Abstract

We demonstrate a novel non-contact method: acoustic radiation force impulse microscopy via photoacoustic detection (PA-ARFI), capable of probing cell mechanics. A 30 MHz lithium niobate ultrasound transducer is utilized for both detection of phatoacoustic signals and generation of acoustic radiation force. To track cell membrane displacements by acoustic radiation force, functionalized single-walled carbon nanotubes are attached to cell membrane. Using the developed microscopy evaluated with agar phantoms, the mechanics of highly- and weakly-metastatic breast cancer cells are quantified. These results clearly show that the PA-ARFI microscopy may serve as a novel tool to probe mechanics of single breast cancer cells.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Jitter reduction technique for acoustic radiation force impulse microscopy via photoacoustic detection

Bong Jin Kang, Changhan Yoon, Jin Man Park, Jae Youn Hwang, and K. Kirk Shung
Opt. Express 23(15) 19166-19175 (2015)

Impulsive stimulated Brillouin microscopy for non-contact, fast mechanical investigations of hydrogels

Benedikt Krug, Nektarios Koukourakis, and Juergen W. Czarske
Opt. Express 27(19) 26910-26923 (2019)

Ultrasound-guided photoacoustic imaging for the selective detection of EGFR-expressing breast cancer and lymph node metastases

Meihua Zhang, Hoe Suk Kim, Tiefeng Jin, Ann Yi, and Woo Kyung Moon
Biomed. Opt. Express 7(5) 1920-1931 (2016)

References

  • View by:
  • |
  • |
  • |

  1. Y. L. Wang and D. E. Discher, Cell Mechanics (Academic Press, San Diego, 2007).
  2. H. W. Hou, A. A. Bhagat, A. G. Chong, P. Mao, K. S. Tan, J. Han, and C. T. Lim, “Deformability based cell margination--a simple microfluidic design for malaria-infected erythrocyte separation,” Lab Chip 10(19), 2605–2613 (2010).
    [Crossref] [PubMed]
  3. J. L. Maciaszek and G. Lykotrafitis, “Sickle cell trait human erythrocytes are significantly stiffer than normal,” J. Biomech. 44(4), 657–661 (2011).
    [Crossref] [PubMed]
  4. W. Xu, R. Mezencev, B. Kim, L. Wang, J. McDonald, and T. Sulchek, “Cell stiffness is a biomarker of the metastatic potential of ovarian cancer cells,” PLoS ONE 7(10), e46609 (2012).
    [Crossref] [PubMed]
  5. H. Zhang and K. K. Liu, “Optical tweezers for single cells,” J. R. Soc. Interface 5(24), 671–690 (2008).
    [Crossref] [PubMed]
  6. R. M. Hochmuth, “Micropipette aspiration of living cells,” J. Biomech. 33(1), 15–22 (2000).
    [Crossref] [PubMed]
  7. B. Fabry, G. N. Maksym, R. D. Hubmayr, J. P. Butler, and J. J. Fredberg, “Implications of heterogeneous bead behavior on cell mechanical properties measured with magnetic twisting cytometry,” J. Magn. Magn. Mater. 194(1-3), 120–125 (1999).
    [Crossref]
  8. F. Rico, P. Roca-Cusachs, N. Gavara, R. Farré, M. Rotger, and D. Navajas, “Probing mechanical properties of living cells by atomic force microscopy with blunted pyramidal cantilever tips,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(2), 021914 (2005).
    [Crossref] [PubMed]
  9. M. Musielak, “Red blood cell-deformability measurement: review of techniques,” Clin. Hemorheol. Microcirc. 42(1), 47–64 (2009).
    [PubMed]
  10. P. Pravincumar, D. L. Bader, and M. M. Knight, “Viscoelastic cell mechanics and actin remodelling are dependent on the rate of applied pressure,” PLoS ONE 7(9), e43938 (2012).
    [Crossref] [PubMed]
  11. D. Kilinc and G. U. Lee, “Advances in magnetic tweezers for single molecule and cell biophysics,” Integrative biology: Quantitative Biosciences from Nano to Macro 6(1), 27–34 (2013).
    [Crossref]
  12. A. R. Bausch, W. Möller, and E. Sackmann, “Measurement of local viscoelasticity and forces in living cells by magnetic tweezers,” Biophys. J. 76(1), 573–579 (1999).
    [Crossref] [PubMed]
  13. D. Dumont, J. Dahl, E. Miller, J. Allen, B. Fahey, and G. Trahey, “Lower-limb vascular imaging with acoustic radiation force elastography: demonstration of in vivo feasibility,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 56(5), 931–944 (2009).
    [Crossref] [PubMed]
  14. K. Nightingale, M. S. Soo, R. Nightingale, and G. Trahey, “Acoustic radiation force impulse imaging: in vivo demonstration of clinical feasibility,” Ultrasound Med. Biol. 28(2), 227–235 (2002).
    [Crossref] [PubMed]
  15. K. R. Nightingale, P. J. Kornguth, W. F. Walker, B. A. McDermott, and G. E. Trahey, “A novel ultrasonic technique for differentiating cysts from solid lesions: preliminary results in the breast,” Ultrasound Med. Biol. 21(6), 745–751 (1995).
    [Crossref] [PubMed]
  16. M. L. Palmeri, K. D. Frinkley, L. Zhai, M. Gottfried, R. C. Bentley, K. Ludwig, and K. R. Nightingale, “Acoustic radiation force impulse (ARFI) imaging of the gastrointestinal tract,” Ultrason. Imaging 27(2), 75–88 (2005).
    [Crossref] [PubMed]
  17. F. Viola, M. D. Kramer, M. B. Lawrence, J. P. Oberhauser, and W. F. Walker, “Sonorheometry: a noncontact method for the dynamic assessment of thrombosis,” Ann. Biomed. Eng. 32(5), 696–705 (2004).
    [Crossref] [PubMed]
  18. J. Park, J. Lee, S. T. Lau, C. Lee, Y. Huang, C. L. Lien, and K. Kirk Shung, “Acoustic radiation force impulse (ARFI) imaging of zebrafish embryo by high-frequency coded excitation sequence,” Ann. Biomed. Eng. 40(4), 907–915 (2012).
    [Crossref] [PubMed]
  19. J. Y. Hwang, N. S. Lee, C. Lee, K. H. Lam, H. H. Kim, J. Woo, M. Y. Lin, K. Kisler, H. Choi, Q. Zhou, R. H. Chow, and K. K. Shung, “Investigating Contactless High Frequency Ultrasound Microbeam Stimulation for Determination of Invasion Potential of Breast Cancer Cells,” Biotechnol. Bioeng. 110(10), 2697–2705 (2013).
    [Crossref] [PubMed]
  20. T. A. Hall, M. Bilgen, M. F. Insana, and T. A. Krouskop, “Phlantom Materials for Elastography,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 44(6), 1355–1365 (1997).
    [Crossref]
  21. T. Ramanathan, F. T. Fisher, R. S. Ruoff, and L. C. Brinson, “Amino-Functionalized Carbon Nanotubes for Binding to Polymers and Biological Systems,” Chem. Mater. 17(6), 1290–1295 (2005).
    [Crossref]
  22. J. Park, C. Hu, X. Li, Q. Zhou, and K. K. Shung, “Wideband linear power amplifier for high-frequency ultrasonic coded excitation imaging,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 59(4), 825–832 (2012).
    [Crossref] [PubMed]
  23. J. Lee, S. Y. Teh, A. Lee, H. H. Kim, C. Lee, and K. K. Shung, “Transverse acoustic trapping using a gaussian focused ultrasound,” Ultrasound Med. Biol. 36(2), 350–355 (2010).
    [Crossref] [PubMed]
  24. B. C. Kuo, Theory and applications of step motors (West Pub. Co., St. Paul, 1974).
  25. L. Deng, S. J. Eichhorn, C. C. Kao, and R. J. Young, “The effective Young’s modulus of carbon nanotubes in composites,” ACS Appl. Mater. Interfaces 3(2), 433–440 (2011).
    [Crossref] [PubMed]
  26. V. Swaminathan, K. Mythreye, E. T. O’Brien, A. Berchuck, G. C. Blobe, and R. Superfine, “Mechanical stiffness grades metastatic potential in patient tumor cells and in cancer cell lines,” Cancer Res. 71(15), 5075–5080 (2011).
    [Crossref] [PubMed]
  27. J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J. 88(5), 3689–3698 (2005).
    [Crossref] [PubMed]
  28. N. Walter, T. Busch, T. Seufferlein, and J. P. Spatz, “Elastic moduli of living epithelial pancreatic cancer cells and their skeletonized keratin intermediate filament network,” Biointerphases 6(2), 79–85 (2011).
    [Crossref] [PubMed]
  29. S. Suresh, “Nanomedicine: elastic clues in cancer detection,” Nat. Nanotechnol. 2(12), 748–749 (2007).
    [Crossref] [PubMed]
  30. C. K. Leung, C. Ye, and R. N. Weinreb, “An Ultra-High-Speed Scheimpflug Camera for Evaluation of Corneal Deformation Response and Its Impact on IOP Measurement,” Invest. Ophthalmol. Vis. Sci. 54(4), 2885–2892 (2013).
    [Crossref] [PubMed]
  31. L. P. Zanello, B. Zhao, H. Hu, and R. C. Haddon, “Bone cell proliferation on carbon nanotubes,” Nano Lett. 6(3), 562–567 (2006).
    [Crossref] [PubMed]
  32. K. H. Park, M. Chhowalla, Z. Iqbal, and F. Sesti, “Single-walled carbon nanotubes are a new class of ion channel blockers,” J. Biol. Chem. 278(50), 50212–50216 (2003).
    [Crossref] [PubMed]
  33. P. Cherukuri, S. M. Bachilo, S. H. Litovsky, and R. B. Weisman, “Near-infrared fluorescence microscopy of single-walled carbon nanotubes in phagocytic cells,” J. Am. Chem. Soc. 126(48), 15638–15639 (2004).
    [Crossref] [PubMed]
  34. N. W. Shi Kam, T. C. Jessop, P. A. Wender, and H. Dai, “Nanotube molecular transporters: internalization of carbon nanotube-protein conjugates into Mammalian cells,” J. Am. Chem. Soc. 126(22), 6850–6851 (2004).
    [Crossref] [PubMed]
  35. H. Dumortier, S. Lacotte, G. Pastorin, R. Marega, W. Wu, D. Bonifazi, J. P. Briand, M. Prato, S. Muller, and A. Bianco, “Functionalized carbon nanotubes are non-cytotoxic and preserve the functionality of primary immune cells,” Nano Lett. 6(7), 1522–1528 (2006).
    [Crossref] [PubMed]
  36. A. A. Shvedova, V. Castranova, E. R. Kisin, D. Schwegler-Berry, A. R. Murray, V. Z. Gandelsman, A. Maynard, and P. Baron, “Exposure to carbon nanotube material: assessment of nanotube cytotoxicity using human keratinocyte cells,” J. Toxicol. Environ. Health A 66(20), 1909–1926 (2003).
    [Crossref] [PubMed]
  37. M. M. Frigault, J. Lacoste, J. L. Swift, and C. M. Brown, “Live-cell microscopy - tips and tools,” J. Cell Sci. 122(6), 753–767 (2009).
    [Crossref] [PubMed]
  38. C. L. Bayer, J. Kelvekar, and S. Y. Emelianov, “Influence of nanosecond pulsed laser irradiance on the viability of nanoparticle-loaded cells: implications for safety of contrast-enhanced photoacoustic imaging,” Nanotechnology 24(46), 465101 (2013).
    [Crossref] [PubMed]

2013 (4)

D. Kilinc and G. U. Lee, “Advances in magnetic tweezers for single molecule and cell biophysics,” Integrative biology: Quantitative Biosciences from Nano to Macro 6(1), 27–34 (2013).
[Crossref]

J. Y. Hwang, N. S. Lee, C. Lee, K. H. Lam, H. H. Kim, J. Woo, M. Y. Lin, K. Kisler, H. Choi, Q. Zhou, R. H. Chow, and K. K. Shung, “Investigating Contactless High Frequency Ultrasound Microbeam Stimulation for Determination of Invasion Potential of Breast Cancer Cells,” Biotechnol. Bioeng. 110(10), 2697–2705 (2013).
[Crossref] [PubMed]

C. K. Leung, C. Ye, and R. N. Weinreb, “An Ultra-High-Speed Scheimpflug Camera for Evaluation of Corneal Deformation Response and Its Impact on IOP Measurement,” Invest. Ophthalmol. Vis. Sci. 54(4), 2885–2892 (2013).
[Crossref] [PubMed]

C. L. Bayer, J. Kelvekar, and S. Y. Emelianov, “Influence of nanosecond pulsed laser irradiance on the viability of nanoparticle-loaded cells: implications for safety of contrast-enhanced photoacoustic imaging,” Nanotechnology 24(46), 465101 (2013).
[Crossref] [PubMed]

2012 (4)

J. Park, C. Hu, X. Li, Q. Zhou, and K. K. Shung, “Wideband linear power amplifier for high-frequency ultrasonic coded excitation imaging,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 59(4), 825–832 (2012).
[Crossref] [PubMed]

P. Pravincumar, D. L. Bader, and M. M. Knight, “Viscoelastic cell mechanics and actin remodelling are dependent on the rate of applied pressure,” PLoS ONE 7(9), e43938 (2012).
[Crossref] [PubMed]

J. Park, J. Lee, S. T. Lau, C. Lee, Y. Huang, C. L. Lien, and K. Kirk Shung, “Acoustic radiation force impulse (ARFI) imaging of zebrafish embryo by high-frequency coded excitation sequence,” Ann. Biomed. Eng. 40(4), 907–915 (2012).
[Crossref] [PubMed]

W. Xu, R. Mezencev, B. Kim, L. Wang, J. McDonald, and T. Sulchek, “Cell stiffness is a biomarker of the metastatic potential of ovarian cancer cells,” PLoS ONE 7(10), e46609 (2012).
[Crossref] [PubMed]

2011 (4)

J. L. Maciaszek and G. Lykotrafitis, “Sickle cell trait human erythrocytes are significantly stiffer than normal,” J. Biomech. 44(4), 657–661 (2011).
[Crossref] [PubMed]

L. Deng, S. J. Eichhorn, C. C. Kao, and R. J. Young, “The effective Young’s modulus of carbon nanotubes in composites,” ACS Appl. Mater. Interfaces 3(2), 433–440 (2011).
[Crossref] [PubMed]

V. Swaminathan, K. Mythreye, E. T. O’Brien, A. Berchuck, G. C. Blobe, and R. Superfine, “Mechanical stiffness grades metastatic potential in patient tumor cells and in cancer cell lines,” Cancer Res. 71(15), 5075–5080 (2011).
[Crossref] [PubMed]

N. Walter, T. Busch, T. Seufferlein, and J. P. Spatz, “Elastic moduli of living epithelial pancreatic cancer cells and their skeletonized keratin intermediate filament network,” Biointerphases 6(2), 79–85 (2011).
[Crossref] [PubMed]

2010 (2)

J. Lee, S. Y. Teh, A. Lee, H. H. Kim, C. Lee, and K. K. Shung, “Transverse acoustic trapping using a gaussian focused ultrasound,” Ultrasound Med. Biol. 36(2), 350–355 (2010).
[Crossref] [PubMed]

H. W. Hou, A. A. Bhagat, A. G. Chong, P. Mao, K. S. Tan, J. Han, and C. T. Lim, “Deformability based cell margination--a simple microfluidic design for malaria-infected erythrocyte separation,” Lab Chip 10(19), 2605–2613 (2010).
[Crossref] [PubMed]

2009 (3)

M. Musielak, “Red blood cell-deformability measurement: review of techniques,” Clin. Hemorheol. Microcirc. 42(1), 47–64 (2009).
[PubMed]

D. Dumont, J. Dahl, E. Miller, J. Allen, B. Fahey, and G. Trahey, “Lower-limb vascular imaging with acoustic radiation force elastography: demonstration of in vivo feasibility,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 56(5), 931–944 (2009).
[Crossref] [PubMed]

M. M. Frigault, J. Lacoste, J. L. Swift, and C. M. Brown, “Live-cell microscopy - tips and tools,” J. Cell Sci. 122(6), 753–767 (2009).
[Crossref] [PubMed]

2008 (1)

H. Zhang and K. K. Liu, “Optical tweezers for single cells,” J. R. Soc. Interface 5(24), 671–690 (2008).
[Crossref] [PubMed]

2007 (1)

S. Suresh, “Nanomedicine: elastic clues in cancer detection,” Nat. Nanotechnol. 2(12), 748–749 (2007).
[Crossref] [PubMed]

2006 (2)

H. Dumortier, S. Lacotte, G. Pastorin, R. Marega, W. Wu, D. Bonifazi, J. P. Briand, M. Prato, S. Muller, and A. Bianco, “Functionalized carbon nanotubes are non-cytotoxic and preserve the functionality of primary immune cells,” Nano Lett. 6(7), 1522–1528 (2006).
[Crossref] [PubMed]

L. P. Zanello, B. Zhao, H. Hu, and R. C. Haddon, “Bone cell proliferation on carbon nanotubes,” Nano Lett. 6(3), 562–567 (2006).
[Crossref] [PubMed]

2005 (4)

T. Ramanathan, F. T. Fisher, R. S. Ruoff, and L. C. Brinson, “Amino-Functionalized Carbon Nanotubes for Binding to Polymers and Biological Systems,” Chem. Mater. 17(6), 1290–1295 (2005).
[Crossref]

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J. 88(5), 3689–3698 (2005).
[Crossref] [PubMed]

F. Rico, P. Roca-Cusachs, N. Gavara, R. Farré, M. Rotger, and D. Navajas, “Probing mechanical properties of living cells by atomic force microscopy with blunted pyramidal cantilever tips,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(2), 021914 (2005).
[Crossref] [PubMed]

M. L. Palmeri, K. D. Frinkley, L. Zhai, M. Gottfried, R. C. Bentley, K. Ludwig, and K. R. Nightingale, “Acoustic radiation force impulse (ARFI) imaging of the gastrointestinal tract,” Ultrason. Imaging 27(2), 75–88 (2005).
[Crossref] [PubMed]

2004 (3)

F. Viola, M. D. Kramer, M. B. Lawrence, J. P. Oberhauser, and W. F. Walker, “Sonorheometry: a noncontact method for the dynamic assessment of thrombosis,” Ann. Biomed. Eng. 32(5), 696–705 (2004).
[Crossref] [PubMed]

P. Cherukuri, S. M. Bachilo, S. H. Litovsky, and R. B. Weisman, “Near-infrared fluorescence microscopy of single-walled carbon nanotubes in phagocytic cells,” J. Am. Chem. Soc. 126(48), 15638–15639 (2004).
[Crossref] [PubMed]

N. W. Shi Kam, T. C. Jessop, P. A. Wender, and H. Dai, “Nanotube molecular transporters: internalization of carbon nanotube-protein conjugates into Mammalian cells,” J. Am. Chem. Soc. 126(22), 6850–6851 (2004).
[Crossref] [PubMed]

2003 (2)

K. H. Park, M. Chhowalla, Z. Iqbal, and F. Sesti, “Single-walled carbon nanotubes are a new class of ion channel blockers,” J. Biol. Chem. 278(50), 50212–50216 (2003).
[Crossref] [PubMed]

A. A. Shvedova, V. Castranova, E. R. Kisin, D. Schwegler-Berry, A. R. Murray, V. Z. Gandelsman, A. Maynard, and P. Baron, “Exposure to carbon nanotube material: assessment of nanotube cytotoxicity using human keratinocyte cells,” J. Toxicol. Environ. Health A 66(20), 1909–1926 (2003).
[Crossref] [PubMed]

2002 (1)

K. Nightingale, M. S. Soo, R. Nightingale, and G. Trahey, “Acoustic radiation force impulse imaging: in vivo demonstration of clinical feasibility,” Ultrasound Med. Biol. 28(2), 227–235 (2002).
[Crossref] [PubMed]

2000 (1)

R. M. Hochmuth, “Micropipette aspiration of living cells,” J. Biomech. 33(1), 15–22 (2000).
[Crossref] [PubMed]

1999 (2)

B. Fabry, G. N. Maksym, R. D. Hubmayr, J. P. Butler, and J. J. Fredberg, “Implications of heterogeneous bead behavior on cell mechanical properties measured with magnetic twisting cytometry,” J. Magn. Magn. Mater. 194(1-3), 120–125 (1999).
[Crossref]

A. R. Bausch, W. Möller, and E. Sackmann, “Measurement of local viscoelasticity and forces in living cells by magnetic tweezers,” Biophys. J. 76(1), 573–579 (1999).
[Crossref] [PubMed]

1997 (1)

T. A. Hall, M. Bilgen, M. F. Insana, and T. A. Krouskop, “Phlantom Materials for Elastography,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 44(6), 1355–1365 (1997).
[Crossref]

1995 (1)

K. R. Nightingale, P. J. Kornguth, W. F. Walker, B. A. McDermott, and G. E. Trahey, “A novel ultrasonic technique for differentiating cysts from solid lesions: preliminary results in the breast,” Ultrasound Med. Biol. 21(6), 745–751 (1995).
[Crossref] [PubMed]

Allen, J.

D. Dumont, J. Dahl, E. Miller, J. Allen, B. Fahey, and G. Trahey, “Lower-limb vascular imaging with acoustic radiation force elastography: demonstration of in vivo feasibility,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 56(5), 931–944 (2009).
[Crossref] [PubMed]

Ananthakrishnan, R.

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J. 88(5), 3689–3698 (2005).
[Crossref] [PubMed]

Bachilo, S. M.

P. Cherukuri, S. M. Bachilo, S. H. Litovsky, and R. B. Weisman, “Near-infrared fluorescence microscopy of single-walled carbon nanotubes in phagocytic cells,” J. Am. Chem. Soc. 126(48), 15638–15639 (2004).
[Crossref] [PubMed]

Bader, D. L.

P. Pravincumar, D. L. Bader, and M. M. Knight, “Viscoelastic cell mechanics and actin remodelling are dependent on the rate of applied pressure,” PLoS ONE 7(9), e43938 (2012).
[Crossref] [PubMed]

Baron, P.

A. A. Shvedova, V. Castranova, E. R. Kisin, D. Schwegler-Berry, A. R. Murray, V. Z. Gandelsman, A. Maynard, and P. Baron, “Exposure to carbon nanotube material: assessment of nanotube cytotoxicity using human keratinocyte cells,” J. Toxicol. Environ. Health A 66(20), 1909–1926 (2003).
[Crossref] [PubMed]

Bausch, A. R.

A. R. Bausch, W. Möller, and E. Sackmann, “Measurement of local viscoelasticity and forces in living cells by magnetic tweezers,” Biophys. J. 76(1), 573–579 (1999).
[Crossref] [PubMed]

Bayer, C. L.

C. L. Bayer, J. Kelvekar, and S. Y. Emelianov, “Influence of nanosecond pulsed laser irradiance on the viability of nanoparticle-loaded cells: implications for safety of contrast-enhanced photoacoustic imaging,” Nanotechnology 24(46), 465101 (2013).
[Crossref] [PubMed]

Bentley, R. C.

M. L. Palmeri, K. D. Frinkley, L. Zhai, M. Gottfried, R. C. Bentley, K. Ludwig, and K. R. Nightingale, “Acoustic radiation force impulse (ARFI) imaging of the gastrointestinal tract,” Ultrason. Imaging 27(2), 75–88 (2005).
[Crossref] [PubMed]

Berchuck, A.

V. Swaminathan, K. Mythreye, E. T. O’Brien, A. Berchuck, G. C. Blobe, and R. Superfine, “Mechanical stiffness grades metastatic potential in patient tumor cells and in cancer cell lines,” Cancer Res. 71(15), 5075–5080 (2011).
[Crossref] [PubMed]

Bhagat, A. A.

H. W. Hou, A. A. Bhagat, A. G. Chong, P. Mao, K. S. Tan, J. Han, and C. T. Lim, “Deformability based cell margination--a simple microfluidic design for malaria-infected erythrocyte separation,” Lab Chip 10(19), 2605–2613 (2010).
[Crossref] [PubMed]

Bianco, A.

H. Dumortier, S. Lacotte, G. Pastorin, R. Marega, W. Wu, D. Bonifazi, J. P. Briand, M. Prato, S. Muller, and A. Bianco, “Functionalized carbon nanotubes are non-cytotoxic and preserve the functionality of primary immune cells,” Nano Lett. 6(7), 1522–1528 (2006).
[Crossref] [PubMed]

Bilby, C.

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J. 88(5), 3689–3698 (2005).
[Crossref] [PubMed]

Bilgen, M.

T. A. Hall, M. Bilgen, M. F. Insana, and T. A. Krouskop, “Phlantom Materials for Elastography,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 44(6), 1355–1365 (1997).
[Crossref]

Blobe, G. C.

V. Swaminathan, K. Mythreye, E. T. O’Brien, A. Berchuck, G. C. Blobe, and R. Superfine, “Mechanical stiffness grades metastatic potential in patient tumor cells and in cancer cell lines,” Cancer Res. 71(15), 5075–5080 (2011).
[Crossref] [PubMed]

Bonifazi, D.

H. Dumortier, S. Lacotte, G. Pastorin, R. Marega, W. Wu, D. Bonifazi, J. P. Briand, M. Prato, S. Muller, and A. Bianco, “Functionalized carbon nanotubes are non-cytotoxic and preserve the functionality of primary immune cells,” Nano Lett. 6(7), 1522–1528 (2006).
[Crossref] [PubMed]

Briand, J. P.

H. Dumortier, S. Lacotte, G. Pastorin, R. Marega, W. Wu, D. Bonifazi, J. P. Briand, M. Prato, S. Muller, and A. Bianco, “Functionalized carbon nanotubes are non-cytotoxic and preserve the functionality of primary immune cells,” Nano Lett. 6(7), 1522–1528 (2006).
[Crossref] [PubMed]

Brinson, L. C.

T. Ramanathan, F. T. Fisher, R. S. Ruoff, and L. C. Brinson, “Amino-Functionalized Carbon Nanotubes for Binding to Polymers and Biological Systems,” Chem. Mater. 17(6), 1290–1295 (2005).
[Crossref]

Brown, C. M.

M. M. Frigault, J. Lacoste, J. L. Swift, and C. M. Brown, “Live-cell microscopy - tips and tools,” J. Cell Sci. 122(6), 753–767 (2009).
[Crossref] [PubMed]

Busch, T.

N. Walter, T. Busch, T. Seufferlein, and J. P. Spatz, “Elastic moduli of living epithelial pancreatic cancer cells and their skeletonized keratin intermediate filament network,” Biointerphases 6(2), 79–85 (2011).
[Crossref] [PubMed]

Butler, J. P.

B. Fabry, G. N. Maksym, R. D. Hubmayr, J. P. Butler, and J. J. Fredberg, “Implications of heterogeneous bead behavior on cell mechanical properties measured with magnetic twisting cytometry,” J. Magn. Magn. Mater. 194(1-3), 120–125 (1999).
[Crossref]

Castranova, V.

A. A. Shvedova, V. Castranova, E. R. Kisin, D. Schwegler-Berry, A. R. Murray, V. Z. Gandelsman, A. Maynard, and P. Baron, “Exposure to carbon nanotube material: assessment of nanotube cytotoxicity using human keratinocyte cells,” J. Toxicol. Environ. Health A 66(20), 1909–1926 (2003).
[Crossref] [PubMed]

Cherukuri, P.

P. Cherukuri, S. M. Bachilo, S. H. Litovsky, and R. B. Weisman, “Near-infrared fluorescence microscopy of single-walled carbon nanotubes in phagocytic cells,” J. Am. Chem. Soc. 126(48), 15638–15639 (2004).
[Crossref] [PubMed]

Chhowalla, M.

K. H. Park, M. Chhowalla, Z. Iqbal, and F. Sesti, “Single-walled carbon nanotubes are a new class of ion channel blockers,” J. Biol. Chem. 278(50), 50212–50216 (2003).
[Crossref] [PubMed]

Choi, H.

J. Y. Hwang, N. S. Lee, C. Lee, K. H. Lam, H. H. Kim, J. Woo, M. Y. Lin, K. Kisler, H. Choi, Q. Zhou, R. H. Chow, and K. K. Shung, “Investigating Contactless High Frequency Ultrasound Microbeam Stimulation for Determination of Invasion Potential of Breast Cancer Cells,” Biotechnol. Bioeng. 110(10), 2697–2705 (2013).
[Crossref] [PubMed]

Chong, A. G.

H. W. Hou, A. A. Bhagat, A. G. Chong, P. Mao, K. S. Tan, J. Han, and C. T. Lim, “Deformability based cell margination--a simple microfluidic design for malaria-infected erythrocyte separation,” Lab Chip 10(19), 2605–2613 (2010).
[Crossref] [PubMed]

Chow, R. H.

J. Y. Hwang, N. S. Lee, C. Lee, K. H. Lam, H. H. Kim, J. Woo, M. Y. Lin, K. Kisler, H. Choi, Q. Zhou, R. H. Chow, and K. K. Shung, “Investigating Contactless High Frequency Ultrasound Microbeam Stimulation for Determination of Invasion Potential of Breast Cancer Cells,” Biotechnol. Bioeng. 110(10), 2697–2705 (2013).
[Crossref] [PubMed]

Dahl, J.

D. Dumont, J. Dahl, E. Miller, J. Allen, B. Fahey, and G. Trahey, “Lower-limb vascular imaging with acoustic radiation force elastography: demonstration of in vivo feasibility,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 56(5), 931–944 (2009).
[Crossref] [PubMed]

Dai, H.

N. W. Shi Kam, T. C. Jessop, P. A. Wender, and H. Dai, “Nanotube molecular transporters: internalization of carbon nanotube-protein conjugates into Mammalian cells,” J. Am. Chem. Soc. 126(22), 6850–6851 (2004).
[Crossref] [PubMed]

Deng, L.

L. Deng, S. J. Eichhorn, C. C. Kao, and R. J. Young, “The effective Young’s modulus of carbon nanotubes in composites,” ACS Appl. Mater. Interfaces 3(2), 433–440 (2011).
[Crossref] [PubMed]

Dumont, D.

D. Dumont, J. Dahl, E. Miller, J. Allen, B. Fahey, and G. Trahey, “Lower-limb vascular imaging with acoustic radiation force elastography: demonstration of in vivo feasibility,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 56(5), 931–944 (2009).
[Crossref] [PubMed]

Dumortier, H.

H. Dumortier, S. Lacotte, G. Pastorin, R. Marega, W. Wu, D. Bonifazi, J. P. Briand, M. Prato, S. Muller, and A. Bianco, “Functionalized carbon nanotubes are non-cytotoxic and preserve the functionality of primary immune cells,” Nano Lett. 6(7), 1522–1528 (2006).
[Crossref] [PubMed]

Ebert, S.

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J. 88(5), 3689–3698 (2005).
[Crossref] [PubMed]

Eichhorn, S. J.

L. Deng, S. J. Eichhorn, C. C. Kao, and R. J. Young, “The effective Young’s modulus of carbon nanotubes in composites,” ACS Appl. Mater. Interfaces 3(2), 433–440 (2011).
[Crossref] [PubMed]

Emelianov, S. Y.

C. L. Bayer, J. Kelvekar, and S. Y. Emelianov, “Influence of nanosecond pulsed laser irradiance on the viability of nanoparticle-loaded cells: implications for safety of contrast-enhanced photoacoustic imaging,” Nanotechnology 24(46), 465101 (2013).
[Crossref] [PubMed]

Erickson, H. M.

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J. 88(5), 3689–3698 (2005).
[Crossref] [PubMed]

Fabry, B.

B. Fabry, G. N. Maksym, R. D. Hubmayr, J. P. Butler, and J. J. Fredberg, “Implications of heterogeneous bead behavior on cell mechanical properties measured with magnetic twisting cytometry,” J. Magn. Magn. Mater. 194(1-3), 120–125 (1999).
[Crossref]

Fahey, B.

D. Dumont, J. Dahl, E. Miller, J. Allen, B. Fahey, and G. Trahey, “Lower-limb vascular imaging with acoustic radiation force elastography: demonstration of in vivo feasibility,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 56(5), 931–944 (2009).
[Crossref] [PubMed]

Farré, R.

F. Rico, P. Roca-Cusachs, N. Gavara, R. Farré, M. Rotger, and D. Navajas, “Probing mechanical properties of living cells by atomic force microscopy with blunted pyramidal cantilever tips,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(2), 021914 (2005).
[Crossref] [PubMed]

Fisher, F. T.

T. Ramanathan, F. T. Fisher, R. S. Ruoff, and L. C. Brinson, “Amino-Functionalized Carbon Nanotubes for Binding to Polymers and Biological Systems,” Chem. Mater. 17(6), 1290–1295 (2005).
[Crossref]

Fredberg, J. J.

B. Fabry, G. N. Maksym, R. D. Hubmayr, J. P. Butler, and J. J. Fredberg, “Implications of heterogeneous bead behavior on cell mechanical properties measured with magnetic twisting cytometry,” J. Magn. Magn. Mater. 194(1-3), 120–125 (1999).
[Crossref]

Frigault, M. M.

M. M. Frigault, J. Lacoste, J. L. Swift, and C. M. Brown, “Live-cell microscopy - tips and tools,” J. Cell Sci. 122(6), 753–767 (2009).
[Crossref] [PubMed]

Frinkley, K. D.

M. L. Palmeri, K. D. Frinkley, L. Zhai, M. Gottfried, R. C. Bentley, K. Ludwig, and K. R. Nightingale, “Acoustic radiation force impulse (ARFI) imaging of the gastrointestinal tract,” Ultrason. Imaging 27(2), 75–88 (2005).
[Crossref] [PubMed]

Gandelsman, V. Z.

A. A. Shvedova, V. Castranova, E. R. Kisin, D. Schwegler-Berry, A. R. Murray, V. Z. Gandelsman, A. Maynard, and P. Baron, “Exposure to carbon nanotube material: assessment of nanotube cytotoxicity using human keratinocyte cells,” J. Toxicol. Environ. Health A 66(20), 1909–1926 (2003).
[Crossref] [PubMed]

Gavara, N.

F. Rico, P. Roca-Cusachs, N. Gavara, R. Farré, M. Rotger, and D. Navajas, “Probing mechanical properties of living cells by atomic force microscopy with blunted pyramidal cantilever tips,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(2), 021914 (2005).
[Crossref] [PubMed]

Gottfried, M.

M. L. Palmeri, K. D. Frinkley, L. Zhai, M. Gottfried, R. C. Bentley, K. Ludwig, and K. R. Nightingale, “Acoustic radiation force impulse (ARFI) imaging of the gastrointestinal tract,” Ultrason. Imaging 27(2), 75–88 (2005).
[Crossref] [PubMed]

Guck, J.

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J. 88(5), 3689–3698 (2005).
[Crossref] [PubMed]

Haddon, R. C.

L. P. Zanello, B. Zhao, H. Hu, and R. C. Haddon, “Bone cell proliferation on carbon nanotubes,” Nano Lett. 6(3), 562–567 (2006).
[Crossref] [PubMed]

Hall, T. A.

T. A. Hall, M. Bilgen, M. F. Insana, and T. A. Krouskop, “Phlantom Materials for Elastography,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 44(6), 1355–1365 (1997).
[Crossref]

Han, J.

H. W. Hou, A. A. Bhagat, A. G. Chong, P. Mao, K. S. Tan, J. Han, and C. T. Lim, “Deformability based cell margination--a simple microfluidic design for malaria-infected erythrocyte separation,” Lab Chip 10(19), 2605–2613 (2010).
[Crossref] [PubMed]

Hochmuth, R. M.

R. M. Hochmuth, “Micropipette aspiration of living cells,” J. Biomech. 33(1), 15–22 (2000).
[Crossref] [PubMed]

Hou, H. W.

H. W. Hou, A. A. Bhagat, A. G. Chong, P. Mao, K. S. Tan, J. Han, and C. T. Lim, “Deformability based cell margination--a simple microfluidic design for malaria-infected erythrocyte separation,” Lab Chip 10(19), 2605–2613 (2010).
[Crossref] [PubMed]

Hu, C.

J. Park, C. Hu, X. Li, Q. Zhou, and K. K. Shung, “Wideband linear power amplifier for high-frequency ultrasonic coded excitation imaging,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 59(4), 825–832 (2012).
[Crossref] [PubMed]

Hu, H.

L. P. Zanello, B. Zhao, H. Hu, and R. C. Haddon, “Bone cell proliferation on carbon nanotubes,” Nano Lett. 6(3), 562–567 (2006).
[Crossref] [PubMed]

Huang, Y.

J. Park, J. Lee, S. T. Lau, C. Lee, Y. Huang, C. L. Lien, and K. Kirk Shung, “Acoustic radiation force impulse (ARFI) imaging of zebrafish embryo by high-frequency coded excitation sequence,” Ann. Biomed. Eng. 40(4), 907–915 (2012).
[Crossref] [PubMed]

Hubmayr, R. D.

B. Fabry, G. N. Maksym, R. D. Hubmayr, J. P. Butler, and J. J. Fredberg, “Implications of heterogeneous bead behavior on cell mechanical properties measured with magnetic twisting cytometry,” J. Magn. Magn. Mater. 194(1-3), 120–125 (1999).
[Crossref]

Hwang, J. Y.

J. Y. Hwang, N. S. Lee, C. Lee, K. H. Lam, H. H. Kim, J. Woo, M. Y. Lin, K. Kisler, H. Choi, Q. Zhou, R. H. Chow, and K. K. Shung, “Investigating Contactless High Frequency Ultrasound Microbeam Stimulation for Determination of Invasion Potential of Breast Cancer Cells,” Biotechnol. Bioeng. 110(10), 2697–2705 (2013).
[Crossref] [PubMed]

Insana, M. F.

T. A. Hall, M. Bilgen, M. F. Insana, and T. A. Krouskop, “Phlantom Materials for Elastography,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 44(6), 1355–1365 (1997).
[Crossref]

Iqbal, Z.

K. H. Park, M. Chhowalla, Z. Iqbal, and F. Sesti, “Single-walled carbon nanotubes are a new class of ion channel blockers,” J. Biol. Chem. 278(50), 50212–50216 (2003).
[Crossref] [PubMed]

Jessop, T. C.

N. W. Shi Kam, T. C. Jessop, P. A. Wender, and H. Dai, “Nanotube molecular transporters: internalization of carbon nanotube-protein conjugates into Mammalian cells,” J. Am. Chem. Soc. 126(22), 6850–6851 (2004).
[Crossref] [PubMed]

Kao, C. C.

L. Deng, S. J. Eichhorn, C. C. Kao, and R. J. Young, “The effective Young’s modulus of carbon nanotubes in composites,” ACS Appl. Mater. Interfaces 3(2), 433–440 (2011).
[Crossref] [PubMed]

Käs, J.

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J. 88(5), 3689–3698 (2005).
[Crossref] [PubMed]

Kelvekar, J.

C. L. Bayer, J. Kelvekar, and S. Y. Emelianov, “Influence of nanosecond pulsed laser irradiance on the viability of nanoparticle-loaded cells: implications for safety of contrast-enhanced photoacoustic imaging,” Nanotechnology 24(46), 465101 (2013).
[Crossref] [PubMed]

Kilinc, D.

D. Kilinc and G. U. Lee, “Advances in magnetic tweezers for single molecule and cell biophysics,” Integrative biology: Quantitative Biosciences from Nano to Macro 6(1), 27–34 (2013).
[Crossref]

Kim, B.

W. Xu, R. Mezencev, B. Kim, L. Wang, J. McDonald, and T. Sulchek, “Cell stiffness is a biomarker of the metastatic potential of ovarian cancer cells,” PLoS ONE 7(10), e46609 (2012).
[Crossref] [PubMed]

Kim, H. H.

J. Y. Hwang, N. S. Lee, C. Lee, K. H. Lam, H. H. Kim, J. Woo, M. Y. Lin, K. Kisler, H. Choi, Q. Zhou, R. H. Chow, and K. K. Shung, “Investigating Contactless High Frequency Ultrasound Microbeam Stimulation for Determination of Invasion Potential of Breast Cancer Cells,” Biotechnol. Bioeng. 110(10), 2697–2705 (2013).
[Crossref] [PubMed]

J. Lee, S. Y. Teh, A. Lee, H. H. Kim, C. Lee, and K. K. Shung, “Transverse acoustic trapping using a gaussian focused ultrasound,” Ultrasound Med. Biol. 36(2), 350–355 (2010).
[Crossref] [PubMed]

Kirk Shung, K.

J. Park, J. Lee, S. T. Lau, C. Lee, Y. Huang, C. L. Lien, and K. Kirk Shung, “Acoustic radiation force impulse (ARFI) imaging of zebrafish embryo by high-frequency coded excitation sequence,” Ann. Biomed. Eng. 40(4), 907–915 (2012).
[Crossref] [PubMed]

Kisin, E. R.

A. A. Shvedova, V. Castranova, E. R. Kisin, D. Schwegler-Berry, A. R. Murray, V. Z. Gandelsman, A. Maynard, and P. Baron, “Exposure to carbon nanotube material: assessment of nanotube cytotoxicity using human keratinocyte cells,” J. Toxicol. Environ. Health A 66(20), 1909–1926 (2003).
[Crossref] [PubMed]

Kisler, K.

J. Y. Hwang, N. S. Lee, C. Lee, K. H. Lam, H. H. Kim, J. Woo, M. Y. Lin, K. Kisler, H. Choi, Q. Zhou, R. H. Chow, and K. K. Shung, “Investigating Contactless High Frequency Ultrasound Microbeam Stimulation for Determination of Invasion Potential of Breast Cancer Cells,” Biotechnol. Bioeng. 110(10), 2697–2705 (2013).
[Crossref] [PubMed]

Knight, M. M.

P. Pravincumar, D. L. Bader, and M. M. Knight, “Viscoelastic cell mechanics and actin remodelling are dependent on the rate of applied pressure,” PLoS ONE 7(9), e43938 (2012).
[Crossref] [PubMed]

Kornguth, P. J.

K. R. Nightingale, P. J. Kornguth, W. F. Walker, B. A. McDermott, and G. E. Trahey, “A novel ultrasonic technique for differentiating cysts from solid lesions: preliminary results in the breast,” Ultrasound Med. Biol. 21(6), 745–751 (1995).
[Crossref] [PubMed]

Kramer, M. D.

F. Viola, M. D. Kramer, M. B. Lawrence, J. P. Oberhauser, and W. F. Walker, “Sonorheometry: a noncontact method for the dynamic assessment of thrombosis,” Ann. Biomed. Eng. 32(5), 696–705 (2004).
[Crossref] [PubMed]

Krouskop, T. A.

T. A. Hall, M. Bilgen, M. F. Insana, and T. A. Krouskop, “Phlantom Materials for Elastography,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 44(6), 1355–1365 (1997).
[Crossref]

Lacoste, J.

M. M. Frigault, J. Lacoste, J. L. Swift, and C. M. Brown, “Live-cell microscopy - tips and tools,” J. Cell Sci. 122(6), 753–767 (2009).
[Crossref] [PubMed]

Lacotte, S.

H. Dumortier, S. Lacotte, G. Pastorin, R. Marega, W. Wu, D. Bonifazi, J. P. Briand, M. Prato, S. Muller, and A. Bianco, “Functionalized carbon nanotubes are non-cytotoxic and preserve the functionality of primary immune cells,” Nano Lett. 6(7), 1522–1528 (2006).
[Crossref] [PubMed]

Lam, K. H.

J. Y. Hwang, N. S. Lee, C. Lee, K. H. Lam, H. H. Kim, J. Woo, M. Y. Lin, K. Kisler, H. Choi, Q. Zhou, R. H. Chow, and K. K. Shung, “Investigating Contactless High Frequency Ultrasound Microbeam Stimulation for Determination of Invasion Potential of Breast Cancer Cells,” Biotechnol. Bioeng. 110(10), 2697–2705 (2013).
[Crossref] [PubMed]

Lau, S. T.

J. Park, J. Lee, S. T. Lau, C. Lee, Y. Huang, C. L. Lien, and K. Kirk Shung, “Acoustic radiation force impulse (ARFI) imaging of zebrafish embryo by high-frequency coded excitation sequence,” Ann. Biomed. Eng. 40(4), 907–915 (2012).
[Crossref] [PubMed]

Lawrence, M. B.

F. Viola, M. D. Kramer, M. B. Lawrence, J. P. Oberhauser, and W. F. Walker, “Sonorheometry: a noncontact method for the dynamic assessment of thrombosis,” Ann. Biomed. Eng. 32(5), 696–705 (2004).
[Crossref] [PubMed]

Lee, A.

J. Lee, S. Y. Teh, A. Lee, H. H. Kim, C. Lee, and K. K. Shung, “Transverse acoustic trapping using a gaussian focused ultrasound,” Ultrasound Med. Biol. 36(2), 350–355 (2010).
[Crossref] [PubMed]

Lee, C.

J. Y. Hwang, N. S. Lee, C. Lee, K. H. Lam, H. H. Kim, J. Woo, M. Y. Lin, K. Kisler, H. Choi, Q. Zhou, R. H. Chow, and K. K. Shung, “Investigating Contactless High Frequency Ultrasound Microbeam Stimulation for Determination of Invasion Potential of Breast Cancer Cells,” Biotechnol. Bioeng. 110(10), 2697–2705 (2013).
[Crossref] [PubMed]

J. Park, J. Lee, S. T. Lau, C. Lee, Y. Huang, C. L. Lien, and K. Kirk Shung, “Acoustic radiation force impulse (ARFI) imaging of zebrafish embryo by high-frequency coded excitation sequence,” Ann. Biomed. Eng. 40(4), 907–915 (2012).
[Crossref] [PubMed]

J. Lee, S. Y. Teh, A. Lee, H. H. Kim, C. Lee, and K. K. Shung, “Transverse acoustic trapping using a gaussian focused ultrasound,” Ultrasound Med. Biol. 36(2), 350–355 (2010).
[Crossref] [PubMed]

Lee, G. U.

D. Kilinc and G. U. Lee, “Advances in magnetic tweezers for single molecule and cell biophysics,” Integrative biology: Quantitative Biosciences from Nano to Macro 6(1), 27–34 (2013).
[Crossref]

Lee, J.

J. Park, J. Lee, S. T. Lau, C. Lee, Y. Huang, C. L. Lien, and K. Kirk Shung, “Acoustic radiation force impulse (ARFI) imaging of zebrafish embryo by high-frequency coded excitation sequence,” Ann. Biomed. Eng. 40(4), 907–915 (2012).
[Crossref] [PubMed]

J. Lee, S. Y. Teh, A. Lee, H. H. Kim, C. Lee, and K. K. Shung, “Transverse acoustic trapping using a gaussian focused ultrasound,” Ultrasound Med. Biol. 36(2), 350–355 (2010).
[Crossref] [PubMed]

Lee, N. S.

J. Y. Hwang, N. S. Lee, C. Lee, K. H. Lam, H. H. Kim, J. Woo, M. Y. Lin, K. Kisler, H. Choi, Q. Zhou, R. H. Chow, and K. K. Shung, “Investigating Contactless High Frequency Ultrasound Microbeam Stimulation for Determination of Invasion Potential of Breast Cancer Cells,” Biotechnol. Bioeng. 110(10), 2697–2705 (2013).
[Crossref] [PubMed]

Lenz, D.

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J. 88(5), 3689–3698 (2005).
[Crossref] [PubMed]

Leung, C. K.

C. K. Leung, C. Ye, and R. N. Weinreb, “An Ultra-High-Speed Scheimpflug Camera for Evaluation of Corneal Deformation Response and Its Impact on IOP Measurement,” Invest. Ophthalmol. Vis. Sci. 54(4), 2885–2892 (2013).
[Crossref] [PubMed]

Li, X.

J. Park, C. Hu, X. Li, Q. Zhou, and K. K. Shung, “Wideband linear power amplifier for high-frequency ultrasonic coded excitation imaging,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 59(4), 825–832 (2012).
[Crossref] [PubMed]

Lien, C. L.

J. Park, J. Lee, S. T. Lau, C. Lee, Y. Huang, C. L. Lien, and K. Kirk Shung, “Acoustic radiation force impulse (ARFI) imaging of zebrafish embryo by high-frequency coded excitation sequence,” Ann. Biomed. Eng. 40(4), 907–915 (2012).
[Crossref] [PubMed]

Lim, C. T.

H. W. Hou, A. A. Bhagat, A. G. Chong, P. Mao, K. S. Tan, J. Han, and C. T. Lim, “Deformability based cell margination--a simple microfluidic design for malaria-infected erythrocyte separation,” Lab Chip 10(19), 2605–2613 (2010).
[Crossref] [PubMed]

Lin, M. Y.

J. Y. Hwang, N. S. Lee, C. Lee, K. H. Lam, H. H. Kim, J. Woo, M. Y. Lin, K. Kisler, H. Choi, Q. Zhou, R. H. Chow, and K. K. Shung, “Investigating Contactless High Frequency Ultrasound Microbeam Stimulation for Determination of Invasion Potential of Breast Cancer Cells,” Biotechnol. Bioeng. 110(10), 2697–2705 (2013).
[Crossref] [PubMed]

Lincoln, B.

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J. 88(5), 3689–3698 (2005).
[Crossref] [PubMed]

Litovsky, S. H.

P. Cherukuri, S. M. Bachilo, S. H. Litovsky, and R. B. Weisman, “Near-infrared fluorescence microscopy of single-walled carbon nanotubes in phagocytic cells,” J. Am. Chem. Soc. 126(48), 15638–15639 (2004).
[Crossref] [PubMed]

Liu, K. K.

H. Zhang and K. K. Liu, “Optical tweezers for single cells,” J. R. Soc. Interface 5(24), 671–690 (2008).
[Crossref] [PubMed]

Ludwig, K.

M. L. Palmeri, K. D. Frinkley, L. Zhai, M. Gottfried, R. C. Bentley, K. Ludwig, and K. R. Nightingale, “Acoustic radiation force impulse (ARFI) imaging of the gastrointestinal tract,” Ultrason. Imaging 27(2), 75–88 (2005).
[Crossref] [PubMed]

Lykotrafitis, G.

J. L. Maciaszek and G. Lykotrafitis, “Sickle cell trait human erythrocytes are significantly stiffer than normal,” J. Biomech. 44(4), 657–661 (2011).
[Crossref] [PubMed]

Maciaszek, J. L.

J. L. Maciaszek and G. Lykotrafitis, “Sickle cell trait human erythrocytes are significantly stiffer than normal,” J. Biomech. 44(4), 657–661 (2011).
[Crossref] [PubMed]

Maksym, G. N.

B. Fabry, G. N. Maksym, R. D. Hubmayr, J. P. Butler, and J. J. Fredberg, “Implications of heterogeneous bead behavior on cell mechanical properties measured with magnetic twisting cytometry,” J. Magn. Magn. Mater. 194(1-3), 120–125 (1999).
[Crossref]

Mao, P.

H. W. Hou, A. A. Bhagat, A. G. Chong, P. Mao, K. S. Tan, J. Han, and C. T. Lim, “Deformability based cell margination--a simple microfluidic design for malaria-infected erythrocyte separation,” Lab Chip 10(19), 2605–2613 (2010).
[Crossref] [PubMed]

Marega, R.

H. Dumortier, S. Lacotte, G. Pastorin, R. Marega, W. Wu, D. Bonifazi, J. P. Briand, M. Prato, S. Muller, and A. Bianco, “Functionalized carbon nanotubes are non-cytotoxic and preserve the functionality of primary immune cells,” Nano Lett. 6(7), 1522–1528 (2006).
[Crossref] [PubMed]

Maynard, A.

A. A. Shvedova, V. Castranova, E. R. Kisin, D. Schwegler-Berry, A. R. Murray, V. Z. Gandelsman, A. Maynard, and P. Baron, “Exposure to carbon nanotube material: assessment of nanotube cytotoxicity using human keratinocyte cells,” J. Toxicol. Environ. Health A 66(20), 1909–1926 (2003).
[Crossref] [PubMed]

McDermott, B. A.

K. R. Nightingale, P. J. Kornguth, W. F. Walker, B. A. McDermott, and G. E. Trahey, “A novel ultrasonic technique for differentiating cysts from solid lesions: preliminary results in the breast,” Ultrasound Med. Biol. 21(6), 745–751 (1995).
[Crossref] [PubMed]

McDonald, J.

W. Xu, R. Mezencev, B. Kim, L. Wang, J. McDonald, and T. Sulchek, “Cell stiffness is a biomarker of the metastatic potential of ovarian cancer cells,” PLoS ONE 7(10), e46609 (2012).
[Crossref] [PubMed]

Mezencev, R.

W. Xu, R. Mezencev, B. Kim, L. Wang, J. McDonald, and T. Sulchek, “Cell stiffness is a biomarker of the metastatic potential of ovarian cancer cells,” PLoS ONE 7(10), e46609 (2012).
[Crossref] [PubMed]

Miller, E.

D. Dumont, J. Dahl, E. Miller, J. Allen, B. Fahey, and G. Trahey, “Lower-limb vascular imaging with acoustic radiation force elastography: demonstration of in vivo feasibility,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 56(5), 931–944 (2009).
[Crossref] [PubMed]

Mitchell, D.

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J. 88(5), 3689–3698 (2005).
[Crossref] [PubMed]

Möller, W.

A. R. Bausch, W. Möller, and E. Sackmann, “Measurement of local viscoelasticity and forces in living cells by magnetic tweezers,” Biophys. J. 76(1), 573–579 (1999).
[Crossref] [PubMed]

Muller, S.

H. Dumortier, S. Lacotte, G. Pastorin, R. Marega, W. Wu, D. Bonifazi, J. P. Briand, M. Prato, S. Muller, and A. Bianco, “Functionalized carbon nanotubes are non-cytotoxic and preserve the functionality of primary immune cells,” Nano Lett. 6(7), 1522–1528 (2006).
[Crossref] [PubMed]

Murray, A. R.

A. A. Shvedova, V. Castranova, E. R. Kisin, D. Schwegler-Berry, A. R. Murray, V. Z. Gandelsman, A. Maynard, and P. Baron, “Exposure to carbon nanotube material: assessment of nanotube cytotoxicity using human keratinocyte cells,” J. Toxicol. Environ. Health A 66(20), 1909–1926 (2003).
[Crossref] [PubMed]

Musielak, M.

M. Musielak, “Red blood cell-deformability measurement: review of techniques,” Clin. Hemorheol. Microcirc. 42(1), 47–64 (2009).
[PubMed]

Mythreye, K.

V. Swaminathan, K. Mythreye, E. T. O’Brien, A. Berchuck, G. C. Blobe, and R. Superfine, “Mechanical stiffness grades metastatic potential in patient tumor cells and in cancer cell lines,” Cancer Res. 71(15), 5075–5080 (2011).
[Crossref] [PubMed]

Navajas, D.

F. Rico, P. Roca-Cusachs, N. Gavara, R. Farré, M. Rotger, and D. Navajas, “Probing mechanical properties of living cells by atomic force microscopy with blunted pyramidal cantilever tips,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(2), 021914 (2005).
[Crossref] [PubMed]

Nightingale, K.

K. Nightingale, M. S. Soo, R. Nightingale, and G. Trahey, “Acoustic radiation force impulse imaging: in vivo demonstration of clinical feasibility,” Ultrasound Med. Biol. 28(2), 227–235 (2002).
[Crossref] [PubMed]

Nightingale, K. R.

M. L. Palmeri, K. D. Frinkley, L. Zhai, M. Gottfried, R. C. Bentley, K. Ludwig, and K. R. Nightingale, “Acoustic radiation force impulse (ARFI) imaging of the gastrointestinal tract,” Ultrason. Imaging 27(2), 75–88 (2005).
[Crossref] [PubMed]

K. R. Nightingale, P. J. Kornguth, W. F. Walker, B. A. McDermott, and G. E. Trahey, “A novel ultrasonic technique for differentiating cysts from solid lesions: preliminary results in the breast,” Ultrasound Med. Biol. 21(6), 745–751 (1995).
[Crossref] [PubMed]

Nightingale, R.

K. Nightingale, M. S. Soo, R. Nightingale, and G. Trahey, “Acoustic radiation force impulse imaging: in vivo demonstration of clinical feasibility,” Ultrasound Med. Biol. 28(2), 227–235 (2002).
[Crossref] [PubMed]

O’Brien, E. T.

V. Swaminathan, K. Mythreye, E. T. O’Brien, A. Berchuck, G. C. Blobe, and R. Superfine, “Mechanical stiffness grades metastatic potential in patient tumor cells and in cancer cell lines,” Cancer Res. 71(15), 5075–5080 (2011).
[Crossref] [PubMed]

Oberhauser, J. P.

F. Viola, M. D. Kramer, M. B. Lawrence, J. P. Oberhauser, and W. F. Walker, “Sonorheometry: a noncontact method for the dynamic assessment of thrombosis,” Ann. Biomed. Eng. 32(5), 696–705 (2004).
[Crossref] [PubMed]

Palmeri, M. L.

M. L. Palmeri, K. D. Frinkley, L. Zhai, M. Gottfried, R. C. Bentley, K. Ludwig, and K. R. Nightingale, “Acoustic radiation force impulse (ARFI) imaging of the gastrointestinal tract,” Ultrason. Imaging 27(2), 75–88 (2005).
[Crossref] [PubMed]

Park, J.

J. Park, J. Lee, S. T. Lau, C. Lee, Y. Huang, C. L. Lien, and K. Kirk Shung, “Acoustic radiation force impulse (ARFI) imaging of zebrafish embryo by high-frequency coded excitation sequence,” Ann. Biomed. Eng. 40(4), 907–915 (2012).
[Crossref] [PubMed]

J. Park, C. Hu, X. Li, Q. Zhou, and K. K. Shung, “Wideband linear power amplifier for high-frequency ultrasonic coded excitation imaging,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 59(4), 825–832 (2012).
[Crossref] [PubMed]

Park, K. H.

K. H. Park, M. Chhowalla, Z. Iqbal, and F. Sesti, “Single-walled carbon nanotubes are a new class of ion channel blockers,” J. Biol. Chem. 278(50), 50212–50216 (2003).
[Crossref] [PubMed]

Pastorin, G.

H. Dumortier, S. Lacotte, G. Pastorin, R. Marega, W. Wu, D. Bonifazi, J. P. Briand, M. Prato, S. Muller, and A. Bianco, “Functionalized carbon nanotubes are non-cytotoxic and preserve the functionality of primary immune cells,” Nano Lett. 6(7), 1522–1528 (2006).
[Crossref] [PubMed]

Prato, M.

H. Dumortier, S. Lacotte, G. Pastorin, R. Marega, W. Wu, D. Bonifazi, J. P. Briand, M. Prato, S. Muller, and A. Bianco, “Functionalized carbon nanotubes are non-cytotoxic and preserve the functionality of primary immune cells,” Nano Lett. 6(7), 1522–1528 (2006).
[Crossref] [PubMed]

Pravincumar, P.

P. Pravincumar, D. L. Bader, and M. M. Knight, “Viscoelastic cell mechanics and actin remodelling are dependent on the rate of applied pressure,” PLoS ONE 7(9), e43938 (2012).
[Crossref] [PubMed]

Ramanathan, T.

T. Ramanathan, F. T. Fisher, R. S. Ruoff, and L. C. Brinson, “Amino-Functionalized Carbon Nanotubes for Binding to Polymers and Biological Systems,” Chem. Mater. 17(6), 1290–1295 (2005).
[Crossref]

Rico, F.

F. Rico, P. Roca-Cusachs, N. Gavara, R. Farré, M. Rotger, and D. Navajas, “Probing mechanical properties of living cells by atomic force microscopy with blunted pyramidal cantilever tips,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(2), 021914 (2005).
[Crossref] [PubMed]

Roca-Cusachs, P.

F. Rico, P. Roca-Cusachs, N. Gavara, R. Farré, M. Rotger, and D. Navajas, “Probing mechanical properties of living cells by atomic force microscopy with blunted pyramidal cantilever tips,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(2), 021914 (2005).
[Crossref] [PubMed]

Romeyke, M.

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J. 88(5), 3689–3698 (2005).
[Crossref] [PubMed]

Rotger, M.

F. Rico, P. Roca-Cusachs, N. Gavara, R. Farré, M. Rotger, and D. Navajas, “Probing mechanical properties of living cells by atomic force microscopy with blunted pyramidal cantilever tips,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(2), 021914 (2005).
[Crossref] [PubMed]

Ruoff, R. S.

T. Ramanathan, F. T. Fisher, R. S. Ruoff, and L. C. Brinson, “Amino-Functionalized Carbon Nanotubes for Binding to Polymers and Biological Systems,” Chem. Mater. 17(6), 1290–1295 (2005).
[Crossref]

Sackmann, E.

A. R. Bausch, W. Möller, and E. Sackmann, “Measurement of local viscoelasticity and forces in living cells by magnetic tweezers,” Biophys. J. 76(1), 573–579 (1999).
[Crossref] [PubMed]

Schinkinger, S.

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J. 88(5), 3689–3698 (2005).
[Crossref] [PubMed]

Schwegler-Berry, D.

A. A. Shvedova, V. Castranova, E. R. Kisin, D. Schwegler-Berry, A. R. Murray, V. Z. Gandelsman, A. Maynard, and P. Baron, “Exposure to carbon nanotube material: assessment of nanotube cytotoxicity using human keratinocyte cells,” J. Toxicol. Environ. Health A 66(20), 1909–1926 (2003).
[Crossref] [PubMed]

Sesti, F.

K. H. Park, M. Chhowalla, Z. Iqbal, and F. Sesti, “Single-walled carbon nanotubes are a new class of ion channel blockers,” J. Biol. Chem. 278(50), 50212–50216 (2003).
[Crossref] [PubMed]

Seufferlein, T.

N. Walter, T. Busch, T. Seufferlein, and J. P. Spatz, “Elastic moduli of living epithelial pancreatic cancer cells and their skeletonized keratin intermediate filament network,” Biointerphases 6(2), 79–85 (2011).
[Crossref] [PubMed]

Shi Kam, N. W.

N. W. Shi Kam, T. C. Jessop, P. A. Wender, and H. Dai, “Nanotube molecular transporters: internalization of carbon nanotube-protein conjugates into Mammalian cells,” J. Am. Chem. Soc. 126(22), 6850–6851 (2004).
[Crossref] [PubMed]

Shung, K. K.

J. Y. Hwang, N. S. Lee, C. Lee, K. H. Lam, H. H. Kim, J. Woo, M. Y. Lin, K. Kisler, H. Choi, Q. Zhou, R. H. Chow, and K. K. Shung, “Investigating Contactless High Frequency Ultrasound Microbeam Stimulation for Determination of Invasion Potential of Breast Cancer Cells,” Biotechnol. Bioeng. 110(10), 2697–2705 (2013).
[Crossref] [PubMed]

J. Park, C. Hu, X. Li, Q. Zhou, and K. K. Shung, “Wideband linear power amplifier for high-frequency ultrasonic coded excitation imaging,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 59(4), 825–832 (2012).
[Crossref] [PubMed]

J. Lee, S. Y. Teh, A. Lee, H. H. Kim, C. Lee, and K. K. Shung, “Transverse acoustic trapping using a gaussian focused ultrasound,” Ultrasound Med. Biol. 36(2), 350–355 (2010).
[Crossref] [PubMed]

Shvedova, A. A.

A. A. Shvedova, V. Castranova, E. R. Kisin, D. Schwegler-Berry, A. R. Murray, V. Z. Gandelsman, A. Maynard, and P. Baron, “Exposure to carbon nanotube material: assessment of nanotube cytotoxicity using human keratinocyte cells,” J. Toxicol. Environ. Health A 66(20), 1909–1926 (2003).
[Crossref] [PubMed]

Soo, M. S.

K. Nightingale, M. S. Soo, R. Nightingale, and G. Trahey, “Acoustic radiation force impulse imaging: in vivo demonstration of clinical feasibility,” Ultrasound Med. Biol. 28(2), 227–235 (2002).
[Crossref] [PubMed]

Spatz, J. P.

N. Walter, T. Busch, T. Seufferlein, and J. P. Spatz, “Elastic moduli of living epithelial pancreatic cancer cells and their skeletonized keratin intermediate filament network,” Biointerphases 6(2), 79–85 (2011).
[Crossref] [PubMed]

Sulchek, T.

W. Xu, R. Mezencev, B. Kim, L. Wang, J. McDonald, and T. Sulchek, “Cell stiffness is a biomarker of the metastatic potential of ovarian cancer cells,” PLoS ONE 7(10), e46609 (2012).
[Crossref] [PubMed]

Superfine, R.

V. Swaminathan, K. Mythreye, E. T. O’Brien, A. Berchuck, G. C. Blobe, and R. Superfine, “Mechanical stiffness grades metastatic potential in patient tumor cells and in cancer cell lines,” Cancer Res. 71(15), 5075–5080 (2011).
[Crossref] [PubMed]

Suresh, S.

S. Suresh, “Nanomedicine: elastic clues in cancer detection,” Nat. Nanotechnol. 2(12), 748–749 (2007).
[Crossref] [PubMed]

Swaminathan, V.

V. Swaminathan, K. Mythreye, E. T. O’Brien, A. Berchuck, G. C. Blobe, and R. Superfine, “Mechanical stiffness grades metastatic potential in patient tumor cells and in cancer cell lines,” Cancer Res. 71(15), 5075–5080 (2011).
[Crossref] [PubMed]

Swift, J. L.

M. M. Frigault, J. Lacoste, J. L. Swift, and C. M. Brown, “Live-cell microscopy - tips and tools,” J. Cell Sci. 122(6), 753–767 (2009).
[Crossref] [PubMed]

Tan, K. S.

H. W. Hou, A. A. Bhagat, A. G. Chong, P. Mao, K. S. Tan, J. Han, and C. T. Lim, “Deformability based cell margination--a simple microfluidic design for malaria-infected erythrocyte separation,” Lab Chip 10(19), 2605–2613 (2010).
[Crossref] [PubMed]

Teh, S. Y.

J. Lee, S. Y. Teh, A. Lee, H. H. Kim, C. Lee, and K. K. Shung, “Transverse acoustic trapping using a gaussian focused ultrasound,” Ultrasound Med. Biol. 36(2), 350–355 (2010).
[Crossref] [PubMed]

Trahey, G.

D. Dumont, J. Dahl, E. Miller, J. Allen, B. Fahey, and G. Trahey, “Lower-limb vascular imaging with acoustic radiation force elastography: demonstration of in vivo feasibility,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 56(5), 931–944 (2009).
[Crossref] [PubMed]

K. Nightingale, M. S. Soo, R. Nightingale, and G. Trahey, “Acoustic radiation force impulse imaging: in vivo demonstration of clinical feasibility,” Ultrasound Med. Biol. 28(2), 227–235 (2002).
[Crossref] [PubMed]

Trahey, G. E.

K. R. Nightingale, P. J. Kornguth, W. F. Walker, B. A. McDermott, and G. E. Trahey, “A novel ultrasonic technique for differentiating cysts from solid lesions: preliminary results in the breast,” Ultrasound Med. Biol. 21(6), 745–751 (1995).
[Crossref] [PubMed]

Ulvick, S.

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J. 88(5), 3689–3698 (2005).
[Crossref] [PubMed]

Viola, F.

F. Viola, M. D. Kramer, M. B. Lawrence, J. P. Oberhauser, and W. F. Walker, “Sonorheometry: a noncontact method for the dynamic assessment of thrombosis,” Ann. Biomed. Eng. 32(5), 696–705 (2004).
[Crossref] [PubMed]

Walker, W. F.

F. Viola, M. D. Kramer, M. B. Lawrence, J. P. Oberhauser, and W. F. Walker, “Sonorheometry: a noncontact method for the dynamic assessment of thrombosis,” Ann. Biomed. Eng. 32(5), 696–705 (2004).
[Crossref] [PubMed]

K. R. Nightingale, P. J. Kornguth, W. F. Walker, B. A. McDermott, and G. E. Trahey, “A novel ultrasonic technique for differentiating cysts from solid lesions: preliminary results in the breast,” Ultrasound Med. Biol. 21(6), 745–751 (1995).
[Crossref] [PubMed]

Walter, N.

N. Walter, T. Busch, T. Seufferlein, and J. P. Spatz, “Elastic moduli of living epithelial pancreatic cancer cells and their skeletonized keratin intermediate filament network,” Biointerphases 6(2), 79–85 (2011).
[Crossref] [PubMed]

Wang, L.

W. Xu, R. Mezencev, B. Kim, L. Wang, J. McDonald, and T. Sulchek, “Cell stiffness is a biomarker of the metastatic potential of ovarian cancer cells,” PLoS ONE 7(10), e46609 (2012).
[Crossref] [PubMed]

Weinreb, R. N.

C. K. Leung, C. Ye, and R. N. Weinreb, “An Ultra-High-Speed Scheimpflug Camera for Evaluation of Corneal Deformation Response and Its Impact on IOP Measurement,” Invest. Ophthalmol. Vis. Sci. 54(4), 2885–2892 (2013).
[Crossref] [PubMed]

Weisman, R. B.

P. Cherukuri, S. M. Bachilo, S. H. Litovsky, and R. B. Weisman, “Near-infrared fluorescence microscopy of single-walled carbon nanotubes in phagocytic cells,” J. Am. Chem. Soc. 126(48), 15638–15639 (2004).
[Crossref] [PubMed]

Wender, P. A.

N. W. Shi Kam, T. C. Jessop, P. A. Wender, and H. Dai, “Nanotube molecular transporters: internalization of carbon nanotube-protein conjugates into Mammalian cells,” J. Am. Chem. Soc. 126(22), 6850–6851 (2004).
[Crossref] [PubMed]

Woo, J.

J. Y. Hwang, N. S. Lee, C. Lee, K. H. Lam, H. H. Kim, J. Woo, M. Y. Lin, K. Kisler, H. Choi, Q. Zhou, R. H. Chow, and K. K. Shung, “Investigating Contactless High Frequency Ultrasound Microbeam Stimulation for Determination of Invasion Potential of Breast Cancer Cells,” Biotechnol. Bioeng. 110(10), 2697–2705 (2013).
[Crossref] [PubMed]

Wottawah, F.

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J. 88(5), 3689–3698 (2005).
[Crossref] [PubMed]

Wu, W.

H. Dumortier, S. Lacotte, G. Pastorin, R. Marega, W. Wu, D. Bonifazi, J. P. Briand, M. Prato, S. Muller, and A. Bianco, “Functionalized carbon nanotubes are non-cytotoxic and preserve the functionality of primary immune cells,” Nano Lett. 6(7), 1522–1528 (2006).
[Crossref] [PubMed]

Xu, W.

W. Xu, R. Mezencev, B. Kim, L. Wang, J. McDonald, and T. Sulchek, “Cell stiffness is a biomarker of the metastatic potential of ovarian cancer cells,” PLoS ONE 7(10), e46609 (2012).
[Crossref] [PubMed]

Ye, C.

C. K. Leung, C. Ye, and R. N. Weinreb, “An Ultra-High-Speed Scheimpflug Camera for Evaluation of Corneal Deformation Response and Its Impact on IOP Measurement,” Invest. Ophthalmol. Vis. Sci. 54(4), 2885–2892 (2013).
[Crossref] [PubMed]

Young, R. J.

L. Deng, S. J. Eichhorn, C. C. Kao, and R. J. Young, “The effective Young’s modulus of carbon nanotubes in composites,” ACS Appl. Mater. Interfaces 3(2), 433–440 (2011).
[Crossref] [PubMed]

Zanello, L. P.

L. P. Zanello, B. Zhao, H. Hu, and R. C. Haddon, “Bone cell proliferation on carbon nanotubes,” Nano Lett. 6(3), 562–567 (2006).
[Crossref] [PubMed]

Zhai, L.

M. L. Palmeri, K. D. Frinkley, L. Zhai, M. Gottfried, R. C. Bentley, K. Ludwig, and K. R. Nightingale, “Acoustic radiation force impulse (ARFI) imaging of the gastrointestinal tract,” Ultrason. Imaging 27(2), 75–88 (2005).
[Crossref] [PubMed]

Zhang, H.

H. Zhang and K. K. Liu, “Optical tweezers for single cells,” J. R. Soc. Interface 5(24), 671–690 (2008).
[Crossref] [PubMed]

Zhao, B.

L. P. Zanello, B. Zhao, H. Hu, and R. C. Haddon, “Bone cell proliferation on carbon nanotubes,” Nano Lett. 6(3), 562–567 (2006).
[Crossref] [PubMed]

Zhou, Q.

J. Y. Hwang, N. S. Lee, C. Lee, K. H. Lam, H. H. Kim, J. Woo, M. Y. Lin, K. Kisler, H. Choi, Q. Zhou, R. H. Chow, and K. K. Shung, “Investigating Contactless High Frequency Ultrasound Microbeam Stimulation for Determination of Invasion Potential of Breast Cancer Cells,” Biotechnol. Bioeng. 110(10), 2697–2705 (2013).
[Crossref] [PubMed]

J. Park, C. Hu, X. Li, Q. Zhou, and K. K. Shung, “Wideband linear power amplifier for high-frequency ultrasonic coded excitation imaging,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 59(4), 825–832 (2012).
[Crossref] [PubMed]

ACS Appl. Mater. Interfaces (1)

L. Deng, S. J. Eichhorn, C. C. Kao, and R. J. Young, “The effective Young’s modulus of carbon nanotubes in composites,” ACS Appl. Mater. Interfaces 3(2), 433–440 (2011).
[Crossref] [PubMed]

Ann. Biomed. Eng. (2)

F. Viola, M. D. Kramer, M. B. Lawrence, J. P. Oberhauser, and W. F. Walker, “Sonorheometry: a noncontact method for the dynamic assessment of thrombosis,” Ann. Biomed. Eng. 32(5), 696–705 (2004).
[Crossref] [PubMed]

J. Park, J. Lee, S. T. Lau, C. Lee, Y. Huang, C. L. Lien, and K. Kirk Shung, “Acoustic radiation force impulse (ARFI) imaging of zebrafish embryo by high-frequency coded excitation sequence,” Ann. Biomed. Eng. 40(4), 907–915 (2012).
[Crossref] [PubMed]

Biointerphases (1)

N. Walter, T. Busch, T. Seufferlein, and J. P. Spatz, “Elastic moduli of living epithelial pancreatic cancer cells and their skeletonized keratin intermediate filament network,” Biointerphases 6(2), 79–85 (2011).
[Crossref] [PubMed]

Biophys. J. (2)

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J. 88(5), 3689–3698 (2005).
[Crossref] [PubMed]

A. R. Bausch, W. Möller, and E. Sackmann, “Measurement of local viscoelasticity and forces in living cells by magnetic tweezers,” Biophys. J. 76(1), 573–579 (1999).
[Crossref] [PubMed]

Biotechnol. Bioeng. (1)

J. Y. Hwang, N. S. Lee, C. Lee, K. H. Lam, H. H. Kim, J. Woo, M. Y. Lin, K. Kisler, H. Choi, Q. Zhou, R. H. Chow, and K. K. Shung, “Investigating Contactless High Frequency Ultrasound Microbeam Stimulation for Determination of Invasion Potential of Breast Cancer Cells,” Biotechnol. Bioeng. 110(10), 2697–2705 (2013).
[Crossref] [PubMed]

Cancer Res. (1)

V. Swaminathan, K. Mythreye, E. T. O’Brien, A. Berchuck, G. C. Blobe, and R. Superfine, “Mechanical stiffness grades metastatic potential in patient tumor cells and in cancer cell lines,” Cancer Res. 71(15), 5075–5080 (2011).
[Crossref] [PubMed]

Chem. Mater. (1)

T. Ramanathan, F. T. Fisher, R. S. Ruoff, and L. C. Brinson, “Amino-Functionalized Carbon Nanotubes for Binding to Polymers and Biological Systems,” Chem. Mater. 17(6), 1290–1295 (2005).
[Crossref]

Clin. Hemorheol. Microcirc. (1)

M. Musielak, “Red blood cell-deformability measurement: review of techniques,” Clin. Hemorheol. Microcirc. 42(1), 47–64 (2009).
[PubMed]

IEEE Trans. Ultrason. Ferroelectr. Freq. Control (3)

T. A. Hall, M. Bilgen, M. F. Insana, and T. A. Krouskop, “Phlantom Materials for Elastography,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 44(6), 1355–1365 (1997).
[Crossref]

D. Dumont, J. Dahl, E. Miller, J. Allen, B. Fahey, and G. Trahey, “Lower-limb vascular imaging with acoustic radiation force elastography: demonstration of in vivo feasibility,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 56(5), 931–944 (2009).
[Crossref] [PubMed]

J. Park, C. Hu, X. Li, Q. Zhou, and K. K. Shung, “Wideband linear power amplifier for high-frequency ultrasonic coded excitation imaging,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 59(4), 825–832 (2012).
[Crossref] [PubMed]

Integrative biology: Quantitative Biosciences from Nano to Macro (1)

D. Kilinc and G. U. Lee, “Advances in magnetic tweezers for single molecule and cell biophysics,” Integrative biology: Quantitative Biosciences from Nano to Macro 6(1), 27–34 (2013).
[Crossref]

Invest. Ophthalmol. Vis. Sci. (1)

C. K. Leung, C. Ye, and R. N. Weinreb, “An Ultra-High-Speed Scheimpflug Camera for Evaluation of Corneal Deformation Response and Its Impact on IOP Measurement,” Invest. Ophthalmol. Vis. Sci. 54(4), 2885–2892 (2013).
[Crossref] [PubMed]

J. Am. Chem. Soc. (2)

P. Cherukuri, S. M. Bachilo, S. H. Litovsky, and R. B. Weisman, “Near-infrared fluorescence microscopy of single-walled carbon nanotubes in phagocytic cells,” J. Am. Chem. Soc. 126(48), 15638–15639 (2004).
[Crossref] [PubMed]

N. W. Shi Kam, T. C. Jessop, P. A. Wender, and H. Dai, “Nanotube molecular transporters: internalization of carbon nanotube-protein conjugates into Mammalian cells,” J. Am. Chem. Soc. 126(22), 6850–6851 (2004).
[Crossref] [PubMed]

J. Biol. Chem. (1)

K. H. Park, M. Chhowalla, Z. Iqbal, and F. Sesti, “Single-walled carbon nanotubes are a new class of ion channel blockers,” J. Biol. Chem. 278(50), 50212–50216 (2003).
[Crossref] [PubMed]

J. Biomech. (2)

R. M. Hochmuth, “Micropipette aspiration of living cells,” J. Biomech. 33(1), 15–22 (2000).
[Crossref] [PubMed]

J. L. Maciaszek and G. Lykotrafitis, “Sickle cell trait human erythrocytes are significantly stiffer than normal,” J. Biomech. 44(4), 657–661 (2011).
[Crossref] [PubMed]

J. Cell Sci. (1)

M. M. Frigault, J. Lacoste, J. L. Swift, and C. M. Brown, “Live-cell microscopy - tips and tools,” J. Cell Sci. 122(6), 753–767 (2009).
[Crossref] [PubMed]

J. Magn. Magn. Mater. (1)

B. Fabry, G. N. Maksym, R. D. Hubmayr, J. P. Butler, and J. J. Fredberg, “Implications of heterogeneous bead behavior on cell mechanical properties measured with magnetic twisting cytometry,” J. Magn. Magn. Mater. 194(1-3), 120–125 (1999).
[Crossref]

J. R. Soc. Interface (1)

H. Zhang and K. K. Liu, “Optical tweezers for single cells,” J. R. Soc. Interface 5(24), 671–690 (2008).
[Crossref] [PubMed]

J. Toxicol. Environ. Health A (1)

A. A. Shvedova, V. Castranova, E. R. Kisin, D. Schwegler-Berry, A. R. Murray, V. Z. Gandelsman, A. Maynard, and P. Baron, “Exposure to carbon nanotube material: assessment of nanotube cytotoxicity using human keratinocyte cells,” J. Toxicol. Environ. Health A 66(20), 1909–1926 (2003).
[Crossref] [PubMed]

Lab Chip (1)

H. W. Hou, A. A. Bhagat, A. G. Chong, P. Mao, K. S. Tan, J. Han, and C. T. Lim, “Deformability based cell margination--a simple microfluidic design for malaria-infected erythrocyte separation,” Lab Chip 10(19), 2605–2613 (2010).
[Crossref] [PubMed]

Nano Lett. (2)

H. Dumortier, S. Lacotte, G. Pastorin, R. Marega, W. Wu, D. Bonifazi, J. P. Briand, M. Prato, S. Muller, and A. Bianco, “Functionalized carbon nanotubes are non-cytotoxic and preserve the functionality of primary immune cells,” Nano Lett. 6(7), 1522–1528 (2006).
[Crossref] [PubMed]

L. P. Zanello, B. Zhao, H. Hu, and R. C. Haddon, “Bone cell proliferation on carbon nanotubes,” Nano Lett. 6(3), 562–567 (2006).
[Crossref] [PubMed]

Nanotechnology (1)

C. L. Bayer, J. Kelvekar, and S. Y. Emelianov, “Influence of nanosecond pulsed laser irradiance on the viability of nanoparticle-loaded cells: implications for safety of contrast-enhanced photoacoustic imaging,” Nanotechnology 24(46), 465101 (2013).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

S. Suresh, “Nanomedicine: elastic clues in cancer detection,” Nat. Nanotechnol. 2(12), 748–749 (2007).
[Crossref] [PubMed]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

F. Rico, P. Roca-Cusachs, N. Gavara, R. Farré, M. Rotger, and D. Navajas, “Probing mechanical properties of living cells by atomic force microscopy with blunted pyramidal cantilever tips,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(2), 021914 (2005).
[Crossref] [PubMed]

PLoS ONE (2)

P. Pravincumar, D. L. Bader, and M. M. Knight, “Viscoelastic cell mechanics and actin remodelling are dependent on the rate of applied pressure,” PLoS ONE 7(9), e43938 (2012).
[Crossref] [PubMed]

W. Xu, R. Mezencev, B. Kim, L. Wang, J. McDonald, and T. Sulchek, “Cell stiffness is a biomarker of the metastatic potential of ovarian cancer cells,” PLoS ONE 7(10), e46609 (2012).
[Crossref] [PubMed]

Ultrason. Imaging (1)

M. L. Palmeri, K. D. Frinkley, L. Zhai, M. Gottfried, R. C. Bentley, K. Ludwig, and K. R. Nightingale, “Acoustic radiation force impulse (ARFI) imaging of the gastrointestinal tract,” Ultrason. Imaging 27(2), 75–88 (2005).
[Crossref] [PubMed]

Ultrasound Med. Biol. (3)

J. Lee, S. Y. Teh, A. Lee, H. H. Kim, C. Lee, and K. K. Shung, “Transverse acoustic trapping using a gaussian focused ultrasound,” Ultrasound Med. Biol. 36(2), 350–355 (2010).
[Crossref] [PubMed]

K. Nightingale, M. S. Soo, R. Nightingale, and G. Trahey, “Acoustic radiation force impulse imaging: in vivo demonstration of clinical feasibility,” Ultrasound Med. Biol. 28(2), 227–235 (2002).
[Crossref] [PubMed]

K. R. Nightingale, P. J. Kornguth, W. F. Walker, B. A. McDermott, and G. E. Trahey, “A novel ultrasonic technique for differentiating cysts from solid lesions: preliminary results in the breast,” Ultrasound Med. Biol. 21(6), 745–751 (1995).
[Crossref] [PubMed]

Other (2)

Y. L. Wang and D. E. Discher, Cell Mechanics (Academic Press, San Diego, 2007).

B. C. Kuo, Theory and applications of step motors (West Pub. Co., St. Paul, 1974).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 PA-ARFI system. (a) Schematic of a PA-ARFI system and its photographs. (b) Triggering sequences for the PA-ARFI method.
Fig. 2
Fig. 2 Characteristics and alignment of the press-focused 30 MHz single element LiNbO3 transducer. (a) Photographic image of the transducer. (b) Pulse-echo characteristics of the transducer. (c) Lateral beam profile of a transducer. (d) Peak acoustic pressures at indicated voltage inputs to the transducer were measured by using a hydrophone. (e) Alignment of a laser beam (below) to the transducer’s focus was made by using a 6µm tungsten wire targets aligned along the horizontal (upper-left) and vertical (upper-right) direction at the center of the image and fluorescence imaging of 10 µM Rhodamine B solution. The scale bars indicate 50 μm.
Fig. 3
Fig. 3 Evaluation of PA-ARFI microscopy with agar phantoms. (a) Target position measured using PA-ARFI microscopy versus real target position. (b) Geometry of a tissue mimicking agar phantom. Photograph of the phantom (upper) and phantom layers (lower) consisting of a FCNT (a’), agar gel (b’), and substrate layer (c’). The scale bar indicates 5 mm. (c) Comparison of between measured Young’s Moduli and calculated Young’s moduli of phantoms. (d) Displacements of FCNTs in phantoms with the indicated Young’s moduli, 0.7 and 1.7 kPa, due to acoustic radiation forces at the given voltage inputs to the transducer (2, 10, 20, 30, and 40 Vpp). (e) Temporal displacement changes of target FCNTs in the indicated phantoms at the driving voltage = 40Vpp (representative ones). (f) Temporal displacement of PA signals before and after ARFI application on 1.7 kPa phantom (driving voltage: 40 Vpp). An arrow indicates the displacement direction.
Fig. 4
Fig. 4 Membrane displacement of different types of cancer cells due to applied acoustic radiation force (input voltage: 40 Vpp). (a) Diagram of PA-ARFI microscopy of cells. After positioning of a target cell labeled with FCNTs at the center of the image field of view (left), acoustic radiation force impulses were applied onto the cells (middle) and followed by tracking of cell membrane displacements (right). (b) Mean cell membrane displacement of MDA-MB-231 (n = 30), SKBR3 (n = 21), and MCF-7 (n = 10) cells (*: p-value < 0.01). (c) Histogram of membrane displacements of each cell type (red: MDA-MB-231, blue: SKBR3, green: MCF-7). The dotted graphs represent Gaussian distributions. (d) Temporal displacement changes of FNTs attached to the membrane of target cells (representative ones).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

F= W absorbed c = 2αI c .

Metrics