy) = 1. (B) Relative deviation of γ from γ(0°). (C) Mean values and standard deviations of the Ix and Iy signal. (D) Normalized values of the model for (Ix)* and (Iy)* corresponding to the modeled values in panel A.
Fig. 5
Fig. 5 Series of high speed line scans of an electrically stimulated IO fiber embedded in 5% low melting agarose at increasing voltages (see panels A, B, C, D) and 0.5 ms pulse duration: (A) 16V with the raw line scans for Ix and Iy (29.76µm x 512 ms), the differential γ signal (dγ, black) and differential calcium signal (dCa, red) and the Ix (blue) and Iy (green) signals. (B) Differential signals of γ and calcium for 20 V. (C) Differential signals of γ and calcium for 24 V. (D) Same as A for 28 V. dγ and Ix, Iy values were processed with a 5 point moving-window-average in all panels. For visualization purposes pixels with large gray values are displayed in white in the images (occurrence <0.1% of total number of pixels).
Fig. 6
Fig. 6 Theoretical estimation of the impact of an axial misalignment of the sample on the γ value with a simplified model assuming an oblique incident laser beam.
Fig. 7
Fig. 7 Examples of moving artifacts during contraction measured on an electrically stimulated IO fiber that was not embedded in agarose. γ signal, polarization components signals, calcium signal and Iy line scan images (29.76 µm x 512 ms) are displayed. (A) Movement to the negative direction. (B) Movement to the positive direction. γ, Ix and Iy were processed with a 5 point moving-window-average. For visualization purposes pixels with large gray values are displayed in white in the images (occurrence <0.1% of total number of pixels).

Tables (1)

Tables Icon

Table 1 Comparison of control values to the γ values (mean ± standard deviation) of resting IO fibers measured with method #2 for different polarization angles. In addition to ROIs with myosin bands perpendicular to the scan direction (denoted as “exact ROI”) ROIs with inclined bands were analyzed (denoted as “inclined ROI”).

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

P i = jk χ ijk E j E k ,
I x ( α )=B χ xyy 2 [ γ cos 2 ( α )+ sin 2 ( α ) ] 2 , I y ( α )=B χ xyy 2 [ sin( 2α ) ] 2 ,
γ= χ xxx χ xyy .
χ xxx (S2) χ xxx (S1) = I (S2) ( 0° ) I (S1) ( 0° ) , χ xyy (S2) χ xyy (S1) = I (S2) ( 90° ) I (S1) ( 90° ) .
γ (S2) γ (S1) = ( χ xxx (S2) χ xxx (S1) ) / ( χ xyy (S2) χ xyy (S1) ) .
γ=tan( α )[ 2 I x ( α ) I y ( α ) tan( α ) ].
γ * =tan( α )[ 2 I x * I y * tan( α ) ],
I x * I y * = I x cos 2 ( ΔβΔφ )+ I y sin 2 ( ΔβΔφ )+sin( 2( ΔβΔφ ) ) I x I y I x sin 2 ( ΔβΔφ )+ I y cos 2 ( ΔβΔφ )sin( 2( ΔβΔφ ) ) I x I y ,
I x = I x (α+ΔαΔφ), I y = I y (α+ΔαΔφ).
γ= I( 0° ) I( 90° ) ,
I * (0°,Δξ)=B χ xyy 2 [ (γ cos 2 (Δξ)+ sin 2 (Δξ)) 2 + sin 2 (2Δξ)], I * (90°,Δξ)=B χ xyy 2 .
χ xxx = N S β e cos³ θ e , χ xyy = 1 2 N S β e cos θ e sin² θ e .
γ= 2 tan² θ e .
β e (S2) β e (S1) = χ xxx (S2) χ xxx (S1) cos³ θ e (S1) cos³ θ e (S2) , β e (S2) β e (S1) = χ xyy (S2) χ xyy (S1) cos θ e (S1) sin² θ e (S1) cos θ e (S2) sin² θ e (S2) .

Metrics