Abstract

In order to study hemodynamic changes involved in muscular metabolism by means of time domain fNIRS, we need to discriminate in the measured signal contributions coming from different depths. Muscles are, in fact, typically located under other tissues, e.g. skin and fat. In this paper, we study the possibility to exploit a previously proposed method for analyzing time-resolved fNIRS measurements in a two-layer structure with a thin superficial layer. This method is based on the calculation of the time-dependent mean partial pathlengths. We validated it by simulating venous and arterial arm cuff occlusions and then applied it on in vivo measurements.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Method for the discrimination of superficial and deep absorption variations by time domain fNIRS

Lucia Zucchelli, Davide Contini, Rebecca Re, Alessandro Torricelli, and Lorenzo Spinelli
Biomed. Opt. Express 4(12) 2893-2910 (2013)

Separation of superficial and cerebral hemodynamics using a single distance time-domain NIRS measurement

Alexander Jelzow, Heidrun Wabnitz, Ilias Tachtsidis, Evgeniya Kirilina, Rüdiger Brühl, and Rainer Macdonald
Biomed. Opt. Express 5(5) 1465-1482 (2014)

Multi-channel medical device for time domain functional near infrared spectroscopy based on wavelength space multiplexing

Rebecca Re, Davide Contini, Massimo Turola, Lorenzo Spinelli, Lucia Zucchelli, Matteo Caffini, Rinaldo Cubeddu, and Alessandro Torricelli
Biomed. Opt. Express 4(10) 2231-2246 (2013)

References

  • View by:
  • |
  • |
  • |

  1. D. A. Boas, C. E. Elwell, M. Ferrari, and G. Taga, “Twenty years of functional near-infrared spectroscopy: introduction for the special issue,” Neuroimage 85(Pt 1), 1–5 (2014).
    [Crossref] [PubMed]
  2. M. Ferrari, M. Muthalib, and V. Quaresima, “The use of near-infrared spectroscopy in understanding skeletal muscle physiology: recent developments,” Philos Trans A Math Phys, Eng. Sci. 369(1955), 77–90 (2011).
  3. M. Ferrari, L. Mottola, and V. Quaresima, “Principles, techniques, and limitations of near infrared spectroscopy,” Can. J. Appl. Physiol. 29(4), 463–487 (2004).
    [Crossref] [PubMed]
  4. F. Scholkmann, S. Kleiser, A. J. Metz, R. Zimmermann, J. Mata Pavia, U. Wolf, and M. Wolf, “A review on continuous wave functional near-infrared spectroscopy and imaging instrumentation and methodology,” Neuroimage 85(Pt 1), 6–27 (2014).
    [Crossref] [PubMed]
  5. O. Pucci, V. Toronov, and K. St Lawrence, “Measurement of the optical properties of a two-layer model of the human head using broadband near-infrared spectroscopy,” Appl. Opt. 49(32), 6324–6332 (2010).
    [Crossref] [PubMed]
  6. J. T. Elliott, M. Diop, L. B. Morrison, C. D. d’Esterre, T. Y. Lee, and K. St. Lawrence, “Quantifying cerebral blood flow in an adult pig ischemia model by a depth-resolved dynamic contrast-enhanced optical method,” NeuroImage 94, 303 (2014).
  7. A. Torricelli, D. Contini, A. Pifferi, M. Caffini, R. Re, L. Zucchelli, and L. Spinelli, “Time domain functional NIRS imaging for human brain mapping,” Neuroimage 85(Pt 1), 28–50 (2014).
    [Crossref] [PubMed]
  8. J. Steinbrink, H. Wabnitz, H. Obrig, A. Villringer, and H. Rinneberg, “Determining changes in NIR absorption using a layered model of the human head,” Phys. Med. Biol. 46(3), 879–896 (2001).
    [Crossref] [PubMed]
  9. S. Del Bianco, F. Martelli, and G. Zaccanti, “Penetration depth of light re-emitted by a diffusive medium: theoretical and experimental investigation,” Phys. Med. Biol. 47(23), 4131–4144 (2002).
    [Crossref] [PubMed]
  10. D. Milej, D. Janusek, A. Gerega, S. Wojtkiewicz, P. Sawosz, J. Treszczanowicz, W. Weigl, and A. Liebert, “Optimization of the method for assessment of brain perfusion in humans using contrast-enhanced reflectometry: multidistance time-resolved measurements,” J. Biomed. Opt. 20(10), 106013 (2015).
    [Crossref] [PubMed]
  11. A. Liebert, H. Wabnitz, J. Steinbrink, H. Obrig, M. Möller, R. Macdonald, A. Villringer, and H. Rinneberg, “Time-resolved multidistance near-infrared spectroscopy of the adult head: Intracerebral and extracerebral absorption changes from moments of distribution of times of flight of photons,” Appl. Opt. 43(15), 3037–3047 (2004).
    [Crossref] [PubMed]
  12. L. Hervé, A. Puszka, A. Planat-Chrétien, and J. M. Dinten, “Time-domain diffuse optical tomography processing by using the Mellin-Laplace transform,” Appl. Opt. 51(25), 5978–5988 (2012).
    [Crossref] [PubMed]
  13. L. Zucchelli, D. Contini, R. Re, A. Torrcelli, and L. Spinelli, “Method for the discrimination of superficial and deep absorption variations by time domain fNIRS,” Biomed. Opt. Express 4(12), 2893–2910 (2013).
  14. M. Diop and K. St Lawrence, “Improving the depth sensitivity of time-resolved measurements by extracting the distribution of times-of-flight,” Biomed. Opt. Express 4(3), 447–459 (2013).
    [Crossref] [PubMed]
  15. J. R. Mourant, T. Fuselier, J. Boyer, T. M. Johnson, and I. J. Bigio, “Predictions and measurements of scattering and absorption over broad wavelength ranges in tissue phantoms,” Appl. Opt. 36(4), 949–957 (1997).
    [Crossref] [PubMed]
  16. M. Niwayama, L. Lin, J. Shao, N. Kudo, and K. Yamamoto, “Quantitative measurement of muscle hemoglobin oxygenation using near-infrared spectroscopy with correction for the influence of a subcutaneous fat layer,” Rev. Sci. Instrum. 71(12), 4571–4575 (2000).
    [Crossref]
  17. S. Koga, T. J. Barstow, D. Okushima, H. B. Rossiter, N. Kondo, E. Ohmae, and D. C. Poole, “Validation of a high-power, time-resolved, near-infrared spectroscopy system for measurement of superficial and deep muscle deoxygenation during exercise,” J. Appl. Physiol. 118(11), 1435–1442 (2015).
    [Crossref] [PubMed]
  18. S. L. Jacques, “Optical properties of biological tissues: a review,” Phys. Med. Biol. 58(11), R37–R61 (2013).
    [Crossref] [PubMed]
  19. S. Ferrante, D. Contini, L. Spinelli, A. Pedrocchi, A. Torricelli, F. Molteni, G. Ferrigno, and R. Cubeddu, “Monitoring muscle metabolic indexes by time-domain near-infrared spectroscopy during knee flex-extension induced by functional electrical stimulation,” J. Biomed. Opt. 14(4), 044011 (2009).
    [Crossref] [PubMed]
  20. F. Martelli, S. Del Bianco, A. Ismaelli, and G. Zaccanti, Light Propagation through Biological Tissue and Other Diffusive Media: Theory, Solutions and Software (SPIE Press, 2010). Chapter 6 pp 109–129.
  21. S. Hyttel-Sorensen, T. W. Hessel, A. la Cour, and G. Greisen, “A comparison between two NIRS oximeters (INVOS, OxyPrem) using measurement on the arm of adults and head of infants after caesarean section,” Biomed. Opt. Express 5(10), 3671–3683 (2014).
    [Crossref] [PubMed]
  22. F. Martelli, S. Del Bianco, L. Spinelli, S. Cavalieri, P. Di Ninni, T. Binzoni, A. Jelzow, R. Macdonald, and H. Wabnitz, “Optimal estimation reconstruction of the optical properties of a two-layered tissue phantom from time-resolved single-distance measurements,” J. Biomed. Opt. 20(11), 115001 (2015).
    [Crossref] [PubMed]
  23. S. Prahl, “Optical absorption of hemoglobin”, (2013), http://omlc.ogi.edu/spectra/hemoglobin/index.html
  24. M. Muthalib, M. Jubeau, G. Y. Millet, N. A. Maffiuletti, M. Ferrari, and K. Nosaka, “Biceps brachii muscle oxygenation in electrical muscle stimulation,” Clin. Physiol. Funct. Imaging 30(5), 360–368 (2010).
    [PubMed]
  25. M. Ferrari, M. Muthalib, and V. Quaresima, “The use of near-infrared spectroscopy in understanding skeletal muscle physiology: recent developments,” Philos. Trans. A Math Phys. Eng. Sci. 369(1955), 4577–4590 (2011).
    [Crossref] [PubMed]
  26. G. A. Tew, A. D. Ruddock, and J. M. Saxton, “Skin blood flow differentially affects near-infrared spectroscopy-derived measures of muscle oxygen saturation and blood volume at rest and during dynamic leg exercise,” Eur. J. Appl. Physiol. 110(5), 1083–1089 (2010).
    [Crossref] [PubMed]
  27. R. C. Mesquita, S. S. Schenkel, D. L. Minkoff, X. Lu, C. G. Favilla, P. M. Vora, D. R. Busch, M. Chandra, J. H. Greenberg, J. A. Detre, and A. G. Yodh, “Influence of probe pressure on the diffuse correlation spectroscopy blood flow signal: extra-cerebral contributions,” Biomed. Opt. Express 4(7), 978–994 (2013).
    [Crossref] [PubMed]
  28. A. Pifferi, D. Contini, L. Spinelli, A. Torricelli, R. Cubeddu, F. Martelli, G. Zaccanti, A. Dalla Mora, A. Tosi, and F. Zappa, “The spread matrix: a method to predict the effect of a non time-invariant measurement system,” in Biomedical Optics, OSA Technical Digest (Optical Society of America, 2010), paper BSuD22R.
  29. M. S. Patterson, B. Chance, and B. C. Wilson, “Time resolved reflectance and transmittance for the non-invasive measurement of tissue optical properties,” Appl. Opt. 28(12), 2331–2336 (1989).
    [Crossref] [PubMed]
  30. R. Re, D. Contini, M. Caffini, R. Cubeddu, L. Spinelli, and A. Torricelli, “A compact time-resolved system for near infrared spectroscopy based on wavelength space multiplexing,” Rev. Sci. Instrum. 81(11), 113101 (2010).
    [Crossref] [PubMed]

2015 (3)

D. Milej, D. Janusek, A. Gerega, S. Wojtkiewicz, P. Sawosz, J. Treszczanowicz, W. Weigl, and A. Liebert, “Optimization of the method for assessment of brain perfusion in humans using contrast-enhanced reflectometry: multidistance time-resolved measurements,” J. Biomed. Opt. 20(10), 106013 (2015).
[Crossref] [PubMed]

S. Koga, T. J. Barstow, D. Okushima, H. B. Rossiter, N. Kondo, E. Ohmae, and D. C. Poole, “Validation of a high-power, time-resolved, near-infrared spectroscopy system for measurement of superficial and deep muscle deoxygenation during exercise,” J. Appl. Physiol. 118(11), 1435–1442 (2015).
[Crossref] [PubMed]

F. Martelli, S. Del Bianco, L. Spinelli, S. Cavalieri, P. Di Ninni, T. Binzoni, A. Jelzow, R. Macdonald, and H. Wabnitz, “Optimal estimation reconstruction of the optical properties of a two-layered tissue phantom from time-resolved single-distance measurements,” J. Biomed. Opt. 20(11), 115001 (2015).
[Crossref] [PubMed]

2014 (5)

S. Hyttel-Sorensen, T. W. Hessel, A. la Cour, and G. Greisen, “A comparison between two NIRS oximeters (INVOS, OxyPrem) using measurement on the arm of adults and head of infants after caesarean section,” Biomed. Opt. Express 5(10), 3671–3683 (2014).
[Crossref] [PubMed]

J. T. Elliott, M. Diop, L. B. Morrison, C. D. d’Esterre, T. Y. Lee, and K. St. Lawrence, “Quantifying cerebral blood flow in an adult pig ischemia model by a depth-resolved dynamic contrast-enhanced optical method,” NeuroImage 94, 303 (2014).

A. Torricelli, D. Contini, A. Pifferi, M. Caffini, R. Re, L. Zucchelli, and L. Spinelli, “Time domain functional NIRS imaging for human brain mapping,” Neuroimage 85(Pt 1), 28–50 (2014).
[Crossref] [PubMed]

D. A. Boas, C. E. Elwell, M. Ferrari, and G. Taga, “Twenty years of functional near-infrared spectroscopy: introduction for the special issue,” Neuroimage 85(Pt 1), 1–5 (2014).
[Crossref] [PubMed]

F. Scholkmann, S. Kleiser, A. J. Metz, R. Zimmermann, J. Mata Pavia, U. Wolf, and M. Wolf, “A review on continuous wave functional near-infrared spectroscopy and imaging instrumentation and methodology,” Neuroimage 85(Pt 1), 6–27 (2014).
[Crossref] [PubMed]

2013 (4)

2012 (1)

2011 (2)

M. Ferrari, M. Muthalib, and V. Quaresima, “The use of near-infrared spectroscopy in understanding skeletal muscle physiology: recent developments,” Philos Trans A Math Phys, Eng. Sci. 369(1955), 77–90 (2011).

M. Ferrari, M. Muthalib, and V. Quaresima, “The use of near-infrared spectroscopy in understanding skeletal muscle physiology: recent developments,” Philos. Trans. A Math Phys. Eng. Sci. 369(1955), 4577–4590 (2011).
[Crossref] [PubMed]

2010 (4)

G. A. Tew, A. D. Ruddock, and J. M. Saxton, “Skin blood flow differentially affects near-infrared spectroscopy-derived measures of muscle oxygen saturation and blood volume at rest and during dynamic leg exercise,” Eur. J. Appl. Physiol. 110(5), 1083–1089 (2010).
[Crossref] [PubMed]

M. Muthalib, M. Jubeau, G. Y. Millet, N. A. Maffiuletti, M. Ferrari, and K. Nosaka, “Biceps brachii muscle oxygenation in electrical muscle stimulation,” Clin. Physiol. Funct. Imaging 30(5), 360–368 (2010).
[PubMed]

R. Re, D. Contini, M. Caffini, R. Cubeddu, L. Spinelli, and A. Torricelli, “A compact time-resolved system for near infrared spectroscopy based on wavelength space multiplexing,” Rev. Sci. Instrum. 81(11), 113101 (2010).
[Crossref] [PubMed]

O. Pucci, V. Toronov, and K. St Lawrence, “Measurement of the optical properties of a two-layer model of the human head using broadband near-infrared spectroscopy,” Appl. Opt. 49(32), 6324–6332 (2010).
[Crossref] [PubMed]

2009 (1)

S. Ferrante, D. Contini, L. Spinelli, A. Pedrocchi, A. Torricelli, F. Molteni, G. Ferrigno, and R. Cubeddu, “Monitoring muscle metabolic indexes by time-domain near-infrared spectroscopy during knee flex-extension induced by functional electrical stimulation,” J. Biomed. Opt. 14(4), 044011 (2009).
[Crossref] [PubMed]

2004 (2)

2002 (1)

S. Del Bianco, F. Martelli, and G. Zaccanti, “Penetration depth of light re-emitted by a diffusive medium: theoretical and experimental investigation,” Phys. Med. Biol. 47(23), 4131–4144 (2002).
[Crossref] [PubMed]

2001 (1)

J. Steinbrink, H. Wabnitz, H. Obrig, A. Villringer, and H. Rinneberg, “Determining changes in NIR absorption using a layered model of the human head,” Phys. Med. Biol. 46(3), 879–896 (2001).
[Crossref] [PubMed]

2000 (1)

M. Niwayama, L. Lin, J. Shao, N. Kudo, and K. Yamamoto, “Quantitative measurement of muscle hemoglobin oxygenation using near-infrared spectroscopy with correction for the influence of a subcutaneous fat layer,” Rev. Sci. Instrum. 71(12), 4571–4575 (2000).
[Crossref]

1997 (1)

1989 (1)

Barstow, T. J.

S. Koga, T. J. Barstow, D. Okushima, H. B. Rossiter, N. Kondo, E. Ohmae, and D. C. Poole, “Validation of a high-power, time-resolved, near-infrared spectroscopy system for measurement of superficial and deep muscle deoxygenation during exercise,” J. Appl. Physiol. 118(11), 1435–1442 (2015).
[Crossref] [PubMed]

Bigio, I. J.

Binzoni, T.

F. Martelli, S. Del Bianco, L. Spinelli, S. Cavalieri, P. Di Ninni, T. Binzoni, A. Jelzow, R. Macdonald, and H. Wabnitz, “Optimal estimation reconstruction of the optical properties of a two-layered tissue phantom from time-resolved single-distance measurements,” J. Biomed. Opt. 20(11), 115001 (2015).
[Crossref] [PubMed]

Boas, D. A.

D. A. Boas, C. E. Elwell, M. Ferrari, and G. Taga, “Twenty years of functional near-infrared spectroscopy: introduction for the special issue,” Neuroimage 85(Pt 1), 1–5 (2014).
[Crossref] [PubMed]

Boyer, J.

Busch, D. R.

Caffini, M.

A. Torricelli, D. Contini, A. Pifferi, M. Caffini, R. Re, L. Zucchelli, and L. Spinelli, “Time domain functional NIRS imaging for human brain mapping,” Neuroimage 85(Pt 1), 28–50 (2014).
[Crossref] [PubMed]

R. Re, D. Contini, M. Caffini, R. Cubeddu, L. Spinelli, and A. Torricelli, “A compact time-resolved system for near infrared spectroscopy based on wavelength space multiplexing,” Rev. Sci. Instrum. 81(11), 113101 (2010).
[Crossref] [PubMed]

Cavalieri, S.

F. Martelli, S. Del Bianco, L. Spinelli, S. Cavalieri, P. Di Ninni, T. Binzoni, A. Jelzow, R. Macdonald, and H. Wabnitz, “Optimal estimation reconstruction of the optical properties of a two-layered tissue phantom from time-resolved single-distance measurements,” J. Biomed. Opt. 20(11), 115001 (2015).
[Crossref] [PubMed]

Chance, B.

Chandra, M.

Contini, D.

A. Torricelli, D. Contini, A. Pifferi, M. Caffini, R. Re, L. Zucchelli, and L. Spinelli, “Time domain functional NIRS imaging for human brain mapping,” Neuroimage 85(Pt 1), 28–50 (2014).
[Crossref] [PubMed]

L. Zucchelli, D. Contini, R. Re, A. Torrcelli, and L. Spinelli, “Method for the discrimination of superficial and deep absorption variations by time domain fNIRS,” Biomed. Opt. Express 4(12), 2893–2910 (2013).

R. Re, D. Contini, M. Caffini, R. Cubeddu, L. Spinelli, and A. Torricelli, “A compact time-resolved system for near infrared spectroscopy based on wavelength space multiplexing,” Rev. Sci. Instrum. 81(11), 113101 (2010).
[Crossref] [PubMed]

S. Ferrante, D. Contini, L. Spinelli, A. Pedrocchi, A. Torricelli, F. Molteni, G. Ferrigno, and R. Cubeddu, “Monitoring muscle metabolic indexes by time-domain near-infrared spectroscopy during knee flex-extension induced by functional electrical stimulation,” J. Biomed. Opt. 14(4), 044011 (2009).
[Crossref] [PubMed]

Cubeddu, R.

R. Re, D. Contini, M. Caffini, R. Cubeddu, L. Spinelli, and A. Torricelli, “A compact time-resolved system for near infrared spectroscopy based on wavelength space multiplexing,” Rev. Sci. Instrum. 81(11), 113101 (2010).
[Crossref] [PubMed]

S. Ferrante, D. Contini, L. Spinelli, A. Pedrocchi, A. Torricelli, F. Molteni, G. Ferrigno, and R. Cubeddu, “Monitoring muscle metabolic indexes by time-domain near-infrared spectroscopy during knee flex-extension induced by functional electrical stimulation,” J. Biomed. Opt. 14(4), 044011 (2009).
[Crossref] [PubMed]

d’Esterre, C. D.

J. T. Elliott, M. Diop, L. B. Morrison, C. D. d’Esterre, T. Y. Lee, and K. St. Lawrence, “Quantifying cerebral blood flow in an adult pig ischemia model by a depth-resolved dynamic contrast-enhanced optical method,” NeuroImage 94, 303 (2014).

Del Bianco, S.

F. Martelli, S. Del Bianco, L. Spinelli, S. Cavalieri, P. Di Ninni, T. Binzoni, A. Jelzow, R. Macdonald, and H. Wabnitz, “Optimal estimation reconstruction of the optical properties of a two-layered tissue phantom from time-resolved single-distance measurements,” J. Biomed. Opt. 20(11), 115001 (2015).
[Crossref] [PubMed]

S. Del Bianco, F. Martelli, and G. Zaccanti, “Penetration depth of light re-emitted by a diffusive medium: theoretical and experimental investigation,” Phys. Med. Biol. 47(23), 4131–4144 (2002).
[Crossref] [PubMed]

Detre, J. A.

Di Ninni, P.

F. Martelli, S. Del Bianco, L. Spinelli, S. Cavalieri, P. Di Ninni, T. Binzoni, A. Jelzow, R. Macdonald, and H. Wabnitz, “Optimal estimation reconstruction of the optical properties of a two-layered tissue phantom from time-resolved single-distance measurements,” J. Biomed. Opt. 20(11), 115001 (2015).
[Crossref] [PubMed]

Dinten, J. M.

Diop, M.

J. T. Elliott, M. Diop, L. B. Morrison, C. D. d’Esterre, T. Y. Lee, and K. St. Lawrence, “Quantifying cerebral blood flow in an adult pig ischemia model by a depth-resolved dynamic contrast-enhanced optical method,” NeuroImage 94, 303 (2014).

M. Diop and K. St Lawrence, “Improving the depth sensitivity of time-resolved measurements by extracting the distribution of times-of-flight,” Biomed. Opt. Express 4(3), 447–459 (2013).
[Crossref] [PubMed]

Elliott, J. T.

J. T. Elliott, M. Diop, L. B. Morrison, C. D. d’Esterre, T. Y. Lee, and K. St. Lawrence, “Quantifying cerebral blood flow in an adult pig ischemia model by a depth-resolved dynamic contrast-enhanced optical method,” NeuroImage 94, 303 (2014).

Elwell, C. E.

D. A. Boas, C. E. Elwell, M. Ferrari, and G. Taga, “Twenty years of functional near-infrared spectroscopy: introduction for the special issue,” Neuroimage 85(Pt 1), 1–5 (2014).
[Crossref] [PubMed]

Favilla, C. G.

Ferrante, S.

S. Ferrante, D. Contini, L. Spinelli, A. Pedrocchi, A. Torricelli, F. Molteni, G. Ferrigno, and R. Cubeddu, “Monitoring muscle metabolic indexes by time-domain near-infrared spectroscopy during knee flex-extension induced by functional electrical stimulation,” J. Biomed. Opt. 14(4), 044011 (2009).
[Crossref] [PubMed]

Ferrari, M.

D. A. Boas, C. E. Elwell, M. Ferrari, and G. Taga, “Twenty years of functional near-infrared spectroscopy: introduction for the special issue,” Neuroimage 85(Pt 1), 1–5 (2014).
[Crossref] [PubMed]

M. Ferrari, M. Muthalib, and V. Quaresima, “The use of near-infrared spectroscopy in understanding skeletal muscle physiology: recent developments,” Philos. Trans. A Math Phys. Eng. Sci. 369(1955), 4577–4590 (2011).
[Crossref] [PubMed]

M. Ferrari, M. Muthalib, and V. Quaresima, “The use of near-infrared spectroscopy in understanding skeletal muscle physiology: recent developments,” Philos Trans A Math Phys, Eng. Sci. 369(1955), 77–90 (2011).

M. Muthalib, M. Jubeau, G. Y. Millet, N. A. Maffiuletti, M. Ferrari, and K. Nosaka, “Biceps brachii muscle oxygenation in electrical muscle stimulation,” Clin. Physiol. Funct. Imaging 30(5), 360–368 (2010).
[PubMed]

M. Ferrari, L. Mottola, and V. Quaresima, “Principles, techniques, and limitations of near infrared spectroscopy,” Can. J. Appl. Physiol. 29(4), 463–487 (2004).
[Crossref] [PubMed]

Ferrigno, G.

S. Ferrante, D. Contini, L. Spinelli, A. Pedrocchi, A. Torricelli, F. Molteni, G. Ferrigno, and R. Cubeddu, “Monitoring muscle metabolic indexes by time-domain near-infrared spectroscopy during knee flex-extension induced by functional electrical stimulation,” J. Biomed. Opt. 14(4), 044011 (2009).
[Crossref] [PubMed]

Fuselier, T.

Gerega, A.

D. Milej, D. Janusek, A. Gerega, S. Wojtkiewicz, P. Sawosz, J. Treszczanowicz, W. Weigl, and A. Liebert, “Optimization of the method for assessment of brain perfusion in humans using contrast-enhanced reflectometry: multidistance time-resolved measurements,” J. Biomed. Opt. 20(10), 106013 (2015).
[Crossref] [PubMed]

Greenberg, J. H.

Greisen, G.

Hervé, L.

Hessel, T. W.

Hyttel-Sorensen, S.

Jacques, S. L.

S. L. Jacques, “Optical properties of biological tissues: a review,” Phys. Med. Biol. 58(11), R37–R61 (2013).
[Crossref] [PubMed]

Janusek, D.

D. Milej, D. Janusek, A. Gerega, S. Wojtkiewicz, P. Sawosz, J. Treszczanowicz, W. Weigl, and A. Liebert, “Optimization of the method for assessment of brain perfusion in humans using contrast-enhanced reflectometry: multidistance time-resolved measurements,” J. Biomed. Opt. 20(10), 106013 (2015).
[Crossref] [PubMed]

Jelzow, A.

F. Martelli, S. Del Bianco, L. Spinelli, S. Cavalieri, P. Di Ninni, T. Binzoni, A. Jelzow, R. Macdonald, and H. Wabnitz, “Optimal estimation reconstruction of the optical properties of a two-layered tissue phantom from time-resolved single-distance measurements,” J. Biomed. Opt. 20(11), 115001 (2015).
[Crossref] [PubMed]

Johnson, T. M.

Jubeau, M.

M. Muthalib, M. Jubeau, G. Y. Millet, N. A. Maffiuletti, M. Ferrari, and K. Nosaka, “Biceps brachii muscle oxygenation in electrical muscle stimulation,” Clin. Physiol. Funct. Imaging 30(5), 360–368 (2010).
[PubMed]

Kleiser, S.

F. Scholkmann, S. Kleiser, A. J. Metz, R. Zimmermann, J. Mata Pavia, U. Wolf, and M. Wolf, “A review on continuous wave functional near-infrared spectroscopy and imaging instrumentation and methodology,” Neuroimage 85(Pt 1), 6–27 (2014).
[Crossref] [PubMed]

Koga, S.

S. Koga, T. J. Barstow, D. Okushima, H. B. Rossiter, N. Kondo, E. Ohmae, and D. C. Poole, “Validation of a high-power, time-resolved, near-infrared spectroscopy system for measurement of superficial and deep muscle deoxygenation during exercise,” J. Appl. Physiol. 118(11), 1435–1442 (2015).
[Crossref] [PubMed]

Kondo, N.

S. Koga, T. J. Barstow, D. Okushima, H. B. Rossiter, N. Kondo, E. Ohmae, and D. C. Poole, “Validation of a high-power, time-resolved, near-infrared spectroscopy system for measurement of superficial and deep muscle deoxygenation during exercise,” J. Appl. Physiol. 118(11), 1435–1442 (2015).
[Crossref] [PubMed]

Kudo, N.

M. Niwayama, L. Lin, J. Shao, N. Kudo, and K. Yamamoto, “Quantitative measurement of muscle hemoglobin oxygenation using near-infrared spectroscopy with correction for the influence of a subcutaneous fat layer,” Rev. Sci. Instrum. 71(12), 4571–4575 (2000).
[Crossref]

la Cour, A.

Lee, T. Y.

J. T. Elliott, M. Diop, L. B. Morrison, C. D. d’Esterre, T. Y. Lee, and K. St. Lawrence, “Quantifying cerebral blood flow in an adult pig ischemia model by a depth-resolved dynamic contrast-enhanced optical method,” NeuroImage 94, 303 (2014).

Liebert, A.

D. Milej, D. Janusek, A. Gerega, S. Wojtkiewicz, P. Sawosz, J. Treszczanowicz, W. Weigl, and A. Liebert, “Optimization of the method for assessment of brain perfusion in humans using contrast-enhanced reflectometry: multidistance time-resolved measurements,” J. Biomed. Opt. 20(10), 106013 (2015).
[Crossref] [PubMed]

A. Liebert, H. Wabnitz, J. Steinbrink, H. Obrig, M. Möller, R. Macdonald, A. Villringer, and H. Rinneberg, “Time-resolved multidistance near-infrared spectroscopy of the adult head: Intracerebral and extracerebral absorption changes from moments of distribution of times of flight of photons,” Appl. Opt. 43(15), 3037–3047 (2004).
[Crossref] [PubMed]

Lin, L.

M. Niwayama, L. Lin, J. Shao, N. Kudo, and K. Yamamoto, “Quantitative measurement of muscle hemoglobin oxygenation using near-infrared spectroscopy with correction for the influence of a subcutaneous fat layer,” Rev. Sci. Instrum. 71(12), 4571–4575 (2000).
[Crossref]

Lu, X.

Macdonald, R.

F. Martelli, S. Del Bianco, L. Spinelli, S. Cavalieri, P. Di Ninni, T. Binzoni, A. Jelzow, R. Macdonald, and H. Wabnitz, “Optimal estimation reconstruction of the optical properties of a two-layered tissue phantom from time-resolved single-distance measurements,” J. Biomed. Opt. 20(11), 115001 (2015).
[Crossref] [PubMed]

A. Liebert, H. Wabnitz, J. Steinbrink, H. Obrig, M. Möller, R. Macdonald, A. Villringer, and H. Rinneberg, “Time-resolved multidistance near-infrared spectroscopy of the adult head: Intracerebral and extracerebral absorption changes from moments of distribution of times of flight of photons,” Appl. Opt. 43(15), 3037–3047 (2004).
[Crossref] [PubMed]

Maffiuletti, N. A.

M. Muthalib, M. Jubeau, G. Y. Millet, N. A. Maffiuletti, M. Ferrari, and K. Nosaka, “Biceps brachii muscle oxygenation in electrical muscle stimulation,” Clin. Physiol. Funct. Imaging 30(5), 360–368 (2010).
[PubMed]

Martelli, F.

F. Martelli, S. Del Bianco, L. Spinelli, S. Cavalieri, P. Di Ninni, T. Binzoni, A. Jelzow, R. Macdonald, and H. Wabnitz, “Optimal estimation reconstruction of the optical properties of a two-layered tissue phantom from time-resolved single-distance measurements,” J. Biomed. Opt. 20(11), 115001 (2015).
[Crossref] [PubMed]

S. Del Bianco, F. Martelli, and G. Zaccanti, “Penetration depth of light re-emitted by a diffusive medium: theoretical and experimental investigation,” Phys. Med. Biol. 47(23), 4131–4144 (2002).
[Crossref] [PubMed]

Mata Pavia, J.

F. Scholkmann, S. Kleiser, A. J. Metz, R. Zimmermann, J. Mata Pavia, U. Wolf, and M. Wolf, “A review on continuous wave functional near-infrared spectroscopy and imaging instrumentation and methodology,” Neuroimage 85(Pt 1), 6–27 (2014).
[Crossref] [PubMed]

Mesquita, R. C.

Metz, A. J.

F. Scholkmann, S. Kleiser, A. J. Metz, R. Zimmermann, J. Mata Pavia, U. Wolf, and M. Wolf, “A review on continuous wave functional near-infrared spectroscopy and imaging instrumentation and methodology,” Neuroimage 85(Pt 1), 6–27 (2014).
[Crossref] [PubMed]

Milej, D.

D. Milej, D. Janusek, A. Gerega, S. Wojtkiewicz, P. Sawosz, J. Treszczanowicz, W. Weigl, and A. Liebert, “Optimization of the method for assessment of brain perfusion in humans using contrast-enhanced reflectometry: multidistance time-resolved measurements,” J. Biomed. Opt. 20(10), 106013 (2015).
[Crossref] [PubMed]

Millet, G. Y.

M. Muthalib, M. Jubeau, G. Y. Millet, N. A. Maffiuletti, M. Ferrari, and K. Nosaka, “Biceps brachii muscle oxygenation in electrical muscle stimulation,” Clin. Physiol. Funct. Imaging 30(5), 360–368 (2010).
[PubMed]

Minkoff, D. L.

Möller, M.

Molteni, F.

S. Ferrante, D. Contini, L. Spinelli, A. Pedrocchi, A. Torricelli, F. Molteni, G. Ferrigno, and R. Cubeddu, “Monitoring muscle metabolic indexes by time-domain near-infrared spectroscopy during knee flex-extension induced by functional electrical stimulation,” J. Biomed. Opt. 14(4), 044011 (2009).
[Crossref] [PubMed]

Morrison, L. B.

J. T. Elliott, M. Diop, L. B. Morrison, C. D. d’Esterre, T. Y. Lee, and K. St. Lawrence, “Quantifying cerebral blood flow in an adult pig ischemia model by a depth-resolved dynamic contrast-enhanced optical method,” NeuroImage 94, 303 (2014).

Mottola, L.

M. Ferrari, L. Mottola, and V. Quaresima, “Principles, techniques, and limitations of near infrared spectroscopy,” Can. J. Appl. Physiol. 29(4), 463–487 (2004).
[Crossref] [PubMed]

Mourant, J. R.

Muthalib, M.

M. Ferrari, M. Muthalib, and V. Quaresima, “The use of near-infrared spectroscopy in understanding skeletal muscle physiology: recent developments,” Philos Trans A Math Phys, Eng. Sci. 369(1955), 77–90 (2011).

M. Ferrari, M. Muthalib, and V. Quaresima, “The use of near-infrared spectroscopy in understanding skeletal muscle physiology: recent developments,” Philos. Trans. A Math Phys. Eng. Sci. 369(1955), 4577–4590 (2011).
[Crossref] [PubMed]

M. Muthalib, M. Jubeau, G. Y. Millet, N. A. Maffiuletti, M. Ferrari, and K. Nosaka, “Biceps brachii muscle oxygenation in electrical muscle stimulation,” Clin. Physiol. Funct. Imaging 30(5), 360–368 (2010).
[PubMed]

Niwayama, M.

M. Niwayama, L. Lin, J. Shao, N. Kudo, and K. Yamamoto, “Quantitative measurement of muscle hemoglobin oxygenation using near-infrared spectroscopy with correction for the influence of a subcutaneous fat layer,” Rev. Sci. Instrum. 71(12), 4571–4575 (2000).
[Crossref]

Nosaka, K.

M. Muthalib, M. Jubeau, G. Y. Millet, N. A. Maffiuletti, M. Ferrari, and K. Nosaka, “Biceps brachii muscle oxygenation in electrical muscle stimulation,” Clin. Physiol. Funct. Imaging 30(5), 360–368 (2010).
[PubMed]

Obrig, H.

Ohmae, E.

S. Koga, T. J. Barstow, D. Okushima, H. B. Rossiter, N. Kondo, E. Ohmae, and D. C. Poole, “Validation of a high-power, time-resolved, near-infrared spectroscopy system for measurement of superficial and deep muscle deoxygenation during exercise,” J. Appl. Physiol. 118(11), 1435–1442 (2015).
[Crossref] [PubMed]

Okushima, D.

S. Koga, T. J. Barstow, D. Okushima, H. B. Rossiter, N. Kondo, E. Ohmae, and D. C. Poole, “Validation of a high-power, time-resolved, near-infrared spectroscopy system for measurement of superficial and deep muscle deoxygenation during exercise,” J. Appl. Physiol. 118(11), 1435–1442 (2015).
[Crossref] [PubMed]

Patterson, M. S.

Pedrocchi, A.

S. Ferrante, D. Contini, L. Spinelli, A. Pedrocchi, A. Torricelli, F. Molteni, G. Ferrigno, and R. Cubeddu, “Monitoring muscle metabolic indexes by time-domain near-infrared spectroscopy during knee flex-extension induced by functional electrical stimulation,” J. Biomed. Opt. 14(4), 044011 (2009).
[Crossref] [PubMed]

Pifferi, A.

A. Torricelli, D. Contini, A. Pifferi, M. Caffini, R. Re, L. Zucchelli, and L. Spinelli, “Time domain functional NIRS imaging for human brain mapping,” Neuroimage 85(Pt 1), 28–50 (2014).
[Crossref] [PubMed]

Planat-Chrétien, A.

Poole, D. C.

S. Koga, T. J. Barstow, D. Okushima, H. B. Rossiter, N. Kondo, E. Ohmae, and D. C. Poole, “Validation of a high-power, time-resolved, near-infrared spectroscopy system for measurement of superficial and deep muscle deoxygenation during exercise,” J. Appl. Physiol. 118(11), 1435–1442 (2015).
[Crossref] [PubMed]

Pucci, O.

Puszka, A.

Quaresima, V.

M. Ferrari, M. Muthalib, and V. Quaresima, “The use of near-infrared spectroscopy in understanding skeletal muscle physiology: recent developments,” Philos. Trans. A Math Phys. Eng. Sci. 369(1955), 4577–4590 (2011).
[Crossref] [PubMed]

M. Ferrari, M. Muthalib, and V. Quaresima, “The use of near-infrared spectroscopy in understanding skeletal muscle physiology: recent developments,” Philos Trans A Math Phys, Eng. Sci. 369(1955), 77–90 (2011).

M. Ferrari, L. Mottola, and V. Quaresima, “Principles, techniques, and limitations of near infrared spectroscopy,” Can. J. Appl. Physiol. 29(4), 463–487 (2004).
[Crossref] [PubMed]

Re, R.

A. Torricelli, D. Contini, A. Pifferi, M. Caffini, R. Re, L. Zucchelli, and L. Spinelli, “Time domain functional NIRS imaging for human brain mapping,” Neuroimage 85(Pt 1), 28–50 (2014).
[Crossref] [PubMed]

L. Zucchelli, D. Contini, R. Re, A. Torrcelli, and L. Spinelli, “Method for the discrimination of superficial and deep absorption variations by time domain fNIRS,” Biomed. Opt. Express 4(12), 2893–2910 (2013).

R. Re, D. Contini, M. Caffini, R. Cubeddu, L. Spinelli, and A. Torricelli, “A compact time-resolved system for near infrared spectroscopy based on wavelength space multiplexing,” Rev. Sci. Instrum. 81(11), 113101 (2010).
[Crossref] [PubMed]

Rinneberg, H.

Rossiter, H. B.

S. Koga, T. J. Barstow, D. Okushima, H. B. Rossiter, N. Kondo, E. Ohmae, and D. C. Poole, “Validation of a high-power, time-resolved, near-infrared spectroscopy system for measurement of superficial and deep muscle deoxygenation during exercise,” J. Appl. Physiol. 118(11), 1435–1442 (2015).
[Crossref] [PubMed]

Ruddock, A. D.

G. A. Tew, A. D. Ruddock, and J. M. Saxton, “Skin blood flow differentially affects near-infrared spectroscopy-derived measures of muscle oxygen saturation and blood volume at rest and during dynamic leg exercise,” Eur. J. Appl. Physiol. 110(5), 1083–1089 (2010).
[Crossref] [PubMed]

Sawosz, P.

D. Milej, D. Janusek, A. Gerega, S. Wojtkiewicz, P. Sawosz, J. Treszczanowicz, W. Weigl, and A. Liebert, “Optimization of the method for assessment of brain perfusion in humans using contrast-enhanced reflectometry: multidistance time-resolved measurements,” J. Biomed. Opt. 20(10), 106013 (2015).
[Crossref] [PubMed]

Saxton, J. M.

G. A. Tew, A. D. Ruddock, and J. M. Saxton, “Skin blood flow differentially affects near-infrared spectroscopy-derived measures of muscle oxygen saturation and blood volume at rest and during dynamic leg exercise,” Eur. J. Appl. Physiol. 110(5), 1083–1089 (2010).
[Crossref] [PubMed]

Schenkel, S. S.

Scholkmann, F.

F. Scholkmann, S. Kleiser, A. J. Metz, R. Zimmermann, J. Mata Pavia, U. Wolf, and M. Wolf, “A review on continuous wave functional near-infrared spectroscopy and imaging instrumentation and methodology,” Neuroimage 85(Pt 1), 6–27 (2014).
[Crossref] [PubMed]

Shao, J.

M. Niwayama, L. Lin, J. Shao, N. Kudo, and K. Yamamoto, “Quantitative measurement of muscle hemoglobin oxygenation using near-infrared spectroscopy with correction for the influence of a subcutaneous fat layer,” Rev. Sci. Instrum. 71(12), 4571–4575 (2000).
[Crossref]

Spinelli, L.

F. Martelli, S. Del Bianco, L. Spinelli, S. Cavalieri, P. Di Ninni, T. Binzoni, A. Jelzow, R. Macdonald, and H. Wabnitz, “Optimal estimation reconstruction of the optical properties of a two-layered tissue phantom from time-resolved single-distance measurements,” J. Biomed. Opt. 20(11), 115001 (2015).
[Crossref] [PubMed]

A. Torricelli, D. Contini, A. Pifferi, M. Caffini, R. Re, L. Zucchelli, and L. Spinelli, “Time domain functional NIRS imaging for human brain mapping,” Neuroimage 85(Pt 1), 28–50 (2014).
[Crossref] [PubMed]

L. Zucchelli, D. Contini, R. Re, A. Torrcelli, and L. Spinelli, “Method for the discrimination of superficial and deep absorption variations by time domain fNIRS,” Biomed. Opt. Express 4(12), 2893–2910 (2013).

R. Re, D. Contini, M. Caffini, R. Cubeddu, L. Spinelli, and A. Torricelli, “A compact time-resolved system for near infrared spectroscopy based on wavelength space multiplexing,” Rev. Sci. Instrum. 81(11), 113101 (2010).
[Crossref] [PubMed]

S. Ferrante, D. Contini, L. Spinelli, A. Pedrocchi, A. Torricelli, F. Molteni, G. Ferrigno, and R. Cubeddu, “Monitoring muscle metabolic indexes by time-domain near-infrared spectroscopy during knee flex-extension induced by functional electrical stimulation,” J. Biomed. Opt. 14(4), 044011 (2009).
[Crossref] [PubMed]

St Lawrence, K.

St. Lawrence, K.

J. T. Elliott, M. Diop, L. B. Morrison, C. D. d’Esterre, T. Y. Lee, and K. St. Lawrence, “Quantifying cerebral blood flow in an adult pig ischemia model by a depth-resolved dynamic contrast-enhanced optical method,” NeuroImage 94, 303 (2014).

Steinbrink, J.

Taga, G.

D. A. Boas, C. E. Elwell, M. Ferrari, and G. Taga, “Twenty years of functional near-infrared spectroscopy: introduction for the special issue,” Neuroimage 85(Pt 1), 1–5 (2014).
[Crossref] [PubMed]

Tew, G. A.

G. A. Tew, A. D. Ruddock, and J. M. Saxton, “Skin blood flow differentially affects near-infrared spectroscopy-derived measures of muscle oxygen saturation and blood volume at rest and during dynamic leg exercise,” Eur. J. Appl. Physiol. 110(5), 1083–1089 (2010).
[Crossref] [PubMed]

Toronov, V.

Torrcelli, A.

Torricelli, A.

A. Torricelli, D. Contini, A. Pifferi, M. Caffini, R. Re, L. Zucchelli, and L. Spinelli, “Time domain functional NIRS imaging for human brain mapping,” Neuroimage 85(Pt 1), 28–50 (2014).
[Crossref] [PubMed]

R. Re, D. Contini, M. Caffini, R. Cubeddu, L. Spinelli, and A. Torricelli, “A compact time-resolved system for near infrared spectroscopy based on wavelength space multiplexing,” Rev. Sci. Instrum. 81(11), 113101 (2010).
[Crossref] [PubMed]

S. Ferrante, D. Contini, L. Spinelli, A. Pedrocchi, A. Torricelli, F. Molteni, G. Ferrigno, and R. Cubeddu, “Monitoring muscle metabolic indexes by time-domain near-infrared spectroscopy during knee flex-extension induced by functional electrical stimulation,” J. Biomed. Opt. 14(4), 044011 (2009).
[Crossref] [PubMed]

Treszczanowicz, J.

D. Milej, D. Janusek, A. Gerega, S. Wojtkiewicz, P. Sawosz, J. Treszczanowicz, W. Weigl, and A. Liebert, “Optimization of the method for assessment of brain perfusion in humans using contrast-enhanced reflectometry: multidistance time-resolved measurements,” J. Biomed. Opt. 20(10), 106013 (2015).
[Crossref] [PubMed]

Villringer, A.

Vora, P. M.

Wabnitz, H.

F. Martelli, S. Del Bianco, L. Spinelli, S. Cavalieri, P. Di Ninni, T. Binzoni, A. Jelzow, R. Macdonald, and H. Wabnitz, “Optimal estimation reconstruction of the optical properties of a two-layered tissue phantom from time-resolved single-distance measurements,” J. Biomed. Opt. 20(11), 115001 (2015).
[Crossref] [PubMed]

A. Liebert, H. Wabnitz, J. Steinbrink, H. Obrig, M. Möller, R. Macdonald, A. Villringer, and H. Rinneberg, “Time-resolved multidistance near-infrared spectroscopy of the adult head: Intracerebral and extracerebral absorption changes from moments of distribution of times of flight of photons,” Appl. Opt. 43(15), 3037–3047 (2004).
[Crossref] [PubMed]

J. Steinbrink, H. Wabnitz, H. Obrig, A. Villringer, and H. Rinneberg, “Determining changes in NIR absorption using a layered model of the human head,” Phys. Med. Biol. 46(3), 879–896 (2001).
[Crossref] [PubMed]

Weigl, W.

D. Milej, D. Janusek, A. Gerega, S. Wojtkiewicz, P. Sawosz, J. Treszczanowicz, W. Weigl, and A. Liebert, “Optimization of the method for assessment of brain perfusion in humans using contrast-enhanced reflectometry: multidistance time-resolved measurements,” J. Biomed. Opt. 20(10), 106013 (2015).
[Crossref] [PubMed]

Wilson, B. C.

Wojtkiewicz, S.

D. Milej, D. Janusek, A. Gerega, S. Wojtkiewicz, P. Sawosz, J. Treszczanowicz, W. Weigl, and A. Liebert, “Optimization of the method for assessment of brain perfusion in humans using contrast-enhanced reflectometry: multidistance time-resolved measurements,” J. Biomed. Opt. 20(10), 106013 (2015).
[Crossref] [PubMed]

Wolf, M.

F. Scholkmann, S. Kleiser, A. J. Metz, R. Zimmermann, J. Mata Pavia, U. Wolf, and M. Wolf, “A review on continuous wave functional near-infrared spectroscopy and imaging instrumentation and methodology,” Neuroimage 85(Pt 1), 6–27 (2014).
[Crossref] [PubMed]

Wolf, U.

F. Scholkmann, S. Kleiser, A. J. Metz, R. Zimmermann, J. Mata Pavia, U. Wolf, and M. Wolf, “A review on continuous wave functional near-infrared spectroscopy and imaging instrumentation and methodology,” Neuroimage 85(Pt 1), 6–27 (2014).
[Crossref] [PubMed]

Yamamoto, K.

M. Niwayama, L. Lin, J. Shao, N. Kudo, and K. Yamamoto, “Quantitative measurement of muscle hemoglobin oxygenation using near-infrared spectroscopy with correction for the influence of a subcutaneous fat layer,” Rev. Sci. Instrum. 71(12), 4571–4575 (2000).
[Crossref]

Yodh, A. G.

Zaccanti, G.

S. Del Bianco, F. Martelli, and G. Zaccanti, “Penetration depth of light re-emitted by a diffusive medium: theoretical and experimental investigation,” Phys. Med. Biol. 47(23), 4131–4144 (2002).
[Crossref] [PubMed]

Zimmermann, R.

F. Scholkmann, S. Kleiser, A. J. Metz, R. Zimmermann, J. Mata Pavia, U. Wolf, and M. Wolf, “A review on continuous wave functional near-infrared spectroscopy and imaging instrumentation and methodology,” Neuroimage 85(Pt 1), 6–27 (2014).
[Crossref] [PubMed]

Zucchelli, L.

A. Torricelli, D. Contini, A. Pifferi, M. Caffini, R. Re, L. Zucchelli, and L. Spinelli, “Time domain functional NIRS imaging for human brain mapping,” Neuroimage 85(Pt 1), 28–50 (2014).
[Crossref] [PubMed]

L. Zucchelli, D. Contini, R. Re, A. Torrcelli, and L. Spinelli, “Method for the discrimination of superficial and deep absorption variations by time domain fNIRS,” Biomed. Opt. Express 4(12), 2893–2910 (2013).

Appl. Opt. (5)

Biomed. Opt. Express (4)

Can. J. Appl. Physiol. (1)

M. Ferrari, L. Mottola, and V. Quaresima, “Principles, techniques, and limitations of near infrared spectroscopy,” Can. J. Appl. Physiol. 29(4), 463–487 (2004).
[Crossref] [PubMed]

Clin. Physiol. Funct. Imaging (1)

M. Muthalib, M. Jubeau, G. Y. Millet, N. A. Maffiuletti, M. Ferrari, and K. Nosaka, “Biceps brachii muscle oxygenation in electrical muscle stimulation,” Clin. Physiol. Funct. Imaging 30(5), 360–368 (2010).
[PubMed]

Eur. J. Appl. Physiol. (1)

G. A. Tew, A. D. Ruddock, and J. M. Saxton, “Skin blood flow differentially affects near-infrared spectroscopy-derived measures of muscle oxygen saturation and blood volume at rest and during dynamic leg exercise,” Eur. J. Appl. Physiol. 110(5), 1083–1089 (2010).
[Crossref] [PubMed]

J. Appl. Physiol. (1)

S. Koga, T. J. Barstow, D. Okushima, H. B. Rossiter, N. Kondo, E. Ohmae, and D. C. Poole, “Validation of a high-power, time-resolved, near-infrared spectroscopy system for measurement of superficial and deep muscle deoxygenation during exercise,” J. Appl. Physiol. 118(11), 1435–1442 (2015).
[Crossref] [PubMed]

J. Biomed. Opt. (3)

S. Ferrante, D. Contini, L. Spinelli, A. Pedrocchi, A. Torricelli, F. Molteni, G. Ferrigno, and R. Cubeddu, “Monitoring muscle metabolic indexes by time-domain near-infrared spectroscopy during knee flex-extension induced by functional electrical stimulation,” J. Biomed. Opt. 14(4), 044011 (2009).
[Crossref] [PubMed]

F. Martelli, S. Del Bianco, L. Spinelli, S. Cavalieri, P. Di Ninni, T. Binzoni, A. Jelzow, R. Macdonald, and H. Wabnitz, “Optimal estimation reconstruction of the optical properties of a two-layered tissue phantom from time-resolved single-distance measurements,” J. Biomed. Opt. 20(11), 115001 (2015).
[Crossref] [PubMed]

D. Milej, D. Janusek, A. Gerega, S. Wojtkiewicz, P. Sawosz, J. Treszczanowicz, W. Weigl, and A. Liebert, “Optimization of the method for assessment of brain perfusion in humans using contrast-enhanced reflectometry: multidistance time-resolved measurements,” J. Biomed. Opt. 20(10), 106013 (2015).
[Crossref] [PubMed]

Neuroimage (3)

D. A. Boas, C. E. Elwell, M. Ferrari, and G. Taga, “Twenty years of functional near-infrared spectroscopy: introduction for the special issue,” Neuroimage 85(Pt 1), 1–5 (2014).
[Crossref] [PubMed]

F. Scholkmann, S. Kleiser, A. J. Metz, R. Zimmermann, J. Mata Pavia, U. Wolf, and M. Wolf, “A review on continuous wave functional near-infrared spectroscopy and imaging instrumentation and methodology,” Neuroimage 85(Pt 1), 6–27 (2014).
[Crossref] [PubMed]

J. T. Elliott, M. Diop, L. B. Morrison, C. D. d’Esterre, T. Y. Lee, and K. St. Lawrence, “Quantifying cerebral blood flow in an adult pig ischemia model by a depth-resolved dynamic contrast-enhanced optical method,” NeuroImage 94, 303 (2014).

A. Torricelli, D. Contini, A. Pifferi, M. Caffini, R. Re, L. Zucchelli, and L. Spinelli, “Time domain functional NIRS imaging for human brain mapping,” Neuroimage 85(Pt 1), 28–50 (2014).
[Crossref] [PubMed]

Philos Trans A Math Phys, Eng. Sci. (1)

M. Ferrari, M. Muthalib, and V. Quaresima, “The use of near-infrared spectroscopy in understanding skeletal muscle physiology: recent developments,” Philos Trans A Math Phys, Eng. Sci. 369(1955), 77–90 (2011).

Philos. Trans. A Math Phys. Eng. Sci. (1)

M. Ferrari, M. Muthalib, and V. Quaresima, “The use of near-infrared spectroscopy in understanding skeletal muscle physiology: recent developments,” Philos. Trans. A Math Phys. Eng. Sci. 369(1955), 4577–4590 (2011).
[Crossref] [PubMed]

Phys. Med. Biol. (3)

S. L. Jacques, “Optical properties of biological tissues: a review,” Phys. Med. Biol. 58(11), R37–R61 (2013).
[Crossref] [PubMed]

J. Steinbrink, H. Wabnitz, H. Obrig, A. Villringer, and H. Rinneberg, “Determining changes in NIR absorption using a layered model of the human head,” Phys. Med. Biol. 46(3), 879–896 (2001).
[Crossref] [PubMed]

S. Del Bianco, F. Martelli, and G. Zaccanti, “Penetration depth of light re-emitted by a diffusive medium: theoretical and experimental investigation,” Phys. Med. Biol. 47(23), 4131–4144 (2002).
[Crossref] [PubMed]

Rev. Sci. Instrum. (2)

M. Niwayama, L. Lin, J. Shao, N. Kudo, and K. Yamamoto, “Quantitative measurement of muscle hemoglobin oxygenation using near-infrared spectroscopy with correction for the influence of a subcutaneous fat layer,” Rev. Sci. Instrum. 71(12), 4571–4575 (2000).
[Crossref]

R. Re, D. Contini, M. Caffini, R. Cubeddu, L. Spinelli, and A. Torricelli, “A compact time-resolved system for near infrared spectroscopy based on wavelength space multiplexing,” Rev. Sci. Instrum. 81(11), 113101 (2010).
[Crossref] [PubMed]

Other (3)

A. Pifferi, D. Contini, L. Spinelli, A. Torricelli, R. Cubeddu, F. Martelli, G. Zaccanti, A. Dalla Mora, A. Tosi, and F. Zappa, “The spread matrix: a method to predict the effect of a non time-invariant measurement system,” in Biomedical Optics, OSA Technical Digest (Optical Society of America, 2010), paper BSuD22R.

F. Martelli, S. Del Bianco, A. Ismaelli, and G. Zaccanti, Light Propagation through Biological Tissue and Other Diffusive Media: Theory, Solutions and Software (SPIE Press, 2010). Chapter 6 pp 109–129.

S. Prahl, “Optical absorption of hemoglobin”, (2013), http://omlc.ogi.edu/spectra/hemoglobin/index.html

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Geometry of the two-layer structure. UP: superficial layer, DW: deep layer. SUP and SDW: thickness of the UP and DW layer. μa: absorption coefficient. μ’s: scattering coefficient. ρ: interfiber distance.
Fig. 2
Fig. 2 AO simulated and reconstructed hemodynamic parameters in the UP (a) and DW (b) layer. The different colors represent the SUP and the initial simulated value.
Fig. 3
Fig. 3 Relative percentage error with respect to the nominal values of the hemodynamic parameters during AO for the UP and DW layer calculated for different SUP (different colors).
Fig. 4
Fig. 4 Relative error with respect to the baseline of the hemodynamic parameters during AOUP for the UP and DW layer calculated for different SUP (different colors).
Fig. 5
Fig. 5 Relative error with respect to the baseline of the hemodynamic parameters during AODW for the UP and DW layer calculated for different SUP (different colors).
Fig. 6
Fig. 6 VO Simulated and reconstructed hemodynamic parameters in the UP (a) and DW (b) layer. The different colors represent the SUP and the initial simulated value.
Fig. 7
Fig. 7 Relative error with respect to the baseline of the hemodynamic parameters during VO for the UP and DW layer calculated for different SUP (different colors).
Fig. 8
Fig. 8 Relative error with respect to the baseline of the hemodynamic parameters during VOUP for the UP and DW layer calculated for different SUP (different colors).
Fig. 9
Fig. 9 Relative error with respect to the baseline of the hemodynamic parameters during VODW for the UP and DW layer calculated for different SUP (different colors).
Fig. 10
Fig. 10 In-vivo AO (left panel) and VO (right panel) hemodynamics variations during an arterial cuff occlusion of the left arm. Results refer to DW layer.

Tables (3)

Tables Icon

Table 1 Values for the concentrations of the main constituents and for the optical parameters in the UP and DW layer of the arm.

Tables Icon

Table 2 the hemodynamic parameters during the arterial occlusion (AO)

Tables Icon

Table 3 the hemodynamic parameters during the venous occlusion (VO)

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

L ˜ j (t)= 1 R ˜ 0 (t) R ˜ 0 ( t ) μ a0j ,
ln R ˜ g ( λ ) R ˜ 0,g ( λ ) = j Δ μ aj ( λ ) L ˜ gj ( λ ),
μ aj ( λ )= μ a0j ( λ )+Δ μ a0j ( λ )

Metrics