The applicability of step-scan impulse/response FT-IR spectroscopy to the rheo-optical study of polymer films is demonstrated by spectral measurements with isotactic polypropylene. A novel piezoelectrically driven microrheometer is employed to apply repetitive impulses to a polymer sample while time-domain spectra are recorded by step-scan FT-IR spectroscopy. The traditional advantages of Fourier transform spectroscopy are retained while providing a second multiplex advantage for the characterization of the time-dependence of the sample response. Reproducible results, consistent with the frequency-domain literature data and having good signalto-noise ratio, are obtained. The spectral changes due to molecular reorientation are found to be essentially as fast as the mechanical stretching, also consistent with frequency-domain results. To our knowledge, this is the first reported step-scan FT-IR time-domain rheo-optical measurement. This technique appears to be applicable to a variety of polymer samples. The advantages of time-domain measurements over frequency-domain measurements are briefly discussed.

PDF Article

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
Login to access OSA Member Subscription