Abstract

A micro flow cytometer with a single step 3D hydrodynamic flow focusing has been developed. The proposed design is capable to create a single-file particle stream that is self-aligned with an integrated optical fiber-based detection system, regardless of the flow rate ratio between the focusing and core liquids. The design approach provides the ability to adjust the stream size while keeping the position of the focused stream centered with respect to the focusing channel. The device has been fabricated by direct micro milling of PMMA sheets. Experimental validation of the hydrodynamic sheath focusing effect has been presented and sample stream with tuneable size from about 18 to 50 μm was measured. Flow cytometry measurements have been performed by using 10-23 μm fluorescent particles. From the analysis of the signals collected at each transit event we can confirm that the device was capable to align and measure microparticles with a good coefficient of variance.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Label-free light-sheet microfluidic cytometry for the automatic identification of senescent cells

Meiai Lin, Qiao Liu, Chao Liu, Xu Qiao, Changshun Shao, and Xuantao Su
Biomed. Opt. Express 9(4) 1692-1703 (2018)

Multi-parameter analysis using photovoltaic cell-based optofluidic cytometer

Chien-Shun Yan and Yao-Nan Wang
Biomed. Opt. Express 7(9) 3585-3595 (2016)

Microfluidic CARS cytometry

Han-Wei Wang, Ning Bao, Thuc T. Le, Chang Lu, and Ji-Xin Cheng
Opt. Express 16(8) 5782-5789 (2008)

References

  • View by:
  • |
  • |
  • |

  1. J. S. Kim, G. P. Anderson, J. S. Erickson, J. P. Golden, M. Nasir, and F. S. Ligler, “Multiplexed detection of bacteria and toxins using a microflow cytometer,” Anal. Chem. 81(13), 5426–5432 (2009).
    [Crossref] [PubMed]
  2. M. Rosenauer, W. Buchegger, I. Finoulst, P. Verhaert, and M. Vellekoop, “Miniaturized flow cytometer with 3D hydrodynamic particle focusing and integrated optical elements applying silicon photodiodes,” Microfluid Nanofluidics 10, 761–771 (2011).
  3. H. C. Lee, H. H. Hou, R. J. Yang, C. H. Lin, and L. M. Fu, “Microflow cytometer incorporating sequential micro-weir structure for three-dimensional focusing,” Micrfluid Nanfluidics 11, 469 (2011).
  4. D. A. Ateya, J. S. Erickson, P. B. Howell, L. R. Hilliard, J. P. Golden, and F. S. Ligler, “The good, the bad, and the tiny: a review of microflow cytometry,” Anal. Bioanal. Chem. 391(5), 1485–1498 (2008).
    [Crossref] [PubMed]
  5. D. Huh, W. Gu, Y. Kamotani, J. B. Grotberg, and S. Takayama, “Microfluidics for flow cytometric analysis of cells and particles,” Physiol. Meas. 26(3), R73–R98 (2005).
    [Crossref] [PubMed]
  6. X. Xuan, J. Zhu, and C. Church, “Particle focusing in microfluidic devices,” Micrfluid Nanfluidics 9, 1–16 (2010).
  7. L. M. Fu, R. J. Yang, C. H. Lin, Y. J. Pan, and G. B. Lee, “Electrokinetically driven micro flow cytometers with integrated fiber optics for on-line cell/particle detection,” Anal. Chim. Acta 507(1), 163–169 (2004).
    [Crossref]
  8. H. Tsutsui and C. M. Ho, “Cell separation by non-inertial force fields in microfluidic systems,” Mech. Res. Commun. 36(1), 92–103 (2009).
    [Crossref] [PubMed]
  9. R. Bernini, E. De Nuccio, F. Brescia, A. Minardo, L. Zeni, P. M. Sarro, R. Palumbo, and M. R. Scarfi, “Development and characterization of an integrated silicon micro flow cytometer,” Anal. Bioanal. Chem. 386(5), 1267–1272 (2006).
    [Crossref] [PubMed]
  10. H. Klank, G. Goranović, J. P. Kutter, H. Gjelstrup, J. Michelsen, and C. H. Westergaard, “PIV measurements in a microfluidic 3D-sheathing structure with three-dimensional flow behavior,” J. Micromech. Microeng. 12(6), 862–869 (2002).
    [Crossref]
  11. X. Mao, J. R. Waldeisen, and T. J. Huang, ““Microfluidic drifting”--implementing three-dimensional hydrodynamic focusing with a single-layer planar microfluidic device,” Lab Chip 7(10), 1260–1262 (2007).
    [Crossref] [PubMed]
  12. K. S. Lee, S. B. Kim, K. H. Lee, H. J. Sung, and S. S. Kim, “Three-dimensional microfluidic liquid-core/liquid-cladding waveguide,” Appl. Phys. Lett. 97(2), 021109 (2010).
    [Crossref]
  13. X. Mao, S. C. Lin, C. Dong, and T. J. Huang, “Single-layer planar on-chip flow cytometer using microfluidic drifting based three-dimensional (3D) hydrodynamic focusing,” Lab Chip 9(11), 1583–1589 (2009).
    [Crossref] [PubMed]
  14. G. Testa and R. Bernini, “Integrated tunable liquid optical fiber,” Lab Chip 12(19), 3670–3672 (2012).
    [Crossref] [PubMed]
  15. Y.-J. Chiu, S. H. Cho, Z. Mei, V. Lien, T. F. Wu, and Y. H. Lo, “Universally applicable three-dimensional hydrodynamic microfluidic flow focusing,” Lab Chip 13(9), 1803–1809 (2013).
    [Crossref] [PubMed]
  16. G. Hairer and M. Vellekoop, “An integrated flow-cell for full sample stream control,” Micrfluid Nanfluidics 7, 647–658 (2009).
  17. C. C. Chang, Z. X. Huang, and R. J. Yang, “Three-dimensional hydrodynamic focusing in two-layer polydimethylsiloxane (PDMS) microchannels,” J. Micromech. Microeng. 17(8), 1479–1486 (2007).
    [Crossref]
  18. P. B. Howell, J. P. Golden, L. R. Hilliard, J. S. Erickson, D. R. Mott, and F. S. Ligler, “Two simple and rugged designs for creating microfluidic sheath flow,” Lab Chip 8(7), 1097–1103 (2008).
    [Crossref] [PubMed]
  19. M. G. Lee, S. Choi, and J. K. Park, “Three-dimensional hydrodynamic focusing with a single sheath flow in a single-layer microfluidic device,” Lab Chip 9(21), 3155–3160 (2009).
    [Crossref] [PubMed]
  20. M. J. Kennedy, S. J. Stelick, S. L. Perkins, L. Cao, and C. A. Batt, “Hydrodynamic focusing with a microlithographic manifold: controlling the vertical position of a focused sample,” Micrfluid Nanfluidics 7, 569–578 (2009).
  21. H. M. Shapiro, Practical Flow Cytometer (Wiley-Liss, New York, 2003).
  22. M. Frankowski, J. Theisen, A. Kummrow, P. Simon, H. Ragusch, N. Bock, M. Schmidt, and J. Neukammer, “Microflow cytometers with integrated hydrodynamic focusing,” Sensors (Basel) 13(4), 4674–4693 (2013).
    [Crossref] [PubMed]
  23. A. A. Nawaz, X. Zhang, X. Mao, J. Rufo, S.-C. S. Lin, F. Guo, Y. Zhao, M. Lapsley, P. Li, J. P. McCoy, S. J. Levine, and T. J. Huang, “Sub-micrometer-precision, three-dimensional (3D) hydrodynamic focusing via “microfluidic drifting”,” Lab Chip 14(2), 415–423 (2013).
    [Crossref] [PubMed]
  24. M. J. Kennedy, S. J. Stelick, L. G. Sayam, A. Yen, D. Erickson, and C. A. Batt, “Hydrodynamic optical alignment for microflow cytometry,” Lab Chip 11(6), 1138–1143 (2011).
    [Crossref] [PubMed]
  25. H.-T. Chen and Y.-N. Wang, “Optical microflow cytometer for particle counting, sizing and fluorescence detection,” Microfluid Nanofluid 6(4), 529–537 (2009).
    [Crossref]
  26. B. R. Watts, Z. Zhang, C. Q. Xu, X. Cao, and M. Lin, “A photonic-microfluidic integrated device for reliable fluorescence detection and counting,” Electrophoresis 33(21), 3236–3244 (2012).
    [Crossref] [PubMed]
  27. Z. Wang, J. El-Ali, M. Engelund, T. Gotsaed, I. R. Perch-Nielsen, K. B. Mogensen, D. Snakenborg, J. P. Kutter, and A. Wolff, “Measurements of scattered light on a microchip flow cytometer with integrated polymer based optical elements,” Lab Chip 4(4), 372–377 (2004).
    [Crossref] [PubMed]
  28. B. R. Watts, Z. Zhang, C. Q. Xu, X. Cao, and M. Lin, “Integration of optical components on-chip for scattering and fluorescence detection in an optofluidic device,” Biomed. Opt. Express 3(11), 2784–2793 (2012).
    [Crossref] [PubMed]
  29. X. Mao, A. A. Nawaz, S.-C. S. Lin, M. I. Lapsley, Y. Zhao, J. P. McCoy, W. S. El-Deiry, and T. J. Huang, “An integrated, multiparametric flow cytometry chip using “microfluidic drifting” based three-dimensional hydrodynamic focusing,” Biomicrofluidics 6(2), 024113 (2012).
    [Crossref]
  30. R. A. Hoffman, Current Protocols in Cytometry (John Wiley & Sons, 2009), Chap 1.23.

2013 (3)

Y.-J. Chiu, S. H. Cho, Z. Mei, V. Lien, T. F. Wu, and Y. H. Lo, “Universally applicable three-dimensional hydrodynamic microfluidic flow focusing,” Lab Chip 13(9), 1803–1809 (2013).
[Crossref] [PubMed]

M. Frankowski, J. Theisen, A. Kummrow, P. Simon, H. Ragusch, N. Bock, M. Schmidt, and J. Neukammer, “Microflow cytometers with integrated hydrodynamic focusing,” Sensors (Basel) 13(4), 4674–4693 (2013).
[Crossref] [PubMed]

A. A. Nawaz, X. Zhang, X. Mao, J. Rufo, S.-C. S. Lin, F. Guo, Y. Zhao, M. Lapsley, P. Li, J. P. McCoy, S. J. Levine, and T. J. Huang, “Sub-micrometer-precision, three-dimensional (3D) hydrodynamic focusing via “microfluidic drifting”,” Lab Chip 14(2), 415–423 (2013).
[Crossref] [PubMed]

2012 (4)

B. R. Watts, Z. Zhang, C. Q. Xu, X. Cao, and M. Lin, “A photonic-microfluidic integrated device for reliable fluorescence detection and counting,” Electrophoresis 33(21), 3236–3244 (2012).
[Crossref] [PubMed]

B. R. Watts, Z. Zhang, C. Q. Xu, X. Cao, and M. Lin, “Integration of optical components on-chip for scattering and fluorescence detection in an optofluidic device,” Biomed. Opt. Express 3(11), 2784–2793 (2012).
[Crossref] [PubMed]

X. Mao, A. A. Nawaz, S.-C. S. Lin, M. I. Lapsley, Y. Zhao, J. P. McCoy, W. S. El-Deiry, and T. J. Huang, “An integrated, multiparametric flow cytometry chip using “microfluidic drifting” based three-dimensional hydrodynamic focusing,” Biomicrofluidics 6(2), 024113 (2012).
[Crossref]

G. Testa and R. Bernini, “Integrated tunable liquid optical fiber,” Lab Chip 12(19), 3670–3672 (2012).
[Crossref] [PubMed]

2011 (3)

M. Rosenauer, W. Buchegger, I. Finoulst, P. Verhaert, and M. Vellekoop, “Miniaturized flow cytometer with 3D hydrodynamic particle focusing and integrated optical elements applying silicon photodiodes,” Microfluid Nanofluidics 10, 761–771 (2011).

H. C. Lee, H. H. Hou, R. J. Yang, C. H. Lin, and L. M. Fu, “Microflow cytometer incorporating sequential micro-weir structure for three-dimensional focusing,” Micrfluid Nanfluidics 11, 469 (2011).

M. J. Kennedy, S. J. Stelick, L. G. Sayam, A. Yen, D. Erickson, and C. A. Batt, “Hydrodynamic optical alignment for microflow cytometry,” Lab Chip 11(6), 1138–1143 (2011).
[Crossref] [PubMed]

2010 (2)

X. Xuan, J. Zhu, and C. Church, “Particle focusing in microfluidic devices,” Micrfluid Nanfluidics 9, 1–16 (2010).

K. S. Lee, S. B. Kim, K. H. Lee, H. J. Sung, and S. S. Kim, “Three-dimensional microfluidic liquid-core/liquid-cladding waveguide,” Appl. Phys. Lett. 97(2), 021109 (2010).
[Crossref]

2009 (7)

X. Mao, S. C. Lin, C. Dong, and T. J. Huang, “Single-layer planar on-chip flow cytometer using microfluidic drifting based three-dimensional (3D) hydrodynamic focusing,” Lab Chip 9(11), 1583–1589 (2009).
[Crossref] [PubMed]

J. S. Kim, G. P. Anderson, J. S. Erickson, J. P. Golden, M. Nasir, and F. S. Ligler, “Multiplexed detection of bacteria and toxins using a microflow cytometer,” Anal. Chem. 81(13), 5426–5432 (2009).
[Crossref] [PubMed]

G. Hairer and M. Vellekoop, “An integrated flow-cell for full sample stream control,” Micrfluid Nanfluidics 7, 647–658 (2009).

H. Tsutsui and C. M. Ho, “Cell separation by non-inertial force fields in microfluidic systems,” Mech. Res. Commun. 36(1), 92–103 (2009).
[Crossref] [PubMed]

H.-T. Chen and Y.-N. Wang, “Optical microflow cytometer for particle counting, sizing and fluorescence detection,” Microfluid Nanofluid 6(4), 529–537 (2009).
[Crossref]

M. G. Lee, S. Choi, and J. K. Park, “Three-dimensional hydrodynamic focusing with a single sheath flow in a single-layer microfluidic device,” Lab Chip 9(21), 3155–3160 (2009).
[Crossref] [PubMed]

M. J. Kennedy, S. J. Stelick, S. L. Perkins, L. Cao, and C. A. Batt, “Hydrodynamic focusing with a microlithographic manifold: controlling the vertical position of a focused sample,” Micrfluid Nanfluidics 7, 569–578 (2009).

2008 (2)

D. A. Ateya, J. S. Erickson, P. B. Howell, L. R. Hilliard, J. P. Golden, and F. S. Ligler, “The good, the bad, and the tiny: a review of microflow cytometry,” Anal. Bioanal. Chem. 391(5), 1485–1498 (2008).
[Crossref] [PubMed]

P. B. Howell, J. P. Golden, L. R. Hilliard, J. S. Erickson, D. R. Mott, and F. S. Ligler, “Two simple and rugged designs for creating microfluidic sheath flow,” Lab Chip 8(7), 1097–1103 (2008).
[Crossref] [PubMed]

2007 (2)

C. C. Chang, Z. X. Huang, and R. J. Yang, “Three-dimensional hydrodynamic focusing in two-layer polydimethylsiloxane (PDMS) microchannels,” J. Micromech. Microeng. 17(8), 1479–1486 (2007).
[Crossref]

X. Mao, J. R. Waldeisen, and T. J. Huang, ““Microfluidic drifting”--implementing three-dimensional hydrodynamic focusing with a single-layer planar microfluidic device,” Lab Chip 7(10), 1260–1262 (2007).
[Crossref] [PubMed]

2006 (1)

R. Bernini, E. De Nuccio, F. Brescia, A. Minardo, L. Zeni, P. M. Sarro, R. Palumbo, and M. R. Scarfi, “Development and characterization of an integrated silicon micro flow cytometer,” Anal. Bioanal. Chem. 386(5), 1267–1272 (2006).
[Crossref] [PubMed]

2005 (1)

D. Huh, W. Gu, Y. Kamotani, J. B. Grotberg, and S. Takayama, “Microfluidics for flow cytometric analysis of cells and particles,” Physiol. Meas. 26(3), R73–R98 (2005).
[Crossref] [PubMed]

2004 (2)

L. M. Fu, R. J. Yang, C. H. Lin, Y. J. Pan, and G. B. Lee, “Electrokinetically driven micro flow cytometers with integrated fiber optics for on-line cell/particle detection,” Anal. Chim. Acta 507(1), 163–169 (2004).
[Crossref]

Z. Wang, J. El-Ali, M. Engelund, T. Gotsaed, I. R. Perch-Nielsen, K. B. Mogensen, D. Snakenborg, J. P. Kutter, and A. Wolff, “Measurements of scattered light on a microchip flow cytometer with integrated polymer based optical elements,” Lab Chip 4(4), 372–377 (2004).
[Crossref] [PubMed]

2002 (1)

H. Klank, G. Goranović, J. P. Kutter, H. Gjelstrup, J. Michelsen, and C. H. Westergaard, “PIV measurements in a microfluidic 3D-sheathing structure with three-dimensional flow behavior,” J. Micromech. Microeng. 12(6), 862–869 (2002).
[Crossref]

Anderson, G. P.

J. S. Kim, G. P. Anderson, J. S. Erickson, J. P. Golden, M. Nasir, and F. S. Ligler, “Multiplexed detection of bacteria and toxins using a microflow cytometer,” Anal. Chem. 81(13), 5426–5432 (2009).
[Crossref] [PubMed]

Ateya, D. A.

D. A. Ateya, J. S. Erickson, P. B. Howell, L. R. Hilliard, J. P. Golden, and F. S. Ligler, “The good, the bad, and the tiny: a review of microflow cytometry,” Anal. Bioanal. Chem. 391(5), 1485–1498 (2008).
[Crossref] [PubMed]

Batt, C. A.

M. J. Kennedy, S. J. Stelick, L. G. Sayam, A. Yen, D. Erickson, and C. A. Batt, “Hydrodynamic optical alignment for microflow cytometry,” Lab Chip 11(6), 1138–1143 (2011).
[Crossref] [PubMed]

M. J. Kennedy, S. J. Stelick, S. L. Perkins, L. Cao, and C. A. Batt, “Hydrodynamic focusing with a microlithographic manifold: controlling the vertical position of a focused sample,” Micrfluid Nanfluidics 7, 569–578 (2009).

Bernini, R.

G. Testa and R. Bernini, “Integrated tunable liquid optical fiber,” Lab Chip 12(19), 3670–3672 (2012).
[Crossref] [PubMed]

R. Bernini, E. De Nuccio, F. Brescia, A. Minardo, L. Zeni, P. M. Sarro, R. Palumbo, and M. R. Scarfi, “Development and characterization of an integrated silicon micro flow cytometer,” Anal. Bioanal. Chem. 386(5), 1267–1272 (2006).
[Crossref] [PubMed]

Bock, N.

M. Frankowski, J. Theisen, A. Kummrow, P. Simon, H. Ragusch, N. Bock, M. Schmidt, and J. Neukammer, “Microflow cytometers with integrated hydrodynamic focusing,” Sensors (Basel) 13(4), 4674–4693 (2013).
[Crossref] [PubMed]

Brescia, F.

R. Bernini, E. De Nuccio, F. Brescia, A. Minardo, L. Zeni, P. M. Sarro, R. Palumbo, and M. R. Scarfi, “Development and characterization of an integrated silicon micro flow cytometer,” Anal. Bioanal. Chem. 386(5), 1267–1272 (2006).
[Crossref] [PubMed]

Buchegger, W.

M. Rosenauer, W. Buchegger, I. Finoulst, P. Verhaert, and M. Vellekoop, “Miniaturized flow cytometer with 3D hydrodynamic particle focusing and integrated optical elements applying silicon photodiodes,” Microfluid Nanofluidics 10, 761–771 (2011).

Cao, L.

M. J. Kennedy, S. J. Stelick, S. L. Perkins, L. Cao, and C. A. Batt, “Hydrodynamic focusing with a microlithographic manifold: controlling the vertical position of a focused sample,” Micrfluid Nanfluidics 7, 569–578 (2009).

Cao, X.

B. R. Watts, Z. Zhang, C. Q. Xu, X. Cao, and M. Lin, “A photonic-microfluidic integrated device for reliable fluorescence detection and counting,” Electrophoresis 33(21), 3236–3244 (2012).
[Crossref] [PubMed]

B. R. Watts, Z. Zhang, C. Q. Xu, X. Cao, and M. Lin, “Integration of optical components on-chip for scattering and fluorescence detection in an optofluidic device,” Biomed. Opt. Express 3(11), 2784–2793 (2012).
[Crossref] [PubMed]

Chang, C. C.

C. C. Chang, Z. X. Huang, and R. J. Yang, “Three-dimensional hydrodynamic focusing in two-layer polydimethylsiloxane (PDMS) microchannels,” J. Micromech. Microeng. 17(8), 1479–1486 (2007).
[Crossref]

Chen, H.-T.

H.-T. Chen and Y.-N. Wang, “Optical microflow cytometer for particle counting, sizing and fluorescence detection,” Microfluid Nanofluid 6(4), 529–537 (2009).
[Crossref]

Chiu, Y.-J.

Y.-J. Chiu, S. H. Cho, Z. Mei, V. Lien, T. F. Wu, and Y. H. Lo, “Universally applicable three-dimensional hydrodynamic microfluidic flow focusing,” Lab Chip 13(9), 1803–1809 (2013).
[Crossref] [PubMed]

Cho, S. H.

Y.-J. Chiu, S. H. Cho, Z. Mei, V. Lien, T. F. Wu, and Y. H. Lo, “Universally applicable three-dimensional hydrodynamic microfluidic flow focusing,” Lab Chip 13(9), 1803–1809 (2013).
[Crossref] [PubMed]

Choi, S.

M. G. Lee, S. Choi, and J. K. Park, “Three-dimensional hydrodynamic focusing with a single sheath flow in a single-layer microfluidic device,” Lab Chip 9(21), 3155–3160 (2009).
[Crossref] [PubMed]

Church, C.

X. Xuan, J. Zhu, and C. Church, “Particle focusing in microfluidic devices,” Micrfluid Nanfluidics 9, 1–16 (2010).

De Nuccio, E.

R. Bernini, E. De Nuccio, F. Brescia, A. Minardo, L. Zeni, P. M. Sarro, R. Palumbo, and M. R. Scarfi, “Development and characterization of an integrated silicon micro flow cytometer,” Anal. Bioanal. Chem. 386(5), 1267–1272 (2006).
[Crossref] [PubMed]

Dong, C.

X. Mao, S. C. Lin, C. Dong, and T. J. Huang, “Single-layer planar on-chip flow cytometer using microfluidic drifting based three-dimensional (3D) hydrodynamic focusing,” Lab Chip 9(11), 1583–1589 (2009).
[Crossref] [PubMed]

El-Ali, J.

Z. Wang, J. El-Ali, M. Engelund, T. Gotsaed, I. R. Perch-Nielsen, K. B. Mogensen, D. Snakenborg, J. P. Kutter, and A. Wolff, “Measurements of scattered light on a microchip flow cytometer with integrated polymer based optical elements,” Lab Chip 4(4), 372–377 (2004).
[Crossref] [PubMed]

El-Deiry, W. S.

X. Mao, A. A. Nawaz, S.-C. S. Lin, M. I. Lapsley, Y. Zhao, J. P. McCoy, W. S. El-Deiry, and T. J. Huang, “An integrated, multiparametric flow cytometry chip using “microfluidic drifting” based three-dimensional hydrodynamic focusing,” Biomicrofluidics 6(2), 024113 (2012).
[Crossref]

Engelund, M.

Z. Wang, J. El-Ali, M. Engelund, T. Gotsaed, I. R. Perch-Nielsen, K. B. Mogensen, D. Snakenborg, J. P. Kutter, and A. Wolff, “Measurements of scattered light on a microchip flow cytometer with integrated polymer based optical elements,” Lab Chip 4(4), 372–377 (2004).
[Crossref] [PubMed]

Erickson, D.

M. J. Kennedy, S. J. Stelick, L. G. Sayam, A. Yen, D. Erickson, and C. A. Batt, “Hydrodynamic optical alignment for microflow cytometry,” Lab Chip 11(6), 1138–1143 (2011).
[Crossref] [PubMed]

Erickson, J. S.

J. S. Kim, G. P. Anderson, J. S. Erickson, J. P. Golden, M. Nasir, and F. S. Ligler, “Multiplexed detection of bacteria and toxins using a microflow cytometer,” Anal. Chem. 81(13), 5426–5432 (2009).
[Crossref] [PubMed]

D. A. Ateya, J. S. Erickson, P. B. Howell, L. R. Hilliard, J. P. Golden, and F. S. Ligler, “The good, the bad, and the tiny: a review of microflow cytometry,” Anal. Bioanal. Chem. 391(5), 1485–1498 (2008).
[Crossref] [PubMed]

P. B. Howell, J. P. Golden, L. R. Hilliard, J. S. Erickson, D. R. Mott, and F. S. Ligler, “Two simple and rugged designs for creating microfluidic sheath flow,” Lab Chip 8(7), 1097–1103 (2008).
[Crossref] [PubMed]

Finoulst, I.

M. Rosenauer, W. Buchegger, I. Finoulst, P. Verhaert, and M. Vellekoop, “Miniaturized flow cytometer with 3D hydrodynamic particle focusing and integrated optical elements applying silicon photodiodes,” Microfluid Nanofluidics 10, 761–771 (2011).

Frankowski, M.

M. Frankowski, J. Theisen, A. Kummrow, P. Simon, H. Ragusch, N. Bock, M. Schmidt, and J. Neukammer, “Microflow cytometers with integrated hydrodynamic focusing,” Sensors (Basel) 13(4), 4674–4693 (2013).
[Crossref] [PubMed]

Fu, L. M.

H. C. Lee, H. H. Hou, R. J. Yang, C. H. Lin, and L. M. Fu, “Microflow cytometer incorporating sequential micro-weir structure for three-dimensional focusing,” Micrfluid Nanfluidics 11, 469 (2011).

L. M. Fu, R. J. Yang, C. H. Lin, Y. J. Pan, and G. B. Lee, “Electrokinetically driven micro flow cytometers with integrated fiber optics for on-line cell/particle detection,” Anal. Chim. Acta 507(1), 163–169 (2004).
[Crossref]

Gjelstrup, H.

H. Klank, G. Goranović, J. P. Kutter, H. Gjelstrup, J. Michelsen, and C. H. Westergaard, “PIV measurements in a microfluidic 3D-sheathing structure with three-dimensional flow behavior,” J. Micromech. Microeng. 12(6), 862–869 (2002).
[Crossref]

Golden, J. P.

J. S. Kim, G. P. Anderson, J. S. Erickson, J. P. Golden, M. Nasir, and F. S. Ligler, “Multiplexed detection of bacteria and toxins using a microflow cytometer,” Anal. Chem. 81(13), 5426–5432 (2009).
[Crossref] [PubMed]

D. A. Ateya, J. S. Erickson, P. B. Howell, L. R. Hilliard, J. P. Golden, and F. S. Ligler, “The good, the bad, and the tiny: a review of microflow cytometry,” Anal. Bioanal. Chem. 391(5), 1485–1498 (2008).
[Crossref] [PubMed]

P. B. Howell, J. P. Golden, L. R. Hilliard, J. S. Erickson, D. R. Mott, and F. S. Ligler, “Two simple and rugged designs for creating microfluidic sheath flow,” Lab Chip 8(7), 1097–1103 (2008).
[Crossref] [PubMed]

Goranovic, G.

H. Klank, G. Goranović, J. P. Kutter, H. Gjelstrup, J. Michelsen, and C. H. Westergaard, “PIV measurements in a microfluidic 3D-sheathing structure with three-dimensional flow behavior,” J. Micromech. Microeng. 12(6), 862–869 (2002).
[Crossref]

Gotsaed, T.

Z. Wang, J. El-Ali, M. Engelund, T. Gotsaed, I. R. Perch-Nielsen, K. B. Mogensen, D. Snakenborg, J. P. Kutter, and A. Wolff, “Measurements of scattered light on a microchip flow cytometer with integrated polymer based optical elements,” Lab Chip 4(4), 372–377 (2004).
[Crossref] [PubMed]

Grotberg, J. B.

D. Huh, W. Gu, Y. Kamotani, J. B. Grotberg, and S. Takayama, “Microfluidics for flow cytometric analysis of cells and particles,” Physiol. Meas. 26(3), R73–R98 (2005).
[Crossref] [PubMed]

Gu, W.

D. Huh, W. Gu, Y. Kamotani, J. B. Grotberg, and S. Takayama, “Microfluidics for flow cytometric analysis of cells and particles,” Physiol. Meas. 26(3), R73–R98 (2005).
[Crossref] [PubMed]

Guo, F.

A. A. Nawaz, X. Zhang, X. Mao, J. Rufo, S.-C. S. Lin, F. Guo, Y. Zhao, M. Lapsley, P. Li, J. P. McCoy, S. J. Levine, and T. J. Huang, “Sub-micrometer-precision, three-dimensional (3D) hydrodynamic focusing via “microfluidic drifting”,” Lab Chip 14(2), 415–423 (2013).
[Crossref] [PubMed]

Hairer, G.

G. Hairer and M. Vellekoop, “An integrated flow-cell for full sample stream control,” Micrfluid Nanfluidics 7, 647–658 (2009).

Hilliard, L. R.

P. B. Howell, J. P. Golden, L. R. Hilliard, J. S. Erickson, D. R. Mott, and F. S. Ligler, “Two simple and rugged designs for creating microfluidic sheath flow,” Lab Chip 8(7), 1097–1103 (2008).
[Crossref] [PubMed]

D. A. Ateya, J. S. Erickson, P. B. Howell, L. R. Hilliard, J. P. Golden, and F. S. Ligler, “The good, the bad, and the tiny: a review of microflow cytometry,” Anal. Bioanal. Chem. 391(5), 1485–1498 (2008).
[Crossref] [PubMed]

Ho, C. M.

H. Tsutsui and C. M. Ho, “Cell separation by non-inertial force fields in microfluidic systems,” Mech. Res. Commun. 36(1), 92–103 (2009).
[Crossref] [PubMed]

Hou, H. H.

H. C. Lee, H. H. Hou, R. J. Yang, C. H. Lin, and L. M. Fu, “Microflow cytometer incorporating sequential micro-weir structure for three-dimensional focusing,” Micrfluid Nanfluidics 11, 469 (2011).

Howell, P. B.

D. A. Ateya, J. S. Erickson, P. B. Howell, L. R. Hilliard, J. P. Golden, and F. S. Ligler, “The good, the bad, and the tiny: a review of microflow cytometry,” Anal. Bioanal. Chem. 391(5), 1485–1498 (2008).
[Crossref] [PubMed]

P. B. Howell, J. P. Golden, L. R. Hilliard, J. S. Erickson, D. R. Mott, and F. S. Ligler, “Two simple and rugged designs for creating microfluidic sheath flow,” Lab Chip 8(7), 1097–1103 (2008).
[Crossref] [PubMed]

Huang, T. J.

A. A. Nawaz, X. Zhang, X. Mao, J. Rufo, S.-C. S. Lin, F. Guo, Y. Zhao, M. Lapsley, P. Li, J. P. McCoy, S. J. Levine, and T. J. Huang, “Sub-micrometer-precision, three-dimensional (3D) hydrodynamic focusing via “microfluidic drifting”,” Lab Chip 14(2), 415–423 (2013).
[Crossref] [PubMed]

X. Mao, A. A. Nawaz, S.-C. S. Lin, M. I. Lapsley, Y. Zhao, J. P. McCoy, W. S. El-Deiry, and T. J. Huang, “An integrated, multiparametric flow cytometry chip using “microfluidic drifting” based three-dimensional hydrodynamic focusing,” Biomicrofluidics 6(2), 024113 (2012).
[Crossref]

X. Mao, S. C. Lin, C. Dong, and T. J. Huang, “Single-layer planar on-chip flow cytometer using microfluidic drifting based three-dimensional (3D) hydrodynamic focusing,” Lab Chip 9(11), 1583–1589 (2009).
[Crossref] [PubMed]

X. Mao, J. R. Waldeisen, and T. J. Huang, ““Microfluidic drifting”--implementing three-dimensional hydrodynamic focusing with a single-layer planar microfluidic device,” Lab Chip 7(10), 1260–1262 (2007).
[Crossref] [PubMed]

Huang, Z. X.

C. C. Chang, Z. X. Huang, and R. J. Yang, “Three-dimensional hydrodynamic focusing in two-layer polydimethylsiloxane (PDMS) microchannels,” J. Micromech. Microeng. 17(8), 1479–1486 (2007).
[Crossref]

Huh, D.

D. Huh, W. Gu, Y. Kamotani, J. B. Grotberg, and S. Takayama, “Microfluidics for flow cytometric analysis of cells and particles,” Physiol. Meas. 26(3), R73–R98 (2005).
[Crossref] [PubMed]

Kamotani, Y.

D. Huh, W. Gu, Y. Kamotani, J. B. Grotberg, and S. Takayama, “Microfluidics for flow cytometric analysis of cells and particles,” Physiol. Meas. 26(3), R73–R98 (2005).
[Crossref] [PubMed]

Kennedy, M. J.

M. J. Kennedy, S. J. Stelick, L. G. Sayam, A. Yen, D. Erickson, and C. A. Batt, “Hydrodynamic optical alignment for microflow cytometry,” Lab Chip 11(6), 1138–1143 (2011).
[Crossref] [PubMed]

M. J. Kennedy, S. J. Stelick, S. L. Perkins, L. Cao, and C. A. Batt, “Hydrodynamic focusing with a microlithographic manifold: controlling the vertical position of a focused sample,” Micrfluid Nanfluidics 7, 569–578 (2009).

Kim, J. S.

J. S. Kim, G. P. Anderson, J. S. Erickson, J. P. Golden, M. Nasir, and F. S. Ligler, “Multiplexed detection of bacteria and toxins using a microflow cytometer,” Anal. Chem. 81(13), 5426–5432 (2009).
[Crossref] [PubMed]

Kim, S. B.

K. S. Lee, S. B. Kim, K. H. Lee, H. J. Sung, and S. S. Kim, “Three-dimensional microfluidic liquid-core/liquid-cladding waveguide,” Appl. Phys. Lett. 97(2), 021109 (2010).
[Crossref]

Kim, S. S.

K. S. Lee, S. B. Kim, K. H. Lee, H. J. Sung, and S. S. Kim, “Three-dimensional microfluidic liquid-core/liquid-cladding waveguide,” Appl. Phys. Lett. 97(2), 021109 (2010).
[Crossref]

Klank, H.

H. Klank, G. Goranović, J. P. Kutter, H. Gjelstrup, J. Michelsen, and C. H. Westergaard, “PIV measurements in a microfluidic 3D-sheathing structure with three-dimensional flow behavior,” J. Micromech. Microeng. 12(6), 862–869 (2002).
[Crossref]

Kummrow, A.

M. Frankowski, J. Theisen, A. Kummrow, P. Simon, H. Ragusch, N. Bock, M. Schmidt, and J. Neukammer, “Microflow cytometers with integrated hydrodynamic focusing,” Sensors (Basel) 13(4), 4674–4693 (2013).
[Crossref] [PubMed]

Kutter, J. P.

Z. Wang, J. El-Ali, M. Engelund, T. Gotsaed, I. R. Perch-Nielsen, K. B. Mogensen, D. Snakenborg, J. P. Kutter, and A. Wolff, “Measurements of scattered light on a microchip flow cytometer with integrated polymer based optical elements,” Lab Chip 4(4), 372–377 (2004).
[Crossref] [PubMed]

H. Klank, G. Goranović, J. P. Kutter, H. Gjelstrup, J. Michelsen, and C. H. Westergaard, “PIV measurements in a microfluidic 3D-sheathing structure with three-dimensional flow behavior,” J. Micromech. Microeng. 12(6), 862–869 (2002).
[Crossref]

Lapsley, M.

A. A. Nawaz, X. Zhang, X. Mao, J. Rufo, S.-C. S. Lin, F. Guo, Y. Zhao, M. Lapsley, P. Li, J. P. McCoy, S. J. Levine, and T. J. Huang, “Sub-micrometer-precision, three-dimensional (3D) hydrodynamic focusing via “microfluidic drifting”,” Lab Chip 14(2), 415–423 (2013).
[Crossref] [PubMed]

Lapsley, M. I.

X. Mao, A. A. Nawaz, S.-C. S. Lin, M. I. Lapsley, Y. Zhao, J. P. McCoy, W. S. El-Deiry, and T. J. Huang, “An integrated, multiparametric flow cytometry chip using “microfluidic drifting” based three-dimensional hydrodynamic focusing,” Biomicrofluidics 6(2), 024113 (2012).
[Crossref]

Lee, G. B.

L. M. Fu, R. J. Yang, C. H. Lin, Y. J. Pan, and G. B. Lee, “Electrokinetically driven micro flow cytometers with integrated fiber optics for on-line cell/particle detection,” Anal. Chim. Acta 507(1), 163–169 (2004).
[Crossref]

Lee, H. C.

H. C. Lee, H. H. Hou, R. J. Yang, C. H. Lin, and L. M. Fu, “Microflow cytometer incorporating sequential micro-weir structure for three-dimensional focusing,” Micrfluid Nanfluidics 11, 469 (2011).

Lee, K. H.

K. S. Lee, S. B. Kim, K. H. Lee, H. J. Sung, and S. S. Kim, “Three-dimensional microfluidic liquid-core/liquid-cladding waveguide,” Appl. Phys. Lett. 97(2), 021109 (2010).
[Crossref]

Lee, K. S.

K. S. Lee, S. B. Kim, K. H. Lee, H. J. Sung, and S. S. Kim, “Three-dimensional microfluidic liquid-core/liquid-cladding waveguide,” Appl. Phys. Lett. 97(2), 021109 (2010).
[Crossref]

Lee, M. G.

M. G. Lee, S. Choi, and J. K. Park, “Three-dimensional hydrodynamic focusing with a single sheath flow in a single-layer microfluidic device,” Lab Chip 9(21), 3155–3160 (2009).
[Crossref] [PubMed]

Levine, S. J.

A. A. Nawaz, X. Zhang, X. Mao, J. Rufo, S.-C. S. Lin, F. Guo, Y. Zhao, M. Lapsley, P. Li, J. P. McCoy, S. J. Levine, and T. J. Huang, “Sub-micrometer-precision, three-dimensional (3D) hydrodynamic focusing via “microfluidic drifting”,” Lab Chip 14(2), 415–423 (2013).
[Crossref] [PubMed]

Li, P.

A. A. Nawaz, X. Zhang, X. Mao, J. Rufo, S.-C. S. Lin, F. Guo, Y. Zhao, M. Lapsley, P. Li, J. P. McCoy, S. J. Levine, and T. J. Huang, “Sub-micrometer-precision, three-dimensional (3D) hydrodynamic focusing via “microfluidic drifting”,” Lab Chip 14(2), 415–423 (2013).
[Crossref] [PubMed]

Lien, V.

Y.-J. Chiu, S. H. Cho, Z. Mei, V. Lien, T. F. Wu, and Y. H. Lo, “Universally applicable three-dimensional hydrodynamic microfluidic flow focusing,” Lab Chip 13(9), 1803–1809 (2013).
[Crossref] [PubMed]

Ligler, F. S.

J. S. Kim, G. P. Anderson, J. S. Erickson, J. P. Golden, M. Nasir, and F. S. Ligler, “Multiplexed detection of bacteria and toxins using a microflow cytometer,” Anal. Chem. 81(13), 5426–5432 (2009).
[Crossref] [PubMed]

D. A. Ateya, J. S. Erickson, P. B. Howell, L. R. Hilliard, J. P. Golden, and F. S. Ligler, “The good, the bad, and the tiny: a review of microflow cytometry,” Anal. Bioanal. Chem. 391(5), 1485–1498 (2008).
[Crossref] [PubMed]

P. B. Howell, J. P. Golden, L. R. Hilliard, J. S. Erickson, D. R. Mott, and F. S. Ligler, “Two simple and rugged designs for creating microfluidic sheath flow,” Lab Chip 8(7), 1097–1103 (2008).
[Crossref] [PubMed]

Lin, C. H.

H. C. Lee, H. H. Hou, R. J. Yang, C. H. Lin, and L. M. Fu, “Microflow cytometer incorporating sequential micro-weir structure for three-dimensional focusing,” Micrfluid Nanfluidics 11, 469 (2011).

L. M. Fu, R. J. Yang, C. H. Lin, Y. J. Pan, and G. B. Lee, “Electrokinetically driven micro flow cytometers with integrated fiber optics for on-line cell/particle detection,” Anal. Chim. Acta 507(1), 163–169 (2004).
[Crossref]

Lin, M.

B. R. Watts, Z. Zhang, C. Q. Xu, X. Cao, and M. Lin, “Integration of optical components on-chip for scattering and fluorescence detection in an optofluidic device,” Biomed. Opt. Express 3(11), 2784–2793 (2012).
[Crossref] [PubMed]

B. R. Watts, Z. Zhang, C. Q. Xu, X. Cao, and M. Lin, “A photonic-microfluidic integrated device for reliable fluorescence detection and counting,” Electrophoresis 33(21), 3236–3244 (2012).
[Crossref] [PubMed]

Lin, S. C.

X. Mao, S. C. Lin, C. Dong, and T. J. Huang, “Single-layer planar on-chip flow cytometer using microfluidic drifting based three-dimensional (3D) hydrodynamic focusing,” Lab Chip 9(11), 1583–1589 (2009).
[Crossref] [PubMed]

Lin, S.-C. S.

A. A. Nawaz, X. Zhang, X. Mao, J. Rufo, S.-C. S. Lin, F. Guo, Y. Zhao, M. Lapsley, P. Li, J. P. McCoy, S. J. Levine, and T. J. Huang, “Sub-micrometer-precision, three-dimensional (3D) hydrodynamic focusing via “microfluidic drifting”,” Lab Chip 14(2), 415–423 (2013).
[Crossref] [PubMed]

X. Mao, A. A. Nawaz, S.-C. S. Lin, M. I. Lapsley, Y. Zhao, J. P. McCoy, W. S. El-Deiry, and T. J. Huang, “An integrated, multiparametric flow cytometry chip using “microfluidic drifting” based three-dimensional hydrodynamic focusing,” Biomicrofluidics 6(2), 024113 (2012).
[Crossref]

Lo, Y. H.

Y.-J. Chiu, S. H. Cho, Z. Mei, V. Lien, T. F. Wu, and Y. H. Lo, “Universally applicable three-dimensional hydrodynamic microfluidic flow focusing,” Lab Chip 13(9), 1803–1809 (2013).
[Crossref] [PubMed]

Mao, X.

A. A. Nawaz, X. Zhang, X. Mao, J. Rufo, S.-C. S. Lin, F. Guo, Y. Zhao, M. Lapsley, P. Li, J. P. McCoy, S. J. Levine, and T. J. Huang, “Sub-micrometer-precision, three-dimensional (3D) hydrodynamic focusing via “microfluidic drifting”,” Lab Chip 14(2), 415–423 (2013).
[Crossref] [PubMed]

X. Mao, A. A. Nawaz, S.-C. S. Lin, M. I. Lapsley, Y. Zhao, J. P. McCoy, W. S. El-Deiry, and T. J. Huang, “An integrated, multiparametric flow cytometry chip using “microfluidic drifting” based three-dimensional hydrodynamic focusing,” Biomicrofluidics 6(2), 024113 (2012).
[Crossref]

X. Mao, S. C. Lin, C. Dong, and T. J. Huang, “Single-layer planar on-chip flow cytometer using microfluidic drifting based three-dimensional (3D) hydrodynamic focusing,” Lab Chip 9(11), 1583–1589 (2009).
[Crossref] [PubMed]

X. Mao, J. R. Waldeisen, and T. J. Huang, ““Microfluidic drifting”--implementing three-dimensional hydrodynamic focusing with a single-layer planar microfluidic device,” Lab Chip 7(10), 1260–1262 (2007).
[Crossref] [PubMed]

McCoy, J. P.

A. A. Nawaz, X. Zhang, X. Mao, J. Rufo, S.-C. S. Lin, F. Guo, Y. Zhao, M. Lapsley, P. Li, J. P. McCoy, S. J. Levine, and T. J. Huang, “Sub-micrometer-precision, three-dimensional (3D) hydrodynamic focusing via “microfluidic drifting”,” Lab Chip 14(2), 415–423 (2013).
[Crossref] [PubMed]

X. Mao, A. A. Nawaz, S.-C. S. Lin, M. I. Lapsley, Y. Zhao, J. P. McCoy, W. S. El-Deiry, and T. J. Huang, “An integrated, multiparametric flow cytometry chip using “microfluidic drifting” based three-dimensional hydrodynamic focusing,” Biomicrofluidics 6(2), 024113 (2012).
[Crossref]

Mei, Z.

Y.-J. Chiu, S. H. Cho, Z. Mei, V. Lien, T. F. Wu, and Y. H. Lo, “Universally applicable three-dimensional hydrodynamic microfluidic flow focusing,” Lab Chip 13(9), 1803–1809 (2013).
[Crossref] [PubMed]

Michelsen, J.

H. Klank, G. Goranović, J. P. Kutter, H. Gjelstrup, J. Michelsen, and C. H. Westergaard, “PIV measurements in a microfluidic 3D-sheathing structure with three-dimensional flow behavior,” J. Micromech. Microeng. 12(6), 862–869 (2002).
[Crossref]

Minardo, A.

R. Bernini, E. De Nuccio, F. Brescia, A. Minardo, L. Zeni, P. M. Sarro, R. Palumbo, and M. R. Scarfi, “Development and characterization of an integrated silicon micro flow cytometer,” Anal. Bioanal. Chem. 386(5), 1267–1272 (2006).
[Crossref] [PubMed]

Mogensen, K. B.

Z. Wang, J. El-Ali, M. Engelund, T. Gotsaed, I. R. Perch-Nielsen, K. B. Mogensen, D. Snakenborg, J. P. Kutter, and A. Wolff, “Measurements of scattered light on a microchip flow cytometer with integrated polymer based optical elements,” Lab Chip 4(4), 372–377 (2004).
[Crossref] [PubMed]

Mott, D. R.

P. B. Howell, J. P. Golden, L. R. Hilliard, J. S. Erickson, D. R. Mott, and F. S. Ligler, “Two simple and rugged designs for creating microfluidic sheath flow,” Lab Chip 8(7), 1097–1103 (2008).
[Crossref] [PubMed]

Nasir, M.

J. S. Kim, G. P. Anderson, J. S. Erickson, J. P. Golden, M. Nasir, and F. S. Ligler, “Multiplexed detection of bacteria and toxins using a microflow cytometer,” Anal. Chem. 81(13), 5426–5432 (2009).
[Crossref] [PubMed]

Nawaz, A. A.

A. A. Nawaz, X. Zhang, X. Mao, J. Rufo, S.-C. S. Lin, F. Guo, Y. Zhao, M. Lapsley, P. Li, J. P. McCoy, S. J. Levine, and T. J. Huang, “Sub-micrometer-precision, three-dimensional (3D) hydrodynamic focusing via “microfluidic drifting”,” Lab Chip 14(2), 415–423 (2013).
[Crossref] [PubMed]

X. Mao, A. A. Nawaz, S.-C. S. Lin, M. I. Lapsley, Y. Zhao, J. P. McCoy, W. S. El-Deiry, and T. J. Huang, “An integrated, multiparametric flow cytometry chip using “microfluidic drifting” based three-dimensional hydrodynamic focusing,” Biomicrofluidics 6(2), 024113 (2012).
[Crossref]

Neukammer, J.

M. Frankowski, J. Theisen, A. Kummrow, P. Simon, H. Ragusch, N. Bock, M. Schmidt, and J. Neukammer, “Microflow cytometers with integrated hydrodynamic focusing,” Sensors (Basel) 13(4), 4674–4693 (2013).
[Crossref] [PubMed]

Palumbo, R.

R. Bernini, E. De Nuccio, F. Brescia, A. Minardo, L. Zeni, P. M. Sarro, R. Palumbo, and M. R. Scarfi, “Development and characterization of an integrated silicon micro flow cytometer,” Anal. Bioanal. Chem. 386(5), 1267–1272 (2006).
[Crossref] [PubMed]

Pan, Y. J.

L. M. Fu, R. J. Yang, C. H. Lin, Y. J. Pan, and G. B. Lee, “Electrokinetically driven micro flow cytometers with integrated fiber optics for on-line cell/particle detection,” Anal. Chim. Acta 507(1), 163–169 (2004).
[Crossref]

Park, J. K.

M. G. Lee, S. Choi, and J. K. Park, “Three-dimensional hydrodynamic focusing with a single sheath flow in a single-layer microfluidic device,” Lab Chip 9(21), 3155–3160 (2009).
[Crossref] [PubMed]

Perch-Nielsen, I. R.

Z. Wang, J. El-Ali, M. Engelund, T. Gotsaed, I. R. Perch-Nielsen, K. B. Mogensen, D. Snakenborg, J. P. Kutter, and A. Wolff, “Measurements of scattered light on a microchip flow cytometer with integrated polymer based optical elements,” Lab Chip 4(4), 372–377 (2004).
[Crossref] [PubMed]

Perkins, S. L.

M. J. Kennedy, S. J. Stelick, S. L. Perkins, L. Cao, and C. A. Batt, “Hydrodynamic focusing with a microlithographic manifold: controlling the vertical position of a focused sample,” Micrfluid Nanfluidics 7, 569–578 (2009).

Ragusch, H.

M. Frankowski, J. Theisen, A. Kummrow, P. Simon, H. Ragusch, N. Bock, M. Schmidt, and J. Neukammer, “Microflow cytometers with integrated hydrodynamic focusing,” Sensors (Basel) 13(4), 4674–4693 (2013).
[Crossref] [PubMed]

Rosenauer, M.

M. Rosenauer, W. Buchegger, I. Finoulst, P. Verhaert, and M. Vellekoop, “Miniaturized flow cytometer with 3D hydrodynamic particle focusing and integrated optical elements applying silicon photodiodes,” Microfluid Nanofluidics 10, 761–771 (2011).

Rufo, J.

A. A. Nawaz, X. Zhang, X. Mao, J. Rufo, S.-C. S. Lin, F. Guo, Y. Zhao, M. Lapsley, P. Li, J. P. McCoy, S. J. Levine, and T. J. Huang, “Sub-micrometer-precision, three-dimensional (3D) hydrodynamic focusing via “microfluidic drifting”,” Lab Chip 14(2), 415–423 (2013).
[Crossref] [PubMed]

Sarro, P. M.

R. Bernini, E. De Nuccio, F. Brescia, A. Minardo, L. Zeni, P. M. Sarro, R. Palumbo, and M. R. Scarfi, “Development and characterization of an integrated silicon micro flow cytometer,” Anal. Bioanal. Chem. 386(5), 1267–1272 (2006).
[Crossref] [PubMed]

Sayam, L. G.

M. J. Kennedy, S. J. Stelick, L. G. Sayam, A. Yen, D. Erickson, and C. A. Batt, “Hydrodynamic optical alignment for microflow cytometry,” Lab Chip 11(6), 1138–1143 (2011).
[Crossref] [PubMed]

Scarfi, M. R.

R. Bernini, E. De Nuccio, F. Brescia, A. Minardo, L. Zeni, P. M. Sarro, R. Palumbo, and M. R. Scarfi, “Development and characterization of an integrated silicon micro flow cytometer,” Anal. Bioanal. Chem. 386(5), 1267–1272 (2006).
[Crossref] [PubMed]

Schmidt, M.

M. Frankowski, J. Theisen, A. Kummrow, P. Simon, H. Ragusch, N. Bock, M. Schmidt, and J. Neukammer, “Microflow cytometers with integrated hydrodynamic focusing,” Sensors (Basel) 13(4), 4674–4693 (2013).
[Crossref] [PubMed]

Simon, P.

M. Frankowski, J. Theisen, A. Kummrow, P. Simon, H. Ragusch, N. Bock, M. Schmidt, and J. Neukammer, “Microflow cytometers with integrated hydrodynamic focusing,” Sensors (Basel) 13(4), 4674–4693 (2013).
[Crossref] [PubMed]

Snakenborg, D.

Z. Wang, J. El-Ali, M. Engelund, T. Gotsaed, I. R. Perch-Nielsen, K. B. Mogensen, D. Snakenborg, J. P. Kutter, and A. Wolff, “Measurements of scattered light on a microchip flow cytometer with integrated polymer based optical elements,” Lab Chip 4(4), 372–377 (2004).
[Crossref] [PubMed]

Stelick, S. J.

M. J. Kennedy, S. J. Stelick, L. G. Sayam, A. Yen, D. Erickson, and C. A. Batt, “Hydrodynamic optical alignment for microflow cytometry,” Lab Chip 11(6), 1138–1143 (2011).
[Crossref] [PubMed]

M. J. Kennedy, S. J. Stelick, S. L. Perkins, L. Cao, and C. A. Batt, “Hydrodynamic focusing with a microlithographic manifold: controlling the vertical position of a focused sample,” Micrfluid Nanfluidics 7, 569–578 (2009).

Sung, H. J.

K. S. Lee, S. B. Kim, K. H. Lee, H. J. Sung, and S. S. Kim, “Three-dimensional microfluidic liquid-core/liquid-cladding waveguide,” Appl. Phys. Lett. 97(2), 021109 (2010).
[Crossref]

Takayama, S.

D. Huh, W. Gu, Y. Kamotani, J. B. Grotberg, and S. Takayama, “Microfluidics for flow cytometric analysis of cells and particles,” Physiol. Meas. 26(3), R73–R98 (2005).
[Crossref] [PubMed]

Testa, G.

G. Testa and R. Bernini, “Integrated tunable liquid optical fiber,” Lab Chip 12(19), 3670–3672 (2012).
[Crossref] [PubMed]

Theisen, J.

M. Frankowski, J. Theisen, A. Kummrow, P. Simon, H. Ragusch, N. Bock, M. Schmidt, and J. Neukammer, “Microflow cytometers with integrated hydrodynamic focusing,” Sensors (Basel) 13(4), 4674–4693 (2013).
[Crossref] [PubMed]

Tsutsui, H.

H. Tsutsui and C. M. Ho, “Cell separation by non-inertial force fields in microfluidic systems,” Mech. Res. Commun. 36(1), 92–103 (2009).
[Crossref] [PubMed]

Vellekoop, M.

M. Rosenauer, W. Buchegger, I. Finoulst, P. Verhaert, and M. Vellekoop, “Miniaturized flow cytometer with 3D hydrodynamic particle focusing and integrated optical elements applying silicon photodiodes,” Microfluid Nanofluidics 10, 761–771 (2011).

G. Hairer and M. Vellekoop, “An integrated flow-cell for full sample stream control,” Micrfluid Nanfluidics 7, 647–658 (2009).

Verhaert, P.

M. Rosenauer, W. Buchegger, I. Finoulst, P. Verhaert, and M. Vellekoop, “Miniaturized flow cytometer with 3D hydrodynamic particle focusing and integrated optical elements applying silicon photodiodes,” Microfluid Nanofluidics 10, 761–771 (2011).

Waldeisen, J. R.

X. Mao, J. R. Waldeisen, and T. J. Huang, ““Microfluidic drifting”--implementing three-dimensional hydrodynamic focusing with a single-layer planar microfluidic device,” Lab Chip 7(10), 1260–1262 (2007).
[Crossref] [PubMed]

Wang, Y.-N.

H.-T. Chen and Y.-N. Wang, “Optical microflow cytometer for particle counting, sizing and fluorescence detection,” Microfluid Nanofluid 6(4), 529–537 (2009).
[Crossref]

Wang, Z.

Z. Wang, J. El-Ali, M. Engelund, T. Gotsaed, I. R. Perch-Nielsen, K. B. Mogensen, D. Snakenborg, J. P. Kutter, and A. Wolff, “Measurements of scattered light on a microchip flow cytometer with integrated polymer based optical elements,” Lab Chip 4(4), 372–377 (2004).
[Crossref] [PubMed]

Watts, B. R.

B. R. Watts, Z. Zhang, C. Q. Xu, X. Cao, and M. Lin, “Integration of optical components on-chip for scattering and fluorescence detection in an optofluidic device,” Biomed. Opt. Express 3(11), 2784–2793 (2012).
[Crossref] [PubMed]

B. R. Watts, Z. Zhang, C. Q. Xu, X. Cao, and M. Lin, “A photonic-microfluidic integrated device for reliable fluorescence detection and counting,” Electrophoresis 33(21), 3236–3244 (2012).
[Crossref] [PubMed]

Westergaard, C. H.

H. Klank, G. Goranović, J. P. Kutter, H. Gjelstrup, J. Michelsen, and C. H. Westergaard, “PIV measurements in a microfluidic 3D-sheathing structure with three-dimensional flow behavior,” J. Micromech. Microeng. 12(6), 862–869 (2002).
[Crossref]

Wolff, A.

Z. Wang, J. El-Ali, M. Engelund, T. Gotsaed, I. R. Perch-Nielsen, K. B. Mogensen, D. Snakenborg, J. P. Kutter, and A. Wolff, “Measurements of scattered light on a microchip flow cytometer with integrated polymer based optical elements,” Lab Chip 4(4), 372–377 (2004).
[Crossref] [PubMed]

Wu, T. F.

Y.-J. Chiu, S. H. Cho, Z. Mei, V. Lien, T. F. Wu, and Y. H. Lo, “Universally applicable three-dimensional hydrodynamic microfluidic flow focusing,” Lab Chip 13(9), 1803–1809 (2013).
[Crossref] [PubMed]

Xu, C. Q.

B. R. Watts, Z. Zhang, C. Q. Xu, X. Cao, and M. Lin, “A photonic-microfluidic integrated device for reliable fluorescence detection and counting,” Electrophoresis 33(21), 3236–3244 (2012).
[Crossref] [PubMed]

B. R. Watts, Z. Zhang, C. Q. Xu, X. Cao, and M. Lin, “Integration of optical components on-chip for scattering and fluorescence detection in an optofluidic device,” Biomed. Opt. Express 3(11), 2784–2793 (2012).
[Crossref] [PubMed]

Xuan, X.

X. Xuan, J. Zhu, and C. Church, “Particle focusing in microfluidic devices,” Micrfluid Nanfluidics 9, 1–16 (2010).

Yang, R. J.

H. C. Lee, H. H. Hou, R. J. Yang, C. H. Lin, and L. M. Fu, “Microflow cytometer incorporating sequential micro-weir structure for three-dimensional focusing,” Micrfluid Nanfluidics 11, 469 (2011).

C. C. Chang, Z. X. Huang, and R. J. Yang, “Three-dimensional hydrodynamic focusing in two-layer polydimethylsiloxane (PDMS) microchannels,” J. Micromech. Microeng. 17(8), 1479–1486 (2007).
[Crossref]

L. M. Fu, R. J. Yang, C. H. Lin, Y. J. Pan, and G. B. Lee, “Electrokinetically driven micro flow cytometers with integrated fiber optics for on-line cell/particle detection,” Anal. Chim. Acta 507(1), 163–169 (2004).
[Crossref]

Yen, A.

M. J. Kennedy, S. J. Stelick, L. G. Sayam, A. Yen, D. Erickson, and C. A. Batt, “Hydrodynamic optical alignment for microflow cytometry,” Lab Chip 11(6), 1138–1143 (2011).
[Crossref] [PubMed]

Zeni, L.

R. Bernini, E. De Nuccio, F. Brescia, A. Minardo, L. Zeni, P. M. Sarro, R. Palumbo, and M. R. Scarfi, “Development and characterization of an integrated silicon micro flow cytometer,” Anal. Bioanal. Chem. 386(5), 1267–1272 (2006).
[Crossref] [PubMed]

Zhang, X.

A. A. Nawaz, X. Zhang, X. Mao, J. Rufo, S.-C. S. Lin, F. Guo, Y. Zhao, M. Lapsley, P. Li, J. P. McCoy, S. J. Levine, and T. J. Huang, “Sub-micrometer-precision, three-dimensional (3D) hydrodynamic focusing via “microfluidic drifting”,” Lab Chip 14(2), 415–423 (2013).
[Crossref] [PubMed]

Zhang, Z.

B. R. Watts, Z. Zhang, C. Q. Xu, X. Cao, and M. Lin, “A photonic-microfluidic integrated device for reliable fluorescence detection and counting,” Electrophoresis 33(21), 3236–3244 (2012).
[Crossref] [PubMed]

B. R. Watts, Z. Zhang, C. Q. Xu, X. Cao, and M. Lin, “Integration of optical components on-chip for scattering and fluorescence detection in an optofluidic device,” Biomed. Opt. Express 3(11), 2784–2793 (2012).
[Crossref] [PubMed]

Zhao, Y.

A. A. Nawaz, X. Zhang, X. Mao, J. Rufo, S.-C. S. Lin, F. Guo, Y. Zhao, M. Lapsley, P. Li, J. P. McCoy, S. J. Levine, and T. J. Huang, “Sub-micrometer-precision, three-dimensional (3D) hydrodynamic focusing via “microfluidic drifting”,” Lab Chip 14(2), 415–423 (2013).
[Crossref] [PubMed]

X. Mao, A. A. Nawaz, S.-C. S. Lin, M. I. Lapsley, Y. Zhao, J. P. McCoy, W. S. El-Deiry, and T. J. Huang, “An integrated, multiparametric flow cytometry chip using “microfluidic drifting” based three-dimensional hydrodynamic focusing,” Biomicrofluidics 6(2), 024113 (2012).
[Crossref]

Zhu, J.

X. Xuan, J. Zhu, and C. Church, “Particle focusing in microfluidic devices,” Micrfluid Nanfluidics 9, 1–16 (2010).

Anal. Bioanal. Chem. (2)

D. A. Ateya, J. S. Erickson, P. B. Howell, L. R. Hilliard, J. P. Golden, and F. S. Ligler, “The good, the bad, and the tiny: a review of microflow cytometry,” Anal. Bioanal. Chem. 391(5), 1485–1498 (2008).
[Crossref] [PubMed]

R. Bernini, E. De Nuccio, F. Brescia, A. Minardo, L. Zeni, P. M. Sarro, R. Palumbo, and M. R. Scarfi, “Development and characterization of an integrated silicon micro flow cytometer,” Anal. Bioanal. Chem. 386(5), 1267–1272 (2006).
[Crossref] [PubMed]

Anal. Chem. (1)

J. S. Kim, G. P. Anderson, J. S. Erickson, J. P. Golden, M. Nasir, and F. S. Ligler, “Multiplexed detection of bacteria and toxins using a microflow cytometer,” Anal. Chem. 81(13), 5426–5432 (2009).
[Crossref] [PubMed]

Anal. Chim. Acta (1)

L. M. Fu, R. J. Yang, C. H. Lin, Y. J. Pan, and G. B. Lee, “Electrokinetically driven micro flow cytometers with integrated fiber optics for on-line cell/particle detection,” Anal. Chim. Acta 507(1), 163–169 (2004).
[Crossref]

Appl. Phys. Lett. (1)

K. S. Lee, S. B. Kim, K. H. Lee, H. J. Sung, and S. S. Kim, “Three-dimensional microfluidic liquid-core/liquid-cladding waveguide,” Appl. Phys. Lett. 97(2), 021109 (2010).
[Crossref]

Biomed. Opt. Express (1)

Biomicrofluidics (1)

X. Mao, A. A. Nawaz, S.-C. S. Lin, M. I. Lapsley, Y. Zhao, J. P. McCoy, W. S. El-Deiry, and T. J. Huang, “An integrated, multiparametric flow cytometry chip using “microfluidic drifting” based three-dimensional hydrodynamic focusing,” Biomicrofluidics 6(2), 024113 (2012).
[Crossref]

Electrophoresis (1)

B. R. Watts, Z. Zhang, C. Q. Xu, X. Cao, and M. Lin, “A photonic-microfluidic integrated device for reliable fluorescence detection and counting,” Electrophoresis 33(21), 3236–3244 (2012).
[Crossref] [PubMed]

J. Micromech. Microeng. (2)

H. Klank, G. Goranović, J. P. Kutter, H. Gjelstrup, J. Michelsen, and C. H. Westergaard, “PIV measurements in a microfluidic 3D-sheathing structure with three-dimensional flow behavior,” J. Micromech. Microeng. 12(6), 862–869 (2002).
[Crossref]

C. C. Chang, Z. X. Huang, and R. J. Yang, “Three-dimensional hydrodynamic focusing in two-layer polydimethylsiloxane (PDMS) microchannels,” J. Micromech. Microeng. 17(8), 1479–1486 (2007).
[Crossref]

Lab Chip (9)

P. B. Howell, J. P. Golden, L. R. Hilliard, J. S. Erickson, D. R. Mott, and F. S. Ligler, “Two simple and rugged designs for creating microfluidic sheath flow,” Lab Chip 8(7), 1097–1103 (2008).
[Crossref] [PubMed]

M. G. Lee, S. Choi, and J. K. Park, “Three-dimensional hydrodynamic focusing with a single sheath flow in a single-layer microfluidic device,” Lab Chip 9(21), 3155–3160 (2009).
[Crossref] [PubMed]

X. Mao, S. C. Lin, C. Dong, and T. J. Huang, “Single-layer planar on-chip flow cytometer using microfluidic drifting based three-dimensional (3D) hydrodynamic focusing,” Lab Chip 9(11), 1583–1589 (2009).
[Crossref] [PubMed]

G. Testa and R. Bernini, “Integrated tunable liquid optical fiber,” Lab Chip 12(19), 3670–3672 (2012).
[Crossref] [PubMed]

Y.-J. Chiu, S. H. Cho, Z. Mei, V. Lien, T. F. Wu, and Y. H. Lo, “Universally applicable three-dimensional hydrodynamic microfluidic flow focusing,” Lab Chip 13(9), 1803–1809 (2013).
[Crossref] [PubMed]

X. Mao, J. R. Waldeisen, and T. J. Huang, ““Microfluidic drifting”--implementing three-dimensional hydrodynamic focusing with a single-layer planar microfluidic device,” Lab Chip 7(10), 1260–1262 (2007).
[Crossref] [PubMed]

A. A. Nawaz, X. Zhang, X. Mao, J. Rufo, S.-C. S. Lin, F. Guo, Y. Zhao, M. Lapsley, P. Li, J. P. McCoy, S. J. Levine, and T. J. Huang, “Sub-micrometer-precision, three-dimensional (3D) hydrodynamic focusing via “microfluidic drifting”,” Lab Chip 14(2), 415–423 (2013).
[Crossref] [PubMed]

M. J. Kennedy, S. J. Stelick, L. G. Sayam, A. Yen, D. Erickson, and C. A. Batt, “Hydrodynamic optical alignment for microflow cytometry,” Lab Chip 11(6), 1138–1143 (2011).
[Crossref] [PubMed]

Z. Wang, J. El-Ali, M. Engelund, T. Gotsaed, I. R. Perch-Nielsen, K. B. Mogensen, D. Snakenborg, J. P. Kutter, and A. Wolff, “Measurements of scattered light on a microchip flow cytometer with integrated polymer based optical elements,” Lab Chip 4(4), 372–377 (2004).
[Crossref] [PubMed]

Mech. Res. Commun. (1)

H. Tsutsui and C. M. Ho, “Cell separation by non-inertial force fields in microfluidic systems,” Mech. Res. Commun. 36(1), 92–103 (2009).
[Crossref] [PubMed]

Micrfluid Nanfluidics (4)

H. C. Lee, H. H. Hou, R. J. Yang, C. H. Lin, and L. M. Fu, “Microflow cytometer incorporating sequential micro-weir structure for three-dimensional focusing,” Micrfluid Nanfluidics 11, 469 (2011).

X. Xuan, J. Zhu, and C. Church, “Particle focusing in microfluidic devices,” Micrfluid Nanfluidics 9, 1–16 (2010).

G. Hairer and M. Vellekoop, “An integrated flow-cell for full sample stream control,” Micrfluid Nanfluidics 7, 647–658 (2009).

M. J. Kennedy, S. J. Stelick, S. L. Perkins, L. Cao, and C. A. Batt, “Hydrodynamic focusing with a microlithographic manifold: controlling the vertical position of a focused sample,” Micrfluid Nanfluidics 7, 569–578 (2009).

Micro?uid Nano?uidics (1)

M. Rosenauer, W. Buchegger, I. Finoulst, P. Verhaert, and M. Vellekoop, “Miniaturized flow cytometer with 3D hydrodynamic particle focusing and integrated optical elements applying silicon photodiodes,” Microfluid Nanofluidics 10, 761–771 (2011).

Microfluid Nanofluid (1)

H.-T. Chen and Y.-N. Wang, “Optical microflow cytometer for particle counting, sizing and fluorescence detection,” Microfluid Nanofluid 6(4), 529–537 (2009).
[Crossref]

Physiol. Meas. (1)

D. Huh, W. Gu, Y. Kamotani, J. B. Grotberg, and S. Takayama, “Microfluidics for flow cytometric analysis of cells and particles,” Physiol. Meas. 26(3), R73–R98 (2005).
[Crossref] [PubMed]

Sensors (Basel) (1)

M. Frankowski, J. Theisen, A. Kummrow, P. Simon, H. Ragusch, N. Bock, M. Schmidt, and J. Neukammer, “Microflow cytometers with integrated hydrodynamic focusing,” Sensors (Basel) 13(4), 4674–4693 (2013).
[Crossref] [PubMed]

Other (2)

R. A. Hoffman, Current Protocols in Cytometry (John Wiley & Sons, 2009), Chap 1.23.

H. M. Shapiro, Practical Flow Cytometer (Wiley-Liss, New York, 2003).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Schematic of the microfluidic structure for 3D hydrodynamic flow focusing. In the illustration are also shown the optical fibers used for flow cytometry measurements.
Fig. 2
Fig. 2 (a) Schematic of the microflow cytometer with embedded collecting optical fibers, b) Photograph of the fabricated device
Fig. 3
Fig. 3 Measured fluorescence intensity profile of focused stream under varying flow rate ratios. Orthogonally crossing dashed lines show the center of the focusing channel.
Fig. 4
Fig. 4 (a) Stream width (FWHMs) in vertical and horizontal direction versus FRR (b) Vertical versus horizontal FWHMs at any explored FRRs. Simulated values are indicated by the line (perfect circular stream).
Fig. 5
Fig. 5 Absolute displacement of the center of mass of the stream in horizonal (x) and vertical (y) direction.
Fig. 6
Fig. 6 Schematic illustration of the experimental set-up.
Fig. 7
Fig. 7 Digital oscilloscope traces of fluorescent peak signals generated by APD module when detecting 10 μm particles.
Fig. 8
Fig. 8 Frequency histogram of fluorescent and scattered light intensity of (a) 10 µm particles, (b) 23 µm particles.
Fig. 9
Fig. 9 Frequency histogram of transit time of (a) 10 µm particles, (b) 23 µm particles.

Metrics