An ultraviolet (UV) laser-based optical microscope and charge-coupled device (CCD) detection system was used to obtain chemical images of biological cells. Subcellular structures can be easily seen in both optical and fluorescence images. Laser-induced native fluorescence detection provides high sensitivity and low limits of detection, and it does not require coupling to fluorescent dyes. We were able to quantitatively monitor serotonin that has been taken up into and released from individual astrocytes on the basis of its native fluorescence. Different regions of the cells took up different amounts of serotonin with a variety of uptake kinetics. Similarly, we observed different serotonin depletion dynamics in different astrocyte regions. There were also some astrocyte areas where no serotonin uptake or depletion was observed. Potential applications include the mapping of other biogenic species in cells as well as the ability to image their release from specific regions of cells in response to external stimuli.

PDF Article

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
Login to access OSA Member Subscription