Abstract

This paper presents a Fourier transform infrared (FT-IR) spectrometer calibration procedure based on an unusual source made from a spectrally selective surface. An alternative solution to the usual calibrators has been developed to cope with the tight mass budget of an instrument devoted to Mars surface exploration. The designed system has proved effective, in terms of achievable radiometric accuracy, despite the drawbacks due to the significant reflectivity of the sources. The proposed procedure is a standard “two-source” approach in which both cold and hot sources are thermally controlled surfaces, similar to an optical solar reflector, associated to a filament lamp. Such a system allows the required signal to be achieved in the 2–25 l m instrument wavelength range. Source optimization was performed using, as a cost function, the computed radiometric uncertainty, while the required absolute accuracy of the instrument was imposed as the optimization constraint.

PDF Article

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription