Depth profiling using photoacoustic spectra taken at multiple scanning speeds or modulation frequencies is normally impaired by the increase in spectral saturation that occurs with decreasing speed or frequency. Photothermal depth profiling in general is also impeded by the ill conditioned nature of the mathematical problem of determining a depth profile from photothermal data. This paper describes a method for reducing the saturation level in low-speed or low-frequency spectra to the level at high speed or frequency so that all spectra have the same saturation. The conversion method requires only magnitude spectra, so it is applicable to both conventional and phase-modulation photoacoustic spectra. This paper also demonstrates a method for quantitative depth profiling with these converted spectra that makes use of prior knowledge about the type of profile existing in a sample to reduce the instabilities associated with the mathematically ill conditioned task.

PDF Article

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
Login to access OSA Member Subscription