Abstract

Optical based methods for non-invasive measurement of regional blood flow tend to incorrectly assess cerebral blood flow, due to contribution of extra-cerebral tissues to the obtained signal. We demonstrate that spectral analysis of phase-coded light signals, tagged by specific ultrasound patterns, enables differentiation of flow patterns at different depths. Validation of the model is conducted by Monte Carlo simulation. In-vitro experiments demonstrate good agreement with the simulations' results and provide a solid validation to depth discrimination ability. These results suggest that signal contamination originating from extra-cerebral tissue may be eliminated using spectral analysis of ultrasonically tagged light.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Influence of probe pressure on the diffuse correlation spectroscopy blood flow signal: extra-cerebral contributions

Rickson C. Mesquita, Steven S. Schenkel, David L. Minkoff, Xiangping Lu, Christopher G. Favilla, Patrick M. Vora, David R. Busch, Malavika Chandra, Joel H. Greenberg, John A. Detre, and A. G. Yodh
Biomed. Opt. Express 4(7) 978-994 (2013)

Assessment of a multi-layered diffuse correlation spectroscopy method for monitoring cerebral blood flow in adults

Kyle Verdecchia, Mamadou Diop, Albert Lee, Laura B. Morrison, Ting-Yim Lee, and Keith St. Lawrence
Biomed. Opt. Express 7(9) 3659-3674 (2016)

Small separation diffuse correlation spectroscopy for measurement of cerebral blood flow in rodents

Eashani Sathialingam, Seung Yup Lee, Bharat Sanders, Jaekeun Park, Courtney E. McCracken, Leah Bryan, and Erin M. Buckley
Biomed. Opt. Express 9(11) 5719-5734 (2018)

References

  • View by:
  • |
  • |
  • |

  1. L. A. Steiner and P. J. Andrews, “Monitoring the injured brain: ICP and CBF,” Br. J. Anaesth. 97(1), 26–38 (2006).
    [Crossref] [PubMed]
  2. P. D. Griffiths, N. Hoggard, W. R. Dannels, and I. D. Wilkinson, “In vivo measurement of cerebral blood flow: a review of methods and applications,” Vasc. Med. 6(1), 51–60 (2001).
    [Crossref] [PubMed]
  3. R. Aaslid, T.-M. Markwalder, and H. Nornes, “Noninvasive transcranial Doppler ultrasound recording of flow velocity in basal cerebral arteries,” J. Neurosurg. 57(6), 769–774 (1982).
    [Crossref] [PubMed]
  4. P. Vajkoczy, H. Roth, P. Horn, T. Lucke, C. Thomé, U. Hubner, G. T. Martin, C. Zappletal, E. Klar, L. Schilling, and P. Schmiedek, “Continuous monitoring of regional cerebral blood flow: experimental and clinical validation of a novel thermal diffusion microprobe,” J. Neurosurg. 93(2), 265–274 (2000).
    [Crossref] [PubMed]
  5. G. E. Nilsson, T. Tenland, and P. A. Oberg, “Evaluation of a laser Doppler flowmeter for measurement of tissue blood flow,” IEEE Trans. Biomed. Eng. 27(10), 597–604 (1980).
    [Crossref] [PubMed]
  6. A. N. Obeid, D. M. Boggett, N. J. Barnett, G. Dougherty, and P. Rolfe, “Depth discrimination in laser Doppler skin blood flow measurement using different lasers,” Med. Biol. Eng. Comput. 26(4), 415–424 (1988).
    [Crossref] [PubMed]
  7. A. Sheinfeld, S. Gilead, and A. Eyal, “Simultaneous spatial and spectral mapping of flow using photoacoustic Doppler measurement,” J. Biomed. Opt. 15, 066010 (2010).
  8. J. Yao, K. I. Maslov, Y. Shi, L. A. Taber, and L. V. Wang, “In vivo photoacoustic imaging of transverse blood flow by using Doppler broadening of bandwidth,” Opt. Lett. 35(9), 1419–1421 (2010).
    [Crossref] [PubMed]
  9. J. Yao and L. V. Wang, “Photoacoustic brain imaging: from microscopic to macroscopic scales,” Neurophotonics 1(1), 011003 (2014).
    [Crossref] [PubMed]
  10. M. N. Kim, T. Durduran, S. Frangos, B. L. Edlow, E. M. Buckley, H. E. Moss, C. Zhou, G. Yu, R. Choe, E. Maloney-Wilensky, R. L. Wolf, M. S. Grady, J. H. Greenberg, J. M. Levine, A. G. Yodh, J. A. Detre, and W. A. Kofke, “Noninvasive measurement of cerebral blood flow and blood oxygenation using near-infrared and diffuse correlation spectroscopies in critically brain-injured adults,” Neurocrit. Care 12(2), 173–180 (2010).
    [Crossref] [PubMed]
  11. T. Durduran, G. Yu, M. G. Burnett, J. A. Detre, J. H. Greenberg, J. Wang, C. Zhou, and A. G. Yodh, “Diffuse optical measurement of blood flow, blood oxygenation, and metabolism in a human brain during sensorimotor cortex activation,” Opt. Lett. 29(15), 1766–1768 (2004).
    [Crossref] [PubMed]
  12. R. C. Mesquita, S. S. Schenkel, D. L. Minkoff, X. Lu, C. G. Favilla, P. M. Vora, D. R. Busch, M. Chandra, J. H. Greenberg, J. A. Detre, and A. G. Yodh, “Influence of probe pressure on the diffuse correlation spectroscopy blood flow signal: extra-cerebral contributions,” Biomed. Opt. Express 4(7), 978–994 (2013).
    [Crossref] [PubMed]
  13. J. Patel, K. Marks, I. Roberts, D. Azzopardi, and A. D. Edwards, “Measurement of cerebral blood flow in newborn infants using near infrared spectroscopy with indocyanine green,” Pediatr. Res. 43(1), 34–39 (1998).
    [Crossref] [PubMed]
  14. E. Keller, J. Froehlich, C. Muroi, C. Sikorski, and M. Muser, “Neuromonitoring in intensive care: a new brain tissue probe for combined monitoring of intracranial pressure (ICP) cerebral blood flow (CBF) and oxygenation,” in Early Brain Injury or Cerebral Vasospasm (Springer, 2011), pp. 217–220.
  15. F. Gora, S. Shinde, C. E. Elwell, J. C. Goldstone, M. Cope, D. T. Delpy, and M. Smith, “Noninvasive measurement of cerebral blood flow in adults using near-infrared spectroscopy and indocyanine green: a pilot study,” J. Neurosurg. Anesthesiol. 14(3), 218–222 (2002).
    [Crossref] [PubMed]
  16. H. Owen-Reece, C. E. Elwell, W. Harkness, J. Goldstone, D. T. Delpy, J. S. Wyatt, and M. Smith, “Use of near infrared spectroscopy to estimate cerebral blood flow in conscious and anaesthetized adult subjects,” Br. J. Anaesth. 76(1), 43–48 (1996).
    [Crossref] [PubMed]
  17. M. Hiraoka, M. Firbank, M. Essenpreis, M. Cope, S. R. Arridge, P. van der Zee, and D. T. Delpy, “A Monte Carlo investigation of optical pathlength in inhomogeneous tissue and its application to near-infrared spectroscopy,” Phys. Med. Biol. 38(12), 1859–1876 (1993).
    [Crossref] [PubMed]
  18. E. Ohmae, Y. Ouchi, M. Oda, T. Suzuki, S. Nobesawa, T. Kanno, E. Yoshikawa, M. Futatsubashi, Y. Ueda, H. Okada, and Y. Yamashita, “Cerebral hemodynamics evaluation by near-infrared time-resolved spectroscopy: correlation with simultaneous positron emission tomography measurements,” Neuroimage 29(3), 697–705 (2006).
    [Crossref] [PubMed]
  19. A. Ron, N. Racheli, I. Breskin, Y. Metzger, Z. Silman, M. Kamar, A. Nini, R. Shechter, and M. Balberg, “Measuring tissue blood flow using ultrasound modulated diffused light,” in Proc. of SPIE Vol, 2012), 82232J.
    [Crossref]
  20. J. D. Briers and S. Webster, “Laser speckle contrast analysis (LASCA): a nonscanning, full-field technique for monitoring capillary blood flow,” J. Biomed. Opt. 1(2), 174–179 (1996).
    [Crossref] [PubMed]
  21. A. K. Dunn, H. Bolay, M. A. Moskowitz, and D. A. Boas, “Dynamic imaging of cerebral blood flow using laser speckle,” J. Cereb. Blood Flow Metab. 21(3), 195–201 (2001).
    [Crossref] [PubMed]
  22. R. Bonner and R. Nossal, “Model for laser Doppler measurements of blood flow in tissue,” Appl. Opt. 20(12), 2097–2107 (1981).
    [Crossref] [PubMed]
  23. P. N. Burns, “The physical principles of Doppler and spectral analysis,” J. Clin. Ultrasound 15(9), 567–590 (1987).
    [Crossref] [PubMed]
  24. F. Ramaz, B. Forget, M. Atlan, A.-C. Boccara, M. Gross, P. Delaye, and G. Roosen, “Photorefractive detection of tagged photons in ultrasound modulated optical tomography of thick biological tissues,” Opt. Express 12(22), 5469–5474 (2004).
    [Crossref] [PubMed]
  25. G. D. Mahan, W. E. Engler, J. J. Tiemann, and E. Uzgiris, “Ultrasonic tagging of light: theory,” Proc. Natl. Acad. Sci. U.S.A. 95(24), 14015–14019 (1998).
    [Crossref] [PubMed]
  26. G. Yao and L. V. Wang, “Theoretical and experimental studies of ultrasound-modulated optical tomography in biological tissue,” Appl. Opt. 39(4), 659–664 (2000).
    [Crossref] [PubMed]
  27. P. A. Bascom, R. S. Cobbold, and B. H. Roelofs, “Influence of spectral broadening on continuous wave Doppler ultrasound spectra: a geometric approach,” Ultrasound Med. Biol. 12(5), 387–395 (1986).
    [Crossref] [PubMed]
  28. V. L. Newhouse, P. J. Bendick, and L. W. Varner, “Analysis of transit time effects on Doppler flow measurement,” IEEE Trans. Biomed. Eng. 23(5), 381–387 (1976).
    [Crossref] [PubMed]
  29. L. V. Wang and G. Ku, “Frequency-swept ultrasound-modulated optical tomography of scattering media,” Opt. Lett. 23(12), 975–977 (1998).
    [Crossref] [PubMed]
  30. A. Lev and B. Sfez, “In vivo demonstration of the ultrasound-modulated light technique,” J. Opt. Soc. Am. A 20(12), 2347–2354 (2003).
    [Crossref] [PubMed]
  31. Y. Metzger, M. Rokni, and R. Pery-Shechter, “System and method for noninvasively monitoring conditions of a subject,” (Google Patents, 2009).
  32. A. Tsalach, Y. Metzger, I. Breskin, R. Zeitak, and R. Shechter, “Ultrasound modulated light blood flow measurement using intensity autocorrelation function: a Monte-Carlo simulation,” in SPIE BiOS (Proc. SPIE 8943 Photons Plus Ultrasound: Imaging and Sensing 2014), pp. 89433N–89433N–89411.
  33. N. Racheli, A. Ron, Y. Metzger, I. Breskin, G. Enden, M. Balberg, and R. Shechter, “Non-invasive blood flow measurements using ultrasound modulated diffused light,” in SPIE BiOS, (International Society for Optics and Photonics, 2012), 82232A–82232A–82238.
  34. W.-F. Cheong, S. A. Prahl, and A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26(12), 2166–2185 (1990).
    [Crossref]
  35. D. Christensen, Ultrasonic Bioinstrumentation (Wiley, 1988).
  36. A. N. Obeid, N. J. Barnett, G. Dougherty, and G. Ward, “A critical review of laser Doppler flowmetry,” J. Med. Eng. Technol. 14(5), 178–181 (1990).
    [Crossref] [PubMed]
  37. H. W. Schytz, S. Guo, L. T. Jensen, M. Kamar, A. Nini, D. R. Gress, and M. Ashina, “A new technology for detecting cerebral blood flow: a comparative study of ultrasound tagged NIRS and 133Xe-SPECT,” Neurocrit. Care 17(1), 139–145 (2012).
    [Crossref] [PubMed]
  38. H. W. Schytz, T. Wienecke, L. T. Jensen, J. Selb, D. A. Boas, and M. Ashina, “Changes in cerebral blood flow after acetazolamide: an experimental study comparing near-infrared spectroscopy and SPECT,” Eur. J. Neurol. 16(4), 461–467 (2009).
    [Crossref] [PubMed]

2014 (1)

J. Yao and L. V. Wang, “Photoacoustic brain imaging: from microscopic to macroscopic scales,” Neurophotonics 1(1), 011003 (2014).
[Crossref] [PubMed]

2013 (1)

2012 (1)

H. W. Schytz, S. Guo, L. T. Jensen, M. Kamar, A. Nini, D. R. Gress, and M. Ashina, “A new technology for detecting cerebral blood flow: a comparative study of ultrasound tagged NIRS and 133Xe-SPECT,” Neurocrit. Care 17(1), 139–145 (2012).
[Crossref] [PubMed]

2010 (3)

M. N. Kim, T. Durduran, S. Frangos, B. L. Edlow, E. M. Buckley, H. E. Moss, C. Zhou, G. Yu, R. Choe, E. Maloney-Wilensky, R. L. Wolf, M. S. Grady, J. H. Greenberg, J. M. Levine, A. G. Yodh, J. A. Detre, and W. A. Kofke, “Noninvasive measurement of cerebral blood flow and blood oxygenation using near-infrared and diffuse correlation spectroscopies in critically brain-injured adults,” Neurocrit. Care 12(2), 173–180 (2010).
[Crossref] [PubMed]

A. Sheinfeld, S. Gilead, and A. Eyal, “Simultaneous spatial and spectral mapping of flow using photoacoustic Doppler measurement,” J. Biomed. Opt. 15, 066010 (2010).

J. Yao, K. I. Maslov, Y. Shi, L. A. Taber, and L. V. Wang, “In vivo photoacoustic imaging of transverse blood flow by using Doppler broadening of bandwidth,” Opt. Lett. 35(9), 1419–1421 (2010).
[Crossref] [PubMed]

2009 (1)

H. W. Schytz, T. Wienecke, L. T. Jensen, J. Selb, D. A. Boas, and M. Ashina, “Changes in cerebral blood flow after acetazolamide: an experimental study comparing near-infrared spectroscopy and SPECT,” Eur. J. Neurol. 16(4), 461–467 (2009).
[Crossref] [PubMed]

2006 (2)

L. A. Steiner and P. J. Andrews, “Monitoring the injured brain: ICP and CBF,” Br. J. Anaesth. 97(1), 26–38 (2006).
[Crossref] [PubMed]

E. Ohmae, Y. Ouchi, M. Oda, T. Suzuki, S. Nobesawa, T. Kanno, E. Yoshikawa, M. Futatsubashi, Y. Ueda, H. Okada, and Y. Yamashita, “Cerebral hemodynamics evaluation by near-infrared time-resolved spectroscopy: correlation with simultaneous positron emission tomography measurements,” Neuroimage 29(3), 697–705 (2006).
[Crossref] [PubMed]

2004 (2)

2003 (1)

2002 (1)

F. Gora, S. Shinde, C. E. Elwell, J. C. Goldstone, M. Cope, D. T. Delpy, and M. Smith, “Noninvasive measurement of cerebral blood flow in adults using near-infrared spectroscopy and indocyanine green: a pilot study,” J. Neurosurg. Anesthesiol. 14(3), 218–222 (2002).
[Crossref] [PubMed]

2001 (2)

A. K. Dunn, H. Bolay, M. A. Moskowitz, and D. A. Boas, “Dynamic imaging of cerebral blood flow using laser speckle,” J. Cereb. Blood Flow Metab. 21(3), 195–201 (2001).
[Crossref] [PubMed]

P. D. Griffiths, N. Hoggard, W. R. Dannels, and I. D. Wilkinson, “In vivo measurement of cerebral blood flow: a review of methods and applications,” Vasc. Med. 6(1), 51–60 (2001).
[Crossref] [PubMed]

2000 (2)

P. Vajkoczy, H. Roth, P. Horn, T. Lucke, C. Thomé, U. Hubner, G. T. Martin, C. Zappletal, E. Klar, L. Schilling, and P. Schmiedek, “Continuous monitoring of regional cerebral blood flow: experimental and clinical validation of a novel thermal diffusion microprobe,” J. Neurosurg. 93(2), 265–274 (2000).
[Crossref] [PubMed]

G. Yao and L. V. Wang, “Theoretical and experimental studies of ultrasound-modulated optical tomography in biological tissue,” Appl. Opt. 39(4), 659–664 (2000).
[Crossref] [PubMed]

1998 (3)

G. D. Mahan, W. E. Engler, J. J. Tiemann, and E. Uzgiris, “Ultrasonic tagging of light: theory,” Proc. Natl. Acad. Sci. U.S.A. 95(24), 14015–14019 (1998).
[Crossref] [PubMed]

L. V. Wang and G. Ku, “Frequency-swept ultrasound-modulated optical tomography of scattering media,” Opt. Lett. 23(12), 975–977 (1998).
[Crossref] [PubMed]

J. Patel, K. Marks, I. Roberts, D. Azzopardi, and A. D. Edwards, “Measurement of cerebral blood flow in newborn infants using near infrared spectroscopy with indocyanine green,” Pediatr. Res. 43(1), 34–39 (1998).
[Crossref] [PubMed]

1996 (2)

H. Owen-Reece, C. E. Elwell, W. Harkness, J. Goldstone, D. T. Delpy, J. S. Wyatt, and M. Smith, “Use of near infrared spectroscopy to estimate cerebral blood flow in conscious and anaesthetized adult subjects,” Br. J. Anaesth. 76(1), 43–48 (1996).
[Crossref] [PubMed]

J. D. Briers and S. Webster, “Laser speckle contrast analysis (LASCA): a nonscanning, full-field technique for monitoring capillary blood flow,” J. Biomed. Opt. 1(2), 174–179 (1996).
[Crossref] [PubMed]

1993 (1)

M. Hiraoka, M. Firbank, M. Essenpreis, M. Cope, S. R. Arridge, P. van der Zee, and D. T. Delpy, “A Monte Carlo investigation of optical pathlength in inhomogeneous tissue and its application to near-infrared spectroscopy,” Phys. Med. Biol. 38(12), 1859–1876 (1993).
[Crossref] [PubMed]

1990 (2)

W.-F. Cheong, S. A. Prahl, and A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26(12), 2166–2185 (1990).
[Crossref]

A. N. Obeid, N. J. Barnett, G. Dougherty, and G. Ward, “A critical review of laser Doppler flowmetry,” J. Med. Eng. Technol. 14(5), 178–181 (1990).
[Crossref] [PubMed]

1988 (1)

A. N. Obeid, D. M. Boggett, N. J. Barnett, G. Dougherty, and P. Rolfe, “Depth discrimination in laser Doppler skin blood flow measurement using different lasers,” Med. Biol. Eng. Comput. 26(4), 415–424 (1988).
[Crossref] [PubMed]

1987 (1)

P. N. Burns, “The physical principles of Doppler and spectral analysis,” J. Clin. Ultrasound 15(9), 567–590 (1987).
[Crossref] [PubMed]

1986 (1)

P. A. Bascom, R. S. Cobbold, and B. H. Roelofs, “Influence of spectral broadening on continuous wave Doppler ultrasound spectra: a geometric approach,” Ultrasound Med. Biol. 12(5), 387–395 (1986).
[Crossref] [PubMed]

1982 (1)

R. Aaslid, T.-M. Markwalder, and H. Nornes, “Noninvasive transcranial Doppler ultrasound recording of flow velocity in basal cerebral arteries,” J. Neurosurg. 57(6), 769–774 (1982).
[Crossref] [PubMed]

1981 (1)

1980 (1)

G. E. Nilsson, T. Tenland, and P. A. Oberg, “Evaluation of a laser Doppler flowmeter for measurement of tissue blood flow,” IEEE Trans. Biomed. Eng. 27(10), 597–604 (1980).
[Crossref] [PubMed]

1976 (1)

V. L. Newhouse, P. J. Bendick, and L. W. Varner, “Analysis of transit time effects on Doppler flow measurement,” IEEE Trans. Biomed. Eng. 23(5), 381–387 (1976).
[Crossref] [PubMed]

Aaslid, R.

R. Aaslid, T.-M. Markwalder, and H. Nornes, “Noninvasive transcranial Doppler ultrasound recording of flow velocity in basal cerebral arteries,” J. Neurosurg. 57(6), 769–774 (1982).
[Crossref] [PubMed]

Andrews, P. J.

L. A. Steiner and P. J. Andrews, “Monitoring the injured brain: ICP and CBF,” Br. J. Anaesth. 97(1), 26–38 (2006).
[Crossref] [PubMed]

Arridge, S. R.

M. Hiraoka, M. Firbank, M. Essenpreis, M. Cope, S. R. Arridge, P. van der Zee, and D. T. Delpy, “A Monte Carlo investigation of optical pathlength in inhomogeneous tissue and its application to near-infrared spectroscopy,” Phys. Med. Biol. 38(12), 1859–1876 (1993).
[Crossref] [PubMed]

Ashina, M.

H. W. Schytz, S. Guo, L. T. Jensen, M. Kamar, A. Nini, D. R. Gress, and M. Ashina, “A new technology for detecting cerebral blood flow: a comparative study of ultrasound tagged NIRS and 133Xe-SPECT,” Neurocrit. Care 17(1), 139–145 (2012).
[Crossref] [PubMed]

H. W. Schytz, T. Wienecke, L. T. Jensen, J. Selb, D. A. Boas, and M. Ashina, “Changes in cerebral blood flow after acetazolamide: an experimental study comparing near-infrared spectroscopy and SPECT,” Eur. J. Neurol. 16(4), 461–467 (2009).
[Crossref] [PubMed]

Atlan, M.

Azzopardi, D.

J. Patel, K. Marks, I. Roberts, D. Azzopardi, and A. D. Edwards, “Measurement of cerebral blood flow in newborn infants using near infrared spectroscopy with indocyanine green,” Pediatr. Res. 43(1), 34–39 (1998).
[Crossref] [PubMed]

Balberg, M.

A. Ron, N. Racheli, I. Breskin, Y. Metzger, Z. Silman, M. Kamar, A. Nini, R. Shechter, and M. Balberg, “Measuring tissue blood flow using ultrasound modulated diffused light,” in Proc. of SPIE Vol, 2012), 82232J.
[Crossref]

Barnett, N. J.

A. N. Obeid, N. J. Barnett, G. Dougherty, and G. Ward, “A critical review of laser Doppler flowmetry,” J. Med. Eng. Technol. 14(5), 178–181 (1990).
[Crossref] [PubMed]

A. N. Obeid, D. M. Boggett, N. J. Barnett, G. Dougherty, and P. Rolfe, “Depth discrimination in laser Doppler skin blood flow measurement using different lasers,” Med. Biol. Eng. Comput. 26(4), 415–424 (1988).
[Crossref] [PubMed]

Bascom, P. A.

P. A. Bascom, R. S. Cobbold, and B. H. Roelofs, “Influence of spectral broadening on continuous wave Doppler ultrasound spectra: a geometric approach,” Ultrasound Med. Biol. 12(5), 387–395 (1986).
[Crossref] [PubMed]

Bendick, P. J.

V. L. Newhouse, P. J. Bendick, and L. W. Varner, “Analysis of transit time effects on Doppler flow measurement,” IEEE Trans. Biomed. Eng. 23(5), 381–387 (1976).
[Crossref] [PubMed]

Boas, D. A.

H. W. Schytz, T. Wienecke, L. T. Jensen, J. Selb, D. A. Boas, and M. Ashina, “Changes in cerebral blood flow after acetazolamide: an experimental study comparing near-infrared spectroscopy and SPECT,” Eur. J. Neurol. 16(4), 461–467 (2009).
[Crossref] [PubMed]

A. K. Dunn, H. Bolay, M. A. Moskowitz, and D. A. Boas, “Dynamic imaging of cerebral blood flow using laser speckle,” J. Cereb. Blood Flow Metab. 21(3), 195–201 (2001).
[Crossref] [PubMed]

Boccara, A.-C.

Boggett, D. M.

A. N. Obeid, D. M. Boggett, N. J. Barnett, G. Dougherty, and P. Rolfe, “Depth discrimination in laser Doppler skin blood flow measurement using different lasers,” Med. Biol. Eng. Comput. 26(4), 415–424 (1988).
[Crossref] [PubMed]

Bolay, H.

A. K. Dunn, H. Bolay, M. A. Moskowitz, and D. A. Boas, “Dynamic imaging of cerebral blood flow using laser speckle,” J. Cereb. Blood Flow Metab. 21(3), 195–201 (2001).
[Crossref] [PubMed]

Bonner, R.

Breskin, I.

A. Ron, N. Racheli, I. Breskin, Y. Metzger, Z. Silman, M. Kamar, A. Nini, R. Shechter, and M. Balberg, “Measuring tissue blood flow using ultrasound modulated diffused light,” in Proc. of SPIE Vol, 2012), 82232J.
[Crossref]

Briers, J. D.

J. D. Briers and S. Webster, “Laser speckle contrast analysis (LASCA): a nonscanning, full-field technique for monitoring capillary blood flow,” J. Biomed. Opt. 1(2), 174–179 (1996).
[Crossref] [PubMed]

Buckley, E. M.

M. N. Kim, T. Durduran, S. Frangos, B. L. Edlow, E. M. Buckley, H. E. Moss, C. Zhou, G. Yu, R. Choe, E. Maloney-Wilensky, R. L. Wolf, M. S. Grady, J. H. Greenberg, J. M. Levine, A. G. Yodh, J. A. Detre, and W. A. Kofke, “Noninvasive measurement of cerebral blood flow and blood oxygenation using near-infrared and diffuse correlation spectroscopies in critically brain-injured adults,” Neurocrit. Care 12(2), 173–180 (2010).
[Crossref] [PubMed]

Burnett, M. G.

Burns, P. N.

P. N. Burns, “The physical principles of Doppler and spectral analysis,” J. Clin. Ultrasound 15(9), 567–590 (1987).
[Crossref] [PubMed]

Busch, D. R.

Chandra, M.

Cheong, W.-F.

W.-F. Cheong, S. A. Prahl, and A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26(12), 2166–2185 (1990).
[Crossref]

Choe, R.

M. N. Kim, T. Durduran, S. Frangos, B. L. Edlow, E. M. Buckley, H. E. Moss, C. Zhou, G. Yu, R. Choe, E. Maloney-Wilensky, R. L. Wolf, M. S. Grady, J. H. Greenberg, J. M. Levine, A. G. Yodh, J. A. Detre, and W. A. Kofke, “Noninvasive measurement of cerebral blood flow and blood oxygenation using near-infrared and diffuse correlation spectroscopies in critically brain-injured adults,” Neurocrit. Care 12(2), 173–180 (2010).
[Crossref] [PubMed]

Cobbold, R. S.

P. A. Bascom, R. S. Cobbold, and B. H. Roelofs, “Influence of spectral broadening on continuous wave Doppler ultrasound spectra: a geometric approach,” Ultrasound Med. Biol. 12(5), 387–395 (1986).
[Crossref] [PubMed]

Cope, M.

F. Gora, S. Shinde, C. E. Elwell, J. C. Goldstone, M. Cope, D. T. Delpy, and M. Smith, “Noninvasive measurement of cerebral blood flow in adults using near-infrared spectroscopy and indocyanine green: a pilot study,” J. Neurosurg. Anesthesiol. 14(3), 218–222 (2002).
[Crossref] [PubMed]

M. Hiraoka, M. Firbank, M. Essenpreis, M. Cope, S. R. Arridge, P. van der Zee, and D. T. Delpy, “A Monte Carlo investigation of optical pathlength in inhomogeneous tissue and its application to near-infrared spectroscopy,” Phys. Med. Biol. 38(12), 1859–1876 (1993).
[Crossref] [PubMed]

Dannels, W. R.

P. D. Griffiths, N. Hoggard, W. R. Dannels, and I. D. Wilkinson, “In vivo measurement of cerebral blood flow: a review of methods and applications,” Vasc. Med. 6(1), 51–60 (2001).
[Crossref] [PubMed]

Delaye, P.

Delpy, D. T.

F. Gora, S. Shinde, C. E. Elwell, J. C. Goldstone, M. Cope, D. T. Delpy, and M. Smith, “Noninvasive measurement of cerebral blood flow in adults using near-infrared spectroscopy and indocyanine green: a pilot study,” J. Neurosurg. Anesthesiol. 14(3), 218–222 (2002).
[Crossref] [PubMed]

H. Owen-Reece, C. E. Elwell, W. Harkness, J. Goldstone, D. T. Delpy, J. S. Wyatt, and M. Smith, “Use of near infrared spectroscopy to estimate cerebral blood flow in conscious and anaesthetized adult subjects,” Br. J. Anaesth. 76(1), 43–48 (1996).
[Crossref] [PubMed]

M. Hiraoka, M. Firbank, M. Essenpreis, M. Cope, S. R. Arridge, P. van der Zee, and D. T. Delpy, “A Monte Carlo investigation of optical pathlength in inhomogeneous tissue and its application to near-infrared spectroscopy,” Phys. Med. Biol. 38(12), 1859–1876 (1993).
[Crossref] [PubMed]

Detre, J. A.

Dougherty, G.

A. N. Obeid, N. J. Barnett, G. Dougherty, and G. Ward, “A critical review of laser Doppler flowmetry,” J. Med. Eng. Technol. 14(5), 178–181 (1990).
[Crossref] [PubMed]

A. N. Obeid, D. M. Boggett, N. J. Barnett, G. Dougherty, and P. Rolfe, “Depth discrimination in laser Doppler skin blood flow measurement using different lasers,” Med. Biol. Eng. Comput. 26(4), 415–424 (1988).
[Crossref] [PubMed]

Dunn, A. K.

A. K. Dunn, H. Bolay, M. A. Moskowitz, and D. A. Boas, “Dynamic imaging of cerebral blood flow using laser speckle,” J. Cereb. Blood Flow Metab. 21(3), 195–201 (2001).
[Crossref] [PubMed]

Durduran, T.

M. N. Kim, T. Durduran, S. Frangos, B. L. Edlow, E. M. Buckley, H. E. Moss, C. Zhou, G. Yu, R. Choe, E. Maloney-Wilensky, R. L. Wolf, M. S. Grady, J. H. Greenberg, J. M. Levine, A. G. Yodh, J. A. Detre, and W. A. Kofke, “Noninvasive measurement of cerebral blood flow and blood oxygenation using near-infrared and diffuse correlation spectroscopies in critically brain-injured adults,” Neurocrit. Care 12(2), 173–180 (2010).
[Crossref] [PubMed]

T. Durduran, G. Yu, M. G. Burnett, J. A. Detre, J. H. Greenberg, J. Wang, C. Zhou, and A. G. Yodh, “Diffuse optical measurement of blood flow, blood oxygenation, and metabolism in a human brain during sensorimotor cortex activation,” Opt. Lett. 29(15), 1766–1768 (2004).
[Crossref] [PubMed]

Edlow, B. L.

M. N. Kim, T. Durduran, S. Frangos, B. L. Edlow, E. M. Buckley, H. E. Moss, C. Zhou, G. Yu, R. Choe, E. Maloney-Wilensky, R. L. Wolf, M. S. Grady, J. H. Greenberg, J. M. Levine, A. G. Yodh, J. A. Detre, and W. A. Kofke, “Noninvasive measurement of cerebral blood flow and blood oxygenation using near-infrared and diffuse correlation spectroscopies in critically brain-injured adults,” Neurocrit. Care 12(2), 173–180 (2010).
[Crossref] [PubMed]

Edwards, A. D.

J. Patel, K. Marks, I. Roberts, D. Azzopardi, and A. D. Edwards, “Measurement of cerebral blood flow in newborn infants using near infrared spectroscopy with indocyanine green,” Pediatr. Res. 43(1), 34–39 (1998).
[Crossref] [PubMed]

Elwell, C. E.

F. Gora, S. Shinde, C. E. Elwell, J. C. Goldstone, M. Cope, D. T. Delpy, and M. Smith, “Noninvasive measurement of cerebral blood flow in adults using near-infrared spectroscopy and indocyanine green: a pilot study,” J. Neurosurg. Anesthesiol. 14(3), 218–222 (2002).
[Crossref] [PubMed]

H. Owen-Reece, C. E. Elwell, W. Harkness, J. Goldstone, D. T. Delpy, J. S. Wyatt, and M. Smith, “Use of near infrared spectroscopy to estimate cerebral blood flow in conscious and anaesthetized adult subjects,” Br. J. Anaesth. 76(1), 43–48 (1996).
[Crossref] [PubMed]

Engler, W. E.

G. D. Mahan, W. E. Engler, J. J. Tiemann, and E. Uzgiris, “Ultrasonic tagging of light: theory,” Proc. Natl. Acad. Sci. U.S.A. 95(24), 14015–14019 (1998).
[Crossref] [PubMed]

Essenpreis, M.

M. Hiraoka, M. Firbank, M. Essenpreis, M. Cope, S. R. Arridge, P. van der Zee, and D. T. Delpy, “A Monte Carlo investigation of optical pathlength in inhomogeneous tissue and its application to near-infrared spectroscopy,” Phys. Med. Biol. 38(12), 1859–1876 (1993).
[Crossref] [PubMed]

Eyal, A.

A. Sheinfeld, S. Gilead, and A. Eyal, “Simultaneous spatial and spectral mapping of flow using photoacoustic Doppler measurement,” J. Biomed. Opt. 15, 066010 (2010).

Favilla, C. G.

Firbank, M.

M. Hiraoka, M. Firbank, M. Essenpreis, M. Cope, S. R. Arridge, P. van der Zee, and D. T. Delpy, “A Monte Carlo investigation of optical pathlength in inhomogeneous tissue and its application to near-infrared spectroscopy,” Phys. Med. Biol. 38(12), 1859–1876 (1993).
[Crossref] [PubMed]

Forget, B.

Frangos, S.

M. N. Kim, T. Durduran, S. Frangos, B. L. Edlow, E. M. Buckley, H. E. Moss, C. Zhou, G. Yu, R. Choe, E. Maloney-Wilensky, R. L. Wolf, M. S. Grady, J. H. Greenberg, J. M. Levine, A. G. Yodh, J. A. Detre, and W. A. Kofke, “Noninvasive measurement of cerebral blood flow and blood oxygenation using near-infrared and diffuse correlation spectroscopies in critically brain-injured adults,” Neurocrit. Care 12(2), 173–180 (2010).
[Crossref] [PubMed]

Futatsubashi, M.

E. Ohmae, Y. Ouchi, M. Oda, T. Suzuki, S. Nobesawa, T. Kanno, E. Yoshikawa, M. Futatsubashi, Y. Ueda, H. Okada, and Y. Yamashita, “Cerebral hemodynamics evaluation by near-infrared time-resolved spectroscopy: correlation with simultaneous positron emission tomography measurements,” Neuroimage 29(3), 697–705 (2006).
[Crossref] [PubMed]

Gilead, S.

A. Sheinfeld, S. Gilead, and A. Eyal, “Simultaneous spatial and spectral mapping of flow using photoacoustic Doppler measurement,” J. Biomed. Opt. 15, 066010 (2010).

Goldstone, J.

H. Owen-Reece, C. E. Elwell, W. Harkness, J. Goldstone, D. T. Delpy, J. S. Wyatt, and M. Smith, “Use of near infrared spectroscopy to estimate cerebral blood flow in conscious and anaesthetized adult subjects,” Br. J. Anaesth. 76(1), 43–48 (1996).
[Crossref] [PubMed]

Goldstone, J. C.

F. Gora, S. Shinde, C. E. Elwell, J. C. Goldstone, M. Cope, D. T. Delpy, and M. Smith, “Noninvasive measurement of cerebral blood flow in adults using near-infrared spectroscopy and indocyanine green: a pilot study,” J. Neurosurg. Anesthesiol. 14(3), 218–222 (2002).
[Crossref] [PubMed]

Gora, F.

F. Gora, S. Shinde, C. E. Elwell, J. C. Goldstone, M. Cope, D. T. Delpy, and M. Smith, “Noninvasive measurement of cerebral blood flow in adults using near-infrared spectroscopy and indocyanine green: a pilot study,” J. Neurosurg. Anesthesiol. 14(3), 218–222 (2002).
[Crossref] [PubMed]

Grady, M. S.

M. N. Kim, T. Durduran, S. Frangos, B. L. Edlow, E. M. Buckley, H. E. Moss, C. Zhou, G. Yu, R. Choe, E. Maloney-Wilensky, R. L. Wolf, M. S. Grady, J. H. Greenberg, J. M. Levine, A. G. Yodh, J. A. Detre, and W. A. Kofke, “Noninvasive measurement of cerebral blood flow and blood oxygenation using near-infrared and diffuse correlation spectroscopies in critically brain-injured adults,” Neurocrit. Care 12(2), 173–180 (2010).
[Crossref] [PubMed]

Greenberg, J. H.

Gress, D. R.

H. W. Schytz, S. Guo, L. T. Jensen, M. Kamar, A. Nini, D. R. Gress, and M. Ashina, “A new technology for detecting cerebral blood flow: a comparative study of ultrasound tagged NIRS and 133Xe-SPECT,” Neurocrit. Care 17(1), 139–145 (2012).
[Crossref] [PubMed]

Griffiths, P. D.

P. D. Griffiths, N. Hoggard, W. R. Dannels, and I. D. Wilkinson, “In vivo measurement of cerebral blood flow: a review of methods and applications,” Vasc. Med. 6(1), 51–60 (2001).
[Crossref] [PubMed]

Gross, M.

Guo, S.

H. W. Schytz, S. Guo, L. T. Jensen, M. Kamar, A. Nini, D. R. Gress, and M. Ashina, “A new technology for detecting cerebral blood flow: a comparative study of ultrasound tagged NIRS and 133Xe-SPECT,” Neurocrit. Care 17(1), 139–145 (2012).
[Crossref] [PubMed]

Harkness, W.

H. Owen-Reece, C. E. Elwell, W. Harkness, J. Goldstone, D. T. Delpy, J. S. Wyatt, and M. Smith, “Use of near infrared spectroscopy to estimate cerebral blood flow in conscious and anaesthetized adult subjects,” Br. J. Anaesth. 76(1), 43–48 (1996).
[Crossref] [PubMed]

Hiraoka, M.

M. Hiraoka, M. Firbank, M. Essenpreis, M. Cope, S. R. Arridge, P. van der Zee, and D. T. Delpy, “A Monte Carlo investigation of optical pathlength in inhomogeneous tissue and its application to near-infrared spectroscopy,” Phys. Med. Biol. 38(12), 1859–1876 (1993).
[Crossref] [PubMed]

Hoggard, N.

P. D. Griffiths, N. Hoggard, W. R. Dannels, and I. D. Wilkinson, “In vivo measurement of cerebral blood flow: a review of methods and applications,” Vasc. Med. 6(1), 51–60 (2001).
[Crossref] [PubMed]

Horn, P.

P. Vajkoczy, H. Roth, P. Horn, T. Lucke, C. Thomé, U. Hubner, G. T. Martin, C. Zappletal, E. Klar, L. Schilling, and P. Schmiedek, “Continuous monitoring of regional cerebral blood flow: experimental and clinical validation of a novel thermal diffusion microprobe,” J. Neurosurg. 93(2), 265–274 (2000).
[Crossref] [PubMed]

Hubner, U.

P. Vajkoczy, H. Roth, P. Horn, T. Lucke, C. Thomé, U. Hubner, G. T. Martin, C. Zappletal, E. Klar, L. Schilling, and P. Schmiedek, “Continuous monitoring of regional cerebral blood flow: experimental and clinical validation of a novel thermal diffusion microprobe,” J. Neurosurg. 93(2), 265–274 (2000).
[Crossref] [PubMed]

Jensen, L. T.

H. W. Schytz, S. Guo, L. T. Jensen, M. Kamar, A. Nini, D. R. Gress, and M. Ashina, “A new technology for detecting cerebral blood flow: a comparative study of ultrasound tagged NIRS and 133Xe-SPECT,” Neurocrit. Care 17(1), 139–145 (2012).
[Crossref] [PubMed]

H. W. Schytz, T. Wienecke, L. T. Jensen, J. Selb, D. A. Boas, and M. Ashina, “Changes in cerebral blood flow after acetazolamide: an experimental study comparing near-infrared spectroscopy and SPECT,” Eur. J. Neurol. 16(4), 461–467 (2009).
[Crossref] [PubMed]

Kamar, M.

H. W. Schytz, S. Guo, L. T. Jensen, M. Kamar, A. Nini, D. R. Gress, and M. Ashina, “A new technology for detecting cerebral blood flow: a comparative study of ultrasound tagged NIRS and 133Xe-SPECT,” Neurocrit. Care 17(1), 139–145 (2012).
[Crossref] [PubMed]

A. Ron, N. Racheli, I. Breskin, Y. Metzger, Z. Silman, M. Kamar, A. Nini, R. Shechter, and M. Balberg, “Measuring tissue blood flow using ultrasound modulated diffused light,” in Proc. of SPIE Vol, 2012), 82232J.
[Crossref]

Kanno, T.

E. Ohmae, Y. Ouchi, M. Oda, T. Suzuki, S. Nobesawa, T. Kanno, E. Yoshikawa, M. Futatsubashi, Y. Ueda, H. Okada, and Y. Yamashita, “Cerebral hemodynamics evaluation by near-infrared time-resolved spectroscopy: correlation with simultaneous positron emission tomography measurements,” Neuroimage 29(3), 697–705 (2006).
[Crossref] [PubMed]

Kim, M. N.

M. N. Kim, T. Durduran, S. Frangos, B. L. Edlow, E. M. Buckley, H. E. Moss, C. Zhou, G. Yu, R. Choe, E. Maloney-Wilensky, R. L. Wolf, M. S. Grady, J. H. Greenberg, J. M. Levine, A. G. Yodh, J. A. Detre, and W. A. Kofke, “Noninvasive measurement of cerebral blood flow and blood oxygenation using near-infrared and diffuse correlation spectroscopies in critically brain-injured adults,” Neurocrit. Care 12(2), 173–180 (2010).
[Crossref] [PubMed]

Klar, E.

P. Vajkoczy, H. Roth, P. Horn, T. Lucke, C. Thomé, U. Hubner, G. T. Martin, C. Zappletal, E. Klar, L. Schilling, and P. Schmiedek, “Continuous monitoring of regional cerebral blood flow: experimental and clinical validation of a novel thermal diffusion microprobe,” J. Neurosurg. 93(2), 265–274 (2000).
[Crossref] [PubMed]

Kofke, W. A.

M. N. Kim, T. Durduran, S. Frangos, B. L. Edlow, E. M. Buckley, H. E. Moss, C. Zhou, G. Yu, R. Choe, E. Maloney-Wilensky, R. L. Wolf, M. S. Grady, J. H. Greenberg, J. M. Levine, A. G. Yodh, J. A. Detre, and W. A. Kofke, “Noninvasive measurement of cerebral blood flow and blood oxygenation using near-infrared and diffuse correlation spectroscopies in critically brain-injured adults,” Neurocrit. Care 12(2), 173–180 (2010).
[Crossref] [PubMed]

Ku, G.

Lev, A.

Levine, J. M.

M. N. Kim, T. Durduran, S. Frangos, B. L. Edlow, E. M. Buckley, H. E. Moss, C. Zhou, G. Yu, R. Choe, E. Maloney-Wilensky, R. L. Wolf, M. S. Grady, J. H. Greenberg, J. M. Levine, A. G. Yodh, J. A. Detre, and W. A. Kofke, “Noninvasive measurement of cerebral blood flow and blood oxygenation using near-infrared and diffuse correlation spectroscopies in critically brain-injured adults,” Neurocrit. Care 12(2), 173–180 (2010).
[Crossref] [PubMed]

Lu, X.

Lucke, T.

P. Vajkoczy, H. Roth, P. Horn, T. Lucke, C. Thomé, U. Hubner, G. T. Martin, C. Zappletal, E. Klar, L. Schilling, and P. Schmiedek, “Continuous monitoring of regional cerebral blood flow: experimental and clinical validation of a novel thermal diffusion microprobe,” J. Neurosurg. 93(2), 265–274 (2000).
[Crossref] [PubMed]

Mahan, G. D.

G. D. Mahan, W. E. Engler, J. J. Tiemann, and E. Uzgiris, “Ultrasonic tagging of light: theory,” Proc. Natl. Acad. Sci. U.S.A. 95(24), 14015–14019 (1998).
[Crossref] [PubMed]

Maloney-Wilensky, E.

M. N. Kim, T. Durduran, S. Frangos, B. L. Edlow, E. M. Buckley, H. E. Moss, C. Zhou, G. Yu, R. Choe, E. Maloney-Wilensky, R. L. Wolf, M. S. Grady, J. H. Greenberg, J. M. Levine, A. G. Yodh, J. A. Detre, and W. A. Kofke, “Noninvasive measurement of cerebral blood flow and blood oxygenation using near-infrared and diffuse correlation spectroscopies in critically brain-injured adults,” Neurocrit. Care 12(2), 173–180 (2010).
[Crossref] [PubMed]

Marks, K.

J. Patel, K. Marks, I. Roberts, D. Azzopardi, and A. D. Edwards, “Measurement of cerebral blood flow in newborn infants using near infrared spectroscopy with indocyanine green,” Pediatr. Res. 43(1), 34–39 (1998).
[Crossref] [PubMed]

Markwalder, T.-M.

R. Aaslid, T.-M. Markwalder, and H. Nornes, “Noninvasive transcranial Doppler ultrasound recording of flow velocity in basal cerebral arteries,” J. Neurosurg. 57(6), 769–774 (1982).
[Crossref] [PubMed]

Martin, G. T.

P. Vajkoczy, H. Roth, P. Horn, T. Lucke, C. Thomé, U. Hubner, G. T. Martin, C. Zappletal, E. Klar, L. Schilling, and P. Schmiedek, “Continuous monitoring of regional cerebral blood flow: experimental and clinical validation of a novel thermal diffusion microprobe,” J. Neurosurg. 93(2), 265–274 (2000).
[Crossref] [PubMed]

Maslov, K. I.

Mesquita, R. C.

Metzger, Y.

A. Ron, N. Racheli, I. Breskin, Y. Metzger, Z. Silman, M. Kamar, A. Nini, R. Shechter, and M. Balberg, “Measuring tissue blood flow using ultrasound modulated diffused light,” in Proc. of SPIE Vol, 2012), 82232J.
[Crossref]

Minkoff, D. L.

Moskowitz, M. A.

A. K. Dunn, H. Bolay, M. A. Moskowitz, and D. A. Boas, “Dynamic imaging of cerebral blood flow using laser speckle,” J. Cereb. Blood Flow Metab. 21(3), 195–201 (2001).
[Crossref] [PubMed]

Moss, H. E.

M. N. Kim, T. Durduran, S. Frangos, B. L. Edlow, E. M. Buckley, H. E. Moss, C. Zhou, G. Yu, R. Choe, E. Maloney-Wilensky, R. L. Wolf, M. S. Grady, J. H. Greenberg, J. M. Levine, A. G. Yodh, J. A. Detre, and W. A. Kofke, “Noninvasive measurement of cerebral blood flow and blood oxygenation using near-infrared and diffuse correlation spectroscopies in critically brain-injured adults,” Neurocrit. Care 12(2), 173–180 (2010).
[Crossref] [PubMed]

Newhouse, V. L.

V. L. Newhouse, P. J. Bendick, and L. W. Varner, “Analysis of transit time effects on Doppler flow measurement,” IEEE Trans. Biomed. Eng. 23(5), 381–387 (1976).
[Crossref] [PubMed]

Nilsson, G. E.

G. E. Nilsson, T. Tenland, and P. A. Oberg, “Evaluation of a laser Doppler flowmeter for measurement of tissue blood flow,” IEEE Trans. Biomed. Eng. 27(10), 597–604 (1980).
[Crossref] [PubMed]

Nini, A.

H. W. Schytz, S. Guo, L. T. Jensen, M. Kamar, A. Nini, D. R. Gress, and M. Ashina, “A new technology for detecting cerebral blood flow: a comparative study of ultrasound tagged NIRS and 133Xe-SPECT,” Neurocrit. Care 17(1), 139–145 (2012).
[Crossref] [PubMed]

A. Ron, N. Racheli, I. Breskin, Y. Metzger, Z. Silman, M. Kamar, A. Nini, R. Shechter, and M. Balberg, “Measuring tissue blood flow using ultrasound modulated diffused light,” in Proc. of SPIE Vol, 2012), 82232J.
[Crossref]

Nobesawa, S.

E. Ohmae, Y. Ouchi, M. Oda, T. Suzuki, S. Nobesawa, T. Kanno, E. Yoshikawa, M. Futatsubashi, Y. Ueda, H. Okada, and Y. Yamashita, “Cerebral hemodynamics evaluation by near-infrared time-resolved spectroscopy: correlation with simultaneous positron emission tomography measurements,” Neuroimage 29(3), 697–705 (2006).
[Crossref] [PubMed]

Nornes, H.

R. Aaslid, T.-M. Markwalder, and H. Nornes, “Noninvasive transcranial Doppler ultrasound recording of flow velocity in basal cerebral arteries,” J. Neurosurg. 57(6), 769–774 (1982).
[Crossref] [PubMed]

Nossal, R.

Obeid, A. N.

A. N. Obeid, N. J. Barnett, G. Dougherty, and G. Ward, “A critical review of laser Doppler flowmetry,” J. Med. Eng. Technol. 14(5), 178–181 (1990).
[Crossref] [PubMed]

A. N. Obeid, D. M. Boggett, N. J. Barnett, G. Dougherty, and P. Rolfe, “Depth discrimination in laser Doppler skin blood flow measurement using different lasers,” Med. Biol. Eng. Comput. 26(4), 415–424 (1988).
[Crossref] [PubMed]

Oberg, P. A.

G. E. Nilsson, T. Tenland, and P. A. Oberg, “Evaluation of a laser Doppler flowmeter for measurement of tissue blood flow,” IEEE Trans. Biomed. Eng. 27(10), 597–604 (1980).
[Crossref] [PubMed]

Oda, M.

E. Ohmae, Y. Ouchi, M. Oda, T. Suzuki, S. Nobesawa, T. Kanno, E. Yoshikawa, M. Futatsubashi, Y. Ueda, H. Okada, and Y. Yamashita, “Cerebral hemodynamics evaluation by near-infrared time-resolved spectroscopy: correlation with simultaneous positron emission tomography measurements,” Neuroimage 29(3), 697–705 (2006).
[Crossref] [PubMed]

Ohmae, E.

E. Ohmae, Y. Ouchi, M. Oda, T. Suzuki, S. Nobesawa, T. Kanno, E. Yoshikawa, M. Futatsubashi, Y. Ueda, H. Okada, and Y. Yamashita, “Cerebral hemodynamics evaluation by near-infrared time-resolved spectroscopy: correlation with simultaneous positron emission tomography measurements,” Neuroimage 29(3), 697–705 (2006).
[Crossref] [PubMed]

Okada, H.

E. Ohmae, Y. Ouchi, M. Oda, T. Suzuki, S. Nobesawa, T. Kanno, E. Yoshikawa, M. Futatsubashi, Y. Ueda, H. Okada, and Y. Yamashita, “Cerebral hemodynamics evaluation by near-infrared time-resolved spectroscopy: correlation with simultaneous positron emission tomography measurements,” Neuroimage 29(3), 697–705 (2006).
[Crossref] [PubMed]

Ouchi, Y.

E. Ohmae, Y. Ouchi, M. Oda, T. Suzuki, S. Nobesawa, T. Kanno, E. Yoshikawa, M. Futatsubashi, Y. Ueda, H. Okada, and Y. Yamashita, “Cerebral hemodynamics evaluation by near-infrared time-resolved spectroscopy: correlation with simultaneous positron emission tomography measurements,” Neuroimage 29(3), 697–705 (2006).
[Crossref] [PubMed]

Owen-Reece, H.

H. Owen-Reece, C. E. Elwell, W. Harkness, J. Goldstone, D. T. Delpy, J. S. Wyatt, and M. Smith, “Use of near infrared spectroscopy to estimate cerebral blood flow in conscious and anaesthetized adult subjects,” Br. J. Anaesth. 76(1), 43–48 (1996).
[Crossref] [PubMed]

Patel, J.

J. Patel, K. Marks, I. Roberts, D. Azzopardi, and A. D. Edwards, “Measurement of cerebral blood flow in newborn infants using near infrared spectroscopy with indocyanine green,” Pediatr. Res. 43(1), 34–39 (1998).
[Crossref] [PubMed]

Prahl, S. A.

W.-F. Cheong, S. A. Prahl, and A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26(12), 2166–2185 (1990).
[Crossref]

Racheli, N.

A. Ron, N. Racheli, I. Breskin, Y. Metzger, Z. Silman, M. Kamar, A. Nini, R. Shechter, and M. Balberg, “Measuring tissue blood flow using ultrasound modulated diffused light,” in Proc. of SPIE Vol, 2012), 82232J.
[Crossref]

Ramaz, F.

Roberts, I.

J. Patel, K. Marks, I. Roberts, D. Azzopardi, and A. D. Edwards, “Measurement of cerebral blood flow in newborn infants using near infrared spectroscopy with indocyanine green,” Pediatr. Res. 43(1), 34–39 (1998).
[Crossref] [PubMed]

Roelofs, B. H.

P. A. Bascom, R. S. Cobbold, and B. H. Roelofs, “Influence of spectral broadening on continuous wave Doppler ultrasound spectra: a geometric approach,” Ultrasound Med. Biol. 12(5), 387–395 (1986).
[Crossref] [PubMed]

Rolfe, P.

A. N. Obeid, D. M. Boggett, N. J. Barnett, G. Dougherty, and P. Rolfe, “Depth discrimination in laser Doppler skin blood flow measurement using different lasers,” Med. Biol. Eng. Comput. 26(4), 415–424 (1988).
[Crossref] [PubMed]

Ron, A.

A. Ron, N. Racheli, I. Breskin, Y. Metzger, Z. Silman, M. Kamar, A. Nini, R. Shechter, and M. Balberg, “Measuring tissue blood flow using ultrasound modulated diffused light,” in Proc. of SPIE Vol, 2012), 82232J.
[Crossref]

Roosen, G.

Roth, H.

P. Vajkoczy, H. Roth, P. Horn, T. Lucke, C. Thomé, U. Hubner, G. T. Martin, C. Zappletal, E. Klar, L. Schilling, and P. Schmiedek, “Continuous monitoring of regional cerebral blood flow: experimental and clinical validation of a novel thermal diffusion microprobe,” J. Neurosurg. 93(2), 265–274 (2000).
[Crossref] [PubMed]

Schenkel, S. S.

Schilling, L.

P. Vajkoczy, H. Roth, P. Horn, T. Lucke, C. Thomé, U. Hubner, G. T. Martin, C. Zappletal, E. Klar, L. Schilling, and P. Schmiedek, “Continuous monitoring of regional cerebral blood flow: experimental and clinical validation of a novel thermal diffusion microprobe,” J. Neurosurg. 93(2), 265–274 (2000).
[Crossref] [PubMed]

Schmiedek, P.

P. Vajkoczy, H. Roth, P. Horn, T. Lucke, C. Thomé, U. Hubner, G. T. Martin, C. Zappletal, E. Klar, L. Schilling, and P. Schmiedek, “Continuous monitoring of regional cerebral blood flow: experimental and clinical validation of a novel thermal diffusion microprobe,” J. Neurosurg. 93(2), 265–274 (2000).
[Crossref] [PubMed]

Schytz, H. W.

H. W. Schytz, S. Guo, L. T. Jensen, M. Kamar, A. Nini, D. R. Gress, and M. Ashina, “A new technology for detecting cerebral blood flow: a comparative study of ultrasound tagged NIRS and 133Xe-SPECT,” Neurocrit. Care 17(1), 139–145 (2012).
[Crossref] [PubMed]

H. W. Schytz, T. Wienecke, L. T. Jensen, J. Selb, D. A. Boas, and M. Ashina, “Changes in cerebral blood flow after acetazolamide: an experimental study comparing near-infrared spectroscopy and SPECT,” Eur. J. Neurol. 16(4), 461–467 (2009).
[Crossref] [PubMed]

Selb, J.

H. W. Schytz, T. Wienecke, L. T. Jensen, J. Selb, D. A. Boas, and M. Ashina, “Changes in cerebral blood flow after acetazolamide: an experimental study comparing near-infrared spectroscopy and SPECT,” Eur. J. Neurol. 16(4), 461–467 (2009).
[Crossref] [PubMed]

Sfez, B.

Shechter, R.

A. Ron, N. Racheli, I. Breskin, Y. Metzger, Z. Silman, M. Kamar, A. Nini, R. Shechter, and M. Balberg, “Measuring tissue blood flow using ultrasound modulated diffused light,” in Proc. of SPIE Vol, 2012), 82232J.
[Crossref]

Sheinfeld, A.

A. Sheinfeld, S. Gilead, and A. Eyal, “Simultaneous spatial and spectral mapping of flow using photoacoustic Doppler measurement,” J. Biomed. Opt. 15, 066010 (2010).

Shi, Y.

Shinde, S.

F. Gora, S. Shinde, C. E. Elwell, J. C. Goldstone, M. Cope, D. T. Delpy, and M. Smith, “Noninvasive measurement of cerebral blood flow in adults using near-infrared spectroscopy and indocyanine green: a pilot study,” J. Neurosurg. Anesthesiol. 14(3), 218–222 (2002).
[Crossref] [PubMed]

Silman, Z.

A. Ron, N. Racheli, I. Breskin, Y. Metzger, Z. Silman, M. Kamar, A. Nini, R. Shechter, and M. Balberg, “Measuring tissue blood flow using ultrasound modulated diffused light,” in Proc. of SPIE Vol, 2012), 82232J.
[Crossref]

Smith, M.

F. Gora, S. Shinde, C. E. Elwell, J. C. Goldstone, M. Cope, D. T. Delpy, and M. Smith, “Noninvasive measurement of cerebral blood flow in adults using near-infrared spectroscopy and indocyanine green: a pilot study,” J. Neurosurg. Anesthesiol. 14(3), 218–222 (2002).
[Crossref] [PubMed]

H. Owen-Reece, C. E. Elwell, W. Harkness, J. Goldstone, D. T. Delpy, J. S. Wyatt, and M. Smith, “Use of near infrared spectroscopy to estimate cerebral blood flow in conscious and anaesthetized adult subjects,” Br. J. Anaesth. 76(1), 43–48 (1996).
[Crossref] [PubMed]

Steiner, L. A.

L. A. Steiner and P. J. Andrews, “Monitoring the injured brain: ICP and CBF,” Br. J. Anaesth. 97(1), 26–38 (2006).
[Crossref] [PubMed]

Suzuki, T.

E. Ohmae, Y. Ouchi, M. Oda, T. Suzuki, S. Nobesawa, T. Kanno, E. Yoshikawa, M. Futatsubashi, Y. Ueda, H. Okada, and Y. Yamashita, “Cerebral hemodynamics evaluation by near-infrared time-resolved spectroscopy: correlation with simultaneous positron emission tomography measurements,” Neuroimage 29(3), 697–705 (2006).
[Crossref] [PubMed]

Taber, L. A.

Tenland, T.

G. E. Nilsson, T. Tenland, and P. A. Oberg, “Evaluation of a laser Doppler flowmeter for measurement of tissue blood flow,” IEEE Trans. Biomed. Eng. 27(10), 597–604 (1980).
[Crossref] [PubMed]

Thomé, C.

P. Vajkoczy, H. Roth, P. Horn, T. Lucke, C. Thomé, U. Hubner, G. T. Martin, C. Zappletal, E. Klar, L. Schilling, and P. Schmiedek, “Continuous monitoring of regional cerebral blood flow: experimental and clinical validation of a novel thermal diffusion microprobe,” J. Neurosurg. 93(2), 265–274 (2000).
[Crossref] [PubMed]

Tiemann, J. J.

G. D. Mahan, W. E. Engler, J. J. Tiemann, and E. Uzgiris, “Ultrasonic tagging of light: theory,” Proc. Natl. Acad. Sci. U.S.A. 95(24), 14015–14019 (1998).
[Crossref] [PubMed]

Ueda, Y.

E. Ohmae, Y. Ouchi, M. Oda, T. Suzuki, S. Nobesawa, T. Kanno, E. Yoshikawa, M. Futatsubashi, Y. Ueda, H. Okada, and Y. Yamashita, “Cerebral hemodynamics evaluation by near-infrared time-resolved spectroscopy: correlation with simultaneous positron emission tomography measurements,” Neuroimage 29(3), 697–705 (2006).
[Crossref] [PubMed]

Uzgiris, E.

G. D. Mahan, W. E. Engler, J. J. Tiemann, and E. Uzgiris, “Ultrasonic tagging of light: theory,” Proc. Natl. Acad. Sci. U.S.A. 95(24), 14015–14019 (1998).
[Crossref] [PubMed]

Vajkoczy, P.

P. Vajkoczy, H. Roth, P. Horn, T. Lucke, C. Thomé, U. Hubner, G. T. Martin, C. Zappletal, E. Klar, L. Schilling, and P. Schmiedek, “Continuous monitoring of regional cerebral blood flow: experimental and clinical validation of a novel thermal diffusion microprobe,” J. Neurosurg. 93(2), 265–274 (2000).
[Crossref] [PubMed]

van der Zee, P.

M. Hiraoka, M. Firbank, M. Essenpreis, M. Cope, S. R. Arridge, P. van der Zee, and D. T. Delpy, “A Monte Carlo investigation of optical pathlength in inhomogeneous tissue and its application to near-infrared spectroscopy,” Phys. Med. Biol. 38(12), 1859–1876 (1993).
[Crossref] [PubMed]

Varner, L. W.

V. L. Newhouse, P. J. Bendick, and L. W. Varner, “Analysis of transit time effects on Doppler flow measurement,” IEEE Trans. Biomed. Eng. 23(5), 381–387 (1976).
[Crossref] [PubMed]

Vora, P. M.

Wang, J.

Wang, L. V.

Ward, G.

A. N. Obeid, N. J. Barnett, G. Dougherty, and G. Ward, “A critical review of laser Doppler flowmetry,” J. Med. Eng. Technol. 14(5), 178–181 (1990).
[Crossref] [PubMed]

Webster, S.

J. D. Briers and S. Webster, “Laser speckle contrast analysis (LASCA): a nonscanning, full-field technique for monitoring capillary blood flow,” J. Biomed. Opt. 1(2), 174–179 (1996).
[Crossref] [PubMed]

Welch, A. J.

W.-F. Cheong, S. A. Prahl, and A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26(12), 2166–2185 (1990).
[Crossref]

Wienecke, T.

H. W. Schytz, T. Wienecke, L. T. Jensen, J. Selb, D. A. Boas, and M. Ashina, “Changes in cerebral blood flow after acetazolamide: an experimental study comparing near-infrared spectroscopy and SPECT,” Eur. J. Neurol. 16(4), 461–467 (2009).
[Crossref] [PubMed]

Wilkinson, I. D.

P. D. Griffiths, N. Hoggard, W. R. Dannels, and I. D. Wilkinson, “In vivo measurement of cerebral blood flow: a review of methods and applications,” Vasc. Med. 6(1), 51–60 (2001).
[Crossref] [PubMed]

Wolf, R. L.

M. N. Kim, T. Durduran, S. Frangos, B. L. Edlow, E. M. Buckley, H. E. Moss, C. Zhou, G. Yu, R. Choe, E. Maloney-Wilensky, R. L. Wolf, M. S. Grady, J. H. Greenberg, J. M. Levine, A. G. Yodh, J. A. Detre, and W. A. Kofke, “Noninvasive measurement of cerebral blood flow and blood oxygenation using near-infrared and diffuse correlation spectroscopies in critically brain-injured adults,” Neurocrit. Care 12(2), 173–180 (2010).
[Crossref] [PubMed]

Wyatt, J. S.

H. Owen-Reece, C. E. Elwell, W. Harkness, J. Goldstone, D. T. Delpy, J. S. Wyatt, and M. Smith, “Use of near infrared spectroscopy to estimate cerebral blood flow in conscious and anaesthetized adult subjects,” Br. J. Anaesth. 76(1), 43–48 (1996).
[Crossref] [PubMed]

Yamashita, Y.

E. Ohmae, Y. Ouchi, M. Oda, T. Suzuki, S. Nobesawa, T. Kanno, E. Yoshikawa, M. Futatsubashi, Y. Ueda, H. Okada, and Y. Yamashita, “Cerebral hemodynamics evaluation by near-infrared time-resolved spectroscopy: correlation with simultaneous positron emission tomography measurements,” Neuroimage 29(3), 697–705 (2006).
[Crossref] [PubMed]

Yao, G.

Yao, J.

Yodh, A. G.

Yoshikawa, E.

E. Ohmae, Y. Ouchi, M. Oda, T. Suzuki, S. Nobesawa, T. Kanno, E. Yoshikawa, M. Futatsubashi, Y. Ueda, H. Okada, and Y. Yamashita, “Cerebral hemodynamics evaluation by near-infrared time-resolved spectroscopy: correlation with simultaneous positron emission tomography measurements,” Neuroimage 29(3), 697–705 (2006).
[Crossref] [PubMed]

Yu, G.

M. N. Kim, T. Durduran, S. Frangos, B. L. Edlow, E. M. Buckley, H. E. Moss, C. Zhou, G. Yu, R. Choe, E. Maloney-Wilensky, R. L. Wolf, M. S. Grady, J. H. Greenberg, J. M. Levine, A. G. Yodh, J. A. Detre, and W. A. Kofke, “Noninvasive measurement of cerebral blood flow and blood oxygenation using near-infrared and diffuse correlation spectroscopies in critically brain-injured adults,” Neurocrit. Care 12(2), 173–180 (2010).
[Crossref] [PubMed]

T. Durduran, G. Yu, M. G. Burnett, J. A. Detre, J. H. Greenberg, J. Wang, C. Zhou, and A. G. Yodh, “Diffuse optical measurement of blood flow, blood oxygenation, and metabolism in a human brain during sensorimotor cortex activation,” Opt. Lett. 29(15), 1766–1768 (2004).
[Crossref] [PubMed]

Zappletal, C.

P. Vajkoczy, H. Roth, P. Horn, T. Lucke, C. Thomé, U. Hubner, G. T. Martin, C. Zappletal, E. Klar, L. Schilling, and P. Schmiedek, “Continuous monitoring of regional cerebral blood flow: experimental and clinical validation of a novel thermal diffusion microprobe,” J. Neurosurg. 93(2), 265–274 (2000).
[Crossref] [PubMed]

Zhou, C.

M. N. Kim, T. Durduran, S. Frangos, B. L. Edlow, E. M. Buckley, H. E. Moss, C. Zhou, G. Yu, R. Choe, E. Maloney-Wilensky, R. L. Wolf, M. S. Grady, J. H. Greenberg, J. M. Levine, A. G. Yodh, J. A. Detre, and W. A. Kofke, “Noninvasive measurement of cerebral blood flow and blood oxygenation using near-infrared and diffuse correlation spectroscopies in critically brain-injured adults,” Neurocrit. Care 12(2), 173–180 (2010).
[Crossref] [PubMed]

T. Durduran, G. Yu, M. G. Burnett, J. A. Detre, J. H. Greenberg, J. Wang, C. Zhou, and A. G. Yodh, “Diffuse optical measurement of blood flow, blood oxygenation, and metabolism in a human brain during sensorimotor cortex activation,” Opt. Lett. 29(15), 1766–1768 (2004).
[Crossref] [PubMed]

Appl. Opt. (2)

Biomed. Opt. Express (1)

Br. J. Anaesth. (2)

L. A. Steiner and P. J. Andrews, “Monitoring the injured brain: ICP and CBF,” Br. J. Anaesth. 97(1), 26–38 (2006).
[Crossref] [PubMed]

H. Owen-Reece, C. E. Elwell, W. Harkness, J. Goldstone, D. T. Delpy, J. S. Wyatt, and M. Smith, “Use of near infrared spectroscopy to estimate cerebral blood flow in conscious and anaesthetized adult subjects,” Br. J. Anaesth. 76(1), 43–48 (1996).
[Crossref] [PubMed]

Eur. J. Neurol. (1)

H. W. Schytz, T. Wienecke, L. T. Jensen, J. Selb, D. A. Boas, and M. Ashina, “Changes in cerebral blood flow after acetazolamide: an experimental study comparing near-infrared spectroscopy and SPECT,” Eur. J. Neurol. 16(4), 461–467 (2009).
[Crossref] [PubMed]

IEEE J. Quantum Electron. (1)

W.-F. Cheong, S. A. Prahl, and A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26(12), 2166–2185 (1990).
[Crossref]

IEEE Trans. Biomed. Eng. (2)

G. E. Nilsson, T. Tenland, and P. A. Oberg, “Evaluation of a laser Doppler flowmeter for measurement of tissue blood flow,” IEEE Trans. Biomed. Eng. 27(10), 597–604 (1980).
[Crossref] [PubMed]

V. L. Newhouse, P. J. Bendick, and L. W. Varner, “Analysis of transit time effects on Doppler flow measurement,” IEEE Trans. Biomed. Eng. 23(5), 381–387 (1976).
[Crossref] [PubMed]

J. Biomed. Opt. (2)

A. Sheinfeld, S. Gilead, and A. Eyal, “Simultaneous spatial and spectral mapping of flow using photoacoustic Doppler measurement,” J. Biomed. Opt. 15, 066010 (2010).

J. D. Briers and S. Webster, “Laser speckle contrast analysis (LASCA): a nonscanning, full-field technique for monitoring capillary blood flow,” J. Biomed. Opt. 1(2), 174–179 (1996).
[Crossref] [PubMed]

J. Cereb. Blood Flow Metab. (1)

A. K. Dunn, H. Bolay, M. A. Moskowitz, and D. A. Boas, “Dynamic imaging of cerebral blood flow using laser speckle,” J. Cereb. Blood Flow Metab. 21(3), 195–201 (2001).
[Crossref] [PubMed]

J. Clin. Ultrasound (1)

P. N. Burns, “The physical principles of Doppler and spectral analysis,” J. Clin. Ultrasound 15(9), 567–590 (1987).
[Crossref] [PubMed]

J. Med. Eng. Technol. (1)

A. N. Obeid, N. J. Barnett, G. Dougherty, and G. Ward, “A critical review of laser Doppler flowmetry,” J. Med. Eng. Technol. 14(5), 178–181 (1990).
[Crossref] [PubMed]

J. Neurosurg. (2)

R. Aaslid, T.-M. Markwalder, and H. Nornes, “Noninvasive transcranial Doppler ultrasound recording of flow velocity in basal cerebral arteries,” J. Neurosurg. 57(6), 769–774 (1982).
[Crossref] [PubMed]

P. Vajkoczy, H. Roth, P. Horn, T. Lucke, C. Thomé, U. Hubner, G. T. Martin, C. Zappletal, E. Klar, L. Schilling, and P. Schmiedek, “Continuous monitoring of regional cerebral blood flow: experimental and clinical validation of a novel thermal diffusion microprobe,” J. Neurosurg. 93(2), 265–274 (2000).
[Crossref] [PubMed]

J. Neurosurg. Anesthesiol. (1)

F. Gora, S. Shinde, C. E. Elwell, J. C. Goldstone, M. Cope, D. T. Delpy, and M. Smith, “Noninvasive measurement of cerebral blood flow in adults using near-infrared spectroscopy and indocyanine green: a pilot study,” J. Neurosurg. Anesthesiol. 14(3), 218–222 (2002).
[Crossref] [PubMed]

J. Opt. Soc. Am. A (1)

Med. Biol. Eng. Comput. (1)

A. N. Obeid, D. M. Boggett, N. J. Barnett, G. Dougherty, and P. Rolfe, “Depth discrimination in laser Doppler skin blood flow measurement using different lasers,” Med. Biol. Eng. Comput. 26(4), 415–424 (1988).
[Crossref] [PubMed]

Neurocrit. Care (2)

M. N. Kim, T. Durduran, S. Frangos, B. L. Edlow, E. M. Buckley, H. E. Moss, C. Zhou, G. Yu, R. Choe, E. Maloney-Wilensky, R. L. Wolf, M. S. Grady, J. H. Greenberg, J. M. Levine, A. G. Yodh, J. A. Detre, and W. A. Kofke, “Noninvasive measurement of cerebral blood flow and blood oxygenation using near-infrared and diffuse correlation spectroscopies in critically brain-injured adults,” Neurocrit. Care 12(2), 173–180 (2010).
[Crossref] [PubMed]

H. W. Schytz, S. Guo, L. T. Jensen, M. Kamar, A. Nini, D. R. Gress, and M. Ashina, “A new technology for detecting cerebral blood flow: a comparative study of ultrasound tagged NIRS and 133Xe-SPECT,” Neurocrit. Care 17(1), 139–145 (2012).
[Crossref] [PubMed]

Neuroimage (1)

E. Ohmae, Y. Ouchi, M. Oda, T. Suzuki, S. Nobesawa, T. Kanno, E. Yoshikawa, M. Futatsubashi, Y. Ueda, H. Okada, and Y. Yamashita, “Cerebral hemodynamics evaluation by near-infrared time-resolved spectroscopy: correlation with simultaneous positron emission tomography measurements,” Neuroimage 29(3), 697–705 (2006).
[Crossref] [PubMed]

Neurophotonics (1)

J. Yao and L. V. Wang, “Photoacoustic brain imaging: from microscopic to macroscopic scales,” Neurophotonics 1(1), 011003 (2014).
[Crossref] [PubMed]

Opt. Express (1)

Opt. Lett. (3)

Pediatr. Res. (1)

J. Patel, K. Marks, I. Roberts, D. Azzopardi, and A. D. Edwards, “Measurement of cerebral blood flow in newborn infants using near infrared spectroscopy with indocyanine green,” Pediatr. Res. 43(1), 34–39 (1998).
[Crossref] [PubMed]

Phys. Med. Biol. (1)

M. Hiraoka, M. Firbank, M. Essenpreis, M. Cope, S. R. Arridge, P. van der Zee, and D. T. Delpy, “A Monte Carlo investigation of optical pathlength in inhomogeneous tissue and its application to near-infrared spectroscopy,” Phys. Med. Biol. 38(12), 1859–1876 (1993).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

G. D. Mahan, W. E. Engler, J. J. Tiemann, and E. Uzgiris, “Ultrasonic tagging of light: theory,” Proc. Natl. Acad. Sci. U.S.A. 95(24), 14015–14019 (1998).
[Crossref] [PubMed]

Ultrasound Med. Biol. (1)

P. A. Bascom, R. S. Cobbold, and B. H. Roelofs, “Influence of spectral broadening on continuous wave Doppler ultrasound spectra: a geometric approach,” Ultrasound Med. Biol. 12(5), 387–395 (1986).
[Crossref] [PubMed]

Vasc. Med. (1)

P. D. Griffiths, N. Hoggard, W. R. Dannels, and I. D. Wilkinson, “In vivo measurement of cerebral blood flow: a review of methods and applications,” Vasc. Med. 6(1), 51–60 (2001).
[Crossref] [PubMed]

Other (6)

E. Keller, J. Froehlich, C. Muroi, C. Sikorski, and M. Muser, “Neuromonitoring in intensive care: a new brain tissue probe for combined monitoring of intracranial pressure (ICP) cerebral blood flow (CBF) and oxygenation,” in Early Brain Injury or Cerebral Vasospasm (Springer, 2011), pp. 217–220.

A. Ron, N. Racheli, I. Breskin, Y. Metzger, Z. Silman, M. Kamar, A. Nini, R. Shechter, and M. Balberg, “Measuring tissue blood flow using ultrasound modulated diffused light,” in Proc. of SPIE Vol, 2012), 82232J.
[Crossref]

Y. Metzger, M. Rokni, and R. Pery-Shechter, “System and method for noninvasively monitoring conditions of a subject,” (Google Patents, 2009).

A. Tsalach, Y. Metzger, I. Breskin, R. Zeitak, and R. Shechter, “Ultrasound modulated light blood flow measurement using intensity autocorrelation function: a Monte-Carlo simulation,” in SPIE BiOS (Proc. SPIE 8943 Photons Plus Ultrasound: Imaging and Sensing 2014), pp. 89433N–89433N–89411.

N. Racheli, A. Ron, Y. Metzger, I. Breskin, G. Enden, M. Balberg, and R. Shechter, “Non-invasive blood flow measurements using ultrasound modulated diffused light,” in SPIE BiOS, (International Society for Optics and Photonics, 2012), 82232A–82232A–82238.

D. Christensen, Ultrasonic Bioinstrumentation (Wiley, 1988).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Different light paths propagate thorough different depths inside the sample (examples in red, green, blue) and their corresponding spectra around US frequency (fc). Black points designate typical scattering sites along the different paths. T & R stands for the light transmission and reception points, respectively. (A): The red path represents the most probable path for the given geometric configuration. As paths get longer, their probability gets smaller (green) and smaller (dashed blue). When a continuous ultrasound (US) wave is used for modulating the entire tissue volume of the “banana” defined by the transmission and reception points - the overall spectral distribution which is sum of three spectra “types” (colors) will normally be dominated by “red” type paths (right). (B): In the case where an US pulse modulates only a specific volume (overlapping mainly with “green” type paths), then the spectrum is dominated by these paths. Shorter “red” type are almost not modulated while longer “blue” type will be less expressed due to their relatively smaller probability and smaller US overlap.
Fig. 2
Fig. 2 Each layer is modulated (by Ultrasound) at a different time. In panel A the spectrum (schematically illustrated on the right panel) is narrow around the US carrier frequency (fc) as “red type” trajectories, which are not broadened by flow, are dominant. At panel B the US layer overlaps with the flow layer such that the US modulated trajectories are also broadened by flow. In panel C the US modulated layer is deeper than the flow layer, and although the total number of trajectories is small (a longer path means less probability to get back to detector), it is still broadened as it traveled through the flow layer as well.
Fig. 3
Fig. 3 (A) An illustration of one photon trajectory obtained from transmission to reception point. Black spheres represent scatterers along the trajectory. The ith scatterer is shifted by both flow and US field. This phase shift would be summed up with phase shifts of other scatterers of this trajectory to get the overall phase increment along the path. On the right – an illustration of Qi. (B) The simulation setup. The pink square represents the tissue, characterized by its optical properties. Black spheres denote scatterers, moved by the characterizing displacement (due to flow or US). On the left, one can observe the different layers. In the blue layer photons encounter moving scatterers due to flow, and its depth is kept constant throughout the specific simulation (it is changed between different simulations). In the yellow layer photons are tagged by the US. In order to create the full picture of pulse propagation, this layer is shifted in 0.2mm increments to scan the whole tissue. The right side represents the US layer locations in two consecutive steps (yellow – step 1, red – step 2), and the shift is apparent.
Fig. 4
Fig. 4 (A) Schematic illustration of the experimental setup. (B) A cross section of the flow phantom detailing the channels structure. Five rows, corresponding to five different depths, each containing four flow channels. The geometric sizes are given as well. (C) Overview on the flow phantom including the controlling valves system and the measuring probe, (D) Zoom in on the channels connection to the silicon tubes, and (E) A closer look on the measuring probe, including the transmitting (Tx) and receiving (Rx) fibers and the US transducer.
Fig. 5
Fig. 5 An example of the simulation's output. Upper panel (A) demonstrates a normalized spectrogram. X axis corresponds to depth, Y axis represents the frequency, and color stands for amplitude in arbitrary units. Spectra obtained at different depths are plotted one next to another, thus creating the 2D image presented here. The middle panel (B) contains the matching spectral width, and the lower one (C), the obtained local broadening (FI).
Fig. 6
Fig. 6 (A-C) Simulation results for 3 different depths of the 1mm wide flow layer. Spectrograms (A), spectral width (B) and spectral broadening (C) curves exhibit apparent depth discrimination ability. (D-E) Experimental results obtained for flow patterns taking place at 3 different depths. Spectral width (D) and local broadening (E) both indicate a distinct depth discrimination.
Fig. 7
Fig. 7 (A) Normalized spectrogram obtained by the simulation for two flow layers in parallel. Dashed black lines represent both flow layers. A noticeable spectral broadening is apparent in each flow layer. Simulation's (B) and experimental (C) results for parallel flow in two layers, shallow and deep. Red curves represent results obtained for one, shallow, flow layer only. Blue curves depict the case of shallow and deep flow patterns concurrently, providing an evidence for the ability to distinguish between those two.

Tables (1)

Tables Icon

Table 1 Optical and acoustic properties of the phantom and the tissue [34, 35]

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

Δ ϕ α = i = 1 N Q i Δ r i
A α = W α e i ϕ α
I = | α A α | 2
Δ r i , f l o w = V t y ^
Δ r i , U S = U 0 sin ( ω t + φ i ( z ) ) z ^
P S = | F F T ( I ) | 2
S W = A U C A ( f U S )
F I = ( S W ) z

Metrics