Abstract

The application of electrospray (ES) for quantitative transfer of analytes from solution to an internal reflection element for analysis by attenuated total reflection Fourier transform infrared (ATR FT-IR) spectroscopy has been developed in this work. The ES ATR FT-IR method is evaluated with non-volatile and semi-volatile organic and inorganic compounds dissolved in pure organic solvents or organics in a mixture with water. The technique demonstrates the capability for rapid solvent evaporation from dilute solutions, facilitating the creation of thin films that allow ATR FT-IR to generate transmission-mode-like spectra. Electrospray ATR FT-IR with multiple reflections displays a linear response (R2 = 0.95–0.99) in absorbance with the deposited mass and instrumental detection limit < 100 ng, which demonstrates potential for quantitative applications. The method is applicable when crystalline substances are present, even though the formation of particles restricts the upper limit of mass loadings relative to substances forming homogeneous films. In addition to the solvent, semi-volatile compounds can evaporate during the ES process; the magnitude of losses will depend on solution composition and temperature.

© 2019 The Author(s)

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Supplementary Material (1)

NameDescription
» Supplement 1       Supplemental file.

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription