Abstract

The stretching stiffness of Red Blood Cells (RBCs) was investigated using a combination of an AC dielectrophoretic apparatus and a single-beam optical tweezer. The experiments were performed at 10 MHz, a frequency high enough to avoid conductivity losses, but below the second turnover point between positive and negative dielectrophoresis. By measuring the geometrical parameters of single healthy human RBCs as a function of the applied voltage, the elastic modulus of RBCs was determined (µ = 1.80 ± 0.5 µN/m) and compared with similar values of the literature got by other techniques. The method is expected to be an easy-to-use, alternative tool to determine the mechano-elastic properties of living cells, and, on this basis, to distinguish healthy and diseased cells

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Study of in vitro RBCs membrane elasticity with AOD scanning optical tweezers

Huadong Song, Ying Liu, Bin Zhang, Kangzhen Tian, Panpan Zhu, Hao Lu, and Qi Tang
Biomed. Opt. Express 8(1) 384-394 (2017)

Calculation of spherical red blood cell deformation in a dual-beam optical stretcher

Paul B. Bareil, Yunlong Sheng, Yin-Quan Chen, and Arthur Chiou
Opt. Express 15(24) 16029-16034 (2007)

Dynamic deformation of red blood cell in Dual-trap Optical Tweezers

Sebastien Rancourt-Grenier, Ming-Tzo Wei, Jar-Jin Bai, Arthur Chiou, Paul P. Bareil, Pierre-Luc Duval, and Yunlong Sheng
Opt. Express 18(10) 10462-10472 (2010)

References

  • View by:
  • |
  • |
  • |

  1. J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, “The optical stretcher: a novel laser tool to micromanipulate cells,” Biophys. J. 81(2), 767–784 (2001).
    [Crossref] [PubMed]
  2. F. Wottawah, S. Schinkinger, B. Lincoln, R. Ananthakrishnan, M. Romeyke, J. Guck, and J. Käs, “Optical rheology of biological cells,” Phys. Rev. Lett. 94(9), 098103 (2005).
    [Crossref] [PubMed]
  3. F. Valle, M. Sandal, and B. Samori, “The interplay between chemistry and mechanics in the transduction of a mechanical signal into a biochemical function,” Phys. Life Rev. 4(3), 157–188 (2007).
    [Crossref]
  4. G. Lenormand, S. Hénon, A. Richert, J. Siméon, and F. Gallet, “Direct measurement of the area expansion and shear moduli of the human red blood cell membrane skeleton,” Biophys. J. 81(1), 43–56 (2001).
    [Crossref] [PubMed]
  5. R. Waugh and E. A. Evans, “Thermoelasticity of red blood cell membrane,” Biophys. J. 26(1), 115–131 (1979).
    [Crossref] [PubMed]
  6. E. D. Crandall, A. M. Critz, A. S. Osher, D. J. Keljo, and R. E. Forster, “Influence of pH on elastic deformability of the human erythrocyte membrane,” Am. J. Physiol. 235(5), C269–C278 (1978).
    [PubMed]
  7. Y. K. Park, C. A. Best, T. Kuriabova, M. L. Henle, M. S. Feld, A. J. Levine, and G. Popescu, “Measurement of the nonlinear elasticity of red blood cell membranes,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 83(5), 051925 (2011).
    [Crossref] [PubMed]
  8. M. Girasole, G. Pompeo, A. Cricenti, G. Longo, G. Boumis, A. Bellelli, and S. Amiconi, “The how, when, and why of the aging signals appearing on the human erythrocyte membrane: an atomic force microscopy study of surface roughness,” Nanomedicine 6(6), 760–768 (2010).
    [Crossref] [PubMed]
  9. D. E. McMillan, N. G. Utterback, and J. La Puma, “Reduced erythrocyte deformability in diabetes,” Diabetes 27(9), 895–901 (1978).
    [Crossref] [PubMed]
  10. B. Schauf, B. Aydeniz, R. Bayer, and D. Wallwiener, “The laser diffractoscope - a new and fast system to analyse red blood cell flexibility with high accuracy,” Lasers Med. Sci. 18(1), 45–50 (2003).
    [Crossref] [PubMed]
  11. J. H. Jandl, R. L. Simmons, and W. B. Castle, “Red cell filtration and the pathogenesis of certain hemolytic anemias,” Blood 18(2), 133–148 (1961).
    [PubMed]
  12. E. Altendorf, D. Zebert, M. Holl, and P. Yager, “Differential blood counts obtained using a microchannel based flow cytometry,” Transducers 97, 531–534 (1997).
  13. A. N. Begum and J. Terao, “Protective effect of quercetin against cigarette tar extract-induced impairment of erythrocyte deformability,” J. Nutr. Biochem. 13(5), 265–272 (2002).
    [Crossref] [PubMed]
  14. H. A. Pohl, Dielectrophoresis. (Cambridge University, 1978)
  15. J. P. H. Burt, R. Pethig, P. R. Gascoyne, and F. F. Becker, “Dielectrophoretic characterisation of Friend murine erythroleukaemic cells as a measure of induced differentiation,” Biochim. Biophys. Acta 1034(1), 93–101 (1990).
    [Crossref] [PubMed]
  16. H. Hwang, Y.-J. Choi, W. Choi, S. H. Kim, J. Jang, and J. K. Park, “Interactive manipulation of blood cells using a lens-integrated liquid crystal display based optoelectronic tweezers system,” Electrophoresis 29(6), 1203–1212 (2008).
    [Crossref] [PubMed]
  17. P. Y. Chiou, A. T. Ohta, and M. C. Wu, “Massively parallel manipulation of single cells and microparticles using optical images,” Nature 436(7049), 370–372 (2005).
    [Crossref] [PubMed]
  18. M. Hoeb, J. O. Rädler, S. Klein, M. Stutzmann, and M. S. Brandt, “Light-induced dielectrophoretic manipulation of DNA,” Biophys. J. 93(3), 1032–1038 (2007).
    [Crossref] [PubMed]
  19. S. Hénon, G. Lenormand, A. Richert, and F. Gallet, “A new determination of the shear modulus of the human erythrocyte membrane using optical tweezers,” Biophys. J. 76(2), 1145–1151 (1999).
    [Crossref] [PubMed]
  20. E. A. Evans and P. L. La Celle, “Intrinsic material properties of the erythrocyte membrane indicated by mechanical analysis of deformation,” Blood 45(1), 29–43 (1975).
    [PubMed]
  21. S. K. Chien, K.-L. P. Sung, R. Skalak, S. Usami, and A. Tözeren, “Theoretical and experimental studies on viscoelastic properties of erythrocyte membrane,” Biophys. J. 24(2), 463–487 (1978).
    [Crossref] [PubMed]
  22. E. A. Evans, N. Mohandas, and A. Leung, “Static and dynamic rigidities of normal and sickle erythrocytes. Major influence of cell hemoglobin concentration,” J. Clin. Invest. 73(2), 477–488 (1984).
    [Crossref] [PubMed]
  23. M. Dao, C. T. Lim, and S. Suresh, “Mechanics of the human red blood cell deformed by optical tweezers,” J. Mech. Phys. Solids 51(11–12), 2259–2280 (2003).
    [Crossref]
  24. M. Puig-de-Morales-Marinkovic, K. T. Turner, J. P. Butler, J. J. Fredberg, and S. Suresh, “Viscoelasticity of the human red blood cell,” Am. J. Physiol. Cell Physiol. 293(2), C597–C605 (2007).
    [Crossref] [PubMed]
  25. Y. Park, C. A. Best, T. Auth, N. S. Gov, S. A. Safran, G. Popescu, S. Suresh, and M. S. Feld, “Metabolic remodeling of the human red blood cell membrane,” Proc. Natl. Acad. Sci. U.S.A. 107(4), 1289–1294 (2010).
    [Crossref] [PubMed]

2011 (1)

Y. K. Park, C. A. Best, T. Kuriabova, M. L. Henle, M. S. Feld, A. J. Levine, and G. Popescu, “Measurement of the nonlinear elasticity of red blood cell membranes,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 83(5), 051925 (2011).
[Crossref] [PubMed]

2010 (2)

M. Girasole, G. Pompeo, A. Cricenti, G. Longo, G. Boumis, A. Bellelli, and S. Amiconi, “The how, when, and why of the aging signals appearing on the human erythrocyte membrane: an atomic force microscopy study of surface roughness,” Nanomedicine 6(6), 760–768 (2010).
[Crossref] [PubMed]

Y. Park, C. A. Best, T. Auth, N. S. Gov, S. A. Safran, G. Popescu, S. Suresh, and M. S. Feld, “Metabolic remodeling of the human red blood cell membrane,” Proc. Natl. Acad. Sci. U.S.A. 107(4), 1289–1294 (2010).
[Crossref] [PubMed]

2008 (1)

H. Hwang, Y.-J. Choi, W. Choi, S. H. Kim, J. Jang, and J. K. Park, “Interactive manipulation of blood cells using a lens-integrated liquid crystal display based optoelectronic tweezers system,” Electrophoresis 29(6), 1203–1212 (2008).
[Crossref] [PubMed]

2007 (3)

M. Hoeb, J. O. Rädler, S. Klein, M. Stutzmann, and M. S. Brandt, “Light-induced dielectrophoretic manipulation of DNA,” Biophys. J. 93(3), 1032–1038 (2007).
[Crossref] [PubMed]

F. Valle, M. Sandal, and B. Samori, “The interplay between chemistry and mechanics in the transduction of a mechanical signal into a biochemical function,” Phys. Life Rev. 4(3), 157–188 (2007).
[Crossref]

M. Puig-de-Morales-Marinkovic, K. T. Turner, J. P. Butler, J. J. Fredberg, and S. Suresh, “Viscoelasticity of the human red blood cell,” Am. J. Physiol. Cell Physiol. 293(2), C597–C605 (2007).
[Crossref] [PubMed]

2005 (2)

F. Wottawah, S. Schinkinger, B. Lincoln, R. Ananthakrishnan, M. Romeyke, J. Guck, and J. Käs, “Optical rheology of biological cells,” Phys. Rev. Lett. 94(9), 098103 (2005).
[Crossref] [PubMed]

P. Y. Chiou, A. T. Ohta, and M. C. Wu, “Massively parallel manipulation of single cells and microparticles using optical images,” Nature 436(7049), 370–372 (2005).
[Crossref] [PubMed]

2003 (2)

B. Schauf, B. Aydeniz, R. Bayer, and D. Wallwiener, “The laser diffractoscope - a new and fast system to analyse red blood cell flexibility with high accuracy,” Lasers Med. Sci. 18(1), 45–50 (2003).
[Crossref] [PubMed]

M. Dao, C. T. Lim, and S. Suresh, “Mechanics of the human red blood cell deformed by optical tweezers,” J. Mech. Phys. Solids 51(11–12), 2259–2280 (2003).
[Crossref]

2002 (1)

A. N. Begum and J. Terao, “Protective effect of quercetin against cigarette tar extract-induced impairment of erythrocyte deformability,” J. Nutr. Biochem. 13(5), 265–272 (2002).
[Crossref] [PubMed]

2001 (2)

J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, “The optical stretcher: a novel laser tool to micromanipulate cells,” Biophys. J. 81(2), 767–784 (2001).
[Crossref] [PubMed]

G. Lenormand, S. Hénon, A. Richert, J. Siméon, and F. Gallet, “Direct measurement of the area expansion and shear moduli of the human red blood cell membrane skeleton,” Biophys. J. 81(1), 43–56 (2001).
[Crossref] [PubMed]

1999 (1)

S. Hénon, G. Lenormand, A. Richert, and F. Gallet, “A new determination of the shear modulus of the human erythrocyte membrane using optical tweezers,” Biophys. J. 76(2), 1145–1151 (1999).
[Crossref] [PubMed]

1997 (1)

E. Altendorf, D. Zebert, M. Holl, and P. Yager, “Differential blood counts obtained using a microchannel based flow cytometry,” Transducers 97, 531–534 (1997).

1990 (1)

J. P. H. Burt, R. Pethig, P. R. Gascoyne, and F. F. Becker, “Dielectrophoretic characterisation of Friend murine erythroleukaemic cells as a measure of induced differentiation,” Biochim. Biophys. Acta 1034(1), 93–101 (1990).
[Crossref] [PubMed]

1984 (1)

E. A. Evans, N. Mohandas, and A. Leung, “Static and dynamic rigidities of normal and sickle erythrocytes. Major influence of cell hemoglobin concentration,” J. Clin. Invest. 73(2), 477–488 (1984).
[Crossref] [PubMed]

1979 (1)

R. Waugh and E. A. Evans, “Thermoelasticity of red blood cell membrane,” Biophys. J. 26(1), 115–131 (1979).
[Crossref] [PubMed]

1978 (3)

E. D. Crandall, A. M. Critz, A. S. Osher, D. J. Keljo, and R. E. Forster, “Influence of pH on elastic deformability of the human erythrocyte membrane,” Am. J. Physiol. 235(5), C269–C278 (1978).
[PubMed]

D. E. McMillan, N. G. Utterback, and J. La Puma, “Reduced erythrocyte deformability in diabetes,” Diabetes 27(9), 895–901 (1978).
[Crossref] [PubMed]

S. K. Chien, K.-L. P. Sung, R. Skalak, S. Usami, and A. Tözeren, “Theoretical and experimental studies on viscoelastic properties of erythrocyte membrane,” Biophys. J. 24(2), 463–487 (1978).
[Crossref] [PubMed]

1975 (1)

E. A. Evans and P. L. La Celle, “Intrinsic material properties of the erythrocyte membrane indicated by mechanical analysis of deformation,” Blood 45(1), 29–43 (1975).
[PubMed]

1961 (1)

J. H. Jandl, R. L. Simmons, and W. B. Castle, “Red cell filtration and the pathogenesis of certain hemolytic anemias,” Blood 18(2), 133–148 (1961).
[PubMed]

Altendorf, E.

E. Altendorf, D. Zebert, M. Holl, and P. Yager, “Differential blood counts obtained using a microchannel based flow cytometry,” Transducers 97, 531–534 (1997).

Amiconi, S.

M. Girasole, G. Pompeo, A. Cricenti, G. Longo, G. Boumis, A. Bellelli, and S. Amiconi, “The how, when, and why of the aging signals appearing on the human erythrocyte membrane: an atomic force microscopy study of surface roughness,” Nanomedicine 6(6), 760–768 (2010).
[Crossref] [PubMed]

Ananthakrishnan, R.

F. Wottawah, S. Schinkinger, B. Lincoln, R. Ananthakrishnan, M. Romeyke, J. Guck, and J. Käs, “Optical rheology of biological cells,” Phys. Rev. Lett. 94(9), 098103 (2005).
[Crossref] [PubMed]

J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, “The optical stretcher: a novel laser tool to micromanipulate cells,” Biophys. J. 81(2), 767–784 (2001).
[Crossref] [PubMed]

Auth, T.

Y. Park, C. A. Best, T. Auth, N. S. Gov, S. A. Safran, G. Popescu, S. Suresh, and M. S. Feld, “Metabolic remodeling of the human red blood cell membrane,” Proc. Natl. Acad. Sci. U.S.A. 107(4), 1289–1294 (2010).
[Crossref] [PubMed]

Aydeniz, B.

B. Schauf, B. Aydeniz, R. Bayer, and D. Wallwiener, “The laser diffractoscope - a new and fast system to analyse red blood cell flexibility with high accuracy,” Lasers Med. Sci. 18(1), 45–50 (2003).
[Crossref] [PubMed]

Bayer, R.

B. Schauf, B. Aydeniz, R. Bayer, and D. Wallwiener, “The laser diffractoscope - a new and fast system to analyse red blood cell flexibility with high accuracy,” Lasers Med. Sci. 18(1), 45–50 (2003).
[Crossref] [PubMed]

Becker, F. F.

J. P. H. Burt, R. Pethig, P. R. Gascoyne, and F. F. Becker, “Dielectrophoretic characterisation of Friend murine erythroleukaemic cells as a measure of induced differentiation,” Biochim. Biophys. Acta 1034(1), 93–101 (1990).
[Crossref] [PubMed]

Begum, A. N.

A. N. Begum and J. Terao, “Protective effect of quercetin against cigarette tar extract-induced impairment of erythrocyte deformability,” J. Nutr. Biochem. 13(5), 265–272 (2002).
[Crossref] [PubMed]

Bellelli, A.

M. Girasole, G. Pompeo, A. Cricenti, G. Longo, G. Boumis, A. Bellelli, and S. Amiconi, “The how, when, and why of the aging signals appearing on the human erythrocyte membrane: an atomic force microscopy study of surface roughness,” Nanomedicine 6(6), 760–768 (2010).
[Crossref] [PubMed]

Best, C. A.

Y. K. Park, C. A. Best, T. Kuriabova, M. L. Henle, M. S. Feld, A. J. Levine, and G. Popescu, “Measurement of the nonlinear elasticity of red blood cell membranes,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 83(5), 051925 (2011).
[Crossref] [PubMed]

Y. Park, C. A. Best, T. Auth, N. S. Gov, S. A. Safran, G. Popescu, S. Suresh, and M. S. Feld, “Metabolic remodeling of the human red blood cell membrane,” Proc. Natl. Acad. Sci. U.S.A. 107(4), 1289–1294 (2010).
[Crossref] [PubMed]

Boumis, G.

M. Girasole, G. Pompeo, A. Cricenti, G. Longo, G. Boumis, A. Bellelli, and S. Amiconi, “The how, when, and why of the aging signals appearing on the human erythrocyte membrane: an atomic force microscopy study of surface roughness,” Nanomedicine 6(6), 760–768 (2010).
[Crossref] [PubMed]

Brandt, M. S.

M. Hoeb, J. O. Rädler, S. Klein, M. Stutzmann, and M. S. Brandt, “Light-induced dielectrophoretic manipulation of DNA,” Biophys. J. 93(3), 1032–1038 (2007).
[Crossref] [PubMed]

Burt, J. P. H.

J. P. H. Burt, R. Pethig, P. R. Gascoyne, and F. F. Becker, “Dielectrophoretic characterisation of Friend murine erythroleukaemic cells as a measure of induced differentiation,” Biochim. Biophys. Acta 1034(1), 93–101 (1990).
[Crossref] [PubMed]

Butler, J. P.

M. Puig-de-Morales-Marinkovic, K. T. Turner, J. P. Butler, J. J. Fredberg, and S. Suresh, “Viscoelasticity of the human red blood cell,” Am. J. Physiol. Cell Physiol. 293(2), C597–C605 (2007).
[Crossref] [PubMed]

Castle, W. B.

J. H. Jandl, R. L. Simmons, and W. B. Castle, “Red cell filtration and the pathogenesis of certain hemolytic anemias,” Blood 18(2), 133–148 (1961).
[PubMed]

Chien, S. K.

S. K. Chien, K.-L. P. Sung, R. Skalak, S. Usami, and A. Tözeren, “Theoretical and experimental studies on viscoelastic properties of erythrocyte membrane,” Biophys. J. 24(2), 463–487 (1978).
[Crossref] [PubMed]

Chiou, P. Y.

P. Y. Chiou, A. T. Ohta, and M. C. Wu, “Massively parallel manipulation of single cells and microparticles using optical images,” Nature 436(7049), 370–372 (2005).
[Crossref] [PubMed]

Choi, W.

H. Hwang, Y.-J. Choi, W. Choi, S. H. Kim, J. Jang, and J. K. Park, “Interactive manipulation of blood cells using a lens-integrated liquid crystal display based optoelectronic tweezers system,” Electrophoresis 29(6), 1203–1212 (2008).
[Crossref] [PubMed]

Choi, Y.-J.

H. Hwang, Y.-J. Choi, W. Choi, S. H. Kim, J. Jang, and J. K. Park, “Interactive manipulation of blood cells using a lens-integrated liquid crystal display based optoelectronic tweezers system,” Electrophoresis 29(6), 1203–1212 (2008).
[Crossref] [PubMed]

Crandall, E. D.

E. D. Crandall, A. M. Critz, A. S. Osher, D. J. Keljo, and R. E. Forster, “Influence of pH on elastic deformability of the human erythrocyte membrane,” Am. J. Physiol. 235(5), C269–C278 (1978).
[PubMed]

Cricenti, A.

M. Girasole, G. Pompeo, A. Cricenti, G. Longo, G. Boumis, A. Bellelli, and S. Amiconi, “The how, when, and why of the aging signals appearing on the human erythrocyte membrane: an atomic force microscopy study of surface roughness,” Nanomedicine 6(6), 760–768 (2010).
[Crossref] [PubMed]

Critz, A. M.

E. D. Crandall, A. M. Critz, A. S. Osher, D. J. Keljo, and R. E. Forster, “Influence of pH on elastic deformability of the human erythrocyte membrane,” Am. J. Physiol. 235(5), C269–C278 (1978).
[PubMed]

Cunningham, C. C.

J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, “The optical stretcher: a novel laser tool to micromanipulate cells,” Biophys. J. 81(2), 767–784 (2001).
[Crossref] [PubMed]

Dao, M.

M. Dao, C. T. Lim, and S. Suresh, “Mechanics of the human red blood cell deformed by optical tweezers,” J. Mech. Phys. Solids 51(11–12), 2259–2280 (2003).
[Crossref]

Evans, E. A.

E. A. Evans, N. Mohandas, and A. Leung, “Static and dynamic rigidities of normal and sickle erythrocytes. Major influence of cell hemoglobin concentration,” J. Clin. Invest. 73(2), 477–488 (1984).
[Crossref] [PubMed]

R. Waugh and E. A. Evans, “Thermoelasticity of red blood cell membrane,” Biophys. J. 26(1), 115–131 (1979).
[Crossref] [PubMed]

E. A. Evans and P. L. La Celle, “Intrinsic material properties of the erythrocyte membrane indicated by mechanical analysis of deformation,” Blood 45(1), 29–43 (1975).
[PubMed]

Feld, M. S.

Y. K. Park, C. A. Best, T. Kuriabova, M. L. Henle, M. S. Feld, A. J. Levine, and G. Popescu, “Measurement of the nonlinear elasticity of red blood cell membranes,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 83(5), 051925 (2011).
[Crossref] [PubMed]

Y. Park, C. A. Best, T. Auth, N. S. Gov, S. A. Safran, G. Popescu, S. Suresh, and M. S. Feld, “Metabolic remodeling of the human red blood cell membrane,” Proc. Natl. Acad. Sci. U.S.A. 107(4), 1289–1294 (2010).
[Crossref] [PubMed]

Forster, R. E.

E. D. Crandall, A. M. Critz, A. S. Osher, D. J. Keljo, and R. E. Forster, “Influence of pH on elastic deformability of the human erythrocyte membrane,” Am. J. Physiol. 235(5), C269–C278 (1978).
[PubMed]

Fredberg, J. J.

M. Puig-de-Morales-Marinkovic, K. T. Turner, J. P. Butler, J. J. Fredberg, and S. Suresh, “Viscoelasticity of the human red blood cell,” Am. J. Physiol. Cell Physiol. 293(2), C597–C605 (2007).
[Crossref] [PubMed]

Gallet, F.

G. Lenormand, S. Hénon, A. Richert, J. Siméon, and F. Gallet, “Direct measurement of the area expansion and shear moduli of the human red blood cell membrane skeleton,” Biophys. J. 81(1), 43–56 (2001).
[Crossref] [PubMed]

S. Hénon, G. Lenormand, A. Richert, and F. Gallet, “A new determination of the shear modulus of the human erythrocyte membrane using optical tweezers,” Biophys. J. 76(2), 1145–1151 (1999).
[Crossref] [PubMed]

Gascoyne, P. R.

J. P. H. Burt, R. Pethig, P. R. Gascoyne, and F. F. Becker, “Dielectrophoretic characterisation of Friend murine erythroleukaemic cells as a measure of induced differentiation,” Biochim. Biophys. Acta 1034(1), 93–101 (1990).
[Crossref] [PubMed]

Girasole, M.

M. Girasole, G. Pompeo, A. Cricenti, G. Longo, G. Boumis, A. Bellelli, and S. Amiconi, “The how, when, and why of the aging signals appearing on the human erythrocyte membrane: an atomic force microscopy study of surface roughness,” Nanomedicine 6(6), 760–768 (2010).
[Crossref] [PubMed]

Gov, N. S.

Y. Park, C. A. Best, T. Auth, N. S. Gov, S. A. Safran, G. Popescu, S. Suresh, and M. S. Feld, “Metabolic remodeling of the human red blood cell membrane,” Proc. Natl. Acad. Sci. U.S.A. 107(4), 1289–1294 (2010).
[Crossref] [PubMed]

Guck, J.

F. Wottawah, S. Schinkinger, B. Lincoln, R. Ananthakrishnan, M. Romeyke, J. Guck, and J. Käs, “Optical rheology of biological cells,” Phys. Rev. Lett. 94(9), 098103 (2005).
[Crossref] [PubMed]

J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, “The optical stretcher: a novel laser tool to micromanipulate cells,” Biophys. J. 81(2), 767–784 (2001).
[Crossref] [PubMed]

Henle, M. L.

Y. K. Park, C. A. Best, T. Kuriabova, M. L. Henle, M. S. Feld, A. J. Levine, and G. Popescu, “Measurement of the nonlinear elasticity of red blood cell membranes,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 83(5), 051925 (2011).
[Crossref] [PubMed]

Hénon, S.

G. Lenormand, S. Hénon, A. Richert, J. Siméon, and F. Gallet, “Direct measurement of the area expansion and shear moduli of the human red blood cell membrane skeleton,” Biophys. J. 81(1), 43–56 (2001).
[Crossref] [PubMed]

S. Hénon, G. Lenormand, A. Richert, and F. Gallet, “A new determination of the shear modulus of the human erythrocyte membrane using optical tweezers,” Biophys. J. 76(2), 1145–1151 (1999).
[Crossref] [PubMed]

Hoeb, M.

M. Hoeb, J. O. Rädler, S. Klein, M. Stutzmann, and M. S. Brandt, “Light-induced dielectrophoretic manipulation of DNA,” Biophys. J. 93(3), 1032–1038 (2007).
[Crossref] [PubMed]

Holl, M.

E. Altendorf, D. Zebert, M. Holl, and P. Yager, “Differential blood counts obtained using a microchannel based flow cytometry,” Transducers 97, 531–534 (1997).

Hwang, H.

H. Hwang, Y.-J. Choi, W. Choi, S. H. Kim, J. Jang, and J. K. Park, “Interactive manipulation of blood cells using a lens-integrated liquid crystal display based optoelectronic tweezers system,” Electrophoresis 29(6), 1203–1212 (2008).
[Crossref] [PubMed]

Jandl, J. H.

J. H. Jandl, R. L. Simmons, and W. B. Castle, “Red cell filtration and the pathogenesis of certain hemolytic anemias,” Blood 18(2), 133–148 (1961).
[PubMed]

Jang, J.

H. Hwang, Y.-J. Choi, W. Choi, S. H. Kim, J. Jang, and J. K. Park, “Interactive manipulation of blood cells using a lens-integrated liquid crystal display based optoelectronic tweezers system,” Electrophoresis 29(6), 1203–1212 (2008).
[Crossref] [PubMed]

Käs, J.

F. Wottawah, S. Schinkinger, B. Lincoln, R. Ananthakrishnan, M. Romeyke, J. Guck, and J. Käs, “Optical rheology of biological cells,” Phys. Rev. Lett. 94(9), 098103 (2005).
[Crossref] [PubMed]

J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, “The optical stretcher: a novel laser tool to micromanipulate cells,” Biophys. J. 81(2), 767–784 (2001).
[Crossref] [PubMed]

Keljo, D. J.

E. D. Crandall, A. M. Critz, A. S. Osher, D. J. Keljo, and R. E. Forster, “Influence of pH on elastic deformability of the human erythrocyte membrane,” Am. J. Physiol. 235(5), C269–C278 (1978).
[PubMed]

Kim, S. H.

H. Hwang, Y.-J. Choi, W. Choi, S. H. Kim, J. Jang, and J. K. Park, “Interactive manipulation of blood cells using a lens-integrated liquid crystal display based optoelectronic tweezers system,” Electrophoresis 29(6), 1203–1212 (2008).
[Crossref] [PubMed]

Klein, S.

M. Hoeb, J. O. Rädler, S. Klein, M. Stutzmann, and M. S. Brandt, “Light-induced dielectrophoretic manipulation of DNA,” Biophys. J. 93(3), 1032–1038 (2007).
[Crossref] [PubMed]

Kuriabova, T.

Y. K. Park, C. A. Best, T. Kuriabova, M. L. Henle, M. S. Feld, A. J. Levine, and G. Popescu, “Measurement of the nonlinear elasticity of red blood cell membranes,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 83(5), 051925 (2011).
[Crossref] [PubMed]

La Celle, P. L.

E. A. Evans and P. L. La Celle, “Intrinsic material properties of the erythrocyte membrane indicated by mechanical analysis of deformation,” Blood 45(1), 29–43 (1975).
[PubMed]

La Puma, J.

D. E. McMillan, N. G. Utterback, and J. La Puma, “Reduced erythrocyte deformability in diabetes,” Diabetes 27(9), 895–901 (1978).
[Crossref] [PubMed]

Lenormand, G.

G. Lenormand, S. Hénon, A. Richert, J. Siméon, and F. Gallet, “Direct measurement of the area expansion and shear moduli of the human red blood cell membrane skeleton,” Biophys. J. 81(1), 43–56 (2001).
[Crossref] [PubMed]

S. Hénon, G. Lenormand, A. Richert, and F. Gallet, “A new determination of the shear modulus of the human erythrocyte membrane using optical tweezers,” Biophys. J. 76(2), 1145–1151 (1999).
[Crossref] [PubMed]

Leung, A.

E. A. Evans, N. Mohandas, and A. Leung, “Static and dynamic rigidities of normal and sickle erythrocytes. Major influence of cell hemoglobin concentration,” J. Clin. Invest. 73(2), 477–488 (1984).
[Crossref] [PubMed]

Levine, A. J.

Y. K. Park, C. A. Best, T. Kuriabova, M. L. Henle, M. S. Feld, A. J. Levine, and G. Popescu, “Measurement of the nonlinear elasticity of red blood cell membranes,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 83(5), 051925 (2011).
[Crossref] [PubMed]

Lim, C. T.

M. Dao, C. T. Lim, and S. Suresh, “Mechanics of the human red blood cell deformed by optical tweezers,” J. Mech. Phys. Solids 51(11–12), 2259–2280 (2003).
[Crossref]

Lincoln, B.

F. Wottawah, S. Schinkinger, B. Lincoln, R. Ananthakrishnan, M. Romeyke, J. Guck, and J. Käs, “Optical rheology of biological cells,” Phys. Rev. Lett. 94(9), 098103 (2005).
[Crossref] [PubMed]

Longo, G.

M. Girasole, G. Pompeo, A. Cricenti, G. Longo, G. Boumis, A. Bellelli, and S. Amiconi, “The how, when, and why of the aging signals appearing on the human erythrocyte membrane: an atomic force microscopy study of surface roughness,” Nanomedicine 6(6), 760–768 (2010).
[Crossref] [PubMed]

Mahmood, H.

J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, “The optical stretcher: a novel laser tool to micromanipulate cells,” Biophys. J. 81(2), 767–784 (2001).
[Crossref] [PubMed]

McMillan, D. E.

D. E. McMillan, N. G. Utterback, and J. La Puma, “Reduced erythrocyte deformability in diabetes,” Diabetes 27(9), 895–901 (1978).
[Crossref] [PubMed]

Mohandas, N.

E. A. Evans, N. Mohandas, and A. Leung, “Static and dynamic rigidities of normal and sickle erythrocytes. Major influence of cell hemoglobin concentration,” J. Clin. Invest. 73(2), 477–488 (1984).
[Crossref] [PubMed]

Moon, T. J.

J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, “The optical stretcher: a novel laser tool to micromanipulate cells,” Biophys. J. 81(2), 767–784 (2001).
[Crossref] [PubMed]

Ohta, A. T.

P. Y. Chiou, A. T. Ohta, and M. C. Wu, “Massively parallel manipulation of single cells and microparticles using optical images,” Nature 436(7049), 370–372 (2005).
[Crossref] [PubMed]

Osher, A. S.

E. D. Crandall, A. M. Critz, A. S. Osher, D. J. Keljo, and R. E. Forster, “Influence of pH on elastic deformability of the human erythrocyte membrane,” Am. J. Physiol. 235(5), C269–C278 (1978).
[PubMed]

Park, J. K.

H. Hwang, Y.-J. Choi, W. Choi, S. H. Kim, J. Jang, and J. K. Park, “Interactive manipulation of blood cells using a lens-integrated liquid crystal display based optoelectronic tweezers system,” Electrophoresis 29(6), 1203–1212 (2008).
[Crossref] [PubMed]

Park, Y.

Y. Park, C. A. Best, T. Auth, N. S. Gov, S. A. Safran, G. Popescu, S. Suresh, and M. S. Feld, “Metabolic remodeling of the human red blood cell membrane,” Proc. Natl. Acad. Sci. U.S.A. 107(4), 1289–1294 (2010).
[Crossref] [PubMed]

Park, Y. K.

Y. K. Park, C. A. Best, T. Kuriabova, M. L. Henle, M. S. Feld, A. J. Levine, and G. Popescu, “Measurement of the nonlinear elasticity of red blood cell membranes,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 83(5), 051925 (2011).
[Crossref] [PubMed]

Pethig, R.

J. P. H. Burt, R. Pethig, P. R. Gascoyne, and F. F. Becker, “Dielectrophoretic characterisation of Friend murine erythroleukaemic cells as a measure of induced differentiation,” Biochim. Biophys. Acta 1034(1), 93–101 (1990).
[Crossref] [PubMed]

Pompeo, G.

M. Girasole, G. Pompeo, A. Cricenti, G. Longo, G. Boumis, A. Bellelli, and S. Amiconi, “The how, when, and why of the aging signals appearing on the human erythrocyte membrane: an atomic force microscopy study of surface roughness,” Nanomedicine 6(6), 760–768 (2010).
[Crossref] [PubMed]

Popescu, G.

Y. K. Park, C. A. Best, T. Kuriabova, M. L. Henle, M. S. Feld, A. J. Levine, and G. Popescu, “Measurement of the nonlinear elasticity of red blood cell membranes,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 83(5), 051925 (2011).
[Crossref] [PubMed]

Y. Park, C. A. Best, T. Auth, N. S. Gov, S. A. Safran, G. Popescu, S. Suresh, and M. S. Feld, “Metabolic remodeling of the human red blood cell membrane,” Proc. Natl. Acad. Sci. U.S.A. 107(4), 1289–1294 (2010).
[Crossref] [PubMed]

Puig-de-Morales-Marinkovic, M.

M. Puig-de-Morales-Marinkovic, K. T. Turner, J. P. Butler, J. J. Fredberg, and S. Suresh, “Viscoelasticity of the human red blood cell,” Am. J. Physiol. Cell Physiol. 293(2), C597–C605 (2007).
[Crossref] [PubMed]

Rädler, J. O.

M. Hoeb, J. O. Rädler, S. Klein, M. Stutzmann, and M. S. Brandt, “Light-induced dielectrophoretic manipulation of DNA,” Biophys. J. 93(3), 1032–1038 (2007).
[Crossref] [PubMed]

Richert, A.

G. Lenormand, S. Hénon, A. Richert, J. Siméon, and F. Gallet, “Direct measurement of the area expansion and shear moduli of the human red blood cell membrane skeleton,” Biophys. J. 81(1), 43–56 (2001).
[Crossref] [PubMed]

S. Hénon, G. Lenormand, A. Richert, and F. Gallet, “A new determination of the shear modulus of the human erythrocyte membrane using optical tweezers,” Biophys. J. 76(2), 1145–1151 (1999).
[Crossref] [PubMed]

Romeyke, M.

F. Wottawah, S. Schinkinger, B. Lincoln, R. Ananthakrishnan, M. Romeyke, J. Guck, and J. Käs, “Optical rheology of biological cells,” Phys. Rev. Lett. 94(9), 098103 (2005).
[Crossref] [PubMed]

Safran, S. A.

Y. Park, C. A. Best, T. Auth, N. S. Gov, S. A. Safran, G. Popescu, S. Suresh, and M. S. Feld, “Metabolic remodeling of the human red blood cell membrane,” Proc. Natl. Acad. Sci. U.S.A. 107(4), 1289–1294 (2010).
[Crossref] [PubMed]

Samori, B.

F. Valle, M. Sandal, and B. Samori, “The interplay between chemistry and mechanics in the transduction of a mechanical signal into a biochemical function,” Phys. Life Rev. 4(3), 157–188 (2007).
[Crossref]

Sandal, M.

F. Valle, M. Sandal, and B. Samori, “The interplay between chemistry and mechanics in the transduction of a mechanical signal into a biochemical function,” Phys. Life Rev. 4(3), 157–188 (2007).
[Crossref]

Schauf, B.

B. Schauf, B. Aydeniz, R. Bayer, and D. Wallwiener, “The laser diffractoscope - a new and fast system to analyse red blood cell flexibility with high accuracy,” Lasers Med. Sci. 18(1), 45–50 (2003).
[Crossref] [PubMed]

Schinkinger, S.

F. Wottawah, S. Schinkinger, B. Lincoln, R. Ananthakrishnan, M. Romeyke, J. Guck, and J. Käs, “Optical rheology of biological cells,” Phys. Rev. Lett. 94(9), 098103 (2005).
[Crossref] [PubMed]

Siméon, J.

G. Lenormand, S. Hénon, A. Richert, J. Siméon, and F. Gallet, “Direct measurement of the area expansion and shear moduli of the human red blood cell membrane skeleton,” Biophys. J. 81(1), 43–56 (2001).
[Crossref] [PubMed]

Simmons, R. L.

J. H. Jandl, R. L. Simmons, and W. B. Castle, “Red cell filtration and the pathogenesis of certain hemolytic anemias,” Blood 18(2), 133–148 (1961).
[PubMed]

Skalak, R.

S. K. Chien, K.-L. P. Sung, R. Skalak, S. Usami, and A. Tözeren, “Theoretical and experimental studies on viscoelastic properties of erythrocyte membrane,” Biophys. J. 24(2), 463–487 (1978).
[Crossref] [PubMed]

Stutzmann, M.

M. Hoeb, J. O. Rädler, S. Klein, M. Stutzmann, and M. S. Brandt, “Light-induced dielectrophoretic manipulation of DNA,” Biophys. J. 93(3), 1032–1038 (2007).
[Crossref] [PubMed]

Sung, K.-L. P.

S. K. Chien, K.-L. P. Sung, R. Skalak, S. Usami, and A. Tözeren, “Theoretical and experimental studies on viscoelastic properties of erythrocyte membrane,” Biophys. J. 24(2), 463–487 (1978).
[Crossref] [PubMed]

Suresh, S.

Y. Park, C. A. Best, T. Auth, N. S. Gov, S. A. Safran, G. Popescu, S. Suresh, and M. S. Feld, “Metabolic remodeling of the human red blood cell membrane,” Proc. Natl. Acad. Sci. U.S.A. 107(4), 1289–1294 (2010).
[Crossref] [PubMed]

M. Puig-de-Morales-Marinkovic, K. T. Turner, J. P. Butler, J. J. Fredberg, and S. Suresh, “Viscoelasticity of the human red blood cell,” Am. J. Physiol. Cell Physiol. 293(2), C597–C605 (2007).
[Crossref] [PubMed]

M. Dao, C. T. Lim, and S. Suresh, “Mechanics of the human red blood cell deformed by optical tweezers,” J. Mech. Phys. Solids 51(11–12), 2259–2280 (2003).
[Crossref]

Terao, J.

A. N. Begum and J. Terao, “Protective effect of quercetin against cigarette tar extract-induced impairment of erythrocyte deformability,” J. Nutr. Biochem. 13(5), 265–272 (2002).
[Crossref] [PubMed]

Tözeren, A.

S. K. Chien, K.-L. P. Sung, R. Skalak, S. Usami, and A. Tözeren, “Theoretical and experimental studies on viscoelastic properties of erythrocyte membrane,” Biophys. J. 24(2), 463–487 (1978).
[Crossref] [PubMed]

Turner, K. T.

M. Puig-de-Morales-Marinkovic, K. T. Turner, J. P. Butler, J. J. Fredberg, and S. Suresh, “Viscoelasticity of the human red blood cell,” Am. J. Physiol. Cell Physiol. 293(2), C597–C605 (2007).
[Crossref] [PubMed]

Usami, S.

S. K. Chien, K.-L. P. Sung, R. Skalak, S. Usami, and A. Tözeren, “Theoretical and experimental studies on viscoelastic properties of erythrocyte membrane,” Biophys. J. 24(2), 463–487 (1978).
[Crossref] [PubMed]

Utterback, N. G.

D. E. McMillan, N. G. Utterback, and J. La Puma, “Reduced erythrocyte deformability in diabetes,” Diabetes 27(9), 895–901 (1978).
[Crossref] [PubMed]

Valle, F.

F. Valle, M. Sandal, and B. Samori, “The interplay between chemistry and mechanics in the transduction of a mechanical signal into a biochemical function,” Phys. Life Rev. 4(3), 157–188 (2007).
[Crossref]

Wallwiener, D.

B. Schauf, B. Aydeniz, R. Bayer, and D. Wallwiener, “The laser diffractoscope - a new and fast system to analyse red blood cell flexibility with high accuracy,” Lasers Med. Sci. 18(1), 45–50 (2003).
[Crossref] [PubMed]

Waugh, R.

R. Waugh and E. A. Evans, “Thermoelasticity of red blood cell membrane,” Biophys. J. 26(1), 115–131 (1979).
[Crossref] [PubMed]

Wottawah, F.

F. Wottawah, S. Schinkinger, B. Lincoln, R. Ananthakrishnan, M. Romeyke, J. Guck, and J. Käs, “Optical rheology of biological cells,” Phys. Rev. Lett. 94(9), 098103 (2005).
[Crossref] [PubMed]

Wu, M. C.

P. Y. Chiou, A. T. Ohta, and M. C. Wu, “Massively parallel manipulation of single cells and microparticles using optical images,” Nature 436(7049), 370–372 (2005).
[Crossref] [PubMed]

Yager, P.

E. Altendorf, D. Zebert, M. Holl, and P. Yager, “Differential blood counts obtained using a microchannel based flow cytometry,” Transducers 97, 531–534 (1997).

Zebert, D.

E. Altendorf, D. Zebert, M. Holl, and P. Yager, “Differential blood counts obtained using a microchannel based flow cytometry,” Transducers 97, 531–534 (1997).

Am. J. Physiol. (1)

E. D. Crandall, A. M. Critz, A. S. Osher, D. J. Keljo, and R. E. Forster, “Influence of pH on elastic deformability of the human erythrocyte membrane,” Am. J. Physiol. 235(5), C269–C278 (1978).
[PubMed]

Am. J. Physiol. Cell Physiol. (1)

M. Puig-de-Morales-Marinkovic, K. T. Turner, J. P. Butler, J. J. Fredberg, and S. Suresh, “Viscoelasticity of the human red blood cell,” Am. J. Physiol. Cell Physiol. 293(2), C597–C605 (2007).
[Crossref] [PubMed]

Biochim. Biophys. Acta (1)

J. P. H. Burt, R. Pethig, P. R. Gascoyne, and F. F. Becker, “Dielectrophoretic characterisation of Friend murine erythroleukaemic cells as a measure of induced differentiation,” Biochim. Biophys. Acta 1034(1), 93–101 (1990).
[Crossref] [PubMed]

Biophys. J. (6)

J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, “The optical stretcher: a novel laser tool to micromanipulate cells,” Biophys. J. 81(2), 767–784 (2001).
[Crossref] [PubMed]

G. Lenormand, S. Hénon, A. Richert, J. Siméon, and F. Gallet, “Direct measurement of the area expansion and shear moduli of the human red blood cell membrane skeleton,” Biophys. J. 81(1), 43–56 (2001).
[Crossref] [PubMed]

R. Waugh and E. A. Evans, “Thermoelasticity of red blood cell membrane,” Biophys. J. 26(1), 115–131 (1979).
[Crossref] [PubMed]

M. Hoeb, J. O. Rädler, S. Klein, M. Stutzmann, and M. S. Brandt, “Light-induced dielectrophoretic manipulation of DNA,” Biophys. J. 93(3), 1032–1038 (2007).
[Crossref] [PubMed]

S. Hénon, G. Lenormand, A. Richert, and F. Gallet, “A new determination of the shear modulus of the human erythrocyte membrane using optical tweezers,” Biophys. J. 76(2), 1145–1151 (1999).
[Crossref] [PubMed]

S. K. Chien, K.-L. P. Sung, R. Skalak, S. Usami, and A. Tözeren, “Theoretical and experimental studies on viscoelastic properties of erythrocyte membrane,” Biophys. J. 24(2), 463–487 (1978).
[Crossref] [PubMed]

Blood (2)

E. A. Evans and P. L. La Celle, “Intrinsic material properties of the erythrocyte membrane indicated by mechanical analysis of deformation,” Blood 45(1), 29–43 (1975).
[PubMed]

J. H. Jandl, R. L. Simmons, and W. B. Castle, “Red cell filtration and the pathogenesis of certain hemolytic anemias,” Blood 18(2), 133–148 (1961).
[PubMed]

Diabetes (1)

D. E. McMillan, N. G. Utterback, and J. La Puma, “Reduced erythrocyte deformability in diabetes,” Diabetes 27(9), 895–901 (1978).
[Crossref] [PubMed]

Electrophoresis (1)

H. Hwang, Y.-J. Choi, W. Choi, S. H. Kim, J. Jang, and J. K. Park, “Interactive manipulation of blood cells using a lens-integrated liquid crystal display based optoelectronic tweezers system,” Electrophoresis 29(6), 1203–1212 (2008).
[Crossref] [PubMed]

J. Clin. Invest. (1)

E. A. Evans, N. Mohandas, and A. Leung, “Static and dynamic rigidities of normal and sickle erythrocytes. Major influence of cell hemoglobin concentration,” J. Clin. Invest. 73(2), 477–488 (1984).
[Crossref] [PubMed]

J. Mech. Phys. Solids (1)

M. Dao, C. T. Lim, and S. Suresh, “Mechanics of the human red blood cell deformed by optical tweezers,” J. Mech. Phys. Solids 51(11–12), 2259–2280 (2003).
[Crossref]

J. Nutr. Biochem. (1)

A. N. Begum and J. Terao, “Protective effect of quercetin against cigarette tar extract-induced impairment of erythrocyte deformability,” J. Nutr. Biochem. 13(5), 265–272 (2002).
[Crossref] [PubMed]

Lasers Med. Sci. (1)

B. Schauf, B. Aydeniz, R. Bayer, and D. Wallwiener, “The laser diffractoscope - a new and fast system to analyse red blood cell flexibility with high accuracy,” Lasers Med. Sci. 18(1), 45–50 (2003).
[Crossref] [PubMed]

Nanomedicine (1)

M. Girasole, G. Pompeo, A. Cricenti, G. Longo, G. Boumis, A. Bellelli, and S. Amiconi, “The how, when, and why of the aging signals appearing on the human erythrocyte membrane: an atomic force microscopy study of surface roughness,” Nanomedicine 6(6), 760–768 (2010).
[Crossref] [PubMed]

Nature (1)

P. Y. Chiou, A. T. Ohta, and M. C. Wu, “Massively parallel manipulation of single cells and microparticles using optical images,” Nature 436(7049), 370–372 (2005).
[Crossref] [PubMed]

Phys. Life Rev. (1)

F. Valle, M. Sandal, and B. Samori, “The interplay between chemistry and mechanics in the transduction of a mechanical signal into a biochemical function,” Phys. Life Rev. 4(3), 157–188 (2007).
[Crossref]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

Y. K. Park, C. A. Best, T. Kuriabova, M. L. Henle, M. S. Feld, A. J. Levine, and G. Popescu, “Measurement of the nonlinear elasticity of red blood cell membranes,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 83(5), 051925 (2011).
[Crossref] [PubMed]

Phys. Rev. Lett. (1)

F. Wottawah, S. Schinkinger, B. Lincoln, R. Ananthakrishnan, M. Romeyke, J. Guck, and J. Käs, “Optical rheology of biological cells,” Phys. Rev. Lett. 94(9), 098103 (2005).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

Y. Park, C. A. Best, T. Auth, N. S. Gov, S. A. Safran, G. Popescu, S. Suresh, and M. S. Feld, “Metabolic remodeling of the human red blood cell membrane,” Proc. Natl. Acad. Sci. U.S.A. 107(4), 1289–1294 (2010).
[Crossref] [PubMed]

Transducers (1)

E. Altendorf, D. Zebert, M. Holl, and P. Yager, “Differential blood counts obtained using a microchannel based flow cytometry,” Transducers 97, 531–534 (1997).

Other (1)

H. A. Pohl, Dielectrophoresis. (Cambridge University, 1978)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1 Streamlines representing the electric field strength distribution in the simulation volume.
Fig. 2
Fig. 2 Dependence of the minor axis of the prolate on FDEP. The line shows the result of a linear fit to the first 5 points.

Tables (1)

Tables Icon

Table 1 Experimental data for RBC stretching. The original diameter of the cell (without electric field) was 5.97( ± 0.1) µm. The data are the result of 5 independent measurements.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

F DEP = 3 2 υ ε PBS Re( CM ) Ε rms 2
F grad = Κ r rexp( r 2 ω 2 )
F DEP =2πμΔb

Metrics