Abstract

Understanding light intensity and temperature increase is of considerable importance in designing or performing in vivo optogenetic experiments. Our study describes the optimal light power at target depth in the rodent brain that would maximize activation of light-gated ion channels while minimizing temperature increase. Monte Carlo (MC) simulations of light delivery were used to provide a guideline for suitable light power at a target depth. In addition, MC simulations with the Pennes bio-heat model using data obtained from measurements with a temperature-measuring cannula having 12.3 mV/°C of thermoelectric sensitivity enabled us to predict tissue heating of 0.116 °C/mW on average at target depth of 563 μm and specifically, a maximum mean plateau temperature increase of 0.25 °C/mW at 100 μm depth for 473 nm light. Our study will help to improve the design and performance of optogenetic experiments while avoiding potential over- and under-illumination.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
OptogenSIM: a 3D Monte Carlo simulation platform for light delivery design in optogenetics

Yuming Liu, Steven L. Jacques, Mehdi Azimipour, Jeremy D. Rogers, Ramin Pashaie, and Kevin W. Eliceiri
Biomed. Opt. Express 6(12) 4859-4870 (2015)

Multimodal optogenetic neural interfacing device fabricated by scalable optical fiber drawing technique

Christopher J. Davey, Alexander Argyros, Simon C. Fleming, and Samuel G. Solomon
Appl. Opt. 54(34) 10068-10072 (2015)

References

  • View by:
  • |
  • |
  • |

  1. E. S. Boyden, F. Zhang, E. Bamberg, G. Nagel, and K. Deisseroth, “Millisecond-timescale, genetically targeted optical control of neural activity,” Nat. Neurosci. 8(9), 1263–1268 (2005).
    [Crossref] [PubMed]
  2. O. Yizhar, L. E. Fenno, T. J. Davidson, M. Mogri, and K. Deisseroth, “Optogenetics in neural systems,” Neuron 71(1), 9–34 (2011).
    [Crossref] [PubMed]
  3. A. M. Aravanis, L.-P. Wang, F. Zhang, L. A. Meltzer, M. Z. Mogri, M. B. Schneider, and K. Deisseroth, “An optical neural interface: in vivo control of rodent motor cortex with integrated fiberoptic and optogenetic technology,” J. Neural Eng. 4(3), S143–S156 (2007).
    [Crossref] [PubMed]
  4. J. Mattis, K. M. Tye, E. A. Ferenczi, C. Ramakrishnan, D. J. O’Shea, R. Prakash, L. A. Gunaydin, M. Hyun, L. E. Fenno, V. Gradinaru, O. Yizhar, and K. Deisseroth, “Principles for applying optogenetic tools derived from direct comparative analysis of microbial opsins,” Nat. Methods 9(2), 159–172 (2011).
    [Crossref] [PubMed]
  5. I. N. Christie, J. A. Wells, P. Southern, N. Marina, S. Kasparov, A. V. Gourine, and M. F. Lythgoe, “fMRI response to blue light delivery in the naïve brain: implications for combined optogenetic fMRI studies,” Neuroimage 66, 634–641 (2013).
    [Crossref] [PubMed]
  6. A. C. Thompson, S. A. Wade, P. J. Cadusch, W. G. Brown, and P. R. Stoddart, “Modeling of the temporal effects of heating during infrared neural stimulation,” J. Biomed. Opt. 18(3), 035004 (2013).
    [Crossref] [PubMed]
  7. J. M. Stujenske, T. Spellman, and J. A. Gordon, “Modeling the spatiotemporal dynamics of light and heat propagation for in vivo optogenetics,” Cell Reports 12(3), 525–534 (2015).
    [Crossref] [PubMed]
  8. S. I. Al-Juboori, A. Dondzillo, E. A. Stubblefield, G. Felsen, T. C. Lei, and A. Klug, “Light scattering properties vary across different regions of the adult mouse brain,” PLoS One 8(7), e67626 (2013).
    [Crossref] [PubMed]
  9. T. J. Foutz, R. L. Arlow, and C. C. McIntyre, “Theoretical principles underlying optical stimulation of a channelrhodopsin-2 positive pyramidal neuron,” J. Neurophysiol. 107(12), 3235–3245 (2012).
    [Crossref] [PubMed]
  10. Y. Shin and H.-S. Kwon, “Mesh-based Monte Carlo method for fibre-optic optogenetic neural stimulation with direct photon flux recording strategy,” Phys. Med. Biol. 61(6), 2265–2282 (2016).
    [Crossref] [PubMed]
  11. Y. Ryu, Y. Shin, D. Lee, J. Y. Altarejos, E. Chung, and H.-S. Kwon, “Lensed fiber-optic probe design for efficient photon collection in scattering media,” Biomed. Opt. Express 6(1), 191–210 (2015).
    [Crossref] [PubMed]
  12. C. J. Engelbrecht, W. Göbel, and F. Helmchen, “Enhanced fluorescence signal in nonlinear microscopy through supplementary fiber-optic light collection,” Opt. Express 17(8), 6421–6435 (2009).
    [Crossref] [PubMed]
  13. Y. Liu, S. L. Jacques, M. Azimipour, J. D. Rogers, R. Pashaie, and K. W. Eliceiri, “OptogenSIM: a 3D Monte Carlo simulation platform for light delivery design in optogenetics,” Biomed. Opt. Express 6(12), 4859–4870 (2015).
    [Crossref] [PubMed]
  14. S.-K. Lee, S.-k. Nam, and H.-I. Kim, “Syringe capable of measuring temperature of a patient body and method of manufacturing the same,” US Patent 9028450 B2 (2015).
  15. S.-K. Nam, H.-I. Kim, C.-H. Byun, and S.-K. Lee, “Needle type of hybrid temperature probe for both diagnosis and treatment of musculoskeletal pain syndrome,” J. Korean Soc. Precis. Eng. 31(4), 359–364 (2014).
    [Crossref]
  16. H. H. Pennes, “Analysis of tissue and arterial blood temperatures in the resting human forearm,” J. Appl. Physiol. 1(2), 93–122 (1948).
    [PubMed]
  17. J. D. Johansson, “Spectroscopic method for determination of the absorption coefficient in brain tissue,” J. Biomed. Opt. 15(5), 057005 (2010).
    [Crossref] [PubMed]
  18. F. Zhang, A. M. Aravanis, A. Adamantidis, L. de Lecea, and K. Deisseroth, “Circuit-breakers: optical technologies for probing neural signals and systems,” Nat. Rev. Neurosci. 8(8), 577–581 (2007).
    [Crossref] [PubMed]
  19. A. Molki, “Simple Demonstration of the Seebeck Effect,” Sci. Educ. Rev. 9, 103–107 (2010).
  20. G. Paxinos and C. Watson, The Rat Brain in Stereotaxic Coordinates (Academic, 2006).
  21. H.-J. Park, J. H. Seol, J. Ku, and S. Kim, “Computational Study on the Thermal Effects of Implantable Magnetic Stimulation Based on Planar Coils,” IEEE Trans. Biomed. Eng. 63(1), 158–167 (2016).
    [Crossref] [PubMed]
  22. J. D. Johansson, O. Eriksson, J. Wren, D. Loyd, and K. Wårdell, “Radio-frequency lesioning in brain tissue with coagulation-dependent thermal conductivity: modelling, simulation and analysis of parameter influence and interaction,” Med. Biol. Eng. Comput. 44(9), 757–766 (2006).
    [Crossref] [PubMed]
  23. B. Larrat, M. Pernot, J.-F. Aubry, E. Dervishi, R. Sinkus, D. Seilhean, Y. Marie, A.-L. Boch, M. Fink, and M. Tanter, “MR-guided transcranial brain HIFU in small animal models,” Phys. Med. Biol. 55(2), 365–388 (2010).
    [Crossref] [PubMed]
  24. C. M. Collins, M. B. Smith, and R. Turner, “Model of local temperature changes in brain upon functional activation,” J. Appl. Physiol. 97(6), 2051–2055 (2004).
    [Crossref] [PubMed]
  25. H. B. Larsson, F. Courivaud, E. Rostrup, and A. E. Hansen, “Measurement of brain perfusion, blood volume, and blood-brain barrier permeability, using dynamic contrast-enhanced T(1)-weighted MRI at 3 tesla,” Magn. Reson. Med. 62(5), 1270–1281 (2009).
    [Crossref] [PubMed]
  26. A. Leray, C. Odin, E. Huguet, F. Amblard, and Y. Le Grand, “Spatially distributed two-photon excitation fluorescence in scattering media: Experiments and time-resolved Monte Carlo simulations,” Opt. Commun. 272(1), 269–278 (2007).
    [Crossref]

2016 (2)

Y. Shin and H.-S. Kwon, “Mesh-based Monte Carlo method for fibre-optic optogenetic neural stimulation with direct photon flux recording strategy,” Phys. Med. Biol. 61(6), 2265–2282 (2016).
[Crossref] [PubMed]

H.-J. Park, J. H. Seol, J. Ku, and S. Kim, “Computational Study on the Thermal Effects of Implantable Magnetic Stimulation Based on Planar Coils,” IEEE Trans. Biomed. Eng. 63(1), 158–167 (2016).
[Crossref] [PubMed]

2015 (3)

2014 (1)

S.-K. Nam, H.-I. Kim, C.-H. Byun, and S.-K. Lee, “Needle type of hybrid temperature probe for both diagnosis and treatment of musculoskeletal pain syndrome,” J. Korean Soc. Precis. Eng. 31(4), 359–364 (2014).
[Crossref]

2013 (3)

S. I. Al-Juboori, A. Dondzillo, E. A. Stubblefield, G. Felsen, T. C. Lei, and A. Klug, “Light scattering properties vary across different regions of the adult mouse brain,” PLoS One 8(7), e67626 (2013).
[Crossref] [PubMed]

I. N. Christie, J. A. Wells, P. Southern, N. Marina, S. Kasparov, A. V. Gourine, and M. F. Lythgoe, “fMRI response to blue light delivery in the naïve brain: implications for combined optogenetic fMRI studies,” Neuroimage 66, 634–641 (2013).
[Crossref] [PubMed]

A. C. Thompson, S. A. Wade, P. J. Cadusch, W. G. Brown, and P. R. Stoddart, “Modeling of the temporal effects of heating during infrared neural stimulation,” J. Biomed. Opt. 18(3), 035004 (2013).
[Crossref] [PubMed]

2012 (1)

T. J. Foutz, R. L. Arlow, and C. C. McIntyre, “Theoretical principles underlying optical stimulation of a channelrhodopsin-2 positive pyramidal neuron,” J. Neurophysiol. 107(12), 3235–3245 (2012).
[Crossref] [PubMed]

2011 (2)

O. Yizhar, L. E. Fenno, T. J. Davidson, M. Mogri, and K. Deisseroth, “Optogenetics in neural systems,” Neuron 71(1), 9–34 (2011).
[Crossref] [PubMed]

J. Mattis, K. M. Tye, E. A. Ferenczi, C. Ramakrishnan, D. J. O’Shea, R. Prakash, L. A. Gunaydin, M. Hyun, L. E. Fenno, V. Gradinaru, O. Yizhar, and K. Deisseroth, “Principles for applying optogenetic tools derived from direct comparative analysis of microbial opsins,” Nat. Methods 9(2), 159–172 (2011).
[Crossref] [PubMed]

2010 (3)

J. D. Johansson, “Spectroscopic method for determination of the absorption coefficient in brain tissue,” J. Biomed. Opt. 15(5), 057005 (2010).
[Crossref] [PubMed]

B. Larrat, M. Pernot, J.-F. Aubry, E. Dervishi, R. Sinkus, D. Seilhean, Y. Marie, A.-L. Boch, M. Fink, and M. Tanter, “MR-guided transcranial brain HIFU in small animal models,” Phys. Med. Biol. 55(2), 365–388 (2010).
[Crossref] [PubMed]

A. Molki, “Simple Demonstration of the Seebeck Effect,” Sci. Educ. Rev. 9, 103–107 (2010).

2009 (2)

C. J. Engelbrecht, W. Göbel, and F. Helmchen, “Enhanced fluorescence signal in nonlinear microscopy through supplementary fiber-optic light collection,” Opt. Express 17(8), 6421–6435 (2009).
[Crossref] [PubMed]

H. B. Larsson, F. Courivaud, E. Rostrup, and A. E. Hansen, “Measurement of brain perfusion, blood volume, and blood-brain barrier permeability, using dynamic contrast-enhanced T(1)-weighted MRI at 3 tesla,” Magn. Reson. Med. 62(5), 1270–1281 (2009).
[Crossref] [PubMed]

2007 (3)

A. Leray, C. Odin, E. Huguet, F. Amblard, and Y. Le Grand, “Spatially distributed two-photon excitation fluorescence in scattering media: Experiments and time-resolved Monte Carlo simulations,” Opt. Commun. 272(1), 269–278 (2007).
[Crossref]

F. Zhang, A. M. Aravanis, A. Adamantidis, L. de Lecea, and K. Deisseroth, “Circuit-breakers: optical technologies for probing neural signals and systems,” Nat. Rev. Neurosci. 8(8), 577–581 (2007).
[Crossref] [PubMed]

A. M. Aravanis, L.-P. Wang, F. Zhang, L. A. Meltzer, M. Z. Mogri, M. B. Schneider, and K. Deisseroth, “An optical neural interface: in vivo control of rodent motor cortex with integrated fiberoptic and optogenetic technology,” J. Neural Eng. 4(3), S143–S156 (2007).
[Crossref] [PubMed]

2006 (1)

J. D. Johansson, O. Eriksson, J. Wren, D. Loyd, and K. Wårdell, “Radio-frequency lesioning in brain tissue with coagulation-dependent thermal conductivity: modelling, simulation and analysis of parameter influence and interaction,” Med. Biol. Eng. Comput. 44(9), 757–766 (2006).
[Crossref] [PubMed]

2005 (1)

E. S. Boyden, F. Zhang, E. Bamberg, G. Nagel, and K. Deisseroth, “Millisecond-timescale, genetically targeted optical control of neural activity,” Nat. Neurosci. 8(9), 1263–1268 (2005).
[Crossref] [PubMed]

2004 (1)

C. M. Collins, M. B. Smith, and R. Turner, “Model of local temperature changes in brain upon functional activation,” J. Appl. Physiol. 97(6), 2051–2055 (2004).
[Crossref] [PubMed]

1948 (1)

H. H. Pennes, “Analysis of tissue and arterial blood temperatures in the resting human forearm,” J. Appl. Physiol. 1(2), 93–122 (1948).
[PubMed]

Adamantidis, A.

F. Zhang, A. M. Aravanis, A. Adamantidis, L. de Lecea, and K. Deisseroth, “Circuit-breakers: optical technologies for probing neural signals and systems,” Nat. Rev. Neurosci. 8(8), 577–581 (2007).
[Crossref] [PubMed]

Al-Juboori, S. I.

S. I. Al-Juboori, A. Dondzillo, E. A. Stubblefield, G. Felsen, T. C. Lei, and A. Klug, “Light scattering properties vary across different regions of the adult mouse brain,” PLoS One 8(7), e67626 (2013).
[Crossref] [PubMed]

Altarejos, J. Y.

Amblard, F.

A. Leray, C. Odin, E. Huguet, F. Amblard, and Y. Le Grand, “Spatially distributed two-photon excitation fluorescence in scattering media: Experiments and time-resolved Monte Carlo simulations,” Opt. Commun. 272(1), 269–278 (2007).
[Crossref]

Aravanis, A. M.

F. Zhang, A. M. Aravanis, A. Adamantidis, L. de Lecea, and K. Deisseroth, “Circuit-breakers: optical technologies for probing neural signals and systems,” Nat. Rev. Neurosci. 8(8), 577–581 (2007).
[Crossref] [PubMed]

A. M. Aravanis, L.-P. Wang, F. Zhang, L. A. Meltzer, M. Z. Mogri, M. B. Schneider, and K. Deisseroth, “An optical neural interface: in vivo control of rodent motor cortex with integrated fiberoptic and optogenetic technology,” J. Neural Eng. 4(3), S143–S156 (2007).
[Crossref] [PubMed]

Arlow, R. L.

T. J. Foutz, R. L. Arlow, and C. C. McIntyre, “Theoretical principles underlying optical stimulation of a channelrhodopsin-2 positive pyramidal neuron,” J. Neurophysiol. 107(12), 3235–3245 (2012).
[Crossref] [PubMed]

Aubry, J.-F.

B. Larrat, M. Pernot, J.-F. Aubry, E. Dervishi, R. Sinkus, D. Seilhean, Y. Marie, A.-L. Boch, M. Fink, and M. Tanter, “MR-guided transcranial brain HIFU in small animal models,” Phys. Med. Biol. 55(2), 365–388 (2010).
[Crossref] [PubMed]

Azimipour, M.

Bamberg, E.

E. S. Boyden, F. Zhang, E. Bamberg, G. Nagel, and K. Deisseroth, “Millisecond-timescale, genetically targeted optical control of neural activity,” Nat. Neurosci. 8(9), 1263–1268 (2005).
[Crossref] [PubMed]

Boch, A.-L.

B. Larrat, M. Pernot, J.-F. Aubry, E. Dervishi, R. Sinkus, D. Seilhean, Y. Marie, A.-L. Boch, M. Fink, and M. Tanter, “MR-guided transcranial brain HIFU in small animal models,” Phys. Med. Biol. 55(2), 365–388 (2010).
[Crossref] [PubMed]

Boyden, E. S.

E. S. Boyden, F. Zhang, E. Bamberg, G. Nagel, and K. Deisseroth, “Millisecond-timescale, genetically targeted optical control of neural activity,” Nat. Neurosci. 8(9), 1263–1268 (2005).
[Crossref] [PubMed]

Brown, W. G.

A. C. Thompson, S. A. Wade, P. J. Cadusch, W. G. Brown, and P. R. Stoddart, “Modeling of the temporal effects of heating during infrared neural stimulation,” J. Biomed. Opt. 18(3), 035004 (2013).
[Crossref] [PubMed]

Byun, C.-H.

S.-K. Nam, H.-I. Kim, C.-H. Byun, and S.-K. Lee, “Needle type of hybrid temperature probe for both diagnosis and treatment of musculoskeletal pain syndrome,” J. Korean Soc. Precis. Eng. 31(4), 359–364 (2014).
[Crossref]

Cadusch, P. J.

A. C. Thompson, S. A. Wade, P. J. Cadusch, W. G. Brown, and P. R. Stoddart, “Modeling of the temporal effects of heating during infrared neural stimulation,” J. Biomed. Opt. 18(3), 035004 (2013).
[Crossref] [PubMed]

Christie, I. N.

I. N. Christie, J. A. Wells, P. Southern, N. Marina, S. Kasparov, A. V. Gourine, and M. F. Lythgoe, “fMRI response to blue light delivery in the naïve brain: implications for combined optogenetic fMRI studies,” Neuroimage 66, 634–641 (2013).
[Crossref] [PubMed]

Chung, E.

Collins, C. M.

C. M. Collins, M. B. Smith, and R. Turner, “Model of local temperature changes in brain upon functional activation,” J. Appl. Physiol. 97(6), 2051–2055 (2004).
[Crossref] [PubMed]

Courivaud, F.

H. B. Larsson, F. Courivaud, E. Rostrup, and A. E. Hansen, “Measurement of brain perfusion, blood volume, and blood-brain barrier permeability, using dynamic contrast-enhanced T(1)-weighted MRI at 3 tesla,” Magn. Reson. Med. 62(5), 1270–1281 (2009).
[Crossref] [PubMed]

Davidson, T. J.

O. Yizhar, L. E. Fenno, T. J. Davidson, M. Mogri, and K. Deisseroth, “Optogenetics in neural systems,” Neuron 71(1), 9–34 (2011).
[Crossref] [PubMed]

de Lecea, L.

F. Zhang, A. M. Aravanis, A. Adamantidis, L. de Lecea, and K. Deisseroth, “Circuit-breakers: optical technologies for probing neural signals and systems,” Nat. Rev. Neurosci. 8(8), 577–581 (2007).
[Crossref] [PubMed]

Deisseroth, K.

O. Yizhar, L. E. Fenno, T. J. Davidson, M. Mogri, and K. Deisseroth, “Optogenetics in neural systems,” Neuron 71(1), 9–34 (2011).
[Crossref] [PubMed]

J. Mattis, K. M. Tye, E. A. Ferenczi, C. Ramakrishnan, D. J. O’Shea, R. Prakash, L. A. Gunaydin, M. Hyun, L. E. Fenno, V. Gradinaru, O. Yizhar, and K. Deisseroth, “Principles for applying optogenetic tools derived from direct comparative analysis of microbial opsins,” Nat. Methods 9(2), 159–172 (2011).
[Crossref] [PubMed]

A. M. Aravanis, L.-P. Wang, F. Zhang, L. A. Meltzer, M. Z. Mogri, M. B. Schneider, and K. Deisseroth, “An optical neural interface: in vivo control of rodent motor cortex with integrated fiberoptic and optogenetic technology,” J. Neural Eng. 4(3), S143–S156 (2007).
[Crossref] [PubMed]

F. Zhang, A. M. Aravanis, A. Adamantidis, L. de Lecea, and K. Deisseroth, “Circuit-breakers: optical technologies for probing neural signals and systems,” Nat. Rev. Neurosci. 8(8), 577–581 (2007).
[Crossref] [PubMed]

E. S. Boyden, F. Zhang, E. Bamberg, G. Nagel, and K. Deisseroth, “Millisecond-timescale, genetically targeted optical control of neural activity,” Nat. Neurosci. 8(9), 1263–1268 (2005).
[Crossref] [PubMed]

Dervishi, E.

B. Larrat, M. Pernot, J.-F. Aubry, E. Dervishi, R. Sinkus, D. Seilhean, Y. Marie, A.-L. Boch, M. Fink, and M. Tanter, “MR-guided transcranial brain HIFU in small animal models,” Phys. Med. Biol. 55(2), 365–388 (2010).
[Crossref] [PubMed]

Dondzillo, A.

S. I. Al-Juboori, A. Dondzillo, E. A. Stubblefield, G. Felsen, T. C. Lei, and A. Klug, “Light scattering properties vary across different regions of the adult mouse brain,” PLoS One 8(7), e67626 (2013).
[Crossref] [PubMed]

Eliceiri, K. W.

Engelbrecht, C. J.

Eriksson, O.

J. D. Johansson, O. Eriksson, J. Wren, D. Loyd, and K. Wårdell, “Radio-frequency lesioning in brain tissue with coagulation-dependent thermal conductivity: modelling, simulation and analysis of parameter influence and interaction,” Med. Biol. Eng. Comput. 44(9), 757–766 (2006).
[Crossref] [PubMed]

Felsen, G.

S. I. Al-Juboori, A. Dondzillo, E. A. Stubblefield, G. Felsen, T. C. Lei, and A. Klug, “Light scattering properties vary across different regions of the adult mouse brain,” PLoS One 8(7), e67626 (2013).
[Crossref] [PubMed]

Fenno, L. E.

O. Yizhar, L. E. Fenno, T. J. Davidson, M. Mogri, and K. Deisseroth, “Optogenetics in neural systems,” Neuron 71(1), 9–34 (2011).
[Crossref] [PubMed]

J. Mattis, K. M. Tye, E. A. Ferenczi, C. Ramakrishnan, D. J. O’Shea, R. Prakash, L. A. Gunaydin, M. Hyun, L. E. Fenno, V. Gradinaru, O. Yizhar, and K. Deisseroth, “Principles for applying optogenetic tools derived from direct comparative analysis of microbial opsins,” Nat. Methods 9(2), 159–172 (2011).
[Crossref] [PubMed]

Ferenczi, E. A.

J. Mattis, K. M. Tye, E. A. Ferenczi, C. Ramakrishnan, D. J. O’Shea, R. Prakash, L. A. Gunaydin, M. Hyun, L. E. Fenno, V. Gradinaru, O. Yizhar, and K. Deisseroth, “Principles for applying optogenetic tools derived from direct comparative analysis of microbial opsins,” Nat. Methods 9(2), 159–172 (2011).
[Crossref] [PubMed]

Fink, M.

B. Larrat, M. Pernot, J.-F. Aubry, E. Dervishi, R. Sinkus, D. Seilhean, Y. Marie, A.-L. Boch, M. Fink, and M. Tanter, “MR-guided transcranial brain HIFU in small animal models,” Phys. Med. Biol. 55(2), 365–388 (2010).
[Crossref] [PubMed]

Foutz, T. J.

T. J. Foutz, R. L. Arlow, and C. C. McIntyre, “Theoretical principles underlying optical stimulation of a channelrhodopsin-2 positive pyramidal neuron,” J. Neurophysiol. 107(12), 3235–3245 (2012).
[Crossref] [PubMed]

Göbel, W.

Gordon, J. A.

J. M. Stujenske, T. Spellman, and J. A. Gordon, “Modeling the spatiotemporal dynamics of light and heat propagation for in vivo optogenetics,” Cell Reports 12(3), 525–534 (2015).
[Crossref] [PubMed]

Gourine, A. V.

I. N. Christie, J. A. Wells, P. Southern, N. Marina, S. Kasparov, A. V. Gourine, and M. F. Lythgoe, “fMRI response to blue light delivery in the naïve brain: implications for combined optogenetic fMRI studies,” Neuroimage 66, 634–641 (2013).
[Crossref] [PubMed]

Gradinaru, V.

J. Mattis, K. M. Tye, E. A. Ferenczi, C. Ramakrishnan, D. J. O’Shea, R. Prakash, L. A. Gunaydin, M. Hyun, L. E. Fenno, V. Gradinaru, O. Yizhar, and K. Deisseroth, “Principles for applying optogenetic tools derived from direct comparative analysis of microbial opsins,” Nat. Methods 9(2), 159–172 (2011).
[Crossref] [PubMed]

Gunaydin, L. A.

J. Mattis, K. M. Tye, E. A. Ferenczi, C. Ramakrishnan, D. J. O’Shea, R. Prakash, L. A. Gunaydin, M. Hyun, L. E. Fenno, V. Gradinaru, O. Yizhar, and K. Deisseroth, “Principles for applying optogenetic tools derived from direct comparative analysis of microbial opsins,” Nat. Methods 9(2), 159–172 (2011).
[Crossref] [PubMed]

Hansen, A. E.

H. B. Larsson, F. Courivaud, E. Rostrup, and A. E. Hansen, “Measurement of brain perfusion, blood volume, and blood-brain barrier permeability, using dynamic contrast-enhanced T(1)-weighted MRI at 3 tesla,” Magn. Reson. Med. 62(5), 1270–1281 (2009).
[Crossref] [PubMed]

Helmchen, F.

Huguet, E.

A. Leray, C. Odin, E. Huguet, F. Amblard, and Y. Le Grand, “Spatially distributed two-photon excitation fluorescence in scattering media: Experiments and time-resolved Monte Carlo simulations,” Opt. Commun. 272(1), 269–278 (2007).
[Crossref]

Hyun, M.

J. Mattis, K. M. Tye, E. A. Ferenczi, C. Ramakrishnan, D. J. O’Shea, R. Prakash, L. A. Gunaydin, M. Hyun, L. E. Fenno, V. Gradinaru, O. Yizhar, and K. Deisseroth, “Principles for applying optogenetic tools derived from direct comparative analysis of microbial opsins,” Nat. Methods 9(2), 159–172 (2011).
[Crossref] [PubMed]

Jacques, S. L.

Johansson, J. D.

J. D. Johansson, “Spectroscopic method for determination of the absorption coefficient in brain tissue,” J. Biomed. Opt. 15(5), 057005 (2010).
[Crossref] [PubMed]

J. D. Johansson, O. Eriksson, J. Wren, D. Loyd, and K. Wårdell, “Radio-frequency lesioning in brain tissue with coagulation-dependent thermal conductivity: modelling, simulation and analysis of parameter influence and interaction,” Med. Biol. Eng. Comput. 44(9), 757–766 (2006).
[Crossref] [PubMed]

Kasparov, S.

I. N. Christie, J. A. Wells, P. Southern, N. Marina, S. Kasparov, A. V. Gourine, and M. F. Lythgoe, “fMRI response to blue light delivery in the naïve brain: implications for combined optogenetic fMRI studies,” Neuroimage 66, 634–641 (2013).
[Crossref] [PubMed]

Kim, H.-I.

S.-K. Nam, H.-I. Kim, C.-H. Byun, and S.-K. Lee, “Needle type of hybrid temperature probe for both diagnosis and treatment of musculoskeletal pain syndrome,” J. Korean Soc. Precis. Eng. 31(4), 359–364 (2014).
[Crossref]

Kim, S.

H.-J. Park, J. H. Seol, J. Ku, and S. Kim, “Computational Study on the Thermal Effects of Implantable Magnetic Stimulation Based on Planar Coils,” IEEE Trans. Biomed. Eng. 63(1), 158–167 (2016).
[Crossref] [PubMed]

Klug, A.

S. I. Al-Juboori, A. Dondzillo, E. A. Stubblefield, G. Felsen, T. C. Lei, and A. Klug, “Light scattering properties vary across different regions of the adult mouse brain,” PLoS One 8(7), e67626 (2013).
[Crossref] [PubMed]

Ku, J.

H.-J. Park, J. H. Seol, J. Ku, and S. Kim, “Computational Study on the Thermal Effects of Implantable Magnetic Stimulation Based on Planar Coils,” IEEE Trans. Biomed. Eng. 63(1), 158–167 (2016).
[Crossref] [PubMed]

Kwon, H.-S.

Y. Shin and H.-S. Kwon, “Mesh-based Monte Carlo method for fibre-optic optogenetic neural stimulation with direct photon flux recording strategy,” Phys. Med. Biol. 61(6), 2265–2282 (2016).
[Crossref] [PubMed]

Y. Ryu, Y. Shin, D. Lee, J. Y. Altarejos, E. Chung, and H.-S. Kwon, “Lensed fiber-optic probe design for efficient photon collection in scattering media,” Biomed. Opt. Express 6(1), 191–210 (2015).
[Crossref] [PubMed]

Larrat, B.

B. Larrat, M. Pernot, J.-F. Aubry, E. Dervishi, R. Sinkus, D. Seilhean, Y. Marie, A.-L. Boch, M. Fink, and M. Tanter, “MR-guided transcranial brain HIFU in small animal models,” Phys. Med. Biol. 55(2), 365–388 (2010).
[Crossref] [PubMed]

Larsson, H. B.

H. B. Larsson, F. Courivaud, E. Rostrup, and A. E. Hansen, “Measurement of brain perfusion, blood volume, and blood-brain barrier permeability, using dynamic contrast-enhanced T(1)-weighted MRI at 3 tesla,” Magn. Reson. Med. 62(5), 1270–1281 (2009).
[Crossref] [PubMed]

Le Grand, Y.

A. Leray, C. Odin, E. Huguet, F. Amblard, and Y. Le Grand, “Spatially distributed two-photon excitation fluorescence in scattering media: Experiments and time-resolved Monte Carlo simulations,” Opt. Commun. 272(1), 269–278 (2007).
[Crossref]

Lee, D.

Lee, S.-K.

S.-K. Nam, H.-I. Kim, C.-H. Byun, and S.-K. Lee, “Needle type of hybrid temperature probe for both diagnosis and treatment of musculoskeletal pain syndrome,” J. Korean Soc. Precis. Eng. 31(4), 359–364 (2014).
[Crossref]

Lei, T. C.

S. I. Al-Juboori, A. Dondzillo, E. A. Stubblefield, G. Felsen, T. C. Lei, and A. Klug, “Light scattering properties vary across different regions of the adult mouse brain,” PLoS One 8(7), e67626 (2013).
[Crossref] [PubMed]

Leray, A.

A. Leray, C. Odin, E. Huguet, F. Amblard, and Y. Le Grand, “Spatially distributed two-photon excitation fluorescence in scattering media: Experiments and time-resolved Monte Carlo simulations,” Opt. Commun. 272(1), 269–278 (2007).
[Crossref]

Liu, Y.

Loyd, D.

J. D. Johansson, O. Eriksson, J. Wren, D. Loyd, and K. Wårdell, “Radio-frequency lesioning in brain tissue with coagulation-dependent thermal conductivity: modelling, simulation and analysis of parameter influence and interaction,” Med. Biol. Eng. Comput. 44(9), 757–766 (2006).
[Crossref] [PubMed]

Lythgoe, M. F.

I. N. Christie, J. A. Wells, P. Southern, N. Marina, S. Kasparov, A. V. Gourine, and M. F. Lythgoe, “fMRI response to blue light delivery in the naïve brain: implications for combined optogenetic fMRI studies,” Neuroimage 66, 634–641 (2013).
[Crossref] [PubMed]

Marie, Y.

B. Larrat, M. Pernot, J.-F. Aubry, E. Dervishi, R. Sinkus, D. Seilhean, Y. Marie, A.-L. Boch, M. Fink, and M. Tanter, “MR-guided transcranial brain HIFU in small animal models,” Phys. Med. Biol. 55(2), 365–388 (2010).
[Crossref] [PubMed]

Marina, N.

I. N. Christie, J. A. Wells, P. Southern, N. Marina, S. Kasparov, A. V. Gourine, and M. F. Lythgoe, “fMRI response to blue light delivery in the naïve brain: implications for combined optogenetic fMRI studies,” Neuroimage 66, 634–641 (2013).
[Crossref] [PubMed]

Mattis, J.

J. Mattis, K. M. Tye, E. A. Ferenczi, C. Ramakrishnan, D. J. O’Shea, R. Prakash, L. A. Gunaydin, M. Hyun, L. E. Fenno, V. Gradinaru, O. Yizhar, and K. Deisseroth, “Principles for applying optogenetic tools derived from direct comparative analysis of microbial opsins,” Nat. Methods 9(2), 159–172 (2011).
[Crossref] [PubMed]

McIntyre, C. C.

T. J. Foutz, R. L. Arlow, and C. C. McIntyre, “Theoretical principles underlying optical stimulation of a channelrhodopsin-2 positive pyramidal neuron,” J. Neurophysiol. 107(12), 3235–3245 (2012).
[Crossref] [PubMed]

Meltzer, L. A.

A. M. Aravanis, L.-P. Wang, F. Zhang, L. A. Meltzer, M. Z. Mogri, M. B. Schneider, and K. Deisseroth, “An optical neural interface: in vivo control of rodent motor cortex with integrated fiberoptic and optogenetic technology,” J. Neural Eng. 4(3), S143–S156 (2007).
[Crossref] [PubMed]

Mogri, M.

O. Yizhar, L. E. Fenno, T. J. Davidson, M. Mogri, and K. Deisseroth, “Optogenetics in neural systems,” Neuron 71(1), 9–34 (2011).
[Crossref] [PubMed]

Mogri, M. Z.

A. M. Aravanis, L.-P. Wang, F. Zhang, L. A. Meltzer, M. Z. Mogri, M. B. Schneider, and K. Deisseroth, “An optical neural interface: in vivo control of rodent motor cortex with integrated fiberoptic and optogenetic technology,” J. Neural Eng. 4(3), S143–S156 (2007).
[Crossref] [PubMed]

Molki, A.

A. Molki, “Simple Demonstration of the Seebeck Effect,” Sci. Educ. Rev. 9, 103–107 (2010).

Nagel, G.

E. S. Boyden, F. Zhang, E. Bamberg, G. Nagel, and K. Deisseroth, “Millisecond-timescale, genetically targeted optical control of neural activity,” Nat. Neurosci. 8(9), 1263–1268 (2005).
[Crossref] [PubMed]

Nam, S.-K.

S.-K. Nam, H.-I. Kim, C.-H. Byun, and S.-K. Lee, “Needle type of hybrid temperature probe for both diagnosis and treatment of musculoskeletal pain syndrome,” J. Korean Soc. Precis. Eng. 31(4), 359–364 (2014).
[Crossref]

O’Shea, D. J.

J. Mattis, K. M. Tye, E. A. Ferenczi, C. Ramakrishnan, D. J. O’Shea, R. Prakash, L. A. Gunaydin, M. Hyun, L. E. Fenno, V. Gradinaru, O. Yizhar, and K. Deisseroth, “Principles for applying optogenetic tools derived from direct comparative analysis of microbial opsins,” Nat. Methods 9(2), 159–172 (2011).
[Crossref] [PubMed]

Odin, C.

A. Leray, C. Odin, E. Huguet, F. Amblard, and Y. Le Grand, “Spatially distributed two-photon excitation fluorescence in scattering media: Experiments and time-resolved Monte Carlo simulations,” Opt. Commun. 272(1), 269–278 (2007).
[Crossref]

Park, H.-J.

H.-J. Park, J. H. Seol, J. Ku, and S. Kim, “Computational Study on the Thermal Effects of Implantable Magnetic Stimulation Based on Planar Coils,” IEEE Trans. Biomed. Eng. 63(1), 158–167 (2016).
[Crossref] [PubMed]

Pashaie, R.

Pennes, H. H.

H. H. Pennes, “Analysis of tissue and arterial blood temperatures in the resting human forearm,” J. Appl. Physiol. 1(2), 93–122 (1948).
[PubMed]

Pernot, M.

B. Larrat, M. Pernot, J.-F. Aubry, E. Dervishi, R. Sinkus, D. Seilhean, Y. Marie, A.-L. Boch, M. Fink, and M. Tanter, “MR-guided transcranial brain HIFU in small animal models,” Phys. Med. Biol. 55(2), 365–388 (2010).
[Crossref] [PubMed]

Prakash, R.

J. Mattis, K. M. Tye, E. A. Ferenczi, C. Ramakrishnan, D. J. O’Shea, R. Prakash, L. A. Gunaydin, M. Hyun, L. E. Fenno, V. Gradinaru, O. Yizhar, and K. Deisseroth, “Principles for applying optogenetic tools derived from direct comparative analysis of microbial opsins,” Nat. Methods 9(2), 159–172 (2011).
[Crossref] [PubMed]

Ramakrishnan, C.

J. Mattis, K. M. Tye, E. A. Ferenczi, C. Ramakrishnan, D. J. O’Shea, R. Prakash, L. A. Gunaydin, M. Hyun, L. E. Fenno, V. Gradinaru, O. Yizhar, and K. Deisseroth, “Principles for applying optogenetic tools derived from direct comparative analysis of microbial opsins,” Nat. Methods 9(2), 159–172 (2011).
[Crossref] [PubMed]

Rogers, J. D.

Rostrup, E.

H. B. Larsson, F. Courivaud, E. Rostrup, and A. E. Hansen, “Measurement of brain perfusion, blood volume, and blood-brain barrier permeability, using dynamic contrast-enhanced T(1)-weighted MRI at 3 tesla,” Magn. Reson. Med. 62(5), 1270–1281 (2009).
[Crossref] [PubMed]

Ryu, Y.

Schneider, M. B.

A. M. Aravanis, L.-P. Wang, F. Zhang, L. A. Meltzer, M. Z. Mogri, M. B. Schneider, and K. Deisseroth, “An optical neural interface: in vivo control of rodent motor cortex with integrated fiberoptic and optogenetic technology,” J. Neural Eng. 4(3), S143–S156 (2007).
[Crossref] [PubMed]

Seilhean, D.

B. Larrat, M. Pernot, J.-F. Aubry, E. Dervishi, R. Sinkus, D. Seilhean, Y. Marie, A.-L. Boch, M. Fink, and M. Tanter, “MR-guided transcranial brain HIFU in small animal models,” Phys. Med. Biol. 55(2), 365–388 (2010).
[Crossref] [PubMed]

Seol, J. H.

H.-J. Park, J. H. Seol, J. Ku, and S. Kim, “Computational Study on the Thermal Effects of Implantable Magnetic Stimulation Based on Planar Coils,” IEEE Trans. Biomed. Eng. 63(1), 158–167 (2016).
[Crossref] [PubMed]

Shin, Y.

Y. Shin and H.-S. Kwon, “Mesh-based Monte Carlo method for fibre-optic optogenetic neural stimulation with direct photon flux recording strategy,” Phys. Med. Biol. 61(6), 2265–2282 (2016).
[Crossref] [PubMed]

Y. Ryu, Y. Shin, D. Lee, J. Y. Altarejos, E. Chung, and H.-S. Kwon, “Lensed fiber-optic probe design for efficient photon collection in scattering media,” Biomed. Opt. Express 6(1), 191–210 (2015).
[Crossref] [PubMed]

Sinkus, R.

B. Larrat, M. Pernot, J.-F. Aubry, E. Dervishi, R. Sinkus, D. Seilhean, Y. Marie, A.-L. Boch, M. Fink, and M. Tanter, “MR-guided transcranial brain HIFU in small animal models,” Phys. Med. Biol. 55(2), 365–388 (2010).
[Crossref] [PubMed]

Smith, M. B.

C. M. Collins, M. B. Smith, and R. Turner, “Model of local temperature changes in brain upon functional activation,” J. Appl. Physiol. 97(6), 2051–2055 (2004).
[Crossref] [PubMed]

Southern, P.

I. N. Christie, J. A. Wells, P. Southern, N. Marina, S. Kasparov, A. V. Gourine, and M. F. Lythgoe, “fMRI response to blue light delivery in the naïve brain: implications for combined optogenetic fMRI studies,” Neuroimage 66, 634–641 (2013).
[Crossref] [PubMed]

Spellman, T.

J. M. Stujenske, T. Spellman, and J. A. Gordon, “Modeling the spatiotemporal dynamics of light and heat propagation for in vivo optogenetics,” Cell Reports 12(3), 525–534 (2015).
[Crossref] [PubMed]

Stoddart, P. R.

A. C. Thompson, S. A. Wade, P. J. Cadusch, W. G. Brown, and P. R. Stoddart, “Modeling of the temporal effects of heating during infrared neural stimulation,” J. Biomed. Opt. 18(3), 035004 (2013).
[Crossref] [PubMed]

Stubblefield, E. A.

S. I. Al-Juboori, A. Dondzillo, E. A. Stubblefield, G. Felsen, T. C. Lei, and A. Klug, “Light scattering properties vary across different regions of the adult mouse brain,” PLoS One 8(7), e67626 (2013).
[Crossref] [PubMed]

Stujenske, J. M.

J. M. Stujenske, T. Spellman, and J. A. Gordon, “Modeling the spatiotemporal dynamics of light and heat propagation for in vivo optogenetics,” Cell Reports 12(3), 525–534 (2015).
[Crossref] [PubMed]

Tanter, M.

B. Larrat, M. Pernot, J.-F. Aubry, E. Dervishi, R. Sinkus, D. Seilhean, Y. Marie, A.-L. Boch, M. Fink, and M. Tanter, “MR-guided transcranial brain HIFU in small animal models,” Phys. Med. Biol. 55(2), 365–388 (2010).
[Crossref] [PubMed]

Thompson, A. C.

A. C. Thompson, S. A. Wade, P. J. Cadusch, W. G. Brown, and P. R. Stoddart, “Modeling of the temporal effects of heating during infrared neural stimulation,” J. Biomed. Opt. 18(3), 035004 (2013).
[Crossref] [PubMed]

Turner, R.

C. M. Collins, M. B. Smith, and R. Turner, “Model of local temperature changes in brain upon functional activation,” J. Appl. Physiol. 97(6), 2051–2055 (2004).
[Crossref] [PubMed]

Tye, K. M.

J. Mattis, K. M. Tye, E. A. Ferenczi, C. Ramakrishnan, D. J. O’Shea, R. Prakash, L. A. Gunaydin, M. Hyun, L. E. Fenno, V. Gradinaru, O. Yizhar, and K. Deisseroth, “Principles for applying optogenetic tools derived from direct comparative analysis of microbial opsins,” Nat. Methods 9(2), 159–172 (2011).
[Crossref] [PubMed]

Wade, S. A.

A. C. Thompson, S. A. Wade, P. J. Cadusch, W. G. Brown, and P. R. Stoddart, “Modeling of the temporal effects of heating during infrared neural stimulation,” J. Biomed. Opt. 18(3), 035004 (2013).
[Crossref] [PubMed]

Wang, L.-P.

A. M. Aravanis, L.-P. Wang, F. Zhang, L. A. Meltzer, M. Z. Mogri, M. B. Schneider, and K. Deisseroth, “An optical neural interface: in vivo control of rodent motor cortex with integrated fiberoptic and optogenetic technology,” J. Neural Eng. 4(3), S143–S156 (2007).
[Crossref] [PubMed]

Wårdell, K.

J. D. Johansson, O. Eriksson, J. Wren, D. Loyd, and K. Wårdell, “Radio-frequency lesioning in brain tissue with coagulation-dependent thermal conductivity: modelling, simulation and analysis of parameter influence and interaction,” Med. Biol. Eng. Comput. 44(9), 757–766 (2006).
[Crossref] [PubMed]

Wells, J. A.

I. N. Christie, J. A. Wells, P. Southern, N. Marina, S. Kasparov, A. V. Gourine, and M. F. Lythgoe, “fMRI response to blue light delivery in the naïve brain: implications for combined optogenetic fMRI studies,” Neuroimage 66, 634–641 (2013).
[Crossref] [PubMed]

Wren, J.

J. D. Johansson, O. Eriksson, J. Wren, D. Loyd, and K. Wårdell, “Radio-frequency lesioning in brain tissue with coagulation-dependent thermal conductivity: modelling, simulation and analysis of parameter influence and interaction,” Med. Biol. Eng. Comput. 44(9), 757–766 (2006).
[Crossref] [PubMed]

Yizhar, O.

J. Mattis, K. M. Tye, E. A. Ferenczi, C. Ramakrishnan, D. J. O’Shea, R. Prakash, L. A. Gunaydin, M. Hyun, L. E. Fenno, V. Gradinaru, O. Yizhar, and K. Deisseroth, “Principles for applying optogenetic tools derived from direct comparative analysis of microbial opsins,” Nat. Methods 9(2), 159–172 (2011).
[Crossref] [PubMed]

O. Yizhar, L. E. Fenno, T. J. Davidson, M. Mogri, and K. Deisseroth, “Optogenetics in neural systems,” Neuron 71(1), 9–34 (2011).
[Crossref] [PubMed]

Zhang, F.

A. M. Aravanis, L.-P. Wang, F. Zhang, L. A. Meltzer, M. Z. Mogri, M. B. Schneider, and K. Deisseroth, “An optical neural interface: in vivo control of rodent motor cortex with integrated fiberoptic and optogenetic technology,” J. Neural Eng. 4(3), S143–S156 (2007).
[Crossref] [PubMed]

F. Zhang, A. M. Aravanis, A. Adamantidis, L. de Lecea, and K. Deisseroth, “Circuit-breakers: optical technologies for probing neural signals and systems,” Nat. Rev. Neurosci. 8(8), 577–581 (2007).
[Crossref] [PubMed]

E. S. Boyden, F. Zhang, E. Bamberg, G. Nagel, and K. Deisseroth, “Millisecond-timescale, genetically targeted optical control of neural activity,” Nat. Neurosci. 8(9), 1263–1268 (2005).
[Crossref] [PubMed]

Biomed. Opt. Express (2)

Cell Reports (1)

J. M. Stujenske, T. Spellman, and J. A. Gordon, “Modeling the spatiotemporal dynamics of light and heat propagation for in vivo optogenetics,” Cell Reports 12(3), 525–534 (2015).
[Crossref] [PubMed]

IEEE Trans. Biomed. Eng. (1)

H.-J. Park, J. H. Seol, J. Ku, and S. Kim, “Computational Study on the Thermal Effects of Implantable Magnetic Stimulation Based on Planar Coils,” IEEE Trans. Biomed. Eng. 63(1), 158–167 (2016).
[Crossref] [PubMed]

J. Appl. Physiol. (2)

C. M. Collins, M. B. Smith, and R. Turner, “Model of local temperature changes in brain upon functional activation,” J. Appl. Physiol. 97(6), 2051–2055 (2004).
[Crossref] [PubMed]

H. H. Pennes, “Analysis of tissue and arterial blood temperatures in the resting human forearm,” J. Appl. Physiol. 1(2), 93–122 (1948).
[PubMed]

J. Biomed. Opt. (2)

J. D. Johansson, “Spectroscopic method for determination of the absorption coefficient in brain tissue,” J. Biomed. Opt. 15(5), 057005 (2010).
[Crossref] [PubMed]

A. C. Thompson, S. A. Wade, P. J. Cadusch, W. G. Brown, and P. R. Stoddart, “Modeling of the temporal effects of heating during infrared neural stimulation,” J. Biomed. Opt. 18(3), 035004 (2013).
[Crossref] [PubMed]

J. Korean Soc. Precis. Eng. (1)

S.-K. Nam, H.-I. Kim, C.-H. Byun, and S.-K. Lee, “Needle type of hybrid temperature probe for both diagnosis and treatment of musculoskeletal pain syndrome,” J. Korean Soc. Precis. Eng. 31(4), 359–364 (2014).
[Crossref]

J. Neural Eng. (1)

A. M. Aravanis, L.-P. Wang, F. Zhang, L. A. Meltzer, M. Z. Mogri, M. B. Schneider, and K. Deisseroth, “An optical neural interface: in vivo control of rodent motor cortex with integrated fiberoptic and optogenetic technology,” J. Neural Eng. 4(3), S143–S156 (2007).
[Crossref] [PubMed]

J. Neurophysiol. (1)

T. J. Foutz, R. L. Arlow, and C. C. McIntyre, “Theoretical principles underlying optical stimulation of a channelrhodopsin-2 positive pyramidal neuron,” J. Neurophysiol. 107(12), 3235–3245 (2012).
[Crossref] [PubMed]

Magn. Reson. Med. (1)

H. B. Larsson, F. Courivaud, E. Rostrup, and A. E. Hansen, “Measurement of brain perfusion, blood volume, and blood-brain barrier permeability, using dynamic contrast-enhanced T(1)-weighted MRI at 3 tesla,” Magn. Reson. Med. 62(5), 1270–1281 (2009).
[Crossref] [PubMed]

Med. Biol. Eng. Comput. (1)

J. D. Johansson, O. Eriksson, J. Wren, D. Loyd, and K. Wårdell, “Radio-frequency lesioning in brain tissue with coagulation-dependent thermal conductivity: modelling, simulation and analysis of parameter influence and interaction,” Med. Biol. Eng. Comput. 44(9), 757–766 (2006).
[Crossref] [PubMed]

Nat. Methods (1)

J. Mattis, K. M. Tye, E. A. Ferenczi, C. Ramakrishnan, D. J. O’Shea, R. Prakash, L. A. Gunaydin, M. Hyun, L. E. Fenno, V. Gradinaru, O. Yizhar, and K. Deisseroth, “Principles for applying optogenetic tools derived from direct comparative analysis of microbial opsins,” Nat. Methods 9(2), 159–172 (2011).
[Crossref] [PubMed]

Nat. Neurosci. (1)

E. S. Boyden, F. Zhang, E. Bamberg, G. Nagel, and K. Deisseroth, “Millisecond-timescale, genetically targeted optical control of neural activity,” Nat. Neurosci. 8(9), 1263–1268 (2005).
[Crossref] [PubMed]

Nat. Rev. Neurosci. (1)

F. Zhang, A. M. Aravanis, A. Adamantidis, L. de Lecea, and K. Deisseroth, “Circuit-breakers: optical technologies for probing neural signals and systems,” Nat. Rev. Neurosci. 8(8), 577–581 (2007).
[Crossref] [PubMed]

Neuroimage (1)

I. N. Christie, J. A. Wells, P. Southern, N. Marina, S. Kasparov, A. V. Gourine, and M. F. Lythgoe, “fMRI response to blue light delivery in the naïve brain: implications for combined optogenetic fMRI studies,” Neuroimage 66, 634–641 (2013).
[Crossref] [PubMed]

Neuron (1)

O. Yizhar, L. E. Fenno, T. J. Davidson, M. Mogri, and K. Deisseroth, “Optogenetics in neural systems,” Neuron 71(1), 9–34 (2011).
[Crossref] [PubMed]

Opt. Commun. (1)

A. Leray, C. Odin, E. Huguet, F. Amblard, and Y. Le Grand, “Spatially distributed two-photon excitation fluorescence in scattering media: Experiments and time-resolved Monte Carlo simulations,” Opt. Commun. 272(1), 269–278 (2007).
[Crossref]

Opt. Express (1)

Phys. Med. Biol. (2)

Y. Shin and H.-S. Kwon, “Mesh-based Monte Carlo method for fibre-optic optogenetic neural stimulation with direct photon flux recording strategy,” Phys. Med. Biol. 61(6), 2265–2282 (2016).
[Crossref] [PubMed]

B. Larrat, M. Pernot, J.-F. Aubry, E. Dervishi, R. Sinkus, D. Seilhean, Y. Marie, A.-L. Boch, M. Fink, and M. Tanter, “MR-guided transcranial brain HIFU in small animal models,” Phys. Med. Biol. 55(2), 365–388 (2010).
[Crossref] [PubMed]

PLoS One (1)

S. I. Al-Juboori, A. Dondzillo, E. A. Stubblefield, G. Felsen, T. C. Lei, and A. Klug, “Light scattering properties vary across different regions of the adult mouse brain,” PLoS One 8(7), e67626 (2013).
[Crossref] [PubMed]

Sci. Educ. Rev. (1)

A. Molki, “Simple Demonstration of the Seebeck Effect,” Sci. Educ. Rev. 9, 103–107 (2010).

Other (2)

G. Paxinos and C. Watson, The Rat Brain in Stereotaxic Coordinates (Academic, 2006).

S.-K. Lee, S.-k. Nam, and H.-I. Kim, “Syringe capable of measuring temperature of a patient body and method of manufacturing the same,” US Patent 9028450 B2 (2015).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (20)

Fig. 1
Fig. 1 Overview of the optical stimulation and temperature measuring devices. (a) Schematic drawing of the temperature measuring cannula. (b) Schematic of the overall experimental setup. (c) Rat with the experimental device.
Fig. 2
Fig. 2 (a) Manufacturing process of the temperature-measuring cannula. (b) Calibration of temperature measuring needle with precision thermometer using temperature-controlled water bath at various temperatures.
Fig. 3
Fig. 3 The area of neural tissue activation (at 473 nm) along with depth from the fiber-end under different fiber output powers and diameters. 4 and 8 mW fiber output powers with (a) 1.3 mW/mm2, (b) 5 mW/mm2 and (c) 10 mW/mm2 threshold criterion. 12 and 16 mW fiber output powers with (d) 1.3 mW/mm2, (e) 5 mW/mm2 and (f) 10 mW/mm2 threshold criterion. For all graphs, the dashed and thick solid lines represent lower (4 and 12 mW) and higher (8 and 16 mW) powers, respectively. The dotted horizontal lines represent area of the four fiber diameters (100, 200, 300, and 400 μm; see Fig. 3(f)).
Fig. 4
Fig. 4 The ATA for varying wavelength with different depth scale. (a) The ATA represented with usual geometrical depth. (b) The ATA normalized to optical depth.
Fig. 5
Fig. 5 Fiber output power vs. OFD at 473 nm for (a) 1.3 mW/mm2, (b) 5 mW/mm2, and (c) 10 mW/mm2 intensity criteria. (d) Fiber output power vs. normalized OFD at the different wavelengths (473, 532, and 594 nm).
Fig. 6
Fig. 6 Intensity criterion vs. OFD at 473 nm for the four different fiber output powers (4, 8, 12 and 16 mW). Dotted and thick solid lines represent 100 and 200 μm fiber diameters, respectively. (b) Intensity criterion vs. normalized OFD at the different wavelengths (473, 532, and 594 nm).
Fig. 7
Fig. 7 Characterization of the VTA at the different wavelengths. (a) VTA vs. optical power for the three different intensity threshold criterions (10, 5 and 1.3 mW/mm2). (b) VTA vs. intensity criterion for the four different fiber output powers (4, 8, 12 and 16 mW). The solid, dashed, and dotted lines represents the VTA at 473, 532, and 594 nm, respectively.
Fig. 8
Fig. 8 Local temperature measurement (dotted lines) and simulation (solid lines) at the end rim of the cannula under the 30s of photo-stimulation of 473 nm light (30s on / 30s off) for (a-b) normal and (c-d) ChR2 expressed rat. Each color represents different instantaneous light power used in the range of 4 to 20 mW. The corresponding average power for each duty ratio (30% / 50%) is shown below the instantaneous laser power and in Table 2.
Fig. 9
Fig. 9 Local temperature measurement over the course of the experiment under optical stimulation. The stimulation condition for each experimental sequence is indicated on the graph and in Table 2.
Fig. 10
Fig. 10 Graph indicating the linear relationship between the averaged light power and temperature changes for different depths. Average fiber output power vs. plateau temperature changes at 473 nm light for (a) 50% duty cycles, (b) 30% duty cycles, respectively. Solid and dashed lines represent the mean and peak plateau temperatures, respectively.
Fig. 11
Fig. 11 Axial temperature variation under various fiber output powers. Each color represents different instantaneous light power used in the range of 4 to 20 mW. Solid and dashed lines represent mean and peak plateau temperature changes, respectively, and the corresponding average power for each duty ratio ((a) 50% / (b) 30%) is shown in Table 2. The round, square and triangle symbols indicate the simulated temperature at the optimized target depth with 10, 5 and 1.3 mW/mm2 threshold criterions, respectively.
Fig. 12
Fig. 12 (a) Temperature increase per averaged power at OFD for three different intensity thresholds (473 nm; 10, 5, and 1.3 mW/mm2). Dashed and solid lines represent 30% and 50% duty cycles, respectively. (b) A rate of temperature changes per averaged power at OFD as a function of the threshold criterion for different duty cycles (30% and 50%).
Fig. 13
Fig. 13 The area of neural tissue activation (at 532 nm) along with depth from the fiber-end under different fiber output powers and diameters. 4 and 8 mW fiber output powers with (a) 1.3 mW/mm2, (b) 5 mW/mm2 and (c) 10 mW/mm2 threshold criterion. 12 and 16 mW fiber output powers with (d) 1.3 mW/mm2, (e) 5 mW/mm2 and (f) 10 mW/mm2 threshold criterion.
Fig. 14
Fig. 14 The area of neural tissue activation (at 594 nm) along with depth from the fiber-end under different fiber output powers and diameters. 4 and 8 mW fiber output powers with (a) 1.3 mW/mm2, (b) 5 mW/mm2 and (c) 10 mW/mm2 threshold criterion. 12 and 16 mW fiber output powers with (d) 1.3 mW/mm2, (e) 5 mW/mm2 and (f) 10 mW/mm2 threshold criterion.
Fig. 15
Fig. 15 Fiber output power vs. OFD at 532 nm for (a) 1.3 mW/mm2, (b) 5 mW/mm2, and (c) 10 mW/mm2 intensity criteria, and the identical data at 594 nm for (d) 1.3 mW/mm2, (e) 5 mW/mm2, and (f) 10 mW/mm2 intensity criteria.
Fig. 16
Fig. 16 (a) Intensity criterion vs. OFD at (a) 532 and (b) 594 nm for the four different fiber output powers (4, 8, 12 and 16 mW). Dotted and thick solid lines represent 100 and 200 μm fiber diameters, respectively.
Fig. 17
Fig. 17 Average fiber output power vs. plateau temperature changes for (a) 50% duty cycles at 532 nm, (b) 30% duty cycles at 532 nm, (c) 50% duty cycles at 594 nm, and (d) 30% duty cycles at 594 nm. Solid and dashed lines represent the mean and peak plateau temperatures, respectively.
Fig. 18
Fig. 18 Axial temperature variation under various fiber output powers for stimulation light of (a) 50% duty cycles at 532 nm, (b) 30% duty cycles at 532 nm, (c) 50% duty cycles at 594 nm, and (d) 30% duty cycles at 594 nm. Each color represents different instantaneous light power used in the range of 4 to 20 mW. Solid and dashed lines represent mean and peak plateau temperature changes, respectively. The round, square and triangle symbols indicate the simulated temperature at the optimized target depth with 10, 5 and 1.3 mW/mm2 threshold criterions, respectively.
Fig. 19
Fig. 19 (a) Temperature increase per averaged power at OFD for three different intensity thresholds (532 nm; 10, 5, and 1.3 mW/mm2). Dashed and solid lines represent 30% and 50% duty cycles, respectively. (b) A rate of temperature changes per averaged power at OFD as a function of the threshold criterion for different duty cycles (30% and 50%). The temperature change at OFD for 549 nm light are in the ranging from 0.0526 °C/mW to 0.0733 °C/mW (mean = 0.064 °C/mW, standard deviation σ = 0.0054).
Fig. 20
Fig. 20 (a) Temperature increase per averaged power at OFD for three different intensity thresholds (594 nm; 10, 5, and 1.3 mW/mm2). Dashed and solid lines represent 30% and 50% duty cycles, respectively. (b) A rate of temperature changes per averaged power at OFD as a function of the threshold criterion for different duty cycles (30% and 50%). The temperature change at OFD for 549 nm light are in the ranging from 0.0314 °C/mW to 0.0435 °C/mW (mean = 0.038 °C/mW, standard deviation σ = 0.0032).

Tables (3)

Tables Icon

Table 1 Used optical properties for MC simulations

Tables Icon

Table 2 Laser parameters used for local temperature measurement and simulation

Tables Icon

Table 3 Thermal parameters of the brain tissue

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

ρ C p T t =( kT )+ Q opt + Q bio
Q bio = Q b + Q m = ρ b ω b C b (T T b )+ Q m

Metrics