Fourier transform Raman spectroscopy shows considerable promise as a new characterization technique for molecules which contain chromophores which absorb in the visible region, the region where conventional Raman measurements are made. With the use of near-infrared excitation, spectra in the absence of fluorescence and resonance enhancement are obtained. These advantages can be further enhanced if the collection of data using this technique becomes routine, requiring a level of complexity comparable to that of conventional Raman scattering. Toward that end, the implementation of a 90° scattering geometry in our FT-Raman measurements was undertaken, and the results are shown to be at least comparable to those obtained with the use of reflective optics in a 180° geometry. A number of results on both liquids and solids have also been obtained in order to compare FT-Raman with conventional scanning Raman measurements.

PDF Article

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
Login to access OSA Member Subscription