Abstract

Gas assisted laser machining of materials is a common practice in the manufacturing industry. Advantages in using gas assistance include reducing the likelihood of flare-ups in flammable materials and clearing away ablated material in the cutting path. Current surgical procedures and research do not take advantage of this and in the case for resecting osseous tissue, gas assisted ablation can help minimize charring and clear away debris from the surgical site. In the context of neurosurgery, the objective is to cut through osseous tissue without damaging the underlying neural structures. Different inert gas flow rates used in laser machining could cause deformations in compliant materials. Complications may arise during surgical procedures if the dura and spinal cord are damaged by these deformations. We present preliminary spinal deformation findings for various gas flow rates by using optical coherence tomography to measure the depression depth at the site of gas delivery.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Pulsed and CW adjustable 1942 nm single-mode all-fiber Tm-doped fiber laser system for surgical laser soft tissue ablation applications

Yize Huang, Jamil Jivraj, Jiaqi Zhou, Joel Ramjist, Ronnie Wong, Xijia Gu, and Victor X. D. Yang
Opt. Express 24(15) 16674-16686 (2016)

Optimization of laser osteotomy at 1064 nm using a graphite topical absorber and a nitrogen assist gas jet

Jamil Jivraj, Chaoliang Chen, Dexter Barrows, Xijia Gu, and Victor X. D. Yang
Biomed. Opt. Express 10(7) 3114-3123 (2019)

Patterned femtosecond-laser ablation of Xenopus laevis melanocytes for studies of cell migration, wound repair, and developmental processes

Jessica P. Mondia, Dany S. Adams, Ryan D. Orendorff, Michael Levin, and Fiorenzo G. Omenetto
Biomed. Opt. Express 2(8) 2383-2391 (2011)

References

  • View by:
  • |
  • |
  • |

  1. J. T. Gabzdyl, “The Effect of Laser Mode and Coaxial Gas Jet on Laser Cutting,” PhD thesis, University of London 1989.
  2. R. S. Patel and M. Q. Brewster, “Gas-Assisted Laser-Metal Drilling: Experimental Results,” J. Thermophysics 5(1), 26–31 (1991).
    [Crossref]
  3. A. K. Dubey and V. Yadava, “Laser beam machining - A review,” Int. J. Mach. Tools Manuf. 48(6), 609–628 (2008).
    [Crossref]
  4. S. A. Boppart, J. Herrmann, C. Pitris, D. L. Stamper, M. E. Brezinski, and J. G. Fujimoto, “High-Resolution Optical Coherence Tomography-Guided Laser Ablation of Surgical Tissue,” J. Surg. Res. 82(2), 275–284 (1999).
    [Crossref] [PubMed]
  5. B. Y. C. Leung, P. J. L. Webster, J. M. Fraser, and V. X. D. Yang, “Real-Time Guidance of Thermal and Ultrashort Pulsed Laser Ablation in Hard Tissue Using Inline Coherent Imaging,” Lasers Surg. Med. 44(3), 249–256 (2012).
    [Crossref] [PubMed]
  6. J. H. Yang, S. W. Suh, H. N. Modi, E. T. Ramani, J. Y. Hong, J. H. Hwang, and W. Y. Jung, “Effects of vertebral column distraction on transcranial electrical stimulation-motor evoked potential and histology of the spinal cord in a porcine model,” J. Bone Joint Surg. Am. 95(9), 835–842 (2013).
    [Crossref] [PubMed]
  7. S. H. Morris, R. El-Hawary, J. J. Howard, and D. D. Rasmusson, “Validity of somatosensory evoked potentials as early indicators of neural compromise in rat model of spinal cord compression,” Clin. Neurophysiol. 124(5), 1031–1036 (2013).
    [Crossref] [PubMed]
  8. R. J. Fiford and L. E. Bilston, “The mechanical properties of rat spinal cord in vitro,” J. Biomech. 38(7), 1509–1515 (2005).
    [Crossref] [PubMed]
  9. P. Black, R. S. Markowitz, V. Cooper, A. Mechanic, H. Kushner, I. Damjanov, S. D. Finkelstein, and K. C. Wachs, “Models of Spinal Cord Injury: Part 1. Static Load Technique,” Neurosurgery 19(5), 752–762 (1986).
    [Crossref] [PubMed]
  10. N. R. Rodrigues, O. B. Letaif, A. F. Cristante, R. M. Marcon, R. P. Oliveira, and T. E. P. B. Filho, “Standardization of Spinal Cord Injury in Wistar Rats,” Acta Ortop. Bras. 18(4), 182–186 (2010).
  11. J. T. Maikos, R. A. I. Elias, and D. I. Shreiber, “Mechanical Properties of Dura Mater from the Rat Brain and Spinal Cord,” J. Neurotrauma 25(1), 38–51 (2008).
    [Crossref] [PubMed]
  12. L. R. G. Vialle, L. R. Grochocki, and P. Nohama, “NYU device: automation of the Weight-drop rod,” IFMBE Proc. 14(2), 728–730 (2007).
    [Crossref]
  13. P. Black, R. S. Markowitz, V. Cooper, A. Mechanic, H. Kushner, I. Damjanov, S. D. Finkelstein, and K. C. Wachs, “Models of Spinal Cord Injury: Part 1. Static Load Technique,” Neurosurgery 19(5), 752–762 (1986).
    [Crossref] [PubMed]
  14. J. H. Kim, T. W. Tu, P. V. Bayly, and S. K. Song, “Impact Speed Does Not Determine Severity of Spinal Cord Injury in Mice with Fixed Impact Displacement,” J. Neurotrauma 26(8), 1395–1404 (2009).
    [Crossref] [PubMed]
  15. L. B. Jakeman, D. M. McTique, P. Walters, and B. T. Stokes, “The Ohio State University ESCID Spinal Cord Contusion Model,” Animal Models of Acute Neurological Injuries433–447 (2009).
  16. Y. Xiong, A. Mahmood, and M. Chopp, “Animal models of traumatic brain injury,” Nat. Rev. Neurosci. 14(2), 128–142 (2013).
    [Crossref] [PubMed]
  17. S. Wang, K. V. Larin, J. Li, S. Vantipalli, R. K. Manapuram, S. Aglyamov, S. Emelianov, and M. D. Twa, “A focused air-pulse system for optical-coherence-tomography-based measurements of tissue elasticity,” Laser Phys. Lett. 10(7), 075605 (2013).
    [Crossref]
  18. S. Wang, A. L. Lopez, Y. Morikawa, G. Tao, J. Li, I. V. Larina, J. F. Martin, and K. V. Larin, “Noncontact quantitative biomechanical characterization of cardiac muscle using shear wave imaging optical coherence tomography,” Biomed. Opt. Express 5(7), 1980–1992 (2014).
    [Crossref] [PubMed]
  19. M. H. Lu, R. Mao, Y. Lu, Z. Liu, T. F. Wang, and S. P. Chen, “Quantitative Imaging of Young’s Modulus of Soft Tissues from Ultrasound Water Jet Indentation: A Finite Element Study,” Comput. Math. Methods Med. 2012, 979847 (2012).
    [Crossref] [PubMed]
  20. C. Cha and J. Oh, “An optofluidic mechanical system for elasticity measurement of thin biological tissues,” Biotechnol. Lett. 35(5), 825–830 (2013).
    [Crossref] [PubMed]
  21. C. Sun, B. Standish, B. Vuong, X. Y. Wen, and V. Yang, “Digital image correlation-based optical coherence elastography,” J. Biomed. Opt. 18(12), 121515 (2013).
    [Crossref] [PubMed]
  22. D. Alonso-Caneiro, K. Karnowski, B. J. Kaluzny, A. Kowalczyk, and M. Wojtkowski, “Assessment of corneal dynamics with high-speed swept source Optical Coherence Tomography combined with an air puff system,” Opt. Express 19(15), 14188–14199 (2011).
    [PubMed]
  23. C. Dorronsoro, D. Pascual, P. Pérez-Merino, S. Kling, and S. Marcos, “Dynamic OCT measurement of corneal deformation by an air puff in normal and cross-linked corneas,” Biomed. Opt. Express 3(3), 473–487 (2012).
    [Crossref] [PubMed]
  24. H. Yoshihara and D. Yoneoka, “Incidental dural tear in spine surgery: analysis of a nationwide database,” Eur. Spine J. 23(2), 389–394 (2014).
    [Crossref] [PubMed]
  25. Y. Song, S. Li, B. Song, Y. Zhang, W. Gao, N. Li, K. Fan, and J. Ma, “The pathological changes in the spinal cord after dural tear with and without autologous fascia repair,” Eur. Spine J. 23(7), 1531–1540 (2014).
    [Crossref] [PubMed]
  26. H. N. Modi, S. W. Suh, J. Y. Hong, and J. H. Yang, “The effects of spinal cord injury induced by shortening on motor evoked potentials and spinal cord blood flow: an experimental study in swine,” J. Bone Joint Surg. Am. 93(19), 1781–1789 (2011).
    [Crossref] [PubMed]

2014 (3)

S. Wang, A. L. Lopez, Y. Morikawa, G. Tao, J. Li, I. V. Larina, J. F. Martin, and K. V. Larin, “Noncontact quantitative biomechanical characterization of cardiac muscle using shear wave imaging optical coherence tomography,” Biomed. Opt. Express 5(7), 1980–1992 (2014).
[Crossref] [PubMed]

H. Yoshihara and D. Yoneoka, “Incidental dural tear in spine surgery: analysis of a nationwide database,” Eur. Spine J. 23(2), 389–394 (2014).
[Crossref] [PubMed]

Y. Song, S. Li, B. Song, Y. Zhang, W. Gao, N. Li, K. Fan, and J. Ma, “The pathological changes in the spinal cord after dural tear with and without autologous fascia repair,” Eur. Spine J. 23(7), 1531–1540 (2014).
[Crossref] [PubMed]

2013 (6)

C. Cha and J. Oh, “An optofluidic mechanical system for elasticity measurement of thin biological tissues,” Biotechnol. Lett. 35(5), 825–830 (2013).
[Crossref] [PubMed]

C. Sun, B. Standish, B. Vuong, X. Y. Wen, and V. Yang, “Digital image correlation-based optical coherence elastography,” J. Biomed. Opt. 18(12), 121515 (2013).
[Crossref] [PubMed]

Y. Xiong, A. Mahmood, and M. Chopp, “Animal models of traumatic brain injury,” Nat. Rev. Neurosci. 14(2), 128–142 (2013).
[Crossref] [PubMed]

S. Wang, K. V. Larin, J. Li, S. Vantipalli, R. K. Manapuram, S. Aglyamov, S. Emelianov, and M. D. Twa, “A focused air-pulse system for optical-coherence-tomography-based measurements of tissue elasticity,” Laser Phys. Lett. 10(7), 075605 (2013).
[Crossref]

J. H. Yang, S. W. Suh, H. N. Modi, E. T. Ramani, J. Y. Hong, J. H. Hwang, and W. Y. Jung, “Effects of vertebral column distraction on transcranial electrical stimulation-motor evoked potential and histology of the spinal cord in a porcine model,” J. Bone Joint Surg. Am. 95(9), 835–842 (2013).
[Crossref] [PubMed]

S. H. Morris, R. El-Hawary, J. J. Howard, and D. D. Rasmusson, “Validity of somatosensory evoked potentials as early indicators of neural compromise in rat model of spinal cord compression,” Clin. Neurophysiol. 124(5), 1031–1036 (2013).
[Crossref] [PubMed]

2012 (3)

B. Y. C. Leung, P. J. L. Webster, J. M. Fraser, and V. X. D. Yang, “Real-Time Guidance of Thermal and Ultrashort Pulsed Laser Ablation in Hard Tissue Using Inline Coherent Imaging,” Lasers Surg. Med. 44(3), 249–256 (2012).
[Crossref] [PubMed]

M. H. Lu, R. Mao, Y. Lu, Z. Liu, T. F. Wang, and S. P. Chen, “Quantitative Imaging of Young’s Modulus of Soft Tissues from Ultrasound Water Jet Indentation: A Finite Element Study,” Comput. Math. Methods Med. 2012, 979847 (2012).
[Crossref] [PubMed]

C. Dorronsoro, D. Pascual, P. Pérez-Merino, S. Kling, and S. Marcos, “Dynamic OCT measurement of corneal deformation by an air puff in normal and cross-linked corneas,” Biomed. Opt. Express 3(3), 473–487 (2012).
[Crossref] [PubMed]

2011 (2)

D. Alonso-Caneiro, K. Karnowski, B. J. Kaluzny, A. Kowalczyk, and M. Wojtkowski, “Assessment of corneal dynamics with high-speed swept source Optical Coherence Tomography combined with an air puff system,” Opt. Express 19(15), 14188–14199 (2011).
[PubMed]

H. N. Modi, S. W. Suh, J. Y. Hong, and J. H. Yang, “The effects of spinal cord injury induced by shortening on motor evoked potentials and spinal cord blood flow: an experimental study in swine,” J. Bone Joint Surg. Am. 93(19), 1781–1789 (2011).
[Crossref] [PubMed]

2010 (1)

N. R. Rodrigues, O. B. Letaif, A. F. Cristante, R. M. Marcon, R. P. Oliveira, and T. E. P. B. Filho, “Standardization of Spinal Cord Injury in Wistar Rats,” Acta Ortop. Bras. 18(4), 182–186 (2010).

2009 (1)

J. H. Kim, T. W. Tu, P. V. Bayly, and S. K. Song, “Impact Speed Does Not Determine Severity of Spinal Cord Injury in Mice with Fixed Impact Displacement,” J. Neurotrauma 26(8), 1395–1404 (2009).
[Crossref] [PubMed]

2008 (2)

J. T. Maikos, R. A. I. Elias, and D. I. Shreiber, “Mechanical Properties of Dura Mater from the Rat Brain and Spinal Cord,” J. Neurotrauma 25(1), 38–51 (2008).
[Crossref] [PubMed]

A. K. Dubey and V. Yadava, “Laser beam machining - A review,” Int. J. Mach. Tools Manuf. 48(6), 609–628 (2008).
[Crossref]

2007 (1)

L. R. G. Vialle, L. R. Grochocki, and P. Nohama, “NYU device: automation of the Weight-drop rod,” IFMBE Proc. 14(2), 728–730 (2007).
[Crossref]

2005 (1)

R. J. Fiford and L. E. Bilston, “The mechanical properties of rat spinal cord in vitro,” J. Biomech. 38(7), 1509–1515 (2005).
[Crossref] [PubMed]

1999 (1)

S. A. Boppart, J. Herrmann, C. Pitris, D. L. Stamper, M. E. Brezinski, and J. G. Fujimoto, “High-Resolution Optical Coherence Tomography-Guided Laser Ablation of Surgical Tissue,” J. Surg. Res. 82(2), 275–284 (1999).
[Crossref] [PubMed]

1991 (1)

R. S. Patel and M. Q. Brewster, “Gas-Assisted Laser-Metal Drilling: Experimental Results,” J. Thermophysics 5(1), 26–31 (1991).
[Crossref]

1986 (2)

P. Black, R. S. Markowitz, V. Cooper, A. Mechanic, H. Kushner, I. Damjanov, S. D. Finkelstein, and K. C. Wachs, “Models of Spinal Cord Injury: Part 1. Static Load Technique,” Neurosurgery 19(5), 752–762 (1986).
[Crossref] [PubMed]

P. Black, R. S. Markowitz, V. Cooper, A. Mechanic, H. Kushner, I. Damjanov, S. D. Finkelstein, and K. C. Wachs, “Models of Spinal Cord Injury: Part 1. Static Load Technique,” Neurosurgery 19(5), 752–762 (1986).
[Crossref] [PubMed]

Aglyamov, S.

S. Wang, K. V. Larin, J. Li, S. Vantipalli, R. K. Manapuram, S. Aglyamov, S. Emelianov, and M. D. Twa, “A focused air-pulse system for optical-coherence-tomography-based measurements of tissue elasticity,” Laser Phys. Lett. 10(7), 075605 (2013).
[Crossref]

Alonso-Caneiro, D.

Bayly, P. V.

J. H. Kim, T. W. Tu, P. V. Bayly, and S. K. Song, “Impact Speed Does Not Determine Severity of Spinal Cord Injury in Mice with Fixed Impact Displacement,” J. Neurotrauma 26(8), 1395–1404 (2009).
[Crossref] [PubMed]

Bilston, L. E.

R. J. Fiford and L. E. Bilston, “The mechanical properties of rat spinal cord in vitro,” J. Biomech. 38(7), 1509–1515 (2005).
[Crossref] [PubMed]

Black, P.

P. Black, R. S. Markowitz, V. Cooper, A. Mechanic, H. Kushner, I. Damjanov, S. D. Finkelstein, and K. C. Wachs, “Models of Spinal Cord Injury: Part 1. Static Load Technique,” Neurosurgery 19(5), 752–762 (1986).
[Crossref] [PubMed]

P. Black, R. S. Markowitz, V. Cooper, A. Mechanic, H. Kushner, I. Damjanov, S. D. Finkelstein, and K. C. Wachs, “Models of Spinal Cord Injury: Part 1. Static Load Technique,” Neurosurgery 19(5), 752–762 (1986).
[Crossref] [PubMed]

Boppart, S. A.

S. A. Boppart, J. Herrmann, C. Pitris, D. L. Stamper, M. E. Brezinski, and J. G. Fujimoto, “High-Resolution Optical Coherence Tomography-Guided Laser Ablation of Surgical Tissue,” J. Surg. Res. 82(2), 275–284 (1999).
[Crossref] [PubMed]

Brewster, M. Q.

R. S. Patel and M. Q. Brewster, “Gas-Assisted Laser-Metal Drilling: Experimental Results,” J. Thermophysics 5(1), 26–31 (1991).
[Crossref]

Brezinski, M. E.

S. A. Boppart, J. Herrmann, C. Pitris, D. L. Stamper, M. E. Brezinski, and J. G. Fujimoto, “High-Resolution Optical Coherence Tomography-Guided Laser Ablation of Surgical Tissue,” J. Surg. Res. 82(2), 275–284 (1999).
[Crossref] [PubMed]

Cha, C.

C. Cha and J. Oh, “An optofluidic mechanical system for elasticity measurement of thin biological tissues,” Biotechnol. Lett. 35(5), 825–830 (2013).
[Crossref] [PubMed]

Chen, S. P.

M. H. Lu, R. Mao, Y. Lu, Z. Liu, T. F. Wang, and S. P. Chen, “Quantitative Imaging of Young’s Modulus of Soft Tissues from Ultrasound Water Jet Indentation: A Finite Element Study,” Comput. Math. Methods Med. 2012, 979847 (2012).
[Crossref] [PubMed]

Chopp, M.

Y. Xiong, A. Mahmood, and M. Chopp, “Animal models of traumatic brain injury,” Nat. Rev. Neurosci. 14(2), 128–142 (2013).
[Crossref] [PubMed]

Cooper, V.

P. Black, R. S. Markowitz, V. Cooper, A. Mechanic, H. Kushner, I. Damjanov, S. D. Finkelstein, and K. C. Wachs, “Models of Spinal Cord Injury: Part 1. Static Load Technique,” Neurosurgery 19(5), 752–762 (1986).
[Crossref] [PubMed]

P. Black, R. S. Markowitz, V. Cooper, A. Mechanic, H. Kushner, I. Damjanov, S. D. Finkelstein, and K. C. Wachs, “Models of Spinal Cord Injury: Part 1. Static Load Technique,” Neurosurgery 19(5), 752–762 (1986).
[Crossref] [PubMed]

Cristante, A. F.

N. R. Rodrigues, O. B. Letaif, A. F. Cristante, R. M. Marcon, R. P. Oliveira, and T. E. P. B. Filho, “Standardization of Spinal Cord Injury in Wistar Rats,” Acta Ortop. Bras. 18(4), 182–186 (2010).

Damjanov, I.

P. Black, R. S. Markowitz, V. Cooper, A. Mechanic, H. Kushner, I. Damjanov, S. D. Finkelstein, and K. C. Wachs, “Models of Spinal Cord Injury: Part 1. Static Load Technique,” Neurosurgery 19(5), 752–762 (1986).
[Crossref] [PubMed]

P. Black, R. S. Markowitz, V. Cooper, A. Mechanic, H. Kushner, I. Damjanov, S. D. Finkelstein, and K. C. Wachs, “Models of Spinal Cord Injury: Part 1. Static Load Technique,” Neurosurgery 19(5), 752–762 (1986).
[Crossref] [PubMed]

Dorronsoro, C.

Dubey, A. K.

A. K. Dubey and V. Yadava, “Laser beam machining - A review,” Int. J. Mach. Tools Manuf. 48(6), 609–628 (2008).
[Crossref]

El-Hawary, R.

S. H. Morris, R. El-Hawary, J. J. Howard, and D. D. Rasmusson, “Validity of somatosensory evoked potentials as early indicators of neural compromise in rat model of spinal cord compression,” Clin. Neurophysiol. 124(5), 1031–1036 (2013).
[Crossref] [PubMed]

Elias, R. A. I.

J. T. Maikos, R. A. I. Elias, and D. I. Shreiber, “Mechanical Properties of Dura Mater from the Rat Brain and Spinal Cord,” J. Neurotrauma 25(1), 38–51 (2008).
[Crossref] [PubMed]

Emelianov, S.

S. Wang, K. V. Larin, J. Li, S. Vantipalli, R. K. Manapuram, S. Aglyamov, S. Emelianov, and M. D. Twa, “A focused air-pulse system for optical-coherence-tomography-based measurements of tissue elasticity,” Laser Phys. Lett. 10(7), 075605 (2013).
[Crossref]

Fan, K.

Y. Song, S. Li, B. Song, Y. Zhang, W. Gao, N. Li, K. Fan, and J. Ma, “The pathological changes in the spinal cord after dural tear with and without autologous fascia repair,” Eur. Spine J. 23(7), 1531–1540 (2014).
[Crossref] [PubMed]

Fiford, R. J.

R. J. Fiford and L. E. Bilston, “The mechanical properties of rat spinal cord in vitro,” J. Biomech. 38(7), 1509–1515 (2005).
[Crossref] [PubMed]

Filho, T. E. P. B.

N. R. Rodrigues, O. B. Letaif, A. F. Cristante, R. M. Marcon, R. P. Oliveira, and T. E. P. B. Filho, “Standardization of Spinal Cord Injury in Wistar Rats,” Acta Ortop. Bras. 18(4), 182–186 (2010).

Finkelstein, S. D.

P. Black, R. S. Markowitz, V. Cooper, A. Mechanic, H. Kushner, I. Damjanov, S. D. Finkelstein, and K. C. Wachs, “Models of Spinal Cord Injury: Part 1. Static Load Technique,” Neurosurgery 19(5), 752–762 (1986).
[Crossref] [PubMed]

P. Black, R. S. Markowitz, V. Cooper, A. Mechanic, H. Kushner, I. Damjanov, S. D. Finkelstein, and K. C. Wachs, “Models of Spinal Cord Injury: Part 1. Static Load Technique,” Neurosurgery 19(5), 752–762 (1986).
[Crossref] [PubMed]

Fraser, J. M.

B. Y. C. Leung, P. J. L. Webster, J. M. Fraser, and V. X. D. Yang, “Real-Time Guidance of Thermal and Ultrashort Pulsed Laser Ablation in Hard Tissue Using Inline Coherent Imaging,” Lasers Surg. Med. 44(3), 249–256 (2012).
[Crossref] [PubMed]

Fujimoto, J. G.

S. A. Boppart, J. Herrmann, C. Pitris, D. L. Stamper, M. E. Brezinski, and J. G. Fujimoto, “High-Resolution Optical Coherence Tomography-Guided Laser Ablation of Surgical Tissue,” J. Surg. Res. 82(2), 275–284 (1999).
[Crossref] [PubMed]

Gao, W.

Y. Song, S. Li, B. Song, Y. Zhang, W. Gao, N. Li, K. Fan, and J. Ma, “The pathological changes in the spinal cord after dural tear with and without autologous fascia repair,” Eur. Spine J. 23(7), 1531–1540 (2014).
[Crossref] [PubMed]

Grochocki, L. R.

L. R. G. Vialle, L. R. Grochocki, and P. Nohama, “NYU device: automation of the Weight-drop rod,” IFMBE Proc. 14(2), 728–730 (2007).
[Crossref]

Herrmann, J.

S. A. Boppart, J. Herrmann, C. Pitris, D. L. Stamper, M. E. Brezinski, and J. G. Fujimoto, “High-Resolution Optical Coherence Tomography-Guided Laser Ablation of Surgical Tissue,” J. Surg. Res. 82(2), 275–284 (1999).
[Crossref] [PubMed]

Hong, J. Y.

J. H. Yang, S. W. Suh, H. N. Modi, E. T. Ramani, J. Y. Hong, J. H. Hwang, and W. Y. Jung, “Effects of vertebral column distraction on transcranial electrical stimulation-motor evoked potential and histology of the spinal cord in a porcine model,” J. Bone Joint Surg. Am. 95(9), 835–842 (2013).
[Crossref] [PubMed]

H. N. Modi, S. W. Suh, J. Y. Hong, and J. H. Yang, “The effects of spinal cord injury induced by shortening on motor evoked potentials and spinal cord blood flow: an experimental study in swine,” J. Bone Joint Surg. Am. 93(19), 1781–1789 (2011).
[Crossref] [PubMed]

Howard, J. J.

S. H. Morris, R. El-Hawary, J. J. Howard, and D. D. Rasmusson, “Validity of somatosensory evoked potentials as early indicators of neural compromise in rat model of spinal cord compression,” Clin. Neurophysiol. 124(5), 1031–1036 (2013).
[Crossref] [PubMed]

Hwang, J. H.

J. H. Yang, S. W. Suh, H. N. Modi, E. T. Ramani, J. Y. Hong, J. H. Hwang, and W. Y. Jung, “Effects of vertebral column distraction on transcranial electrical stimulation-motor evoked potential and histology of the spinal cord in a porcine model,” J. Bone Joint Surg. Am. 95(9), 835–842 (2013).
[Crossref] [PubMed]

Jakeman, L. B.

L. B. Jakeman, D. M. McTique, P. Walters, and B. T. Stokes, “The Ohio State University ESCID Spinal Cord Contusion Model,” Animal Models of Acute Neurological Injuries433–447 (2009).

Jung, W. Y.

J. H. Yang, S. W. Suh, H. N. Modi, E. T. Ramani, J. Y. Hong, J. H. Hwang, and W. Y. Jung, “Effects of vertebral column distraction on transcranial electrical stimulation-motor evoked potential and histology of the spinal cord in a porcine model,” J. Bone Joint Surg. Am. 95(9), 835–842 (2013).
[Crossref] [PubMed]

Kaluzny, B. J.

Karnowski, K.

Kim, J. H.

J. H. Kim, T. W. Tu, P. V. Bayly, and S. K. Song, “Impact Speed Does Not Determine Severity of Spinal Cord Injury in Mice with Fixed Impact Displacement,” J. Neurotrauma 26(8), 1395–1404 (2009).
[Crossref] [PubMed]

Kling, S.

Kowalczyk, A.

Kushner, H.

P. Black, R. S. Markowitz, V. Cooper, A. Mechanic, H. Kushner, I. Damjanov, S. D. Finkelstein, and K. C. Wachs, “Models of Spinal Cord Injury: Part 1. Static Load Technique,” Neurosurgery 19(5), 752–762 (1986).
[Crossref] [PubMed]

P. Black, R. S. Markowitz, V. Cooper, A. Mechanic, H. Kushner, I. Damjanov, S. D. Finkelstein, and K. C. Wachs, “Models of Spinal Cord Injury: Part 1. Static Load Technique,” Neurosurgery 19(5), 752–762 (1986).
[Crossref] [PubMed]

Larin, K. V.

S. Wang, A. L. Lopez, Y. Morikawa, G. Tao, J. Li, I. V. Larina, J. F. Martin, and K. V. Larin, “Noncontact quantitative biomechanical characterization of cardiac muscle using shear wave imaging optical coherence tomography,” Biomed. Opt. Express 5(7), 1980–1992 (2014).
[Crossref] [PubMed]

S. Wang, K. V. Larin, J. Li, S. Vantipalli, R. K. Manapuram, S. Aglyamov, S. Emelianov, and M. D. Twa, “A focused air-pulse system for optical-coherence-tomography-based measurements of tissue elasticity,” Laser Phys. Lett. 10(7), 075605 (2013).
[Crossref]

Larina, I. V.

Letaif, O. B.

N. R. Rodrigues, O. B. Letaif, A. F. Cristante, R. M. Marcon, R. P. Oliveira, and T. E. P. B. Filho, “Standardization of Spinal Cord Injury in Wistar Rats,” Acta Ortop. Bras. 18(4), 182–186 (2010).

Leung, B. Y. C.

B. Y. C. Leung, P. J. L. Webster, J. M. Fraser, and V. X. D. Yang, “Real-Time Guidance of Thermal and Ultrashort Pulsed Laser Ablation in Hard Tissue Using Inline Coherent Imaging,” Lasers Surg. Med. 44(3), 249–256 (2012).
[Crossref] [PubMed]

Li, J.

S. Wang, A. L. Lopez, Y. Morikawa, G. Tao, J. Li, I. V. Larina, J. F. Martin, and K. V. Larin, “Noncontact quantitative biomechanical characterization of cardiac muscle using shear wave imaging optical coherence tomography,” Biomed. Opt. Express 5(7), 1980–1992 (2014).
[Crossref] [PubMed]

S. Wang, K. V. Larin, J. Li, S. Vantipalli, R. K. Manapuram, S. Aglyamov, S. Emelianov, and M. D. Twa, “A focused air-pulse system for optical-coherence-tomography-based measurements of tissue elasticity,” Laser Phys. Lett. 10(7), 075605 (2013).
[Crossref]

Li, N.

Y. Song, S. Li, B. Song, Y. Zhang, W. Gao, N. Li, K. Fan, and J. Ma, “The pathological changes in the spinal cord after dural tear with and without autologous fascia repair,” Eur. Spine J. 23(7), 1531–1540 (2014).
[Crossref] [PubMed]

Li, S.

Y. Song, S. Li, B. Song, Y. Zhang, W. Gao, N. Li, K. Fan, and J. Ma, “The pathological changes in the spinal cord after dural tear with and without autologous fascia repair,” Eur. Spine J. 23(7), 1531–1540 (2014).
[Crossref] [PubMed]

Liu, Z.

M. H. Lu, R. Mao, Y. Lu, Z. Liu, T. F. Wang, and S. P. Chen, “Quantitative Imaging of Young’s Modulus of Soft Tissues from Ultrasound Water Jet Indentation: A Finite Element Study,” Comput. Math. Methods Med. 2012, 979847 (2012).
[Crossref] [PubMed]

Lopez, A. L.

Lu, M. H.

M. H. Lu, R. Mao, Y. Lu, Z. Liu, T. F. Wang, and S. P. Chen, “Quantitative Imaging of Young’s Modulus of Soft Tissues from Ultrasound Water Jet Indentation: A Finite Element Study,” Comput. Math. Methods Med. 2012, 979847 (2012).
[Crossref] [PubMed]

Lu, Y.

M. H. Lu, R. Mao, Y. Lu, Z. Liu, T. F. Wang, and S. P. Chen, “Quantitative Imaging of Young’s Modulus of Soft Tissues from Ultrasound Water Jet Indentation: A Finite Element Study,” Comput. Math. Methods Med. 2012, 979847 (2012).
[Crossref] [PubMed]

Ma, J.

Y. Song, S. Li, B. Song, Y. Zhang, W. Gao, N. Li, K. Fan, and J. Ma, “The pathological changes in the spinal cord after dural tear with and without autologous fascia repair,” Eur. Spine J. 23(7), 1531–1540 (2014).
[Crossref] [PubMed]

Mahmood, A.

Y. Xiong, A. Mahmood, and M. Chopp, “Animal models of traumatic brain injury,” Nat. Rev. Neurosci. 14(2), 128–142 (2013).
[Crossref] [PubMed]

Maikos, J. T.

J. T. Maikos, R. A. I. Elias, and D. I. Shreiber, “Mechanical Properties of Dura Mater from the Rat Brain and Spinal Cord,” J. Neurotrauma 25(1), 38–51 (2008).
[Crossref] [PubMed]

Manapuram, R. K.

S. Wang, K. V. Larin, J. Li, S. Vantipalli, R. K. Manapuram, S. Aglyamov, S. Emelianov, and M. D. Twa, “A focused air-pulse system for optical-coherence-tomography-based measurements of tissue elasticity,” Laser Phys. Lett. 10(7), 075605 (2013).
[Crossref]

Mao, R.

M. H. Lu, R. Mao, Y. Lu, Z. Liu, T. F. Wang, and S. P. Chen, “Quantitative Imaging of Young’s Modulus of Soft Tissues from Ultrasound Water Jet Indentation: A Finite Element Study,” Comput. Math. Methods Med. 2012, 979847 (2012).
[Crossref] [PubMed]

Marcon, R. M.

N. R. Rodrigues, O. B. Letaif, A. F. Cristante, R. M. Marcon, R. P. Oliveira, and T. E. P. B. Filho, “Standardization of Spinal Cord Injury in Wistar Rats,” Acta Ortop. Bras. 18(4), 182–186 (2010).

Marcos, S.

Markowitz, R. S.

P. Black, R. S. Markowitz, V. Cooper, A. Mechanic, H. Kushner, I. Damjanov, S. D. Finkelstein, and K. C. Wachs, “Models of Spinal Cord Injury: Part 1. Static Load Technique,” Neurosurgery 19(5), 752–762 (1986).
[Crossref] [PubMed]

P. Black, R. S. Markowitz, V. Cooper, A. Mechanic, H. Kushner, I. Damjanov, S. D. Finkelstein, and K. C. Wachs, “Models of Spinal Cord Injury: Part 1. Static Load Technique,” Neurosurgery 19(5), 752–762 (1986).
[Crossref] [PubMed]

Martin, J. F.

McTique, D. M.

L. B. Jakeman, D. M. McTique, P. Walters, and B. T. Stokes, “The Ohio State University ESCID Spinal Cord Contusion Model,” Animal Models of Acute Neurological Injuries433–447 (2009).

Mechanic, A.

P. Black, R. S. Markowitz, V. Cooper, A. Mechanic, H. Kushner, I. Damjanov, S. D. Finkelstein, and K. C. Wachs, “Models of Spinal Cord Injury: Part 1. Static Load Technique,” Neurosurgery 19(5), 752–762 (1986).
[Crossref] [PubMed]

P. Black, R. S. Markowitz, V. Cooper, A. Mechanic, H. Kushner, I. Damjanov, S. D. Finkelstein, and K. C. Wachs, “Models of Spinal Cord Injury: Part 1. Static Load Technique,” Neurosurgery 19(5), 752–762 (1986).
[Crossref] [PubMed]

Modi, H. N.

J. H. Yang, S. W. Suh, H. N. Modi, E. T. Ramani, J. Y. Hong, J. H. Hwang, and W. Y. Jung, “Effects of vertebral column distraction on transcranial electrical stimulation-motor evoked potential and histology of the spinal cord in a porcine model,” J. Bone Joint Surg. Am. 95(9), 835–842 (2013).
[Crossref] [PubMed]

H. N. Modi, S. W. Suh, J. Y. Hong, and J. H. Yang, “The effects of spinal cord injury induced by shortening on motor evoked potentials and spinal cord blood flow: an experimental study in swine,” J. Bone Joint Surg. Am. 93(19), 1781–1789 (2011).
[Crossref] [PubMed]

Morikawa, Y.

Morris, S. H.

S. H. Morris, R. El-Hawary, J. J. Howard, and D. D. Rasmusson, “Validity of somatosensory evoked potentials as early indicators of neural compromise in rat model of spinal cord compression,” Clin. Neurophysiol. 124(5), 1031–1036 (2013).
[Crossref] [PubMed]

Nohama, P.

L. R. G. Vialle, L. R. Grochocki, and P. Nohama, “NYU device: automation of the Weight-drop rod,” IFMBE Proc. 14(2), 728–730 (2007).
[Crossref]

Oh, J.

C. Cha and J. Oh, “An optofluidic mechanical system for elasticity measurement of thin biological tissues,” Biotechnol. Lett. 35(5), 825–830 (2013).
[Crossref] [PubMed]

Oliveira, R. P.

N. R. Rodrigues, O. B. Letaif, A. F. Cristante, R. M. Marcon, R. P. Oliveira, and T. E. P. B. Filho, “Standardization of Spinal Cord Injury in Wistar Rats,” Acta Ortop. Bras. 18(4), 182–186 (2010).

Pascual, D.

Patel, R. S.

R. S. Patel and M. Q. Brewster, “Gas-Assisted Laser-Metal Drilling: Experimental Results,” J. Thermophysics 5(1), 26–31 (1991).
[Crossref]

Pérez-Merino, P.

Pitris, C.

S. A. Boppart, J. Herrmann, C. Pitris, D. L. Stamper, M. E. Brezinski, and J. G. Fujimoto, “High-Resolution Optical Coherence Tomography-Guided Laser Ablation of Surgical Tissue,” J. Surg. Res. 82(2), 275–284 (1999).
[Crossref] [PubMed]

Ramani, E. T.

J. H. Yang, S. W. Suh, H. N. Modi, E. T. Ramani, J. Y. Hong, J. H. Hwang, and W. Y. Jung, “Effects of vertebral column distraction on transcranial electrical stimulation-motor evoked potential and histology of the spinal cord in a porcine model,” J. Bone Joint Surg. Am. 95(9), 835–842 (2013).
[Crossref] [PubMed]

Rasmusson, D. D.

S. H. Morris, R. El-Hawary, J. J. Howard, and D. D. Rasmusson, “Validity of somatosensory evoked potentials as early indicators of neural compromise in rat model of spinal cord compression,” Clin. Neurophysiol. 124(5), 1031–1036 (2013).
[Crossref] [PubMed]

Rodrigues, N. R.

N. R. Rodrigues, O. B. Letaif, A. F. Cristante, R. M. Marcon, R. P. Oliveira, and T. E. P. B. Filho, “Standardization of Spinal Cord Injury in Wistar Rats,” Acta Ortop. Bras. 18(4), 182–186 (2010).

Shreiber, D. I.

J. T. Maikos, R. A. I. Elias, and D. I. Shreiber, “Mechanical Properties of Dura Mater from the Rat Brain and Spinal Cord,” J. Neurotrauma 25(1), 38–51 (2008).
[Crossref] [PubMed]

Song, B.

Y. Song, S. Li, B. Song, Y. Zhang, W. Gao, N. Li, K. Fan, and J. Ma, “The pathological changes in the spinal cord after dural tear with and without autologous fascia repair,” Eur. Spine J. 23(7), 1531–1540 (2014).
[Crossref] [PubMed]

Song, S. K.

J. H. Kim, T. W. Tu, P. V. Bayly, and S. K. Song, “Impact Speed Does Not Determine Severity of Spinal Cord Injury in Mice with Fixed Impact Displacement,” J. Neurotrauma 26(8), 1395–1404 (2009).
[Crossref] [PubMed]

Song, Y.

Y. Song, S. Li, B. Song, Y. Zhang, W. Gao, N. Li, K. Fan, and J. Ma, “The pathological changes in the spinal cord after dural tear with and without autologous fascia repair,” Eur. Spine J. 23(7), 1531–1540 (2014).
[Crossref] [PubMed]

Stamper, D. L.

S. A. Boppart, J. Herrmann, C. Pitris, D. L. Stamper, M. E. Brezinski, and J. G. Fujimoto, “High-Resolution Optical Coherence Tomography-Guided Laser Ablation of Surgical Tissue,” J. Surg. Res. 82(2), 275–284 (1999).
[Crossref] [PubMed]

Standish, B.

C. Sun, B. Standish, B. Vuong, X. Y. Wen, and V. Yang, “Digital image correlation-based optical coherence elastography,” J. Biomed. Opt. 18(12), 121515 (2013).
[Crossref] [PubMed]

Stokes, B. T.

L. B. Jakeman, D. M. McTique, P. Walters, and B. T. Stokes, “The Ohio State University ESCID Spinal Cord Contusion Model,” Animal Models of Acute Neurological Injuries433–447 (2009).

Suh, S. W.

J. H. Yang, S. W. Suh, H. N. Modi, E. T. Ramani, J. Y. Hong, J. H. Hwang, and W. Y. Jung, “Effects of vertebral column distraction on transcranial electrical stimulation-motor evoked potential and histology of the spinal cord in a porcine model,” J. Bone Joint Surg. Am. 95(9), 835–842 (2013).
[Crossref] [PubMed]

H. N. Modi, S. W. Suh, J. Y. Hong, and J. H. Yang, “The effects of spinal cord injury induced by shortening on motor evoked potentials and spinal cord blood flow: an experimental study in swine,” J. Bone Joint Surg. Am. 93(19), 1781–1789 (2011).
[Crossref] [PubMed]

Sun, C.

C. Sun, B. Standish, B. Vuong, X. Y. Wen, and V. Yang, “Digital image correlation-based optical coherence elastography,” J. Biomed. Opt. 18(12), 121515 (2013).
[Crossref] [PubMed]

Tao, G.

Tu, T. W.

J. H. Kim, T. W. Tu, P. V. Bayly, and S. K. Song, “Impact Speed Does Not Determine Severity of Spinal Cord Injury in Mice with Fixed Impact Displacement,” J. Neurotrauma 26(8), 1395–1404 (2009).
[Crossref] [PubMed]

Twa, M. D.

S. Wang, K. V. Larin, J. Li, S. Vantipalli, R. K. Manapuram, S. Aglyamov, S. Emelianov, and M. D. Twa, “A focused air-pulse system for optical-coherence-tomography-based measurements of tissue elasticity,” Laser Phys. Lett. 10(7), 075605 (2013).
[Crossref]

Vantipalli, S.

S. Wang, K. V. Larin, J. Li, S. Vantipalli, R. K. Manapuram, S. Aglyamov, S. Emelianov, and M. D. Twa, “A focused air-pulse system for optical-coherence-tomography-based measurements of tissue elasticity,” Laser Phys. Lett. 10(7), 075605 (2013).
[Crossref]

Vialle, L. R. G.

L. R. G. Vialle, L. R. Grochocki, and P. Nohama, “NYU device: automation of the Weight-drop rod,” IFMBE Proc. 14(2), 728–730 (2007).
[Crossref]

Vuong, B.

C. Sun, B. Standish, B. Vuong, X. Y. Wen, and V. Yang, “Digital image correlation-based optical coherence elastography,” J. Biomed. Opt. 18(12), 121515 (2013).
[Crossref] [PubMed]

Wachs, K. C.

P. Black, R. S. Markowitz, V. Cooper, A. Mechanic, H. Kushner, I. Damjanov, S. D. Finkelstein, and K. C. Wachs, “Models of Spinal Cord Injury: Part 1. Static Load Technique,” Neurosurgery 19(5), 752–762 (1986).
[Crossref] [PubMed]

P. Black, R. S. Markowitz, V. Cooper, A. Mechanic, H. Kushner, I. Damjanov, S. D. Finkelstein, and K. C. Wachs, “Models of Spinal Cord Injury: Part 1. Static Load Technique,” Neurosurgery 19(5), 752–762 (1986).
[Crossref] [PubMed]

Walters, P.

L. B. Jakeman, D. M. McTique, P. Walters, and B. T. Stokes, “The Ohio State University ESCID Spinal Cord Contusion Model,” Animal Models of Acute Neurological Injuries433–447 (2009).

Wang, S.

S. Wang, A. L. Lopez, Y. Morikawa, G. Tao, J. Li, I. V. Larina, J. F. Martin, and K. V. Larin, “Noncontact quantitative biomechanical characterization of cardiac muscle using shear wave imaging optical coherence tomography,” Biomed. Opt. Express 5(7), 1980–1992 (2014).
[Crossref] [PubMed]

S. Wang, K. V. Larin, J. Li, S. Vantipalli, R. K. Manapuram, S. Aglyamov, S. Emelianov, and M. D. Twa, “A focused air-pulse system for optical-coherence-tomography-based measurements of tissue elasticity,” Laser Phys. Lett. 10(7), 075605 (2013).
[Crossref]

Wang, T. F.

M. H. Lu, R. Mao, Y. Lu, Z. Liu, T. F. Wang, and S. P. Chen, “Quantitative Imaging of Young’s Modulus of Soft Tissues from Ultrasound Water Jet Indentation: A Finite Element Study,” Comput. Math. Methods Med. 2012, 979847 (2012).
[Crossref] [PubMed]

Webster, P. J. L.

B. Y. C. Leung, P. J. L. Webster, J. M. Fraser, and V. X. D. Yang, “Real-Time Guidance of Thermal and Ultrashort Pulsed Laser Ablation in Hard Tissue Using Inline Coherent Imaging,” Lasers Surg. Med. 44(3), 249–256 (2012).
[Crossref] [PubMed]

Wen, X. Y.

C. Sun, B. Standish, B. Vuong, X. Y. Wen, and V. Yang, “Digital image correlation-based optical coherence elastography,” J. Biomed. Opt. 18(12), 121515 (2013).
[Crossref] [PubMed]

Wojtkowski, M.

Xiong, Y.

Y. Xiong, A. Mahmood, and M. Chopp, “Animal models of traumatic brain injury,” Nat. Rev. Neurosci. 14(2), 128–142 (2013).
[Crossref] [PubMed]

Yadava, V.

A. K. Dubey and V. Yadava, “Laser beam machining - A review,” Int. J. Mach. Tools Manuf. 48(6), 609–628 (2008).
[Crossref]

Yang, J. H.

J. H. Yang, S. W. Suh, H. N. Modi, E. T. Ramani, J. Y. Hong, J. H. Hwang, and W. Y. Jung, “Effects of vertebral column distraction on transcranial electrical stimulation-motor evoked potential and histology of the spinal cord in a porcine model,” J. Bone Joint Surg. Am. 95(9), 835–842 (2013).
[Crossref] [PubMed]

H. N. Modi, S. W. Suh, J. Y. Hong, and J. H. Yang, “The effects of spinal cord injury induced by shortening on motor evoked potentials and spinal cord blood flow: an experimental study in swine,” J. Bone Joint Surg. Am. 93(19), 1781–1789 (2011).
[Crossref] [PubMed]

Yang, V.

C. Sun, B. Standish, B. Vuong, X. Y. Wen, and V. Yang, “Digital image correlation-based optical coherence elastography,” J. Biomed. Opt. 18(12), 121515 (2013).
[Crossref] [PubMed]

Yang, V. X. D.

B. Y. C. Leung, P. J. L. Webster, J. M. Fraser, and V. X. D. Yang, “Real-Time Guidance of Thermal and Ultrashort Pulsed Laser Ablation in Hard Tissue Using Inline Coherent Imaging,” Lasers Surg. Med. 44(3), 249–256 (2012).
[Crossref] [PubMed]

Yoneoka, D.

H. Yoshihara and D. Yoneoka, “Incidental dural tear in spine surgery: analysis of a nationwide database,” Eur. Spine J. 23(2), 389–394 (2014).
[Crossref] [PubMed]

Yoshihara, H.

H. Yoshihara and D. Yoneoka, “Incidental dural tear in spine surgery: analysis of a nationwide database,” Eur. Spine J. 23(2), 389–394 (2014).
[Crossref] [PubMed]

Zhang, Y.

Y. Song, S. Li, B. Song, Y. Zhang, W. Gao, N. Li, K. Fan, and J. Ma, “The pathological changes in the spinal cord after dural tear with and without autologous fascia repair,” Eur. Spine J. 23(7), 1531–1540 (2014).
[Crossref] [PubMed]

Acta Ortop. Bras. (1)

N. R. Rodrigues, O. B. Letaif, A. F. Cristante, R. M. Marcon, R. P. Oliveira, and T. E. P. B. Filho, “Standardization of Spinal Cord Injury in Wistar Rats,” Acta Ortop. Bras. 18(4), 182–186 (2010).

Biomed. Opt. Express (2)

Biotechnol. Lett. (1)

C. Cha and J. Oh, “An optofluidic mechanical system for elasticity measurement of thin biological tissues,” Biotechnol. Lett. 35(5), 825–830 (2013).
[Crossref] [PubMed]

Clin. Neurophysiol. (1)

S. H. Morris, R. El-Hawary, J. J. Howard, and D. D. Rasmusson, “Validity of somatosensory evoked potentials as early indicators of neural compromise in rat model of spinal cord compression,” Clin. Neurophysiol. 124(5), 1031–1036 (2013).
[Crossref] [PubMed]

Comput. Math. Methods Med. (1)

M. H. Lu, R. Mao, Y. Lu, Z. Liu, T. F. Wang, and S. P. Chen, “Quantitative Imaging of Young’s Modulus of Soft Tissues from Ultrasound Water Jet Indentation: A Finite Element Study,” Comput. Math. Methods Med. 2012, 979847 (2012).
[Crossref] [PubMed]

Eur. Spine J. (2)

H. Yoshihara and D. Yoneoka, “Incidental dural tear in spine surgery: analysis of a nationwide database,” Eur. Spine J. 23(2), 389–394 (2014).
[Crossref] [PubMed]

Y. Song, S. Li, B. Song, Y. Zhang, W. Gao, N. Li, K. Fan, and J. Ma, “The pathological changes in the spinal cord after dural tear with and without autologous fascia repair,” Eur. Spine J. 23(7), 1531–1540 (2014).
[Crossref] [PubMed]

IFMBE Proc. (1)

L. R. G. Vialle, L. R. Grochocki, and P. Nohama, “NYU device: automation of the Weight-drop rod,” IFMBE Proc. 14(2), 728–730 (2007).
[Crossref]

Int. J. Mach. Tools Manuf. (1)

A. K. Dubey and V. Yadava, “Laser beam machining - A review,” Int. J. Mach. Tools Manuf. 48(6), 609–628 (2008).
[Crossref]

J. Biomech. (1)

R. J. Fiford and L. E. Bilston, “The mechanical properties of rat spinal cord in vitro,” J. Biomech. 38(7), 1509–1515 (2005).
[Crossref] [PubMed]

J. Biomed. Opt. (1)

C. Sun, B. Standish, B. Vuong, X. Y. Wen, and V. Yang, “Digital image correlation-based optical coherence elastography,” J. Biomed. Opt. 18(12), 121515 (2013).
[Crossref] [PubMed]

J. Bone Joint Surg. Am. (2)

H. N. Modi, S. W. Suh, J. Y. Hong, and J. H. Yang, “The effects of spinal cord injury induced by shortening on motor evoked potentials and spinal cord blood flow: an experimental study in swine,” J. Bone Joint Surg. Am. 93(19), 1781–1789 (2011).
[Crossref] [PubMed]

J. H. Yang, S. W. Suh, H. N. Modi, E. T. Ramani, J. Y. Hong, J. H. Hwang, and W. Y. Jung, “Effects of vertebral column distraction on transcranial electrical stimulation-motor evoked potential and histology of the spinal cord in a porcine model,” J. Bone Joint Surg. Am. 95(9), 835–842 (2013).
[Crossref] [PubMed]

J. Neurotrauma (2)

J. H. Kim, T. W. Tu, P. V. Bayly, and S. K. Song, “Impact Speed Does Not Determine Severity of Spinal Cord Injury in Mice with Fixed Impact Displacement,” J. Neurotrauma 26(8), 1395–1404 (2009).
[Crossref] [PubMed]

J. T. Maikos, R. A. I. Elias, and D. I. Shreiber, “Mechanical Properties of Dura Mater from the Rat Brain and Spinal Cord,” J. Neurotrauma 25(1), 38–51 (2008).
[Crossref] [PubMed]

J. Surg. Res. (1)

S. A. Boppart, J. Herrmann, C. Pitris, D. L. Stamper, M. E. Brezinski, and J. G. Fujimoto, “High-Resolution Optical Coherence Tomography-Guided Laser Ablation of Surgical Tissue,” J. Surg. Res. 82(2), 275–284 (1999).
[Crossref] [PubMed]

J. Thermophysics (1)

R. S. Patel and M. Q. Brewster, “Gas-Assisted Laser-Metal Drilling: Experimental Results,” J. Thermophysics 5(1), 26–31 (1991).
[Crossref]

Laser Phys. Lett. (1)

S. Wang, K. V. Larin, J. Li, S. Vantipalli, R. K. Manapuram, S. Aglyamov, S. Emelianov, and M. D. Twa, “A focused air-pulse system for optical-coherence-tomography-based measurements of tissue elasticity,” Laser Phys. Lett. 10(7), 075605 (2013).
[Crossref]

Lasers Surg. Med. (1)

B. Y. C. Leung, P. J. L. Webster, J. M. Fraser, and V. X. D. Yang, “Real-Time Guidance of Thermal and Ultrashort Pulsed Laser Ablation in Hard Tissue Using Inline Coherent Imaging,” Lasers Surg. Med. 44(3), 249–256 (2012).
[Crossref] [PubMed]

Nat. Rev. Neurosci. (1)

Y. Xiong, A. Mahmood, and M. Chopp, “Animal models of traumatic brain injury,” Nat. Rev. Neurosci. 14(2), 128–142 (2013).
[Crossref] [PubMed]

Neurosurgery (2)

P. Black, R. S. Markowitz, V. Cooper, A. Mechanic, H. Kushner, I. Damjanov, S. D. Finkelstein, and K. C. Wachs, “Models of Spinal Cord Injury: Part 1. Static Load Technique,” Neurosurgery 19(5), 752–762 (1986).
[Crossref] [PubMed]

P. Black, R. S. Markowitz, V. Cooper, A. Mechanic, H. Kushner, I. Damjanov, S. D. Finkelstein, and K. C. Wachs, “Models of Spinal Cord Injury: Part 1. Static Load Technique,” Neurosurgery 19(5), 752–762 (1986).
[Crossref] [PubMed]

Opt. Express (1)

Other (2)

J. T. Gabzdyl, “The Effect of Laser Mode and Coaxial Gas Jet on Laser Cutting,” PhD thesis, University of London 1989.

L. B. Jakeman, D. M. McTique, P. Walters, and B. T. Stokes, “The Ohio State University ESCID Spinal Cord Contusion Model,” Animal Models of Acute Neurological Injuries433–447 (2009).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Schematic of OCT in-line with the gas nozzle.
Fig. 2
Fig. 2 Exposed T14 and L1 of pig 8 specimen.
Fig. 3
Fig. 3 M-mode scans of T14 deformation at 60 SCFH.
Fig. 4
Fig. 4 Spinal cord deformation for Pig 8 with the dura removed for a) T14 and b) L1.
Fig. 5
Fig. 5 Exposed L1 to L4 of pig 9 specimen.
Fig. 6
Fig. 6 M-mode scans of L3 deformation at 60 SCFH.
Fig. 7
Fig. 7 Spinal deformation for different flow rates with a) dura and b) without dura for L3.
Fig. 8
Fig. 8 Spinal deformation for different flow rates with a) dura and b) without dura for L4.
Fig. 9
Fig. 9 Spinal cord lift due to gas circulation under the spinal cord.
Fig. 10
Fig. 10 Deformation versus flow rate a) with and b) without dura.

Metrics