Abstract

The quality of flax fiber in the textile industry is closely related to the wax content remaining on the fiber after the cleaning process. Extraction by organic solvents, which is currently used for determining wax content, is very time consuming and produces chemical waste. In this study, near-infrared (NIR) spectroscopy was used as a rapid analytical technique to develop models for wax content associated with flax fiber. Calibration samples (<i>n</i> = 11) were prepared by manually mixing dewaxed fiber and isolated wax to provide a range of wax content from 0 to 5%. A total of fourteen flax fiber samples obtained after a cleaning process were used for prediction. Principal component analysis demonstrated that one principal component is enough to separate the flax fibers by their wax content. The most highly correlated wavelengths were 2312, 2352, 1732, and 1766 nm, in order of significance. Partial least squares models were developed with various chemometric preprocessing approaches to obtain the best model performance. Two models, one using the entire region (1100–2498 nm) and the other using the selected wavelengths, were developed and the accuracies compared. For the model using the entire region, the correlation coefficient (<i>R</i><sup>2</sup>) between actual and predicted values was 0.996 and the standard error of prediction (RMSEP) was 0.289%. For the selected-wavelengths model, the <i>R</i><sup>2</sup> was 0.997 and RMSEP was 0.272%. The results suggested that NIR spectroscopy can be used to determine wax content in very clean flax fiber and that development of a low-cost device, using few wavelengths, should be possible.

PDF Article

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription