Abstract

We present a noninvasive method of detecting substance concentration in the aqueous humor based on dual-wavelength iris imaging technology. Two light sources, one centered within (392 nm) and the other centered outside (850 nm) of an absorption band of Pirenoxine Sodium, a common type of drugs in eye disease treatment, were used for dual-wavelength iris imaging measurement. After passing through the aqueous humor twice, the back-scattering light was detected by a charge-coupled device (CCD). The detected images were then used to calculate the concentration of Pirenoxine Sodium. In eye model experiment, a resolution of 0.6525 ppm was achieved. Meanwhile, at least 4 ppm can be distinguished in in vivo experiment. These results demonstrated that our method can measure Pirenoxine Sodium concentration in the aqueous humor and its potential ability to monitor other materials’ concentration in the aqueous humor.

©2011 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Characterizing dual wavelength polarimetry through the eye for monitoring glucose

Bilal H. Malik and Gerard L. Coté
Biomed. Opt. Express 1(5) 1247-1258 (2010)

Noninvasive glucose monitoring in vivo with an optical heterodyne polarimeter

Chien Chou, Chien-Yuan Han, Wen-Chuan Kuo, Yeu-Chuen Huang, Ching-Mei Feng, and Jenn-Chyang Shyu
Appl. Opt. 37(16) 3553-3557 (1998)

Noninvasive monitoring of glucose concentration with optical coherence tomography

Rinat O. Esenaliev, Krill V. Larin, Irina V. Larina, and Massoud Motamedi
Opt. Lett. 26(13) 992-994 (2001)

References

  • View by:
  • |
  • |
  • |

  1. R. L. Stamper, “Aqueous humor: secretion and dynamics,” in Physiology of the Human Eye and Visual System, R. E. Records, Ed. (Harper & Row, New York, 1979).
  2. M. C. Mortimer, “Tthe eye’s aqueous humor, from secretion to Glaucoma,” Current Topics in Membranes, (Academic Press, San Diego, 1998).
  3. Pipe & Rapley, Ocular Anatomy and Histology (The association of British Opticians, London, 1999).
  4. E. V. Navajas, J. R. Martins, L. A. Melo, V. S. Saraiva, C. P. Dietrich, H. B. Nader, and R. Belfort., “Concentration of hyaluronic acid in primary open-angle glaucoma aqueous humor,” Exp. Eye Res. 80(6), 853–857 (2005).
    [Crossref] [PubMed]
  5. M. T. Leite, T. S. Prata, C. Z. Kera, D. V. Miranda, S. B. de Moraes Barros, and L. A. Melo., “Ascorbic acid concentration is reduced in the secondary aqueous humour of glaucomatous patients,” Clin. Experiment. Ophthalmol. 37(4), 402–406 (2009).
    [Crossref] [PubMed]
  6. G. G. Koliakos, A. G. Konstas, U. Schlötzer-Schrehardt, T. Bufidis, N. Georgiadis, and A. Ringvold, “Ascorbic acid concentration is reduced in the aqueous humor of patients with exfoliation syndrome,” Am. J. Ophthalmol. 134(6), 879–883 (2002).
    [Crossref] [PubMed]
  7. S. Pohjola, “The glucose content of the aqueous humor in man,” Acta Ophthalmol. (Copenh.) 88, 11–80 (1966).
  8. B. D. Cameron, J. S. Baba, and G. L. Coté, “Measurement of the glucose transport time delay between the blood and aqueous humor of the eye for the eventual development of a noninvasive glucose sensor,” Diabetes Technol. Ther. 3(2), 201–207 (2001).
    [Crossref] [PubMed]
  9. B. D. Cameron, H. W. Gorde, B. Satheesan, and G. L. Coté, “The use of polarized laser light through the eye for noninvasive glucose monitoring,” Diabetes Technol. Ther. 1(2), 135–143 (1999).
    [Crossref] [PubMed]
  10. B. H. Malik and G. L. Coté, “Real-time, closed-loop dual-wavelength optical polarimetry for glucose monitoring,” J. Biomed. Opt. 15(1), 017002 (2010).
    [Crossref] [PubMed]
  11. B. H. Malik and G. L. Coté, “Modeling the corneal birefringence of the eye toward the development of a polarimetric glucose sensor,” J. Biomed. Opt. 15(3), 037012 (2010).
    [Crossref] [PubMed]
  12. J. Miller, C. G. Wilson, and D. Uttamchandani, “Minimally invasive spectroscopic system for intraocular drug detection,” J. Biomed. Opt. 7(1), 27–33 (2002).
    [Crossref] [PubMed]
  13. J. L. Lambert, C. C. Pelletier, and M. Borchert, “Glucose determination in human aqueous humor with Raman spectroscopy,” J. Biomed. Opt. 10(3), 031110 (2005).
    [Crossref] [PubMed]
  14. C. C. Pelletier, J. L. Lambert, and M. Borchert, “Determination of glucose in human aqueous humor using Raman spectroscopy and designed-solution calibration,” Appl. Spectrosc. 59(8), 1024–1031 (2005).
    [Crossref] [PubMed]
  15. D. Weissbrodt, R. Mueller, J. Perrin, J. Backhaus, and J. B. Jonas, “Infrared spectroscopic examination of aqueous humor,” J. Ocul. Pharmacol. Ther. 23(1), 54–56 (2007).
    [Crossref] [PubMed]
  16. A. J. Webb, and B. D. Cameron, “Multivariate image processing technique for noninvasive glucose sensing.” Proc. SPIE 757203 (2010)
  17. Y. Liu, P. Hering, and M. O. Scully, “An integrated optical sensor for measuring glucose concentration,” Appl. Phys. B 54(1), 18–23 (1992).
    [Crossref]
  18. E. A. Boettner and J. R. Wolter, “Transmission of the ocular media,” Invest. Ophthalmol. 1(6), 776–783 (1962).
  19. M. Pircher, E. Götzinger, R. Leitgeb, A. F. Fercher, and C. K. Hitzenberger, “Measurement and imaging of water concentration in human cornea with differential absorption optical coherence tomography,” Opt. Express 11(18), 2190–2197 (2003).
    [Crossref] [PubMed]
  20. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
    [Crossref] [PubMed]
  21. T. C. Ye, and N. L. Wang, The atlas of clinical glaucoma, People’s Medical Publishing House, Bei Jing (2007).
  22. C. Boyce, A. Ross, M. Monaco, L. Hornak, and X. Li, “Multispectral iris analysis: a preliminary study,” in Proc. CVPRW'06, IEEE, pp. 51–59(2006).
  23. D. M. Haaland and E. V. Thomas, “Partial least-squares methods for spectral analysis 1: relation to other quantitative calibration methods and the extraction of qualitative information,” Anal. Chem. 60(11), 1193–1202 (1988).
    [Crossref]
  24. H. M. Heise, R. Marbach, G. Janatsch, and J. D. Kruse-Jarres, “Multivariate determination of glucose in whole blood by attenuated total reflection infrared spectroscopy,” Anal. Chem. 61(18), 2009–2015 (1989).
    [Crossref] [PubMed]
  25. H. Martens, and T. Naes, Multivariate Calibration, Wiley, Chichester (1991).
  26. T. W. King, G. L. Cote, R. McNichols, and M. J. Goetz., “Multispectral polarimetric glucose detection using a single pockels cell,” Opt. Eng. 33(8), 2746–2753 (1994).
    [Crossref]
  27. G. R. Reiss, D. A. Lee, J. E. Topper, and R. F. Brubaker, “Aqueous humor flow during sleep,” Invest. Ophthalmol. Vis. Sci. 25(6), 776–778 (1984).
    [PubMed]
  28. J. S. Baba, B. D. Cameron, S. Theru, and G. L. Coté, “Effect of temperature, pH, and corneal birefringence on polarimetric glucose monitoring in the eye,” J. Biomed. Opt. 7(3), 321–328 (2002).
    [Crossref] [PubMed]

2010 (2)

B. H. Malik and G. L. Coté, “Real-time, closed-loop dual-wavelength optical polarimetry for glucose monitoring,” J. Biomed. Opt. 15(1), 017002 (2010).
[Crossref] [PubMed]

B. H. Malik and G. L. Coté, “Modeling the corneal birefringence of the eye toward the development of a polarimetric glucose sensor,” J. Biomed. Opt. 15(3), 037012 (2010).
[Crossref] [PubMed]

2009 (1)

M. T. Leite, T. S. Prata, C. Z. Kera, D. V. Miranda, S. B. de Moraes Barros, and L. A. Melo., “Ascorbic acid concentration is reduced in the secondary aqueous humour of glaucomatous patients,” Clin. Experiment. Ophthalmol. 37(4), 402–406 (2009).
[Crossref] [PubMed]

2007 (1)

D. Weissbrodt, R. Mueller, J. Perrin, J. Backhaus, and J. B. Jonas, “Infrared spectroscopic examination of aqueous humor,” J. Ocul. Pharmacol. Ther. 23(1), 54–56 (2007).
[Crossref] [PubMed]

2005 (3)

E. V. Navajas, J. R. Martins, L. A. Melo, V. S. Saraiva, C. P. Dietrich, H. B. Nader, and R. Belfort., “Concentration of hyaluronic acid in primary open-angle glaucoma aqueous humor,” Exp. Eye Res. 80(6), 853–857 (2005).
[Crossref] [PubMed]

J. L. Lambert, C. C. Pelletier, and M. Borchert, “Glucose determination in human aqueous humor with Raman spectroscopy,” J. Biomed. Opt. 10(3), 031110 (2005).
[Crossref] [PubMed]

C. C. Pelletier, J. L. Lambert, and M. Borchert, “Determination of glucose in human aqueous humor using Raman spectroscopy and designed-solution calibration,” Appl. Spectrosc. 59(8), 1024–1031 (2005).
[Crossref] [PubMed]

2003 (1)

2002 (3)

J. Miller, C. G. Wilson, and D. Uttamchandani, “Minimally invasive spectroscopic system for intraocular drug detection,” J. Biomed. Opt. 7(1), 27–33 (2002).
[Crossref] [PubMed]

G. G. Koliakos, A. G. Konstas, U. Schlötzer-Schrehardt, T. Bufidis, N. Georgiadis, and A. Ringvold, “Ascorbic acid concentration is reduced in the aqueous humor of patients with exfoliation syndrome,” Am. J. Ophthalmol. 134(6), 879–883 (2002).
[Crossref] [PubMed]

J. S. Baba, B. D. Cameron, S. Theru, and G. L. Coté, “Effect of temperature, pH, and corneal birefringence on polarimetric glucose monitoring in the eye,” J. Biomed. Opt. 7(3), 321–328 (2002).
[Crossref] [PubMed]

2001 (1)

B. D. Cameron, J. S. Baba, and G. L. Coté, “Measurement of the glucose transport time delay between the blood and aqueous humor of the eye for the eventual development of a noninvasive glucose sensor,” Diabetes Technol. Ther. 3(2), 201–207 (2001).
[Crossref] [PubMed]

1999 (1)

B. D. Cameron, H. W. Gorde, B. Satheesan, and G. L. Coté, “The use of polarized laser light through the eye for noninvasive glucose monitoring,” Diabetes Technol. Ther. 1(2), 135–143 (1999).
[Crossref] [PubMed]

1994 (1)

T. W. King, G. L. Cote, R. McNichols, and M. J. Goetz., “Multispectral polarimetric glucose detection using a single pockels cell,” Opt. Eng. 33(8), 2746–2753 (1994).
[Crossref]

1992 (1)

Y. Liu, P. Hering, and M. O. Scully, “An integrated optical sensor for measuring glucose concentration,” Appl. Phys. B 54(1), 18–23 (1992).
[Crossref]

1991 (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

1989 (1)

H. M. Heise, R. Marbach, G. Janatsch, and J. D. Kruse-Jarres, “Multivariate determination of glucose in whole blood by attenuated total reflection infrared spectroscopy,” Anal. Chem. 61(18), 2009–2015 (1989).
[Crossref] [PubMed]

1988 (1)

D. M. Haaland and E. V. Thomas, “Partial least-squares methods for spectral analysis 1: relation to other quantitative calibration methods and the extraction of qualitative information,” Anal. Chem. 60(11), 1193–1202 (1988).
[Crossref]

1984 (1)

G. R. Reiss, D. A. Lee, J. E. Topper, and R. F. Brubaker, “Aqueous humor flow during sleep,” Invest. Ophthalmol. Vis. Sci. 25(6), 776–778 (1984).
[PubMed]

1966 (1)

S. Pohjola, “The glucose content of the aqueous humor in man,” Acta Ophthalmol. (Copenh.) 88, 11–80 (1966).

1962 (1)

E. A. Boettner and J. R. Wolter, “Transmission of the ocular media,” Invest. Ophthalmol. 1(6), 776–783 (1962).

Baba, J. S.

J. S. Baba, B. D. Cameron, S. Theru, and G. L. Coté, “Effect of temperature, pH, and corneal birefringence on polarimetric glucose monitoring in the eye,” J. Biomed. Opt. 7(3), 321–328 (2002).
[Crossref] [PubMed]

B. D. Cameron, J. S. Baba, and G. L. Coté, “Measurement of the glucose transport time delay between the blood and aqueous humor of the eye for the eventual development of a noninvasive glucose sensor,” Diabetes Technol. Ther. 3(2), 201–207 (2001).
[Crossref] [PubMed]

Backhaus, J.

D. Weissbrodt, R. Mueller, J. Perrin, J. Backhaus, and J. B. Jonas, “Infrared spectroscopic examination of aqueous humor,” J. Ocul. Pharmacol. Ther. 23(1), 54–56 (2007).
[Crossref] [PubMed]

Belfort, R.

E. V. Navajas, J. R. Martins, L. A. Melo, V. S. Saraiva, C. P. Dietrich, H. B. Nader, and R. Belfort., “Concentration of hyaluronic acid in primary open-angle glaucoma aqueous humor,” Exp. Eye Res. 80(6), 853–857 (2005).
[Crossref] [PubMed]

Boettner, E. A.

E. A. Boettner and J. R. Wolter, “Transmission of the ocular media,” Invest. Ophthalmol. 1(6), 776–783 (1962).

Borchert, M.

C. C. Pelletier, J. L. Lambert, and M. Borchert, “Determination of glucose in human aqueous humor using Raman spectroscopy and designed-solution calibration,” Appl. Spectrosc. 59(8), 1024–1031 (2005).
[Crossref] [PubMed]

J. L. Lambert, C. C. Pelletier, and M. Borchert, “Glucose determination in human aqueous humor with Raman spectroscopy,” J. Biomed. Opt. 10(3), 031110 (2005).
[Crossref] [PubMed]

Brubaker, R. F.

G. R. Reiss, D. A. Lee, J. E. Topper, and R. F. Brubaker, “Aqueous humor flow during sleep,” Invest. Ophthalmol. Vis. Sci. 25(6), 776–778 (1984).
[PubMed]

Bufidis, T.

G. G. Koliakos, A. G. Konstas, U. Schlötzer-Schrehardt, T. Bufidis, N. Georgiadis, and A. Ringvold, “Ascorbic acid concentration is reduced in the aqueous humor of patients with exfoliation syndrome,” Am. J. Ophthalmol. 134(6), 879–883 (2002).
[Crossref] [PubMed]

Cameron, B. D.

J. S. Baba, B. D. Cameron, S. Theru, and G. L. Coté, “Effect of temperature, pH, and corneal birefringence on polarimetric glucose monitoring in the eye,” J. Biomed. Opt. 7(3), 321–328 (2002).
[Crossref] [PubMed]

B. D. Cameron, J. S. Baba, and G. L. Coté, “Measurement of the glucose transport time delay between the blood and aqueous humor of the eye for the eventual development of a noninvasive glucose sensor,” Diabetes Technol. Ther. 3(2), 201–207 (2001).
[Crossref] [PubMed]

B. D. Cameron, H. W. Gorde, B. Satheesan, and G. L. Coté, “The use of polarized laser light through the eye for noninvasive glucose monitoring,” Diabetes Technol. Ther. 1(2), 135–143 (1999).
[Crossref] [PubMed]

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Cote, G. L.

T. W. King, G. L. Cote, R. McNichols, and M. J. Goetz., “Multispectral polarimetric glucose detection using a single pockels cell,” Opt. Eng. 33(8), 2746–2753 (1994).
[Crossref]

Coté, G. L.

B. H. Malik and G. L. Coté, “Real-time, closed-loop dual-wavelength optical polarimetry for glucose monitoring,” J. Biomed. Opt. 15(1), 017002 (2010).
[Crossref] [PubMed]

B. H. Malik and G. L. Coté, “Modeling the corneal birefringence of the eye toward the development of a polarimetric glucose sensor,” J. Biomed. Opt. 15(3), 037012 (2010).
[Crossref] [PubMed]

J. S. Baba, B. D. Cameron, S. Theru, and G. L. Coté, “Effect of temperature, pH, and corneal birefringence on polarimetric glucose monitoring in the eye,” J. Biomed. Opt. 7(3), 321–328 (2002).
[Crossref] [PubMed]

B. D. Cameron, J. S. Baba, and G. L. Coté, “Measurement of the glucose transport time delay between the blood and aqueous humor of the eye for the eventual development of a noninvasive glucose sensor,” Diabetes Technol. Ther. 3(2), 201–207 (2001).
[Crossref] [PubMed]

B. D. Cameron, H. W. Gorde, B. Satheesan, and G. L. Coté, “The use of polarized laser light through the eye for noninvasive glucose monitoring,” Diabetes Technol. Ther. 1(2), 135–143 (1999).
[Crossref] [PubMed]

de Moraes Barros, S. B.

M. T. Leite, T. S. Prata, C. Z. Kera, D. V. Miranda, S. B. de Moraes Barros, and L. A. Melo., “Ascorbic acid concentration is reduced in the secondary aqueous humour of glaucomatous patients,” Clin. Experiment. Ophthalmol. 37(4), 402–406 (2009).
[Crossref] [PubMed]

Dietrich, C. P.

E. V. Navajas, J. R. Martins, L. A. Melo, V. S. Saraiva, C. P. Dietrich, H. B. Nader, and R. Belfort., “Concentration of hyaluronic acid in primary open-angle glaucoma aqueous humor,” Exp. Eye Res. 80(6), 853–857 (2005).
[Crossref] [PubMed]

Fercher, A. F.

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Fujimoto, J. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Georgiadis, N.

G. G. Koliakos, A. G. Konstas, U. Schlötzer-Schrehardt, T. Bufidis, N. Georgiadis, and A. Ringvold, “Ascorbic acid concentration is reduced in the aqueous humor of patients with exfoliation syndrome,” Am. J. Ophthalmol. 134(6), 879–883 (2002).
[Crossref] [PubMed]

Goetz, M. J.

T. W. King, G. L. Cote, R. McNichols, and M. J. Goetz., “Multispectral polarimetric glucose detection using a single pockels cell,” Opt. Eng. 33(8), 2746–2753 (1994).
[Crossref]

Gorde, H. W.

B. D. Cameron, H. W. Gorde, B. Satheesan, and G. L. Coté, “The use of polarized laser light through the eye for noninvasive glucose monitoring,” Diabetes Technol. Ther. 1(2), 135–143 (1999).
[Crossref] [PubMed]

Götzinger, E.

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Haaland, D. M.

D. M. Haaland and E. V. Thomas, “Partial least-squares methods for spectral analysis 1: relation to other quantitative calibration methods and the extraction of qualitative information,” Anal. Chem. 60(11), 1193–1202 (1988).
[Crossref]

Hee, M. R.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Heise, H. M.

H. M. Heise, R. Marbach, G. Janatsch, and J. D. Kruse-Jarres, “Multivariate determination of glucose in whole blood by attenuated total reflection infrared spectroscopy,” Anal. Chem. 61(18), 2009–2015 (1989).
[Crossref] [PubMed]

Hering, P.

Y. Liu, P. Hering, and M. O. Scully, “An integrated optical sensor for measuring glucose concentration,” Appl. Phys. B 54(1), 18–23 (1992).
[Crossref]

Hitzenberger, C. K.

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Janatsch, G.

H. M. Heise, R. Marbach, G. Janatsch, and J. D. Kruse-Jarres, “Multivariate determination of glucose in whole blood by attenuated total reflection infrared spectroscopy,” Anal. Chem. 61(18), 2009–2015 (1989).
[Crossref] [PubMed]

Jonas, J. B.

D. Weissbrodt, R. Mueller, J. Perrin, J. Backhaus, and J. B. Jonas, “Infrared spectroscopic examination of aqueous humor,” J. Ocul. Pharmacol. Ther. 23(1), 54–56 (2007).
[Crossref] [PubMed]

Kera, C. Z.

M. T. Leite, T. S. Prata, C. Z. Kera, D. V. Miranda, S. B. de Moraes Barros, and L. A. Melo., “Ascorbic acid concentration is reduced in the secondary aqueous humour of glaucomatous patients,” Clin. Experiment. Ophthalmol. 37(4), 402–406 (2009).
[Crossref] [PubMed]

King, T. W.

T. W. King, G. L. Cote, R. McNichols, and M. J. Goetz., “Multispectral polarimetric glucose detection using a single pockels cell,” Opt. Eng. 33(8), 2746–2753 (1994).
[Crossref]

Koliakos, G. G.

G. G. Koliakos, A. G. Konstas, U. Schlötzer-Schrehardt, T. Bufidis, N. Georgiadis, and A. Ringvold, “Ascorbic acid concentration is reduced in the aqueous humor of patients with exfoliation syndrome,” Am. J. Ophthalmol. 134(6), 879–883 (2002).
[Crossref] [PubMed]

Konstas, A. G.

G. G. Koliakos, A. G. Konstas, U. Schlötzer-Schrehardt, T. Bufidis, N. Georgiadis, and A. Ringvold, “Ascorbic acid concentration is reduced in the aqueous humor of patients with exfoliation syndrome,” Am. J. Ophthalmol. 134(6), 879–883 (2002).
[Crossref] [PubMed]

Kruse-Jarres, J. D.

H. M. Heise, R. Marbach, G. Janatsch, and J. D. Kruse-Jarres, “Multivariate determination of glucose in whole blood by attenuated total reflection infrared spectroscopy,” Anal. Chem. 61(18), 2009–2015 (1989).
[Crossref] [PubMed]

Lambert, J. L.

C. C. Pelletier, J. L. Lambert, and M. Borchert, “Determination of glucose in human aqueous humor using Raman spectroscopy and designed-solution calibration,” Appl. Spectrosc. 59(8), 1024–1031 (2005).
[Crossref] [PubMed]

J. L. Lambert, C. C. Pelletier, and M. Borchert, “Glucose determination in human aqueous humor with Raman spectroscopy,” J. Biomed. Opt. 10(3), 031110 (2005).
[Crossref] [PubMed]

Lee, D. A.

G. R. Reiss, D. A. Lee, J. E. Topper, and R. F. Brubaker, “Aqueous humor flow during sleep,” Invest. Ophthalmol. Vis. Sci. 25(6), 776–778 (1984).
[PubMed]

Leite, M. T.

M. T. Leite, T. S. Prata, C. Z. Kera, D. V. Miranda, S. B. de Moraes Barros, and L. A. Melo., “Ascorbic acid concentration is reduced in the secondary aqueous humour of glaucomatous patients,” Clin. Experiment. Ophthalmol. 37(4), 402–406 (2009).
[Crossref] [PubMed]

Leitgeb, R.

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Liu, Y.

Y. Liu, P. Hering, and M. O. Scully, “An integrated optical sensor for measuring glucose concentration,” Appl. Phys. B 54(1), 18–23 (1992).
[Crossref]

Malik, B. H.

B. H. Malik and G. L. Coté, “Real-time, closed-loop dual-wavelength optical polarimetry for glucose monitoring,” J. Biomed. Opt. 15(1), 017002 (2010).
[Crossref] [PubMed]

B. H. Malik and G. L. Coté, “Modeling the corneal birefringence of the eye toward the development of a polarimetric glucose sensor,” J. Biomed. Opt. 15(3), 037012 (2010).
[Crossref] [PubMed]

Marbach, R.

H. M. Heise, R. Marbach, G. Janatsch, and J. D. Kruse-Jarres, “Multivariate determination of glucose in whole blood by attenuated total reflection infrared spectroscopy,” Anal. Chem. 61(18), 2009–2015 (1989).
[Crossref] [PubMed]

Martins, J. R.

E. V. Navajas, J. R. Martins, L. A. Melo, V. S. Saraiva, C. P. Dietrich, H. B. Nader, and R. Belfort., “Concentration of hyaluronic acid in primary open-angle glaucoma aqueous humor,” Exp. Eye Res. 80(6), 853–857 (2005).
[Crossref] [PubMed]

McNichols, R.

T. W. King, G. L. Cote, R. McNichols, and M. J. Goetz., “Multispectral polarimetric glucose detection using a single pockels cell,” Opt. Eng. 33(8), 2746–2753 (1994).
[Crossref]

Melo, L. A.

M. T. Leite, T. S. Prata, C. Z. Kera, D. V. Miranda, S. B. de Moraes Barros, and L. A. Melo., “Ascorbic acid concentration is reduced in the secondary aqueous humour of glaucomatous patients,” Clin. Experiment. Ophthalmol. 37(4), 402–406 (2009).
[Crossref] [PubMed]

E. V. Navajas, J. R. Martins, L. A. Melo, V. S. Saraiva, C. P. Dietrich, H. B. Nader, and R. Belfort., “Concentration of hyaluronic acid in primary open-angle glaucoma aqueous humor,” Exp. Eye Res. 80(6), 853–857 (2005).
[Crossref] [PubMed]

Miller, J.

J. Miller, C. G. Wilson, and D. Uttamchandani, “Minimally invasive spectroscopic system for intraocular drug detection,” J. Biomed. Opt. 7(1), 27–33 (2002).
[Crossref] [PubMed]

Miranda, D. V.

M. T. Leite, T. S. Prata, C. Z. Kera, D. V. Miranda, S. B. de Moraes Barros, and L. A. Melo., “Ascorbic acid concentration is reduced in the secondary aqueous humour of glaucomatous patients,” Clin. Experiment. Ophthalmol. 37(4), 402–406 (2009).
[Crossref] [PubMed]

Mueller, R.

D. Weissbrodt, R. Mueller, J. Perrin, J. Backhaus, and J. B. Jonas, “Infrared spectroscopic examination of aqueous humor,” J. Ocul. Pharmacol. Ther. 23(1), 54–56 (2007).
[Crossref] [PubMed]

Nader, H. B.

E. V. Navajas, J. R. Martins, L. A. Melo, V. S. Saraiva, C. P. Dietrich, H. B. Nader, and R. Belfort., “Concentration of hyaluronic acid in primary open-angle glaucoma aqueous humor,” Exp. Eye Res. 80(6), 853–857 (2005).
[Crossref] [PubMed]

Navajas, E. V.

E. V. Navajas, J. R. Martins, L. A. Melo, V. S. Saraiva, C. P. Dietrich, H. B. Nader, and R. Belfort., “Concentration of hyaluronic acid in primary open-angle glaucoma aqueous humor,” Exp. Eye Res. 80(6), 853–857 (2005).
[Crossref] [PubMed]

Pelletier, C. C.

J. L. Lambert, C. C. Pelletier, and M. Borchert, “Glucose determination in human aqueous humor with Raman spectroscopy,” J. Biomed. Opt. 10(3), 031110 (2005).
[Crossref] [PubMed]

C. C. Pelletier, J. L. Lambert, and M. Borchert, “Determination of glucose in human aqueous humor using Raman spectroscopy and designed-solution calibration,” Appl. Spectrosc. 59(8), 1024–1031 (2005).
[Crossref] [PubMed]

Perrin, J.

D. Weissbrodt, R. Mueller, J. Perrin, J. Backhaus, and J. B. Jonas, “Infrared spectroscopic examination of aqueous humor,” J. Ocul. Pharmacol. Ther. 23(1), 54–56 (2007).
[Crossref] [PubMed]

Pircher, M.

Pohjola, S.

S. Pohjola, “The glucose content of the aqueous humor in man,” Acta Ophthalmol. (Copenh.) 88, 11–80 (1966).

Prata, T. S.

M. T. Leite, T. S. Prata, C. Z. Kera, D. V. Miranda, S. B. de Moraes Barros, and L. A. Melo., “Ascorbic acid concentration is reduced in the secondary aqueous humour of glaucomatous patients,” Clin. Experiment. Ophthalmol. 37(4), 402–406 (2009).
[Crossref] [PubMed]

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Reiss, G. R.

G. R. Reiss, D. A. Lee, J. E. Topper, and R. F. Brubaker, “Aqueous humor flow during sleep,” Invest. Ophthalmol. Vis. Sci. 25(6), 776–778 (1984).
[PubMed]

Ringvold, A.

G. G. Koliakos, A. G. Konstas, U. Schlötzer-Schrehardt, T. Bufidis, N. Georgiadis, and A. Ringvold, “Ascorbic acid concentration is reduced in the aqueous humor of patients with exfoliation syndrome,” Am. J. Ophthalmol. 134(6), 879–883 (2002).
[Crossref] [PubMed]

Saraiva, V. S.

E. V. Navajas, J. R. Martins, L. A. Melo, V. S. Saraiva, C. P. Dietrich, H. B. Nader, and R. Belfort., “Concentration of hyaluronic acid in primary open-angle glaucoma aqueous humor,” Exp. Eye Res. 80(6), 853–857 (2005).
[Crossref] [PubMed]

Satheesan, B.

B. D. Cameron, H. W. Gorde, B. Satheesan, and G. L. Coté, “The use of polarized laser light through the eye for noninvasive glucose monitoring,” Diabetes Technol. Ther. 1(2), 135–143 (1999).
[Crossref] [PubMed]

Schlötzer-Schrehardt, U.

G. G. Koliakos, A. G. Konstas, U. Schlötzer-Schrehardt, T. Bufidis, N. Georgiadis, and A. Ringvold, “Ascorbic acid concentration is reduced in the aqueous humor of patients with exfoliation syndrome,” Am. J. Ophthalmol. 134(6), 879–883 (2002).
[Crossref] [PubMed]

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Scully, M. O.

Y. Liu, P. Hering, and M. O. Scully, “An integrated optical sensor for measuring glucose concentration,” Appl. Phys. B 54(1), 18–23 (1992).
[Crossref]

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Swanson, E. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Theru, S.

J. S. Baba, B. D. Cameron, S. Theru, and G. L. Coté, “Effect of temperature, pH, and corneal birefringence on polarimetric glucose monitoring in the eye,” J. Biomed. Opt. 7(3), 321–328 (2002).
[Crossref] [PubMed]

Thomas, E. V.

D. M. Haaland and E. V. Thomas, “Partial least-squares methods for spectral analysis 1: relation to other quantitative calibration methods and the extraction of qualitative information,” Anal. Chem. 60(11), 1193–1202 (1988).
[Crossref]

Topper, J. E.

G. R. Reiss, D. A. Lee, J. E. Topper, and R. F. Brubaker, “Aqueous humor flow during sleep,” Invest. Ophthalmol. Vis. Sci. 25(6), 776–778 (1984).
[PubMed]

Uttamchandani, D.

J. Miller, C. G. Wilson, and D. Uttamchandani, “Minimally invasive spectroscopic system for intraocular drug detection,” J. Biomed. Opt. 7(1), 27–33 (2002).
[Crossref] [PubMed]

Weissbrodt, D.

D. Weissbrodt, R. Mueller, J. Perrin, J. Backhaus, and J. B. Jonas, “Infrared spectroscopic examination of aqueous humor,” J. Ocul. Pharmacol. Ther. 23(1), 54–56 (2007).
[Crossref] [PubMed]

Wilson, C. G.

J. Miller, C. G. Wilson, and D. Uttamchandani, “Minimally invasive spectroscopic system for intraocular drug detection,” J. Biomed. Opt. 7(1), 27–33 (2002).
[Crossref] [PubMed]

Wolter, J. R.

E. A. Boettner and J. R. Wolter, “Transmission of the ocular media,” Invest. Ophthalmol. 1(6), 776–783 (1962).

Acta Ophthalmol. (Copenh.) (1)

S. Pohjola, “The glucose content of the aqueous humor in man,” Acta Ophthalmol. (Copenh.) 88, 11–80 (1966).

Am. J. Ophthalmol. (1)

G. G. Koliakos, A. G. Konstas, U. Schlötzer-Schrehardt, T. Bufidis, N. Georgiadis, and A. Ringvold, “Ascorbic acid concentration is reduced in the aqueous humor of patients with exfoliation syndrome,” Am. J. Ophthalmol. 134(6), 879–883 (2002).
[Crossref] [PubMed]

Anal. Chem. (2)

D. M. Haaland and E. V. Thomas, “Partial least-squares methods for spectral analysis 1: relation to other quantitative calibration methods and the extraction of qualitative information,” Anal. Chem. 60(11), 1193–1202 (1988).
[Crossref]

H. M. Heise, R. Marbach, G. Janatsch, and J. D. Kruse-Jarres, “Multivariate determination of glucose in whole blood by attenuated total reflection infrared spectroscopy,” Anal. Chem. 61(18), 2009–2015 (1989).
[Crossref] [PubMed]

Appl. Phys. B (1)

Y. Liu, P. Hering, and M. O. Scully, “An integrated optical sensor for measuring glucose concentration,” Appl. Phys. B 54(1), 18–23 (1992).
[Crossref]

Appl. Spectrosc. (1)

Clin. Experiment. Ophthalmol. (1)

M. T. Leite, T. S. Prata, C. Z. Kera, D. V. Miranda, S. B. de Moraes Barros, and L. A. Melo., “Ascorbic acid concentration is reduced in the secondary aqueous humour of glaucomatous patients,” Clin. Experiment. Ophthalmol. 37(4), 402–406 (2009).
[Crossref] [PubMed]

Diabetes Technol. Ther. (2)

B. D. Cameron, J. S. Baba, and G. L. Coté, “Measurement of the glucose transport time delay between the blood and aqueous humor of the eye for the eventual development of a noninvasive glucose sensor,” Diabetes Technol. Ther. 3(2), 201–207 (2001).
[Crossref] [PubMed]

B. D. Cameron, H. W. Gorde, B. Satheesan, and G. L. Coté, “The use of polarized laser light through the eye for noninvasive glucose monitoring,” Diabetes Technol. Ther. 1(2), 135–143 (1999).
[Crossref] [PubMed]

Exp. Eye Res. (1)

E. V. Navajas, J. R. Martins, L. A. Melo, V. S. Saraiva, C. P. Dietrich, H. B. Nader, and R. Belfort., “Concentration of hyaluronic acid in primary open-angle glaucoma aqueous humor,” Exp. Eye Res. 80(6), 853–857 (2005).
[Crossref] [PubMed]

Invest. Ophthalmol. (1)

E. A. Boettner and J. R. Wolter, “Transmission of the ocular media,” Invest. Ophthalmol. 1(6), 776–783 (1962).

Invest. Ophthalmol. Vis. Sci. (1)

G. R. Reiss, D. A. Lee, J. E. Topper, and R. F. Brubaker, “Aqueous humor flow during sleep,” Invest. Ophthalmol. Vis. Sci. 25(6), 776–778 (1984).
[PubMed]

J. Biomed. Opt. (5)

J. S. Baba, B. D. Cameron, S. Theru, and G. L. Coté, “Effect of temperature, pH, and corneal birefringence on polarimetric glucose monitoring in the eye,” J. Biomed. Opt. 7(3), 321–328 (2002).
[Crossref] [PubMed]

B. H. Malik and G. L. Coté, “Real-time, closed-loop dual-wavelength optical polarimetry for glucose monitoring,” J. Biomed. Opt. 15(1), 017002 (2010).
[Crossref] [PubMed]

B. H. Malik and G. L. Coté, “Modeling the corneal birefringence of the eye toward the development of a polarimetric glucose sensor,” J. Biomed. Opt. 15(3), 037012 (2010).
[Crossref] [PubMed]

J. Miller, C. G. Wilson, and D. Uttamchandani, “Minimally invasive spectroscopic system for intraocular drug detection,” J. Biomed. Opt. 7(1), 27–33 (2002).
[Crossref] [PubMed]

J. L. Lambert, C. C. Pelletier, and M. Borchert, “Glucose determination in human aqueous humor with Raman spectroscopy,” J. Biomed. Opt. 10(3), 031110 (2005).
[Crossref] [PubMed]

J. Ocul. Pharmacol. Ther. (1)

D. Weissbrodt, R. Mueller, J. Perrin, J. Backhaus, and J. B. Jonas, “Infrared spectroscopic examination of aqueous humor,” J. Ocul. Pharmacol. Ther. 23(1), 54–56 (2007).
[Crossref] [PubMed]

Opt. Eng. (1)

T. W. King, G. L. Cote, R. McNichols, and M. J. Goetz., “Multispectral polarimetric glucose detection using a single pockels cell,” Opt. Eng. 33(8), 2746–2753 (1994).
[Crossref]

Opt. Express (1)

Science (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Other (7)

T. C. Ye, and N. L. Wang, The atlas of clinical glaucoma, People’s Medical Publishing House, Bei Jing (2007).

C. Boyce, A. Ross, M. Monaco, L. Hornak, and X. Li, “Multispectral iris analysis: a preliminary study,” in Proc. CVPRW'06, IEEE, pp. 51–59(2006).

H. Martens, and T. Naes, Multivariate Calibration, Wiley, Chichester (1991).

R. L. Stamper, “Aqueous humor: secretion and dynamics,” in Physiology of the Human Eye and Visual System, R. E. Records, Ed. (Harper & Row, New York, 1979).

M. C. Mortimer, “Tthe eye’s aqueous humor, from secretion to Glaucoma,” Current Topics in Membranes, (Academic Press, San Diego, 1998).

Pipe & Rapley, Ocular Anatomy and Histology (The association of British Opticians, London, 1999).

A. J. Webb, and B. D. Cameron, “Multivariate image processing technique for noninvasive glucose sensing.” Proc. SPIE 757203 (2010)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 The structure of anterior chamber. An incident light beam I0 gets into the anterior chamber. After passing through the aqueous humor, the emergent light I is scattered back from the iris. Being absorbed twice by the material in the aqueous humor, the emergent light intensity I carries the information of material concentration.
Fig. 2
Fig. 2 The absorption spectrum of Pirenoxine Sodium measured by a commercial UV spectrophotometer. The concentration of measured Pirenoxine Sodium solution was 5.33 ppm.
Fig. 3
Fig. 3 The schematic used in the experiment.
Fig. 4
Fig. 4 The images of the paper under the illumination of both wavelengths’ light.
Fig. 5
Fig. 5 The stimulation results by ZEMAX software. With different parameters set for hemisphere model and anterior chamber model, the relationship between specific area S and drug concentration c changes. Nevertheless, the linearity of S and c is strong under both models.
Fig. 6
Fig. 6 Images of the anterior chamber under different Pirenoxine Sodium concentrations using two light sources with different wavelengths, one centered within the absorption band of the drug, and the other outside the absorption band. As the drug concentration increased, the images of 392nm light source got darker, while the ones of 850nm light source maintained almost unchanged. (a) We used the dashed circle area to calculate drug concentration.
Fig. 7
Fig. 7 Calculated lnk versus r under different Pirenoxine Sodium concentrations in the eye model experiment. As the concentration increases, the value of lnk decreases.
Fig. 8
Fig. 8 The specific area S versus concentration of Pirenoxine Sodium in the eye model experiment. Data were averaged out of 30 measurements, and the error bars correspond to the standard deviation. The resolution was 0.6525 ppm.
Fig. 9
Fig. 9 Rabbit eye Images pictured by CCD with two wavelengths under different Pirenoxine Sodium concentrations.
Fig. 10
Fig. 10 The specific area S versus concentration of Pirenoxine Sodium in the in vivo experiment. Data are the average of 30 measurements, and the error bars correspond to the standard deviation.

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

I ( λ , d ) = I 0 ( λ ) e 2 ( μ a ( λ ) + μ s ( λ ) ) d ,
I ( λ , d ( λ , r ) ) = I 0 ( λ ) χ ( λ , r ) e 2 ( μ a ( λ ) + μ s ( λ ) ) d ( λ , r ) ,
ln ( I ( λ , d ( λ , r ) ) ) = ln ( I 0 ( λ ) ) + ln ( χ ( λ , r ) ) 2 ( μ a ( λ ) + μ s ( λ ) ) d ( λ , r ) .
ln ( I ( λ 1 , d ( λ 1 , r ) ) I ( λ 2 , d ( λ 2 , r ) ) ) = ln ( I 0 ( λ 1 ) I 0 ( λ 2 ) ) + ln ( χ ( λ 1 , r ) χ ( λ 2 , r ) ) 2 ( μ a ( λ 1 ) + μ s ( λ 1 ) ) d ( λ 1 , r )                                                                                                    + 2 ( μ a ( λ 2 ) + μ s ( λ 2 ) ) d ( λ 2 , r ) ,
ln ( I ( λ 1 , d ( λ 1 , r ) ) I ( λ 2 , d ( λ 2 , r ) ) ) = ln ( I 0 ( λ 1 ) I 0 ( λ 2 ) ) + ln ( χ ( λ 1 , r ) χ ( λ 2 , r ) ) 2 μ a ( λ 1 ) d ( λ 1 , r ) .
r 1 r 2 ln ( I ( λ 1 , d ( λ 1 , r ) ) I ( λ 2 , d ( λ 2 , r ) ) ) d r = r 1 r 2 ( ln ( I 0 ( λ 1 ) I 0 ( λ 2 ) ) + ln ( χ ( λ 1 , r ) χ ( λ 2 , r ) ) ) d r 2 μ a ( λ 1 ) r 1 r 2 d ( λ 1 , r ) d r ,
S = r 1 r 2 ln ( I ( λ 1 , d ( λ 1 , r ) ) I ( λ 2 , d ( λ 2 , r ) ) ) d r ,
c = μ a ( λ 1 ) σ a .
c = ( S b ) a ,
b = r 1 r 2 ( ln ( I 0 ( λ 1 ) I 0 ( λ 2 ) ) + ln ( χ ( λ 1 , r ) χ ( λ 2 , r ) ) ) d r ,
a = 2 σ a r 1 r 2 d ( λ 1 , r ) d r .
S = 8.324 * c 3.024 ,
s = Δ S Δ c ,
δ c = Δ c Δ S δ S ,
a = σ a ( r 1 r 2 d ( λ 1 , r ) d r + η r 1 r 2 z ( λ 1 , r ) d r ) ,

Metrics