Abstract

Rapid-scan infrared spectroscopy (RSFT-IR) with better than 100-ms temporal resolution has been used to quantify the gas decomposition products of energetic materials in real time at various heating rates up to 800°C/s and under buffer gas pressures of 1 to 1000 psi. A new method is described that permits simultaneous real-time recording of the temperature of the condensed phase and of the IR spectra of the gaseous products under the above conditions. Endothermic and exothermic events in the condensed phase can now be correlated with the evolved gases under conditions approaching those of combustion. The design and procedure for using the cell are given and are applied to the thermolysis of 1,7-diazido-2,4,6-trinitro-2,4,6-triazaheptane (DATH) and pentaery-thrityltetrammonium nitrate (PTTN).

PDF Article

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription