Raman spectroscopy has the potential to provide definitive identification and detailed characterization of the minerals that comprise rocks and soils on planetary surfaces. We have designed a probe head for Raman spectroscopy that is suitable for use on a spectrometer deployed by a rover or a lander on the surface of a planet such as Mars, the Moon, or an asteroid. The probe head is lightweight, low power, rugged, and simple. It is based on a tiny distributed feedback diode laser and volume holographic components. A protective shell surrounds the probe head and serves as a mechanical stop for the mechanical arm of a planetary rover or lander during placement of the probe head onto the surface of a rock or soil. Pressing the shell against the rough surface of a target rock or soil also places the sampling objective of the probe head in rough focus, and the probe head is designed to be tolerant of focusing errors of 5 mm. A breadboard version of the probe head gave spectra of high quality on clean crystals of diamond, sulfur, calcite, quartz, and olivine. The results are qualitatively comparable to those obtained by using a conventional micro-Raman spectrometer on fine-grained travertine and on difficult specimens of basaltic lavas and impactites whose original mineralogy had been altered by reaction with water and air.

PDF Article

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
Login to access OSA Member Subscription