Abstract

A numerical method for evaluating the inverted Abel integral employing cubic spline approximations is described along with a modification of the procedure of Cremers and Birkebak, and an extension of the Barr method. The accuracy of the computations is evaluated at several noise levels and with varying resolution of the input data. The cubic spline method is found to be useful only at very low noise levels, but capable of providing good results with small data sets. The Barr method is computationally the simplest, and is adequate when large data sets are available. For noisy data, the method of Cremers and Birkebak gave the best results.

PDF Article

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription