Abstract

Temperature was varied over a wide range to determine its effect on the luminescence properties of deuterated phenanthrene and phenanthrene adsorbed on a number of solid matrices. Not only were insights into the effects of temperature and solid matrices on the luminescence properties acquired but also the deuterium isotope effect revealed unique information about the role played by the solid matrix in the luminescence of the model compounds. In addition, comparisons of nonradiative rate constants and the efficiencies of intersystem crossing revealed important differences among the solid matrices in altering these parameters. The perdeuterated phenanthrene and phenanthrene proved to be useful probes for investigating the effects of solid matrices on the excited triplet state of phosphors because the excited singlet state of the lumiphor was affected very little by the solid matrices, and the rate constants of phosphorescence for the two phosphors are essentially the same.

PDF Article

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription