Abstract

We describe the history, guiding mechanism, recent advances, applications, and future prospects for hollow-core negative curvature fibers. We first review one-dimensional slab waveguides, two-dimensional annular core fibers, and negative curvature tube lattice fibers to illustrate the inhibited coupling guiding mechanism. Antiresonance in the glass at the core boundary and a wavenumber mismatch between the core and cladding modes inhibit coupling between the modes and have led to remarkably low loss in negative curvature fibers. We also summarize recent advances in negative curvature fibers that improve the performance of the fibers, including negative curvature that increases confinement, gaps between tubes that increase confinement and bandwidth, additional tubes that decrease mode coupling, tube structures that suppress higher-order modes, nested tubes that increase guidance, and tube parameters that decrease bend loss. Recent applications of negative curvature fibers are also presented, including mid-infrared fiber lasers, micromachining, and surgical procedures. At the end, we discuss the future prospects for negative curvature fibers.

© 2017 Optical Society of America

Full Article  |  PDF Article

Corrections

Chengli Wei, R. Joseph Weiblen, Curtis R. Menyuk, and Jonathan Hu, "Negative curvature fibers: publisher’s note," Adv. Opt. Photon. 9, 562-562 (2017)
https://www.osapublishing.org/aop/abstract.cfm?uri=aop-9-3-562

7 September 2017: A typographical correction was made to paragraph 2 of page 528.


OSA Recommended Articles
Polarization-filtering and polarization-maintaining low-loss negative curvature fibers

Chengli Wei, Curtis R. Menyuk, and Jonathan Hu
Opt. Express 26(8) 9528-9540 (2018)

Bending-induced mode non-degeneracy and coupling in chalcogenide negative curvature fibers

Chengli Wei, Curtis R. Menyuk, and Jonathan Hu
Opt. Express 24(11) 12228-12239 (2016)

Higher-order mode suppression in chalcogenide negative curvature fibers

Chengli Wei, Robinson A. Kuis, Francois Chenard, Curtis R. Menyuk, and Jonathan Hu
Opt. Express 23(12) 15824-15832 (2015)

References

  • View by:
  • |
  • |
  • |

  1. P. V. Kaiser and H. W. Astle, “Low-loss single-material fibers made from pure fused silica,” Bell Syst. Tech. J. 53, 1021–1039 (1974).
    [Crossref]
  2. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light (Princeton University, 2011).
  3. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
    [Crossref]
  4. S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987).
    [Crossref]
  5. J. C. Knight, T. A. Birks, P. St.J. Russell, and D. M. Atkin, “Pure silica single-mode fiber with hexagonal photonic crystal cladding,” in Conference on Optical Fiber Communications (Optical Society of America, 1996), postdeadline paper PD3.
  6. J. C. Knight, T. A. Birks, P. St.J. Russell, and D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding,” Opt. Lett. 21, 1547–1549 (1996).
    [Crossref]
  7. T. A. Birks, J. C. Knight, and P. St.J. Russell, “Endlessly single-mode photonic crystal fiber,” Opt. Lett. 22, 961–963 (1997).
    [Crossref]
  8. N. W. Aschcroft and N. D. Mermin, Solid State Physics (Saunders College, 1976).
  9. S. L. Altmann, Band Theory of Solids: An Introduction from the Point of View of Symmetry (Clarendon, 1994).
  10. F. Couny, F. Benabid, P. J. Roberts, M. T. Burnett, and S. A. Maier, “Identification of Bloch-modes in hollow-core photonic crystal fiber cladding,” Opt. Express 15, 325–338 (2007).
    [Crossref]
  11. F. Benabid and P. J. Roberts, “Guidance mechanisms in hollow-core photonic crystal fiber,” Proc. SPIE 6901, 69010U (2008).
    [Crossref]
  12. F. Zolla, G. Renversez, A. Nicolet, B. Kuhlmey, S. Guenneau, D. Felbacq, A. Argyros, and S. Leon-Saval, Foundations of Photonic Crystal Fibres, 2nd ed. (Imperial College, 2012).
  13. P. St.J. Russell, “Photonic crystal fibers,” Science 299, 358–362 (2003).
    [Crossref]
  14. P. St.J. Russell, “Photonic-crystal fibers,” J. Lightwave Technol. 24, 4729–4749 (2006).
    [Crossref]
  15. T. A. Birks, D. Mogilevtsev, J. C. Knight, and P. St.J. Russell, “Dispersion compensation using single-material fibers,” IEEE Photon. Technol. Lett. 11, 674–676 (1999).
    [Crossref]
  16. P. Yeh and A. Yariv, “Bragg reflection waveguides,” Opt. Commun. 19, 427–430 (1976).
    [Crossref]
  17. P. Yeh, A. Yariv, and E. Marom, “Theory of Bragg fiber,” J. Opt. Soc. Am. 68, 1196–1201 (1978).
    [Crossref]
  18. F. Poletti, M. N. Petrovich, and D. J. Richardson, “Hollow-core photonic bandgap fibers: technology and applications,” Nanophotonics 2, 315–340 (2013).
    [Crossref]
  19. J. C. Knight, J. Broeng, T. A. Birks, and P. St.J. Russell, “Photonic band gap guidance in optical fibers,” Science 282, 1476–1478 (1998).
    [Crossref]
  20. R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St.J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537–1539 (1999).
    [Crossref]
  21. P. J. Roberts, F. Couny, H. Sabert, B. J. Mangan, D. P. Williams, L. Farr, M. W. Mason, A. Tomlinson, T. A. Birks, J. C. Knight, and P. St.J. Russell, “Ultimate low loss of hollow-core photonic crystal fibres,” Opt. Express 13, 236–244 (2005).
    [Crossref]
  22. C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424, 657–659 (2003).
    [Crossref]
  23. J. D. Shephard, J. D. C. Jones, D. P. Hand, G. Bouwmans, J. C. Knight, P. St.J. Russell, and B. J. Mangan, “High energy nanosecond laser pulses delivered single-mode through hollow-core PBG fibers,” Opt. Express 12, 717–723 (2004).
    [Crossref]
  24. F. Benabid, J. C. Knight, G. Antonopoulos, and P. St.J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298, 399–402 (2002).
    [Crossref]
  25. P. St.J. Russell, P. Hölzer, W. Chang, A. Abdolvand, and J. C. Travers, “Hollow-core photonic crystal fibres for gas-based nonlinear optics,” Nat. Photonics 8, 278–286 (2014).
    [Crossref]
  26. F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. St.J. Russell, “Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres,” Nature 434, 488–491 (2005).
    [Crossref]
  27. F. Couny, F. Benabid, and P. S. Light, “Large-pitch kagome-structured hollow-core photonic crystal fiber,” Opt. Lett. 31, 3574–3576 (2006).
    [Crossref]
  28. G. J. Pearce, G. S. Wiederhecker, C. G. Poulton, S. Burger, and P. St.J. Russell, “Models for guidance in kagome-structured hollow-core photonic crystal fibres,” Opt. Express 15, 12680–12685 (2007).
    [Crossref]
  29. F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and photonic guidance of multi-octave optical-frequency combs,” Science 318, 1118–1121 (2007).
    [Crossref]
  30. A. Argyros and J. Pla, “Hollow-core polymer fibres with a kagome lattice: potential for transmission in the infrared,” Opt. Express 15, 7713–7719 (2007).
    [Crossref]
  31. M. A. Duguay, Y. Kokubun, T. L. Koch, and L. Pfeiffer, “Antiresonant reflecting optical waveguides in SiO2 Si multiplayer structures,” Appl. Phys. Lett. 49, 13–15 (1986).
    [Crossref]
  32. Y. Kokubun, T. Baba, T. Sakaki, and K. Iga, “Low-loss antiresonant reflecting optical waveguide on Si substrate in visible-wavelength region,” Electron. Lett. 22, 892–893 (1986).
    [Crossref]
  33. N. M. Litchinitser, A. K. Abeeluck, C. Headley, and B. J. Eggleton, “Antiresonant reflecting photonic crystal optical waveguides,” Opt. Lett. 27, 1592–1594 (2002).
    [Crossref]
  34. N. M. Litchinitser, S. C. Dunn, B. Usner, B. J. Eggleton, T. P. White, R. C. McPhedran, and C. M. de Sterke, “Resonances in microstructured optical waveguides,” Opt. Express 11, 1243–1251 (2003).
    [Crossref]
  35. T. P. White, R. C. McPhedran, C. M. Sterke, N. M. Litchinitser, and B. J. Eggleton, “Resonance and scattering in microstructured optical fibers,” Opt. Lett. 27, 1977–1979 (2002).
    [Crossref]
  36. B. Debord, M. Alharbi, T. Bradley, C. Fourcade-Dutin, Y. Y. Wang, L. Vincetti, F. Gérôom, and F. Benabid, “Hypocycloid-shaped hollow-core photonic crystal fiber Part I: arc curvature effect on confinement loss,” Opt. Express 21, 28597–28608 (2013).
    [Crossref]
  37. M. Alharbi, T. Bradley, B. Debord, C. Fourcade-Dutin, D. Ghosh, L. Vincetti, F. Gérôme, and F. Benabid, “Hypocycloid-shaped hollow-core photonic crystal fiber Part II: cladding effect on confinement and bend loss,” Opt. Express 21, 28609–28616 (2013).
    [Crossref]
  38. A. Argyros, S. G. Leon-Saval, J. Pla, and A. Docherty, “Antiresonant reflection and inhibited coupling in hollow-core square lattice optical fibers,” Opt. Express 16, 5642–5648 (2008).
    [Crossref]
  39. F. Couny, P. J. Roberts, T. A. Birks, and F. Benabid, “Square-lattice large-pitch hollow-core photonic crystal fiber,” Opt. Express 16, 20626–20636 (2008).
    [Crossref]
  40. S. Février, B. Beaudou, and P. Viale, “Understanding origin of loss in large pitch hollow-core photonic crystal fibers and their design simplification,” Opt. Express 18, 5142–5150 (2010).
    [Crossref]
  41. F. Gérôme, R. Jamier, J.-L. Auguste, G. Humbert, and J.-M. Blondy, “Simplified hollow-core photonic crystal fiber,” Opt. Lett. 35, 1157–1159 (2010).
    [Crossref]
  42. F. Poletti, “Nested antiresonant nodeless hollow core fiber,” Opt. Express 22, 23807–23828 (2014).
    [Crossref]
  43. P. J. Roberts, D. P. Williams, B. J. Mangan, H. Sabert, F. Couny, W. J. Wadsworth, T. A. Birks, J. C. Knight, and P. St.J. Russell, “Realizing low loss air core photonic crystal fibers by exploiting an antiresonant core surround,” Opt. Express 13, 8277–8285 (2005).
    [Crossref]
  44. G. Pearce, J. Pottage, D. Bird, P. Roberts, J. Knight, and P. St.J. Russell, “Hollow-core PCF for guidance in the mid to far infra-red,” Opt. Express 13, 6937–6946 (2005).
    [Crossref]
  45. R. Amezcua-Correa, N. G. Broderick, M. N. Petrovich, F. Poletti, and D. J. Richardson, “Design of 7 and 19 cells core air-guiding photonic crystal fibers for low-loss, wide bandwidth and dispersion controlled operation,” Opt. Express 15, 17577–17586 (2007).
    [Crossref]
  46. Y. Wang, F. Couny, P. J. Roberts, and F. Benabid, “Low loss broadband transmission in optimized core-shaped Kagome hollow-core PCF,” in Conference on Lasers and Electro-Optics (CLEO), OSA Technical Digest (CD) (Optical Society of America, 2010), paper CPDB4.
  47. Y. Y. Wang, N. V. Wheeler, F. Couny, P. J. Roberts, and F. Benabid, “Low loss broadband transmission in hypocycloid-core Kagome hollow-core photonic crystal fiber,” Opt. Lett. 36, 669–671 (2011).
    [Crossref]
  48. A. D. Pryamikov, A. S. Biriukov, A. F. Kosolapov, V. G. Plotnichenko, S. L. Semjonov, and E. M. Dianov, “Demonstration of a waveguide regime for a silica hollow-core microstructured optical fiber with a negative curvature of the core boundary in the spectral region >3.5  μm,” Opt. Express 19, 1441–1448 (2011).
    [Crossref]
  49. F. Yu, W. J. Wadsworth, and J. C. Knight, “Low loss silica hollow core fibers for 3–4  μm spectral region,” Opt. Express 20, 11153–11158 (2012).
    [Crossref]
  50. A. N. Kolyadin, A. F. Kosolapov, A. D. Pryamikov, A. S. Biriukov, V. G. Plotnichenko, and E. M. Dianov, “Light transmission in negative curvature hollow core fiber in extremely high material loss region,” Opt. Express 21, 9514–9519 (2013).
    [Crossref]
  51. F. Yu and J. C. Knight, “Spectral attenuation limits of silica hollow core negative curvature fiber,” Opt. Express 21, 21466–21471 (2013).
    [Crossref]
  52. A. Urich, R. R. J. Maier, F. Yu, J. C. Knight, D. P. Hand, and J. D. Shephard, “Flexible delivery of Er:YAG radiation at 2.94  μm with negative curvature silica glass fibers: a new solution for minimally invasive surgical procedures,” Biomed. Opt. Express 4, 193–205 (2013).
    [Crossref]
  53. P. Jaworski, F. Yu, R. R. J. Maier, W. J. Wadsworth, J. C. Knight, J. D. Shephard, and D. P. Hand, “Picosecond and nanosecond pulse delivery through a hollow-core negative curvature fiber for micro-machining applications,” Opt. Express 21, 22742–22753 (2013).
    [Crossref]
  54. A. F. Kosolapov, A. D. Pryamikov, A. S. Biriukov, V. S. Shiryaev, M. S. Astapovich, G. E. Snopatin, V. G. Plotnichenko, M. F. Churbanov, and E. M. Dianov, “Demonstration of CO2-laser power delivery through chalcogenide-glass fiber with negative-curvature hollow core,” Opt. Express 19, 25723–25728 (2011).
    [Crossref]
  55. B. Debord, A. Amsanpally, M. Chafer, A. Baz, L. Vincetti, J. Blondy, F. Gérôme, and F. Benabid, “7.7  dB/km losses in inhibited coupling hollow-core photonic crystal fibers,” in Conference on Lasers and Electro-Optics (CLEO), OSA Technical Digest (online) (Optical Society of America, 2016), paper JTh4C.8.
  56. B. Debord, A. Amsanpally, M. Chafer, A. Baz, M. Maurel, J. M. Blondy, E. Hugonnot, F. Scol, L. Vincetti, F. Gérôme, and F. Benabid, “Ultralow transmission loss in inhibited-coupling guiding hollow fibers,” Optica 4, 209–217 (2017).
    [Crossref]
  57. M. Michieletto, J. K. Lyngs, C. Jakobsen, J. Lgsgaard, O. Bang, and T. T. Alkeskjold, “Hollow-core fibers for high power pulse delivery,” Opt. Express 24, 7103–7119 (2016).
    [Crossref]
  58. J. R. Hayes, S. R. Sandoghchi, T. D. Bradley, Z. Liu, R. Slavik, M. A. Gouveia, N. V. Wheeler, G. T. Jasion, Y. Chen, E. Numkam-Fokoua, M. N. Petrovich, D. J. Richardson, and F. Poletti, “Antiresonant hollow core fiber with octave spanning bandwidth for short haul data communications,” in Optical Fiber Communication Conference Postdeadline Papers, OSA Technical Digest (online) (Optical Society of America, 2016), paper Th5A.3.
  59. J. R. Hayes, S. R. Sandoghchi, T. D. Bradley, Z. Liu, R. Slavik, M. A. Gouveia, N. V. Wheeler, G. Jasion, Y. Chen, E. N. Fokoua, M. N. Petrovich, D. J. Richardson, and F. Poletti, “Antiresonant hollow core fiber with an octave spanning bandwidth for short haul data communications,” J. Lightwave Technol. 35, 437–442 (2017).
    [Crossref]
  60. N. V. Wheeler, T. D. Bradley, J. R. Hayes, M. A. Gouveia, S. Liang, Y. Chen, S. R. Sandoghchi, S. M. Abokhamis Mousavi, F. Poletti, M. N. Petrovich, and D. J. Richardson, “Low-loss Kagome hollow-core fibers operating from the near- to the mid-IR,” Opt. Lett. 42, 2571–2574 (2017).
    [Crossref]
  61. A. F. Kosolapov, G. K. Alagashev, A. N. Kolyadin, A. D. Pryamikov, A. S. Biryukov, I. A. Bufetov, and E. M. Dianov, “Hollow-core revolver fibre with a double-capillary reflective cladding,” Quantum Electron. 46, 267–270 (2016).
    [Crossref]
  62. C. Wei, R. Kuis, F. Chenard, and J. Hu, “Chalcogenide negative curvature hollow-core photonic crystal fibers with low loss and low power ratio in the glass,” in Conference on Laser and Electro-Optics (CLEO), OSA Technical Digest (online) (Optical Society of America, 2014), paper SM1N.5.
  63. W. Belardi and J. C. Knight, “Effect of core boundary curvature on the confinement losses of hollow antiresonant fibers,” Opt. Express 21, 21912–21917 (2013).
    [Crossref]
  64. W. Belardi and J. C. Knight, “Hollow antiresonant fibers with reduced attenuation,” Opt. Lett. 39, 1853–1856 (2014).
    [Crossref]
  65. M. S. Habib, O. Bang, and M. Bache, “Low-loss hollow-core silica fibers with adjacent nested anti-resonant tubes,” Opt. Express 23, 17394–17406 (2015).
    [Crossref]
  66. A. F. Kosolapov, A. Pryamikov, G. Alagashev, A. Kolyadin, A. Biriukov, and E. Dianov, “Negative curvature hollow-core fibers (NCHCFs) for mid-IR applications,” in Advanced Photonics, OSA Technical Digest (online) (Optical Society of America, 2014), paper SoTu2B.3.
  67. G. K. Alagashev, A. D. Pryamikov, A. F. Kosolapov, A. N. Kolyadin, A. Y. Lukovkin, and A. S. Biriukov, “Impact of geometrical parameters on the optical properties of negative curvature hollow core fibers,” Laser Phys. 25, 055101 (2015).
    [Crossref]
  68. W. Belardi and J. C. Knight, “Hollow antiresonant fibers with low bending loss,” Opt. Express 22, 10091–10096 (2014).
    [Crossref]
  69. C. Wei, R. A. Kuis, F. Chenard, C. R. Menyuk, and J. Hu, “Higher-order mode suppression in chalcogenide negative curvature fibers,” Opt. Express 23, 15824–15832 (2015).
    [Crossref]
  70. C. Wei, O. Alvarez, F. Chenard, and J. Hu, “Empirical glass thickness for chalcogenide negative curvature fibers,” in Summer Topicals Meeting Series (IEEE Photonics Society, 2015), paper TuE3.3.
  71. A. D. Pryamikov, G. K. Alagashev, and A. S. Biriukov, “Impact of core cladding boundary shape on the waveguide properties of hollow core microstructured fibers,” Laser Phys. 26, 125104 (2016).
    [Crossref]
  72. J. H. V. Price, T. M. Monro, H. Ebendorff-Heidepriem, F. Poletti, P. Horak, V. Finazzi, J. Y. Y. Leong, P. Petropoulos, J. C. Flanagan, G. Brambilla, X. Feng, and D. J. Richardson, “Mid-IR supercontinuum generation from nonsilica microstructured optical fibers,” IEEE J. Sel. Top. Quantum Electron. 13, 738–749 (2007).
    [Crossref]
  73. X. Jiang, N. Y. Joly, M. A. Finger, F. Babic, G. K. L. Wong, J. C. Travers, and P. St.J. Russell, “Deep-ultraviolet to mid-infrared supercontinuum generated in solid-core ZBLAN photonic crystal fibre,” Nat. Photonics 9, 133–139 (2015).
    [Crossref]
  74. G. Tao, H. Ebendorff-Heidepriem, A. M. Stolyarov, S. Danto, J. V. Badding, Y. Fink, J. Ballato, and A. F. Abouraddy, “Infrared fibers,” Adv. Opt. Photon. 7, 379–458 (2015).
    [Crossref]
  75. W. Belardi, N. White, J. Lousteau, X. Feng, and F. Poletti, “Hollow core antiresonant fibers in borosilicate glass,” in Workshop on Specialty Optical Fibers and their Applications, OSA Technical Digest (online) (Optical Society of America, 2015), paper WW4A.4.
  76. R. R. Gattass, D. Rhonehouse, D. Gibson, C. C. McClain, R. Thapa, V. Q. Nguyen, S. S. Bayya, R. J. Weiblen, C. R. Menyuk, L. B. Shaw, and J. S. Sanghera, “Infrared glass-based negative-curvature anti-resonant fibers fabricated through extrusion,” Opt. Express 24, 25697–25703 (2016).
    [Crossref]
  77. V. S. Shiryaev, “Chalcogenide glass hollow-core microstructured optical fibers,” Front. Mater. 2, 24 (2015).
    [Crossref]
  78. V. S. Shiryaev, A. F. Kosolapov, A. D. Pryamikov, G. E. Snopatin, M. F. Churbanov, A. S. Biriukov, T. V. Kotereva, S. V. Mishinov, G. K. Alagashev, and A. N. Kolyadin, “Development of technique for preparation of As2S3 glass preforms for hollow core microstructured optical fibers,” J. Optoelectron. Adv. Mater. 16, 1020–1025 (2014).
  79. P. Uebel, M. C. Günendi, M. H. Frosz, G. Ahmed, N. N. Edavalath, J.-M. Ménard, and P. St.J. Russell, “Broadband robustly single-mode hollow-core PCF by resonant filtering of higher-order modes,” Opt. Lett. 41, 1961–1964 (2016).
    [Crossref]
  80. X. Liu, W. Ding, Y. Y. Wang, S. Gao, L. Cao, X. Feng, and P. Wang, “Characterization of a liquid-filled nodeless anti-resonant fiber for biochemical sensing,” Opt. Lett. 42, 863–866 (2017).
    [Crossref]
  81. A. V. Newkirk, J. E. Antonio-Lopez, J. Anderson, R. Alvarez-Aguirre, Z. S. Eznaveh, G. Lopez-Galmiche, R. Amezcua-Correa, and A. Schülzgen, “Modal analysis of antiresonant hollow core fibers using S2 imaging,” Opt. Lett. 41, 3277–3280 (2016).
    [Crossref]
  82. V. Setti, L. Vincetti, and A. Argyros, “Flexible tube lattice fibers for terahertz applications,” Opt. Express 21, 3388–3399 (2013).
    [Crossref]
  83. Z. Wang, W. Belardi, F. Yu, W. J. Wadsworth, and J. C. Knight, “Efficient diode-pumped mid-infrared emission from acetylene-filled hollow-core fiber,” Opt. Express 22, 21872–21878 (2014).
    [Crossref]
  84. W. Belardi, “Design and properties of hollow antiresonant fibers for the visible and near infrared spectral range,” J. Lightwave Technol. 33, 4497–4503 (2015).
    [Crossref]
  85. Y. Y. Wang, X. Peng, M. Alharbi, C. F. Dutin, T. D. Bradley, F. Gérôme, M. Mielke, T. Booth, and F. Benabid, “Design and fabrication of hollow-core photonic crystal fibers for high-power ultrashort pulse transportation and pulse compression,” Opt. Lett. 37, 3111–3113 (2012).
    [Crossref]
  86. X. Huang, W. Qi, D. Ho, K. T. Yong, F. Luan, and S. Yoo, “Hollow core anti-resonant fiber with split cladding,” Opt. Express 24, 7670–7678 (2016).
    [Crossref]
  87. Y. Chen, M. F. Saleh, N. Y. Joly, and F. Biancalana, “Guiding 2.94  μm using low-loss microstructured antiresonant triangular-core fibers,” J. Appl. Phys. 119, 143104 (2016).
    [Crossref]
  88. F. Yu, M. Xu, and J. C. Knight, “Experimental study of low-loss single-mode performance in anti-resonant hollow-core fibers,” Opt. Express 24, 12969–12975 (2016).
    [Crossref]
  89. W. Ding and Y. Wang, “Analytic model for light guidance in single wall hollow-core anti-resonant fibers,” Opt. Express 22, 27242–27256 (2014).
    [Crossref]
  90. X. Liu, Z. Fan, Z. Shi, Y. Ma, J. Yu, and J. Zhang, “Dual-core antiresonant hollow core fibers,” Opt. Express 24, 17453–17458 (2016).
    [Crossref]
  91. A. V. V. Nampoothiri, A. M. Jones, C. Fourcade-Dutin, C. Mao, N. Dadashzadeh, B. Baumgart, Y. Y. Wang, M. Alharbi, T. Bradley, N. Campbell, F. Benabid, B. R. Washburn, K. L. Corwin, and W. Rudolph, “Hollow-core optical fiber gas lasers (HOFGLAS): a review [Invited],” Opt. Mater. Express 2, 948–961 (2012).
    [Crossref]
  92. F. Emaury, C. F. Dutin, C. J. Saraceno, M. Trant, O. H. Heckl, Y. Y. Wang, C. Schriber, F. Gerome, T. Südmeyer, F. Benabid, and U. Keller, “Beam delivery and pulse compression to sub-50  fs of a mode locked thin disk laser in a gas-filled Kagome-type HC-PCF fiber,” Opt. Express 21, 4986–4994 (2013).
    [Crossref]
  93. A. V. V. Nampoothiri, B. Debord, M. Alharbi, F. Gérôme, F. Benabid, and W. Rudolph, “CW hollow-core optically pumped I2 fiber gas laser,” Opt. Lett. 40, 605–608 (2015).
    [Crossref]
  94. J. Yang, B. Yang, Z. Wang, and W. Liu, “Design of the low-loss wide bandwidth hollow-core terahertz inhibited coupling fibers,” Opt. Commun. 343, 150–156 (2015).
    [Crossref]
  95. T. D. Bradley, Y. Wang, M. Alharbi, B. Debord, C. Fourcade-Dutin, B. Beaudou, F. Gerome, and F. Benabid, “Optical properties of low loss (70  dB/km) hypocycloid-core kagome hollow core photonic crystal fiber for Rb and Cs based optical applications,” J. Lightwave Technol. 31, 2752–2755 (2013).
    [Crossref]
  96. T. D. Bradley, J. Jouin, J. J. McFerran, P. Thomas, F. Gerome, and F. Benabid, “Extended duration of rubidium vapor in aluminosilicate ceramic coated hypocycloidal core kagome HC-PCF,” J. Lightwave Technol. 32, 2486–2491 (2014).
    [Crossref]
  97. L. Vincetti and V. Setti, “Extra loss due to Fano resonances in inhibited coupling fibers based on a lattice of tubes,” Opt. Express 20, 14350–14361 (2012).
    [Crossref]
  98. A. Benoît, B. Beaudou, M. Alharbi, B. Debord, F. Gérôme, F. Salin, and F. Benabid, “Over-five octaves wide Raman combs in high-power picosecond-laser pumped H2-filled inhibited coupling kagome fiber,” Opt. Express 23, 14002–14009 (2015).
    [Crossref]
  99. B. Debord, A. Amsanpally, M. Alharbi, L. Vincetti, J. M. Blondy, F. Gérôme, and F. Benabid, “Ultra-large core size hypocycloid-shape inhibited coupling kagome fibers for high-energy laser beam handling,” J. Lightwave Technol. 33, 3630–3634 (2015).
    [Crossref]
  100. X. Zheng, B. Debord, L. Vincetti, B. Beaudou, F. Gérôme, and F. Benabid, “Fusion splice between tapered inhibited coupling hypocycloid-core Kagome fiber and SMF,” Opt. Express 24, 14642–14647 (2016).
    [Crossref]
  101. D. V. Bogdanovich, A. K. Srivastava, V. G. Chigrinov, A. S. Biriukov, and A. D. Pryamikov, “Hollow core negative curvature fibre with layers of photoaligned optically anisotropic material,” Laser Phys. Lett. 12, 105101 (2015).
    [Crossref]
  102. A. V. Gladyshev, A. N. Kolyadin, A. F. Kosolapov, Y. P. Yatsenko, A. D. Pryamikov, A. S. Biryukov, I. A. Bufetov, and E. M. Dianov, “Efficient 1.9-μm Raman generation in a hydrogen-filled hollow-core fibre,” Quantum Electron. 45, 807–812 (2015).
    [Crossref]
  103. A. A. Krylov, A. K. Senatorov, A. D. Pryamikov, A. F. Kosolapov, A. N. Kolyadin, G. K. Alagashev, A. V. Gladyshev, and I. A. Bufetov, “1.56  μm sub-microjoule femtosecond pulse delivery through low-loss microstructured revolver hollow-core fiber,” Laser Phys. Lett. 14, 035104 (2017).
    [Crossref]
  104. A. D. Pryamikov, A. F. Kosolapov, G. K. Alagashev, A. N. Kolyadin, V. V. Vel’miskin, A. S. Biriukov, and I. A. Bufetov, “Hollow-core microstructured ‘revolver’ fibre for the UV spectral range,” Quantum Electron. 46, 1129–1133 (2016).
    [Crossref]
  105. Y. P. Yatsenko, E. N. Pleteneva, A. G. Okhrimchuk, A. V. Gladyshev, A. F. Kosolapov, A. N. Kolyadin, and I. A. Bufetov, “Multiband supercontinuum generation in an air-core revolver fibre,” Quantum Electron. 47, 553–560 (2017).
    [Crossref]
  106. L. Vincetti and V. Setti, “Waveguiding mechanism in tube lattice fibers,” Opt. Express 18, 23133–23146 (2010).
    [Crossref]
  107. L. Vincetti and V. Setti, “Confinement loss in kagome and tube lattice fibers: comparison and analysis,” J. Lightwave Technol. 30, 1470–1474 (2012).
    [Crossref]
  108. L. Vincetti, “Single-mode propagation in triangular tube lattice hollow-core terahertz fibers,” Opt. Commun. 283, 979–984 (2010).
    [Crossref]
  109. W. Lu, S. Lou, and A. Argyros, “Investigation of flexible low-loss hollow-core fibres with tube-lattice cladding for terahertz radiation,” IEEE J. Sel. Top. Quantum Electron. 22, 214–220 (2016).
    [Crossref]
  110. J. Lu, C. Yu, H. Chang, H. Chen, Y. Li, C. Pan, and C. Sun, “Terahertz air-core microstructure fiber,” Appl. Phys. Lett. 92, 064105 (2008).
    [Crossref]
  111. L. Vincetti, “Empirical formulas for calculating loss in hollow core tube lattice fibers,” Opt. Express 24, 10313–10325 (2016).
    [Crossref]
  112. X. Huang, S. Yoo, and K. Yong, “Function of second cladding layer in hollow core tube lattice fibers,” Sci. Rep. 7, 1618 (2017).
    [Crossref]
  113. A. Hartung, J. Kobelke, A. Schwuchow, K. Wondraczek, J. Bierlich, J. Popp, T. Frosch, and M. A. Schmidt, “Double antiresonant hollow core fiber-guidance in the deep ultraviolet by modified tunneling leaky modes,” Opt. Express 22, 19131–19140 (2014).
    [Crossref]
  114. A. Hartung, J. Kobelke, A. Schwuchow, K. Wondraczek, J. Bierlich, J. Popp, T. Frosch, and M. A. Schmidt, “Origins of modal loss of antiresonant hollow-core optical fibers in the ultraviolet,” Opt. Express 23, 2557–2565 (2015).
    [Crossref]
  115. J. R. Hayes, F. Poletti, M. S. Abokhamis, N. V. Wheeler, N. K. Baddela, and D. J. Richardson, “Anti-resonant hexagram hollow core fibers,” Opt. Express 23, 1289–1299 (2015).
    [Crossref]
  116. A. Hartung, J. Kobelke, A. Schwuchow, J. Bierlich, J. Popp, M. A. Schmidt, and T. Frosch, “Low-loss single-mode guidance in large-core antiresonant hollow-core fibers,” Opt. Lett. 40, 3432–3435 (2015).
    [Crossref]
  117. C. Lai, B. You, J. Lu, T. Lu, J. Peng, C. Sun, and H. Chang, “Modal characteristics of antiresonant reflecting pipe waveguides for terahertz waveguiding,” Opt. Express 18, 309–322 (2010).
    [Crossref]
  118. E. Nguema, D. Férachou, G. Humbert, J.-L. Auguste, and J.-M. Blondy, “Broadband terahertz transmission within the air channel of thin-wall pipe,” Opt. Lett. 36, 1782–1784 (2011).
    [Crossref]
  119. W. Ding and Y. Wang, “Semi-analytical model for hollow-core anti-resonant fibers,” Front. Phys. 3, 16 (2015).
    [Crossref]
  120. J. Hu and C. R. Menyuk, “Understanding leaky modes: slab waveguide revisited,” Adv. Opt. Photon. 1, 58–106 (2009).
    [Crossref]
  121. D. Marcuse, Theory of Dielectric Optical Waveguides, 2nd ed. (Academic, 1991).
  122. M. N. O. Sadiku, Numerical Techniques in Electromagnetics, 2nd ed. (CRC Press, 2001).
  123. J. Jin, The Finite Element Method in Electromagnetics, 2nd ed. (Wiley, 2002).
  124. T. P. White, B. T. Kuhlmey, R. C. McPhedran, D. Maystre, G. Renversez, C. M. de Sterke, and L. C. Botten, “Multipole method for microstructured optical fibers. I. Formulation,” J. Opt. Soc. Am. B 19, 2322–2330 (2002).
    [Crossref]
  125. J. Hu and C. R. Menyuk, “Leakage loss and bandgap analysis in air-core photonic bandgap fiber for nonsilica glasses,” Opt. Express 15, 339–349 (2007).
    [Crossref]
  126. C. Wei, C. R. Menyuk, and J. Hu, “Impact of cladding tubes in chalcogenide negative curvature fibers,” IEEE Photon. J. 8, 2200509 (2016).
  127. C. Wei, J. Hu, and C. R. Menyuk, “Comparison of loss in silica and chalcogenide negative curvature fibers as the wavelength varies,” Front. Phys. 4, 30 (2016).
    [Crossref]
  128. F. Poletti, J. R. Hayes, and D. Richardson, “Optimising the performances of hollow antiresonant fibres,” in 37th European Conference and Exposition on Optical Communications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper Mo.2.LeCervin.2.
  129. M. Born and E. Wolf, “Elements of the theory of interference and interferometers,” in Principles of Optics, 7th ed. (Cambridge University, 1999), pp. 359–366.
  130. P. K. Choudhury and T. Yoshino, “A rigorous analysis of the power distribution in plastic clad annular core optical fibers,” Optik 113, 481–488 (2002).
    [Crossref]
  131. M. Hautakorpi and M. Kaivola, “Modal analysis of M-type-dielectric-profile optical fibers in the weakly guiding approximation,” J. Opt. Soc. Am. A 22, 1163–1169 (2005).
    [Crossref]
  132. B. C. Sarkar, P. K. Choudhury, and T. Yoshino, “On the analysis of a weakly guiding doubly clad dielectric optical fiber with annular core,” Microwave Opt. Technol. Lett. 31, 435–439 (2001).
    [Crossref]
  133. Y. Koyamada, “Analysis of core-mode to radiation-mode coupling in fiber Bragg gratings with finite cladding radius,” J. Lightwave Technol. 18, 1220–1225 (2000).
    [Crossref]
  134. K. Saitoh and M. Koshiba, “Leakage loss and group velocity dispersion in air-core photonic bandgap fibers,” Opt. Express 11, 3100–3109 (2003).
    [Crossref]
  135. C. Wei, C. Menyuk, and J. Hu, “Bending-induced mode non-degeneracy and coupling in chalcogenide negative curvature fibers,” Opt. Express 24, 12228–12239 (2016).
    [Crossref]
  136. G. Ren, Z. Wang, S. Lou, and S. Jian, “Mode classification and degeneracy in photonic crystal fibers,” Opt. Express 11, 1310–1321 (2003).
    [Crossref]
  137. M. A. Khashan and A. Y. Nassif, “Dispersion of the optical constants of quartz and polymethyl methacrylate glasses in a wide spectral range: 0.2–3  μm,” Opt. Commun. 188, 129–139 (2001).
    [Crossref]
  138. A. Yariv, “Guided wave optics propagation in optical fibers,” in Quantum Electronics, 3rd ed. (Wiley, 1989), pp. 600–650.
  139. B. E. A. Saleh and M. C. Teich, “Guided-wave optics,” in Fundamentals of Photonics, 2nd ed. (Wiley, 2007), pp. 289–299.
  140. K. Saitoh, N. A. Mortensen, and M. Koshiba, “Air-core photonic band-gap fibers: the impact of surface modes,” Opt. Express 12, 394–400 (2004).
    [Crossref]
  141. Z. Zhang, Y. Shi, B. Bian, and J. Lu, “Dependence of leaky mode coupling on loss in photonic crystal fiber with hybrid cladding,” Opt. Express 16, 1915–1922 (2008).
    [Crossref]
  142. J. Hu and C. R. Menyuk, “Optimization of the operational bandwidth in air-core photonic bandgap fibers for IR transmission,” Opt. Commun. 282, 18–21 (2009).
    [Crossref]
  143. K. Saitoh and M. Koshiba, “Confinement losses in air-guiding photonic bandgap fibers,” IEEE Photon. Technol. Lett. 15, 236–238 (2003).
    [Crossref]
  144. B. J. Mangan, L. Farr, A. Langford, P. J. Roberts, D. P. Williams, F. Couny, M. Lawman, M. Mason, S. Coupland, R. Flea, H. Sabert, T. A. Birks, J. C. Knight, and P. St.J. Russell, “Low loss (1.7  dB/km) hollow core photonic bandgap fiber,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2004), paper PD24.
  145. M. H. Frosz, J. Nold, T. Weiss, A. Stefani, F. Babic, S. Rammler, and P. St.J. Russell, “Five-ring hollow-core photonic crystal fiber with 1.8  dB/km loss,” Opt. Lett. 38, 2215–2217 (2013).
    [Crossref]
  146. W. Ding and Y. Y. Wang, “Hybrid transmission bands and large birefringence in hollow-core anti-resonant fibers,” Opt. Express 23, 21165–21174 (2015).
    [Crossref]
  147. P. Yeh, A. Yariv, and C. Hong, “Electromagnetic propagation in periodic stratified media. I. General theory,” J. Opt. Soc. Am. 67, 423–438 (1977).
    [Crossref]
  148. E. N. Fokoua, F. Poletti, and D. J. Richardson, “Analysis of light scattering from surface roughness in hollow-core photonic bandgap fibers,” Opt. Express 20, 20980–20991 (2012).
    [Crossref]
  149. W. Belardi and J. C. Knight, “Negative curvature fibers with reduced leakage loss,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2014), paper Th2A.45.
  150. J. D. Shephard, A. Urich, R. M. Carter, P. Jaworski, R. R. J. Maier, W. Belardi, F. Yu, W. J. Wadsworth, J. C. Knight, and D. P. Hand, “Silica hollow core microstructured fibers for beam delivery in industrial and medical applications,” Front. Phys. 3, 24 (2015).
    [Crossref]
  151. M. S. Habib, O. Bang, and M. Bache, “Low-loss single-mode hollow-core fiber with anisotropic anti-resonant elements,” Opt. Express 24, 8429–8436 (2016).
    [Crossref]
  152. S. Chaudhuri, L. Van Putten, F. Poletti, and P. Sazio, “Low loss transmission in negative curvature optical fibers with elliptical capillary tubes,” J. Lightwave Technol. 34, 4228–4231 (2016).
    [Crossref]
  153. L. D. van Putten, E. N. Fokoua, S. M. A. Mousavi, W. Belardi, S. Chaudhuri, J. V. Badding, and F. Poletti, “Exploring the effect of the core boundary curvature in hollow antiresonant fibers,” IEEE Photon. Technol. Lett. 29, 263–266 (2017).
    [Crossref]
  154. M. S. Habib, O. Bang, and M. Bache, “Low-loss hollow-core anti-resonant fibers with semi-circular nested tubes,” IEEE J. Sel. Top. Quantum Electron. 22, 4402106 (2016).
    [Crossref]
  155. R. Amezcua-Correa, F. Gérôme, S. G. Leon-Saval, N. G. R. Broderick, T. A. Birks, and J. C. Knight, “Control of surface modes in low loss hollow-core photonic bandgap fibers,” Opt Express 16, 1142–1149 (2008).
    [Crossref]
  156. T. Morioka, Y. Awaji, R. Ryf, P. Winzer, D. Richardson, and F. Poletti, “Enhancing optical communications with brand new fibers,” IEEE Commun. Mag. 50(2), S31–S42 (2012).
    [Crossref]
  157. J. M. Fini, “Aircore microstructure fibers with suppressed higher-order modes,” Opt. Express 14, 11354–11361 (2006).
    [Crossref]
  158. K. Saitoh, N. J. Florous, T. Murao, and M. Koshiba, “Design of photonic band gap fibers with suppressed higher-order modes: towards the development of effectively single mode large hollow-core fiber platforms,” Opt. Express 14, 7342–7352 (2006).
    [Crossref]
  159. J. M. Fini, J. W. Nicholson, R. S. Windeler, E. M. Monberg, L. Meng, B. Mangan, A. Desantolo, and F. V. DiMarcello, “Low-loss hollow-core fibers with improved single-modedness,” Opt. Express 21, 6233–6242 (2013).
    [Crossref]
  160. T. Murao, K. Saitoh, and M. Koshiba, “Multiple resonant coupling mechanism for suppression of higher-order modes in all-solid photonic bandgap fibers with heterostructured cladding,” Opt. Express 19, 1713–1727 (2011).
    [Crossref]
  161. F. Jansen, F. Stutzki, C. Jauregui, J. Limpert, and A. Tünnermann, “Avoided crossings in photonic crystal fibers,” Opt. Express 19, 13578–13589 (2011).
    [Crossref]
  162. J. A. West, C. M. Smith, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Surface modes in air-core photonic band-gap fibers,” Opt. Express 12, 1485–1496 (2004).
    [Crossref]
  163. C. Wei, C. Menyuk, and J. Hu, “Higher-order mode suppression in chalcogenide negative curvature fibers with gaps between cladding tubes,” in Advanced Photonics 2016 (IPR, NOMA, Sensors, Networks, SPPCom, SOF), OSA Technical Digest (online) (Optical Society of America, 2016), paper JTu4A.32.
  164. F. Meng, B. Liu, Y. Li, C. Wang, and M. Hu, “Low loss hollow-core antiresonant fiber with nested elliptical cladding elements,” IEEE Photon. J. 9, 7100211 (2017).
  165. M. I. Hasan, N. Akhmediev, and W. Chang, “Positive and negative curvatures nested in an antiresonant hollow-core fiber,” Opt. Lett. 42, 703–706 (2017).
    [Crossref]
  166. N. N. Edavalath, M. C. Günendi, R. Beravat, G. K. L. Wong, M. H. Frosz, J.-M. Ménard, and P. St.J. Russell, “Higher-order mode suppression in twisted single-ring hollow-core photonic crystal fibers,” Opt. Lett. 42, 2074–2077 (2017).
    [Crossref]
  167. Y. Chen, M. F. Saleh, N. Y. Joly, and F. Biancalana, “Low-loss single-mode negatively curved square-core hollow fibers,” Opt. Lett. 42, 1285–1288 (2017).
    [Crossref]
  168. T. D. Bradley, N. V. Wheeler, G. T. Jasion, D. Gray, J. Hayes, M. A. Gouveia, S. R. Sandoghchi, Y. Chen, F. Poletti, D. Richardson, and M. Petrovich, “Modal content in hypocycloid Kagomé hollow core photonic crystal fibers,” Opt. Express 24, 15798–15812 (2016).
    [Crossref]
  169. A. V. Newkirk, J. E. Antonio-Lopez, J. Anderson, R. Alvarez-Aguirre, R. Amezcua-Correa, and A. Schulzgen, “Higher order modes in anti-resonant hollow core fibers,” in Advanced Photonics (IPR, NOMA, Sensors, Networks, SPPCom, SOF), OSA Technical Digest (online) (Optical Society of America, 2016), paper SoM3F.4.
  170. T. Bradley, N. Wheeler, M. Petrovich, G. Jasion, D. Gray, J. Hayes, S. Sandoghchi, Y. Chen, F. Poletti, D. J. Richardson, and M. B. Alonso, “S2 measurement of higher order mode content in low loss hypocycloid kagomé hollow core photonic crystal fiber,” in Conference on Lasers and Electro-Optics (CLEO), OSA Technical Digest (Optical Society of America, 2016), paper STu4P.8.
  171. M. Xu, F. Yu, and J. Knight, “Low-loss anti-resonant hollow-core fibers with single-mode performance,” in Advanced Photonics (IPR, NOMA, Sensors, Networks, SPPCom, SOF), OSA Technical Digest (online) (Optical Society of America, 2016), paper SoM3F.5.
  172. V. Bock, M. Plötner, O. D. Vries, J. Nold, N. Haarlammert, T. Schreiber, R. Eberhardt, and A. Tünnermann, “Modal content measurements (S2) of negative curvature hollow-core photonic crystal fibers,” Opt. Express 25, 3006–3012 (2017).
    [Crossref]
  173. W. Belardi, F. D. Lucia, F. Poletti, and P. J. Sazio, “Composite material hollow antiresonant fibers,” Opt. Lett. 42, 2535–2538 (2017).
    [Crossref]
  174. A. D. Pryamikov, A. F. Kosolapov, V. G. Plotnichenko, and E. M. Dianov, “Transmission of CO2 laser radiation through glass hollow core microstructured fibers,” in CO2 Laser-Optimisation and Application, D. C. Dumitras, ed. (InTech, 2012), pp. 227–248.
  175. M. H. Frosz, P. Roth, M. C. Günendi, and P. St.J. Russell, “Analytical formulation for the bend loss in single-ring hollow-core photonic crystal fibers,” Photon. Res. 5, 88–91 (2017).
    [Crossref]
  176. M. Heiblum and J. H. Harris, “Analysis of curved optical waveguides by conformal transformation,” IEEE J. Quantum Electron. 11, 75–83 (1975).
    [Crossref]
  177. J. Hu, C. R. Menyuk, L. B. Shaw, J. S. Sanghera, and I. D. Aggarwal, “Computational study of a 3–5  μm source that is created by using supercontinuum generation in As2S3 chalcogenide fibers with a pump at 2  μm,” Opt. Lett. 35, 2907–2909 (2010).
    [Crossref]
  178. S. Gao, Y. Wang, X. Liu, W. Ding, and P. Wang, “Bending loss characterization in nodeless hollow-core anti-resonant fiber,” Opt. Express 24, 14801–14811 (2016).
    [Crossref]
  179. N. V. Wheeler, A. M. Heidt, N. K. Baddela, E. N. Fokoua, J. R. Hayes, S. R. Sandoghchi, F. Poletti, M. N. Petrovich, and D. J. Richardson, “Low-loss and low-bend-sensitivity mid-infrared guidance in a hollow-core-photonic-bandgap fiber,” Opt. Lett. 39, 295–298 (2014).
    [Crossref]
  180. Y. Jung, V. A. J. M. Sleiffer, N. K. Baddela, M. N. Petrovich, J. R. Hayes, N. V. Wheeler, D. R. Gray, E. Numkam Fokoua, J. P. Wooler, H. H.-L. Wong, F. Parmigiani, S.-U. Alam, J. Surof, M. Kuschnerov, V. Veljanovski, H. De Waardt, F. Poletti, and D. J. Richardson, “First demonstration of a broadband 37-cell hollow core photonic bandgap fiber and its application to high capacity mode division multiplexing,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference, OSA Technical Digest (online) (Optical Society of America, 2013), paper PDP5A.3.
  181. S. Gao, Y. Wang, X. Liu, W. Ding, and P. Wang, “Optical performance of nodeless hollow-core anti-resonant fiber under bending: the observation of sub-bands,” in Advanced Photonics (IPR, NOMA, Sensors, Networks, SPPCom, SOF), OSA Technical Digest (online) (Optical Society of America, 2016), paper SoM3F.6.
  182. A. V. V. Nampoothiri, A. Ratanavis, N. Campbell, and W. Rudolph, “Molecular C2H2 and HCN lasers pumped by an optical parametric oscillator in the 1.5  μm band,” Opt. Express 18, 1946–1951 (2010).
    [Crossref]
  183. J. E. McCord, H. C. Miller, G. Hager, A. I. Lampson, and P. G. Crowell, “Experimental investigation of an optically pumped mid-infrared carbon monoxide laser,” IEEE J. Quantum Electron. 35, 1602–1612 (1999).
    [Crossref]
  184. A. M. Jones, A. V. V. Nampoothiri, A. Ratanavis, T. Fiedler, N. V. Wheeler, F. Couny, R. Kadel, F. Benabid, B. R. Washburn, K. L. Corwin, and W. Rudolph, “Mid-infrared gas filled photonic crystal fiber laser based on population inversion,” Opt. Express 19, 2309–2316 (2011).
    [Crossref]
  185. M. R. A. Hassan, F. Yu, W. J. Wadsworth, and J. C. Knight, “Cavity-based mid-IR fiber gas laser pumped by a diode laser,” Optica 3, 218–221 (2016).
    [Crossref]
  186. S. Wu, C. Wang, C. Fourcade-Dutin, B. R. Washburn, F. Benabid, and K. L. Corwin, “Direct fiber comb stabilization to a gas-filled hollow-core photonic crystal fiber,” Opt. Express 22, 23704–23715 (2014).
    [Crossref]
  187. C. M. Harvey, F. Yu, J. C. Knight, W. J. Wadsworth, and P. J. Almeida, “Reduced repetition rate Yb3+ mode-locked picosecond fiber laser with hollow core fiber,” IEEE Photon. Technol. Lett. 28, 669–672 (2016).
    [Crossref]
  188. B. Debord, M. Alharbi, L. Vincetti, A. Husakou, C. Fourcade-Dutin, C. Hoenninger, E. Mottay, F. Gérôme, and F. Benabid, “Multi-meter fiber-delivery and pulse self-compression of milli-Joule femtosecond laser and fiber-aided laser-micromachining,” Opt. Express 22, 10735–10746 (2014).
    [Crossref]
  189. P. Jaworski, F. Yu, R. M. Carter, J. C. Knight, J. D. Shephard, and D. P. Hand, “High energy green nanosecond and picosecond pulse delivery through a negative curvature fiber for precision micro-machining,” Opt. Express 23, 8498–8506 (2015).
    [Crossref]
  190. B. Beaudou, F. Gérôme, Y. Y. Wang, M. Alharbi, T. D. Bradley, G. Humbert, J.-L. Auguste, J.-M. Blondy, and F. Benabid, “Millijoule laser pulse delivery for spark ignition through kagome hollow-core fiber,” Opt. Lett. 37, 1430–1432 (2012).
    [Crossref]
  191. Y. Wang, M. Alharbi, T. D. Bradley, C. Fourcade-Dutina, B. Deborda, B. Beaudoua, F. Gérôme, and F. Benabid, “Hollow-core photonic crystal fibre for high power laser beam delivery,” High Power Laser Sci. Eng. 1, 17–28 (2013).
    [Crossref]
  192. T. G. Polanyi, H. C. Bredemeier, and T. W. Davis, “A CO2 laser for surgical research,” Med. Biol. Eng. 8, 541–548 (1970).
    [Crossref]
  193. K. M. Sasaki, A. Aoki, S. Ichinose, T. Yoshino, S. Yamada, and I. Ishikawa, “Scanning electron microscopy and Fourier transformed infrared spectroscopy analysis of bone removal using Er:YAG and CO2 lasers,” J. Periodontol. 73, 643–652 (2002).
    [Crossref]
  194. S. Amini-Nik, D. Kraemer, M. L. Cowan, K. Gunaratne, P. Nadesan, B. A. Alman, and R. J. D. Miller, “Ultrafast mid-IR laser scalpel: protein signals of the fundamental limits to minimally invasive surgery,” PLoS One 5, e13053 (2010).
    [Crossref]
  195. S. Stübinger, B. von Rechenberg, H. F. Zeilhofer, R. Sader, and C. Landes, “Er:YAG laser osteotomy for removal of impacted teeth: clinical comparison of two techniques,” Lasers Surg. Med. 39, 583–588 (2007).
    [Crossref]
  196. A. Urich, R. R. J. Maier, F. Yu, J. C. Knight, D. P. Hand, and J. D. Shephard, “Silica hollow core microstructured fibres for mid-infrared surgical applications,” J. Non-Cryst. Solids 377, 236–239 (2013).
    [Crossref]
  197. H. Garvie-Cook, “Background,” in Novel (Trans)dermal Drug Delivery Strategies: Micro-and Nano-Scale Assessments (Springer, 2016), pp. 5–28.
  198. H. Garvie-Cook, J. M. Stone, F. Yu, R. H. Guy, and S. N. Gordeev, “Femtosecond pulsed laser ablation to enhance drug delivery across the skin,” J. Biophotonics 9, 144–154 (2016).
    [Crossref]
  199. Y. P. Yatsenko, A. A. Krylov, A. D. Pryamikov, A. F. Kosolapov, A. N. Kolyadin, A. V. Gladyshev, and I. A. Bufetov, “Propagation of femtosecond pulses in a hollow-core revolver fibre,” Quantum Electron. 46, 617–626 (2016).
    [Crossref]
  200. F. Yu and J. C. Knight, “Negative curvature hollow-core optical fiber,” IEEE J. Sel. Top. Quantum Electron. 22, 4400610 (2016).
    [Crossref]
  201. E. M. Dianov, S. L. Semjonov, and I. A. Bufetov, “New generation of optical fibres,” Quantum Electron. 46, 1–10 (2016).
    [Crossref]
  202. F. Poletti, N. V. Wheeler, M. N. Petrovich, N. K. Baddela, E. Numkam Fokoua, J. R. Hayes, D. R. Gray, Z. Li, R. Slavik, and D. J. Richardson, “Towards high-capacity fibre-optic communications at the speed of light in vacuum,” Nat. Photonics 7, 279–284 (2013).
    [Crossref]
  203. V. A. Sleiffer, Y. Jung, P. Leoni, M. Kuschnerov, N. V. Wheeler, N. K. Baddela, R. G. H. van Uden, C. M. Okonkwo, J. R. Hayes, J. Wooler, E. Numkam, R. Slavik, F. Poletti, M. N. Petrovich, V. Veljanovski, S. U. Alam, D. J. Richardson, and H. de Waardt, “30.7  Tb/s (96 × 320  Gb/s) DP-32QAM transmission over 19-cell photonic band gap fiber,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference, OSA Technical Digest (online) (Optical Society of America, 2013), paper OW1I.5.
  204. C. Dumitrache, J. Rath, and A. P. Yalin, “High power spark delivery system using hollow core kagome lattice fibers,” Materials 7, 5700–5710 (2014).
    [Crossref]
  205. M. R. B. Andreeta, L. S. Cunha, L. F. Vales, L. C. Caraschi, and R. G. Jasinevicius, “Bidimensional codes recorded on an oxide glass surface using a continuous wave CO2 laser,” J. Micromech. Microeng. 21, 025004 (2011).
    [Crossref]
  206. A. N. Kolyadin, G. K. Alagasheva, A. D. Pryamikova, L. Mouradianb, A. Zeytunyanb, H. Toneyanb, A. F. Kosolapova, and I. A. Bufetov, “Negative curvature hollow-core fibers: dispersion properties and femtosecond pulse delivery,” Phys. Procedia 73, 59–66 (2015).
    [Crossref]
  207. R. M. Carter, W. N. MacPherson, P. Jaworski, F. Yu, R. Beck, J. D. Shephard, and D. P. Hand, “Dispersion measurement of microstructured negative curvature hollow core fiber,” Opt. Eng. 55, 116106 (2016).
    [Crossref]
  208. B. Sherlock, F. Yu, J. Stone, S. Warren, C. Paterson, M. A. A. Neil, P. M. W. French, J. Knight, and C. Dunsby, “Tunable fibre-coupled multiphoton microscopy with a negative curvature fibre,” J. Biophotonics 9, 715–720 (2016).
    [Crossref]
  209. G. I. Stegeman and R. H. Stolen, “Waveguides and fibers for nonlinear optics,” J. Opt. Soc. Am. B 6, 652–662 (1989).
    [Crossref]
  210. J. C. Travers, W. Chang, J. Nold, N. Y. Joly, and P. St.J. Russell, “Ultrafast nonlinear optics in gas-filled hollow-core photonic crystal fibers,” J. Opt. Soc. Am. B 28, A11–A26 (2011).
    [Crossref]
  211. J. M. Dudley and J. R. Taylor, “Ten years of nonlinear optics in photonic crystal fibre,” Nat. Photonics 3, 85–90 (2009).
    [Crossref]
  212. A. R. Bhagwat and A. L. Gaeta, “Nonlinear optics in hollow-core photonic bandgap fibers,” Opt. Express 16, 5035–5047 (2008).
    [Crossref]
  213. P. Hölzer, W. Chang, J. C. Travers, A. Nazarkin, J. Nold, N. Y. Joly, M. Saleh, F. Biancalana, and P. St.J. Russell, “Femtosecond nonlinear fiber optics in the ionization regime,” Phys. Rev. Lett. 107, 203901 (2011).
    [Crossref]
  214. F. Tani, J. C. Travers, and P. St.J. Russell, “Multimode ultrafast nonlinear optics in optical waveguides: numerical modeling and experiments in kagome photonic-crystal fiber,” J. Opt. Soc. Am. B 31, 311–320 (2014).
    [Crossref]
  215. M. I. Hasan, N. Akhmediev, and W. Chang, “Mid-infrared supercontinuum generation in supercritical xenon-filled hollow-core negative curvature fibers,” Opt. Lett. 41, 5122–5125 (2016).
    [Crossref]
  216. M. Cassataro, D. Novoa, M. C. Günendi, N. N. Edavalath, M. H. Frosz, J. C. Travers, and P. St.J. Russell, “Generation of broadband mid-IR and UV light in gas-filled single-ring hollow-core PCF,” Opt. Express 25, 7637–7644 (2017).
    [Crossref]
  217. N. Dadashzadeh, M. P. Thirugnanasambandam, H. W. K. Weerasinghe, B. Debord, M. Chafer, F. Gerome, F. Benabid, B. R. Washburn, and K. L. Corwin, “Near diffraction-limited performance of an OPA pumped acetylene-filled hollow-core fiber laser in the mid-IR,” Opt. Express 25, 13351–13358 (2017).
    [Crossref]
  218. Z. Wang, F. Yu, W. J. Wadsworth, and J. C. Knight, “Efficient 1.9  μm emission in H2-filled hollow core fiber by pure stimulated vibrational Raman scattering,” Laser Phys. Lett. 11, 105807 (2014).
    [Crossref]
  219. A. N. Kolyadin, G. K. Alagashev, A. D. Pryamikov, A. V. Gladyshev, A. F. Kosolapov, A. S. Biriukov, and I. A. Bufetov, “Negative curvature hollow core fibers for Raman lasing in the mid IR spectral range,” J. Phys. 737, 012009 (2016).
  220. Y. Chen, Z. Wang, B. Gu, F. Yu, and Q. Lu, “Achieving a 1.5  μm fiber gas Raman laser source with about 400  kW of peak power and a 6.3  GHz linewidth,” Opt. Lett. 41, 5118–5121 (2016).
    [Crossref]
  221. A. V. Gladyshev, A. N. Kolyadin, A. F. Kosolapov, Y. P. Yatsenko, A. D. Pryamikov, A. S. Biriukov, I. A. Bufetov, and E. M. Dianov, “Low-threshold 1.9  μm Raman generation in microstructured hydrogen-filled hollow-core revolver fibre with nested capillaries,” Laser Phys. 27, 025101 (2016).
    [Crossref]
  222. B. Gu, Y. Chen, and Z. Wang, “Characteristics of 1.9-μm laser emission from hydrogen-filled hollow-core fiber by vibrational stimulated Raman scattering,” Opt. Eng. 55, 126114 (2016).
    [Crossref]
  223. A. V. Gladyshev, A. F. Kosolapov, M. M. Khudyakov, Y. P. Yatsenko, A. N. Kolyadin, A. A. Krylov, A. D. Pryamikov, A. S. Biriukov, M. E. Likhachev, I. A. Bufetov, and E. M. Dianov, “4.4  μm Raman laser based on hollow-core silica fibre,” Quantum Electron. 47, 491–494 (2017).
    [Crossref]
  224. B. Debord, M. Alharbi, A. Benoît, D. Ghosh, M. Dontabactouny, L. Vincetti, J.-M. Blondy, F. Gérôme, and F. Benabid, “Ultra low-loss hypocycloid-core Kagome hollow-core photonic crystal fiber for green spectral-range applications,” Opt. Lett. 39, 6245–6248 (2014).
    [Crossref]
  225. M. S. Habib, C. Markos, O. Bang, and M. Bache, “Soliton-plasma nonlinear dynamics in mid-IR gas-filled hollow-core fibers,” Opt. Lett. 42, 2232–2235 (2017).
    [Crossref]
  226. O. H. Heckl, C. J. Saraceno, C. R. E. Baer, T. Südmeyer, Y. Y. Wang, Y. Cheng, F. Benabid, and U. Keller, “Temporal pulse compression in a xenon-filled Kagome-type hollow-core photonic crystal fiber at high average power,” Opt. Express 19, 19142–19149 (2011).
    [Crossref]
  227. F. Emaury, C. J. Saraceno, B. Debord, D. Ghosh, A. Diebold, F. Gérôme, T. Südmeyer, F. Benabid, and U. Keller, “Efficient spectral broadening in the 100-W average power regime using gas-filled kagome HC-PCF and pulse compression,” Opt. Lett. 39, 6843–6846 (2014).
    [Crossref]
  228. T. Balciunas, C. Fourcade-Dutin, G. Fan, T. Witting, A. A. Voronin, A. M. Zheltikov, F. Gérôme, G. G. Paulus, A. Baltuska, and F. Benabid, “A strong-field driver in the single-cycle regime based on self-compression in a kagome fibre,” Nat. Commun. 6, 6117 (2015).
    [Crossref]
  229. F. Guichard, A. Giree, Y. Zaouter, M. Hanna, G. Machinet, B. Debord, F. Gérôme, P. Dupriez, F. Druon, C. Hönninger, E. Mottay, F. Benabid, and P. Georges, “Nonlinear compression of high energy fiber amplifier pulses in air-filled hypocycloid-core Kagome fiber,” Opt. Express 23, 7416–7423 (2015).
    [Crossref]
  230. A. M. Cubillas, X. Jiang, T. G. Euser, N. Taccardi, B. J. M. Etzold, P. Wasserscheid, and P. St.J. Russell, “Photochemistry in a soft-glass single-ring hollow-core photonic crystal fiber,” Analyst 142, 925–929 (2017).
    [Crossref]
  231. A. M. Cubillas, S. Unterkofler, T. G. Euser, B. J. Etzold, A. C. Jones, P. J. Sadler, P. Wasserscheid, and P. St.J. Russell, “Photonic crystal fibres for chemical sensing and photochemistry,” Chem. Soc. Rev. 42, 8629–8648 (2013).
    [Crossref]
  232. T. Ritari, J. Tuominen, H. Ludvigsen, J. C. Petersen, H. Sorensen, T. P. Hansen, and H. R. Simonsen, “Gas sensing using air-guiding photonic crystal fibers,” Opt. Express 12, 4080–4087 (2004).
    [Crossref]
  233. S. Gao, Y. Y. Wang, X. Liu, C. Hong, S. Gu, and P. Wang, “Nodeless hollow-core fiber for the visible spectral range,” Opt. Lett. 42, 61–64 (2017).
    [Crossref]
  234. V. Sleiffer, Y. Jung, N. Baddela, J. Surof, M. Kuschnerov, V. Veljanovski, J. Hayes, N. Wheeler, E. Numkam Fokoua, J. Wooler, D. Gray, N. Wong, F. Parmigiani, S. Alam, M. Petrovich, F. Poletti, D. Richardson, and H. de Waardt, “High capacity mode-division multiplexed optical transmission in a novel 37-cell hollow-core photonic bandgap fiber,” J. Lightwave Technol. 32, 854–863 (2014).
    [Crossref]
  235. S. Ghosh, J. E. Sharping, D. G. Ouzounov, and A. L. Gaeta, “Resonant optical interactions with molecules confined in photonic band-gap fibers,” Phys. Rev. Lett. 94, 093902 (2005).
    [Crossref]
  236. L. W. Kornaszewski, N. Gayraud, J. M. Stone, W. N. Macpherson, A. K. George, J. C. Knight, D. P. Hand, and D. T. Reid, “Mid-infrared methane detection in a photonic bandgap fiber using a broadband optical parametric oscillator,” Opt. Express 15, 11219–11224 (2007).
    [Crossref]
  237. N. Gayraud, U. W. Kornaszewski, J. M. Stone, J. C. Knight, D. T. Reid, D. P. Hand, and W. N. MacPherson, “Mid-infrared gas sensing using a photonic bandgap fiber,” Appl. Opt. 47, 1269–1277 (2008).
    [Crossref]
  238. A. M. Stolyarov, A. Gumennik, W. McDaniel, O. Shapira, B. Schell, F. Sorin, K. Kuriki, G. Benoit, A. Rose, and J. D. Joannopoulos, “Enhanced chemiluminescent detection scheme for trace vapor sensing in pneumatically-tuned hollow core photonic bandgap fibers,” Opt. Express 20, 12407–12415 (2012).
    [Crossref]
  239. W. Liu, T. Guo, A. C. Wong, H. Y. Tam, and S. He, “Highly sensitive bending sensor based on Er3+-doped DBR fiber laser,” Opt. Express 18, 17834–17840 (2010).
    [Crossref]
  240. M. Deng, C. P. Tang, T. Zhu, and Y. J. Rao, “Highly sensitive bend sensor based on Mach–Zehnder interferometer using photonic crystal fiber,” Opt. Commun. 284, 2849–2853 (2011).
    [Crossref]
  241. B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5, 141–148 (2011).
  242. J. S. Sanghera, L. B. Shaw, and I. D. Aggarwal, “Chalcogenide glass fiber-based mid-IR sources and applications,” IEEE J. Sel. Top. Quantum Electron. 15, 114–119 (2009).
    [Crossref]
  243. T. Frosch, M. Schmitt, T. Noll, G. Bringmann, K. Schenzel, and J. Popp, “Ultrasensitive in situ tracing of the alkaloid dioncophylline A in the tropical liana Triphyophyllum peltatum by applying deep-UV resonance Raman microscopy,” Anal. Chem. 79, 986–993 (2007).
    [Crossref]
  244. T. Frosch, N. Tarcea, M. Schmitt, H. Thiele, F. Langenhorst, and J. Popp, “UV Raman imaging-A promising tool for astrobiology: comparative Raman studies with different excitation wavelengths on SNC Martian meteorites,” Anal. Chem. 79, 1101–1108 (2007).
    [Crossref]
  245. E. B. Hanlon, R. Manoharan, T. W. Koo, K. E. Shafer, J. T. Motz, M. Fitzmaurice, J. R. Kramer, I. Itzkan, R. R. Dasari, and M. S. Feld, “Prospects for in vivo Raman spectroscopy,” Phys. Med. Biol. 45, R1–R59 (2000).
    [Crossref]
  246. G. J. Leggett, “Light-directed nanosynthesis: near-field optical approaches to integration of the top-down and bottom-up fabrication paradigms,” Nanoscale 4, 1840–1855 (2012).
    [Crossref]
  247. L. Vincetti, “Numerical analysis of plastic hollow core microstructured fiber for Terahertz applications,” Opt. Fiber Technol. 15, 398–401 (2009).
    [Crossref]
  248. L. Vincetti, V. Setti, and M. Zoboli, “Terahertz tube lattice fibers with octagonal symmetry,” IEEE Photon. Technol. Lett. 22, 972–974 (2010).
    [Crossref]
  249. H. Li, G. Ren, B. Zhu, Y. Gao, B. Yin, J. Wang, and S. Jian, “Guiding terahertz orbital angular momentum beams in multimode Kagome hollow-core fibers,” Opt. Lett. 42, 179–182 (2017).
    [Crossref]
  250. J. Anthony, R. Leonhardt, S. G. Leon-Saval, and A. Argyros, “THz propagation in kagome hollow-core microstructured fibers,” Opt. Express 19, 18470–18478 (2011).
    [Crossref]
  251. A. Dupuis, K. Stoeffler, B. Ung, C. Dubois, and M. Skorobogatiy, “Transmission measurements of hollow-core THz Bragg fibers,” J. Opt. Soc. Am. B 28, 896–907 (2011).
    [Crossref]
  252. J. T. Lu, C. H. Lai, T. F. Tseng, H. Chen, Y. F. Tsai, I. J. Chen, Y. J. Hwang, H. C. Chang, and C. K. Sun, “Terahertz polarization-sensitive rectangular pipe waveguides,” Opt. Express 19, 21532–21539 (2011).
    [Crossref]
  253. C. S. Ponseca, R. Pobre, E. Estacio, N. Sarukura, A. Argyros, M. C. Large, and M. A. van Eijkelenborg, “Transmission of terahertz radiation using a microstructured polymer optical fiber,” Opt. Lett. 33, 902–904 (2008).
    [Crossref]
  254. D. S. Wu, A. Argyros, and S. G. Leon-Saval, “Reducing the size of hollow terahertz waveguides,” J. Lightwave Technol. 29, 97–103 (2011).
    [Crossref]
  255. J. Yang, J. Zhao, C. Gong, H. Tian, L. Sun, P. Chen, L. Lin, and W. Liu, “3D printed low-loss THz waveguide based on Kagome photonic crystal structure,” Opt. Express 24, 22454–22460 (2016).
    [Crossref]
  256. W. Lu and A. Argyros, “Terahertz spectroscopy and imaging with flexible tube-lattice fiber probe,” J. Lightwave Technol. 32, 4621–4627 (2014).
    [Crossref]
  257. S. Atakaramians, A. Stefani, H. Li, M. S. Habib, J. G. Hayashi, A. Tuniz, X. Tang, J. Anthony, R. Lwin, A. Argyros, S. C. Fleming, and B. T. Kuhlmey, “Fiber-drawn metamaterial for THz waveguiding and imaging,” J. Infrared Millimeter Terahertz Waves 38, 1162–1178 (2017).
    [Crossref]
  258. S. Okaba, T. Takano, F. Benabid, T. Bradley, L. Vincetti, Z. Maizelis, V. Yampol’skii, F. Nori, and H. Katori, “Lamb-Dicke spectroscopy of atoms in a hollow-core photonic crystal fibre,” Nat. Commun. 5, 4096 (2014).
    [Crossref]
  259. L. Vincetti and V. Setti, “Elliptical hollow core tube lattice fibers for terahertz applications,” Opt. Fiber Technol. 19, 31–34 (2013).
    [Crossref]
  260. S. A. Mousavi, D. J. Richardson, S. R. Sandoghchi, and F. Poletti, “First design of high birefringence and polarising hollow core anti-resonant fibre,” in European Conference on Optical Communication (ECOC), Valencia (2015), pp. 1–3.
  261. S. A. Mousavi, S. R. Sandoghchi, D. J. Richardson, and F. Poletti, “Broadband high birefringence and polarizing hollow core antiresonant fibers,” Opt. Express 24, 22943–22958 (2016).
    [Crossref]
  262. M. J. Li, J. A. West, and K. W. Koch, “Modeling effects of structural distortions on air-core photonic bandgap fibers,” J. Lightwave Technol. 25, 2463–2468 (2007).
    [Crossref]
  263. E. N. Fokoua, D. J. Richardson, and F. Poletti, “Impact of structural distortions on the performance of hollow-core photonic bandgap fibers,” Opt. Express 22, 2735–2744 (2014).
    [Crossref]
  264. E. N. Fokoua, S. R. Sandoghchi, Y. Chen, G. T. Jasion, N. V. Wheeler, N. K. Baddela, J. R. Hayes, M. N. Petrovich, D. J. Richardson, and F. Poletti, “Accurate modelling of fabricated hollow-core photonic bandgap fibers,” Opt. Express 23, 23117–23132 (2015).
    [Crossref]
  265. R. J. Weiblen, C. R. Menyuk, R. R. Gattass, L. B. Shaw, and J. S. Sanghera, “Fabrication tolerances in As2S3 negative-curvature antiresonant fibers,” Opt. Lett. 41, 2624–2627 (2016).
    [Crossref]
  266. W. J. Wadsworth, F. Yu, and J. C. Knight, “Useful light from photonic crystal fibres,” in Conference on Lasers and Electro-Optics (CLEO), OSA Technical Digest (Optical Society of America, 2016), paper SW1I.5. (Mentioned in the talk).

2017 (23)

J. R. Hayes, S. R. Sandoghchi, T. D. Bradley, Z. Liu, R. Slavik, M. A. Gouveia, N. V. Wheeler, G. Jasion, Y. Chen, E. N. Fokoua, M. N. Petrovich, D. J. Richardson, and F. Poletti, “Antiresonant hollow core fiber with an octave spanning bandwidth for short haul data communications,” J. Lightwave Technol. 35, 437–442 (2017).
[Crossref]

N. V. Wheeler, T. D. Bradley, J. R. Hayes, M. A. Gouveia, S. Liang, Y. Chen, S. R. Sandoghchi, S. M. Abokhamis Mousavi, F. Poletti, M. N. Petrovich, and D. J. Richardson, “Low-loss Kagome hollow-core fibers operating from the near- to the mid-IR,” Opt. Lett. 42, 2571–2574 (2017).
[Crossref]

B. Debord, A. Amsanpally, M. Chafer, A. Baz, M. Maurel, J. M. Blondy, E. Hugonnot, F. Scol, L. Vincetti, F. Gérôme, and F. Benabid, “Ultralow transmission loss in inhibited-coupling guiding hollow fibers,” Optica 4, 209–217 (2017).
[Crossref]

X. Liu, W. Ding, Y. Y. Wang, S. Gao, L. Cao, X. Feng, and P. Wang, “Characterization of a liquid-filled nodeless anti-resonant fiber for biochemical sensing,” Opt. Lett. 42, 863–866 (2017).
[Crossref]

A. A. Krylov, A. K. Senatorov, A. D. Pryamikov, A. F. Kosolapov, A. N. Kolyadin, G. K. Alagashev, A. V. Gladyshev, and I. A. Bufetov, “1.56  μm sub-microjoule femtosecond pulse delivery through low-loss microstructured revolver hollow-core fiber,” Laser Phys. Lett. 14, 035104 (2017).
[Crossref]

Y. P. Yatsenko, E. N. Pleteneva, A. G. Okhrimchuk, A. V. Gladyshev, A. F. Kosolapov, A. N. Kolyadin, and I. A. Bufetov, “Multiband supercontinuum generation in an air-core revolver fibre,” Quantum Electron. 47, 553–560 (2017).
[Crossref]

X. Huang, S. Yoo, and K. Yong, “Function of second cladding layer in hollow core tube lattice fibers,” Sci. Rep. 7, 1618 (2017).
[Crossref]

L. D. van Putten, E. N. Fokoua, S. M. A. Mousavi, W. Belardi, S. Chaudhuri, J. V. Badding, and F. Poletti, “Exploring the effect of the core boundary curvature in hollow antiresonant fibers,” IEEE Photon. Technol. Lett. 29, 263–266 (2017).
[Crossref]

F. Meng, B. Liu, Y. Li, C. Wang, and M. Hu, “Low loss hollow-core antiresonant fiber with nested elliptical cladding elements,” IEEE Photon. J. 9, 7100211 (2017).

M. I. Hasan, N. Akhmediev, and W. Chang, “Positive and negative curvatures nested in an antiresonant hollow-core fiber,” Opt. Lett. 42, 703–706 (2017).
[Crossref]

N. N. Edavalath, M. C. Günendi, R. Beravat, G. K. L. Wong, M. H. Frosz, J.-M. Ménard, and P. St.J. Russell, “Higher-order mode suppression in twisted single-ring hollow-core photonic crystal fibers,” Opt. Lett. 42, 2074–2077 (2017).
[Crossref]

Y. Chen, M. F. Saleh, N. Y. Joly, and F. Biancalana, “Low-loss single-mode negatively curved square-core hollow fibers,” Opt. Lett. 42, 1285–1288 (2017).
[Crossref]

V. Bock, M. Plötner, O. D. Vries, J. Nold, N. Haarlammert, T. Schreiber, R. Eberhardt, and A. Tünnermann, “Modal content measurements (S2) of negative curvature hollow-core photonic crystal fibers,” Opt. Express 25, 3006–3012 (2017).
[Crossref]

W. Belardi, F. D. Lucia, F. Poletti, and P. J. Sazio, “Composite material hollow antiresonant fibers,” Opt. Lett. 42, 2535–2538 (2017).
[Crossref]

M. H. Frosz, P. Roth, M. C. Günendi, and P. St.J. Russell, “Analytical formulation for the bend loss in single-ring hollow-core photonic crystal fibers,” Photon. Res. 5, 88–91 (2017).
[Crossref]

M. Cassataro, D. Novoa, M. C. Günendi, N. N. Edavalath, M. H. Frosz, J. C. Travers, and P. St.J. Russell, “Generation of broadband mid-IR and UV light in gas-filled single-ring hollow-core PCF,” Opt. Express 25, 7637–7644 (2017).
[Crossref]

N. Dadashzadeh, M. P. Thirugnanasambandam, H. W. K. Weerasinghe, B. Debord, M. Chafer, F. Gerome, F. Benabid, B. R. Washburn, and K. L. Corwin, “Near diffraction-limited performance of an OPA pumped acetylene-filled hollow-core fiber laser in the mid-IR,” Opt. Express 25, 13351–13358 (2017).
[Crossref]

A. V. Gladyshev, A. F. Kosolapov, M. M. Khudyakov, Y. P. Yatsenko, A. N. Kolyadin, A. A. Krylov, A. D. Pryamikov, A. S. Biriukov, M. E. Likhachev, I. A. Bufetov, and E. M. Dianov, “4.4  μm Raman laser based on hollow-core silica fibre,” Quantum Electron. 47, 491–494 (2017).
[Crossref]

M. S. Habib, C. Markos, O. Bang, and M. Bache, “Soliton-plasma nonlinear dynamics in mid-IR gas-filled hollow-core fibers,” Opt. Lett. 42, 2232–2235 (2017).
[Crossref]

A. M. Cubillas, X. Jiang, T. G. Euser, N. Taccardi, B. J. M. Etzold, P. Wasserscheid, and P. St.J. Russell, “Photochemistry in a soft-glass single-ring hollow-core photonic crystal fiber,” Analyst 142, 925–929 (2017).
[Crossref]

S. Gao, Y. Y. Wang, X. Liu, C. Hong, S. Gu, and P. Wang, “Nodeless hollow-core fiber for the visible spectral range,” Opt. Lett. 42, 61–64 (2017).
[Crossref]

H. Li, G. Ren, B. Zhu, Y. Gao, B. Yin, J. Wang, and S. Jian, “Guiding terahertz orbital angular momentum beams in multimode Kagome hollow-core fibers,” Opt. Lett. 42, 179–182 (2017).
[Crossref]

S. Atakaramians, A. Stefani, H. Li, M. S. Habib, J. G. Hayashi, A. Tuniz, X. Tang, J. Anthony, R. Lwin, A. Argyros, S. C. Fleming, and B. T. Kuhlmey, “Fiber-drawn metamaterial for THz waveguiding and imaging,” J. Infrared Millimeter Terahertz Waves 38, 1162–1178 (2017).
[Crossref]

2016 (38)

S. A. Mousavi, S. R. Sandoghchi, D. J. Richardson, and F. Poletti, “Broadband high birefringence and polarizing hollow core antiresonant fibers,” Opt. Express 24, 22943–22958 (2016).
[Crossref]

R. J. Weiblen, C. R. Menyuk, R. R. Gattass, L. B. Shaw, and J. S. Sanghera, “Fabrication tolerances in As2S3 negative-curvature antiresonant fibers,” Opt. Lett. 41, 2624–2627 (2016).
[Crossref]

J. Yang, J. Zhao, C. Gong, H. Tian, L. Sun, P. Chen, L. Lin, and W. Liu, “3D printed low-loss THz waveguide based on Kagome photonic crystal structure,” Opt. Express 24, 22454–22460 (2016).
[Crossref]

A. N. Kolyadin, G. K. Alagashev, A. D. Pryamikov, A. V. Gladyshev, A. F. Kosolapov, A. S. Biriukov, and I. A. Bufetov, “Negative curvature hollow core fibers for Raman lasing in the mid IR spectral range,” J. Phys. 737, 012009 (2016).

Y. Chen, Z. Wang, B. Gu, F. Yu, and Q. Lu, “Achieving a 1.5  μm fiber gas Raman laser source with about 400  kW of peak power and a 6.3  GHz linewidth,” Opt. Lett. 41, 5118–5121 (2016).
[Crossref]

A. V. Gladyshev, A. N. Kolyadin, A. F. Kosolapov, Y. P. Yatsenko, A. D. Pryamikov, A. S. Biriukov, I. A. Bufetov, and E. M. Dianov, “Low-threshold 1.9  μm Raman generation in microstructured hydrogen-filled hollow-core revolver fibre with nested capillaries,” Laser Phys. 27, 025101 (2016).
[Crossref]

B. Gu, Y. Chen, and Z. Wang, “Characteristics of 1.9-μm laser emission from hydrogen-filled hollow-core fiber by vibrational stimulated Raman scattering,” Opt. Eng. 55, 126114 (2016).
[Crossref]

M. I. Hasan, N. Akhmediev, and W. Chang, “Mid-infrared supercontinuum generation in supercritical xenon-filled hollow-core negative curvature fibers,” Opt. Lett. 41, 5122–5125 (2016).
[Crossref]

S. Gao, Y. Wang, X. Liu, W. Ding, and P. Wang, “Bending loss characterization in nodeless hollow-core anti-resonant fiber,” Opt. Express 24, 14801–14811 (2016).
[Crossref]

M. R. A. Hassan, F. Yu, W. J. Wadsworth, and J. C. Knight, “Cavity-based mid-IR fiber gas laser pumped by a diode laser,” Optica 3, 218–221 (2016).
[Crossref]

C. M. Harvey, F. Yu, J. C. Knight, W. J. Wadsworth, and P. J. Almeida, “Reduced repetition rate Yb3+ mode-locked picosecond fiber laser with hollow core fiber,” IEEE Photon. Technol. Lett. 28, 669–672 (2016).
[Crossref]

H. Garvie-Cook, J. M. Stone, F. Yu, R. H. Guy, and S. N. Gordeev, “Femtosecond pulsed laser ablation to enhance drug delivery across the skin,” J. Biophotonics 9, 144–154 (2016).
[Crossref]

Y. P. Yatsenko, A. A. Krylov, A. D. Pryamikov, A. F. Kosolapov, A. N. Kolyadin, A. V. Gladyshev, and I. A. Bufetov, “Propagation of femtosecond pulses in a hollow-core revolver fibre,” Quantum Electron. 46, 617–626 (2016).
[Crossref]

F. Yu and J. C. Knight, “Negative curvature hollow-core optical fiber,” IEEE J. Sel. Top. Quantum Electron. 22, 4400610 (2016).
[Crossref]

E. M. Dianov, S. L. Semjonov, and I. A. Bufetov, “New generation of optical fibres,” Quantum Electron. 46, 1–10 (2016).
[Crossref]

R. M. Carter, W. N. MacPherson, P. Jaworski, F. Yu, R. Beck, J. D. Shephard, and D. P. Hand, “Dispersion measurement of microstructured negative curvature hollow core fiber,” Opt. Eng. 55, 116106 (2016).
[Crossref]

B. Sherlock, F. Yu, J. Stone, S. Warren, C. Paterson, M. A. A. Neil, P. M. W. French, J. Knight, and C. Dunsby, “Tunable fibre-coupled multiphoton microscopy with a negative curvature fibre,” J. Biophotonics 9, 715–720 (2016).
[Crossref]

T. D. Bradley, N. V. Wheeler, G. T. Jasion, D. Gray, J. Hayes, M. A. Gouveia, S. R. Sandoghchi, Y. Chen, F. Poletti, D. Richardson, and M. Petrovich, “Modal content in hypocycloid Kagomé hollow core photonic crystal fibers,” Opt. Express 24, 15798–15812 (2016).
[Crossref]

M. S. Habib, O. Bang, and M. Bache, “Low-loss hollow-core anti-resonant fibers with semi-circular nested tubes,” IEEE J. Sel. Top. Quantum Electron. 22, 4402106 (2016).
[Crossref]

M. S. Habib, O. Bang, and M. Bache, “Low-loss single-mode hollow-core fiber with anisotropic anti-resonant elements,” Opt. Express 24, 8429–8436 (2016).
[Crossref]

S. Chaudhuri, L. Van Putten, F. Poletti, and P. Sazio, “Low loss transmission in negative curvature optical fibers with elliptical capillary tubes,” J. Lightwave Technol. 34, 4228–4231 (2016).
[Crossref]

C. Wei, C. R. Menyuk, and J. Hu, “Impact of cladding tubes in chalcogenide negative curvature fibers,” IEEE Photon. J. 8, 2200509 (2016).

C. Wei, J. Hu, and C. R. Menyuk, “Comparison of loss in silica and chalcogenide negative curvature fibers as the wavelength varies,” Front. Phys. 4, 30 (2016).
[Crossref]

C. Wei, C. Menyuk, and J. Hu, “Bending-induced mode non-degeneracy and coupling in chalcogenide negative curvature fibers,” Opt. Express 24, 12228–12239 (2016).
[Crossref]

L. Vincetti, “Empirical formulas for calculating loss in hollow core tube lattice fibers,” Opt. Express 24, 10313–10325 (2016).
[Crossref]

A. D. Pryamikov, A. F. Kosolapov, G. K. Alagashev, A. N. Kolyadin, V. V. Vel’miskin, A. S. Biriukov, and I. A. Bufetov, “Hollow-core microstructured ‘revolver’ fibre for the UV spectral range,” Quantum Electron. 46, 1129–1133 (2016).
[Crossref]

W. Lu, S. Lou, and A. Argyros, “Investigation of flexible low-loss hollow-core fibres with tube-lattice cladding for terahertz radiation,” IEEE J. Sel. Top. Quantum Electron. 22, 214–220 (2016).
[Crossref]

X. Huang, W. Qi, D. Ho, K. T. Yong, F. Luan, and S. Yoo, “Hollow core anti-resonant fiber with split cladding,” Opt. Express 24, 7670–7678 (2016).
[Crossref]

Y. Chen, M. F. Saleh, N. Y. Joly, and F. Biancalana, “Guiding 2.94  μm using low-loss microstructured antiresonant triangular-core fibers,” J. Appl. Phys. 119, 143104 (2016).
[Crossref]

F. Yu, M. Xu, and J. C. Knight, “Experimental study of low-loss single-mode performance in anti-resonant hollow-core fibers,” Opt. Express 24, 12969–12975 (2016).
[Crossref]

X. Liu, Z. Fan, Z. Shi, Y. Ma, J. Yu, and J. Zhang, “Dual-core antiresonant hollow core fibers,” Opt. Express 24, 17453–17458 (2016).
[Crossref]

X. Zheng, B. Debord, L. Vincetti, B. Beaudou, F. Gérôme, and F. Benabid, “Fusion splice between tapered inhibited coupling hypocycloid-core Kagome fiber and SMF,” Opt. Express 24, 14642–14647 (2016).
[Crossref]

A. V. Newkirk, J. E. Antonio-Lopez, J. Anderson, R. Alvarez-Aguirre, Z. S. Eznaveh, G. Lopez-Galmiche, R. Amezcua-Correa, and A. Schülzgen, “Modal analysis of antiresonant hollow core fibers using S2 imaging,” Opt. Lett. 41, 3277–3280 (2016).
[Crossref]

P. Uebel, M. C. Günendi, M. H. Frosz, G. Ahmed, N. N. Edavalath, J.-M. Ménard, and P. St.J. Russell, “Broadband robustly single-mode hollow-core PCF by resonant filtering of higher-order modes,” Opt. Lett. 41, 1961–1964 (2016).
[Crossref]

R. R. Gattass, D. Rhonehouse, D. Gibson, C. C. McClain, R. Thapa, V. Q. Nguyen, S. S. Bayya, R. J. Weiblen, C. R. Menyuk, L. B. Shaw, and J. S. Sanghera, “Infrared glass-based negative-curvature anti-resonant fibers fabricated through extrusion,” Opt. Express 24, 25697–25703 (2016).
[Crossref]

M. Michieletto, J. K. Lyngs, C. Jakobsen, J. Lgsgaard, O. Bang, and T. T. Alkeskjold, “Hollow-core fibers for high power pulse delivery,” Opt. Express 24, 7103–7119 (2016).
[Crossref]

A. D. Pryamikov, G. K. Alagashev, and A. S. Biriukov, “Impact of core cladding boundary shape on the waveguide properties of hollow core microstructured fibers,” Laser Phys. 26, 125104 (2016).
[Crossref]

A. F. Kosolapov, G. K. Alagashev, A. N. Kolyadin, A. D. Pryamikov, A. S. Biryukov, I. A. Bufetov, and E. M. Dianov, “Hollow-core revolver fibre with a double-capillary reflective cladding,” Quantum Electron. 46, 267–270 (2016).
[Crossref]

2015 (24)

C. Wei, R. A. Kuis, F. Chenard, C. R. Menyuk, and J. Hu, “Higher-order mode suppression in chalcogenide negative curvature fibers,” Opt. Express 23, 15824–15832 (2015).
[Crossref]

M. S. Habib, O. Bang, and M. Bache, “Low-loss hollow-core silica fibers with adjacent nested anti-resonant tubes,” Opt. Express 23, 17394–17406 (2015).
[Crossref]

G. K. Alagashev, A. D. Pryamikov, A. F. Kosolapov, A. N. Kolyadin, A. Y. Lukovkin, and A. S. Biriukov, “Impact of geometrical parameters on the optical properties of negative curvature hollow core fibers,” Laser Phys. 25, 055101 (2015).
[Crossref]

V. S. Shiryaev, “Chalcogenide glass hollow-core microstructured optical fibers,” Front. Mater. 2, 24 (2015).
[Crossref]

X. Jiang, N. Y. Joly, M. A. Finger, F. Babic, G. K. L. Wong, J. C. Travers, and P. St.J. Russell, “Deep-ultraviolet to mid-infrared supercontinuum generated in solid-core ZBLAN photonic crystal fibre,” Nat. Photonics 9, 133–139 (2015).
[Crossref]

G. Tao, H. Ebendorff-Heidepriem, A. M. Stolyarov, S. Danto, J. V. Badding, Y. Fink, J. Ballato, and A. F. Abouraddy, “Infrared fibers,” Adv. Opt. Photon. 7, 379–458 (2015).
[Crossref]

D. V. Bogdanovich, A. K. Srivastava, V. G. Chigrinov, A. S. Biriukov, and A. D. Pryamikov, “Hollow core negative curvature fibre with layers of photoaligned optically anisotropic material,” Laser Phys. Lett. 12, 105101 (2015).
[Crossref]

A. V. Gladyshev, A. N. Kolyadin, A. F. Kosolapov, Y. P. Yatsenko, A. D. Pryamikov, A. S. Biryukov, I. A. Bufetov, and E. M. Dianov, “Efficient 1.9-μm Raman generation in a hydrogen-filled hollow-core fibre,” Quantum Electron. 45, 807–812 (2015).
[Crossref]

A. Benoît, B. Beaudou, M. Alharbi, B. Debord, F. Gérôme, F. Salin, and F. Benabid, “Over-five octaves wide Raman combs in high-power picosecond-laser pumped H2-filled inhibited coupling kagome fiber,” Opt. Express 23, 14002–14009 (2015).
[Crossref]

B. Debord, A. Amsanpally, M. Alharbi, L. Vincetti, J. M. Blondy, F. Gérôme, and F. Benabid, “Ultra-large core size hypocycloid-shape inhibited coupling kagome fibers for high-energy laser beam handling,” J. Lightwave Technol. 33, 3630–3634 (2015).
[Crossref]

A. V. V. Nampoothiri, B. Debord, M. Alharbi, F. Gérôme, F. Benabid, and W. Rudolph, “CW hollow-core optically pumped I2 fiber gas laser,” Opt. Lett. 40, 605–608 (2015).
[Crossref]

J. Yang, B. Yang, Z. Wang, and W. Liu, “Design of the low-loss wide bandwidth hollow-core terahertz inhibited coupling fibers,” Opt. Commun. 343, 150–156 (2015).
[Crossref]

W. Belardi, “Design and properties of hollow antiresonant fibers for the visible and near infrared spectral range,” J. Lightwave Technol. 33, 4497–4503 (2015).
[Crossref]

A. Hartung, J. Kobelke, A. Schwuchow, K. Wondraczek, J. Bierlich, J. Popp, T. Frosch, and M. A. Schmidt, “Origins of modal loss of antiresonant hollow-core optical fibers in the ultraviolet,” Opt. Express 23, 2557–2565 (2015).
[Crossref]

J. R. Hayes, F. Poletti, M. S. Abokhamis, N. V. Wheeler, N. K. Baddela, and D. J. Richardson, “Anti-resonant hexagram hollow core fibers,” Opt. Express 23, 1289–1299 (2015).
[Crossref]

A. Hartung, J. Kobelke, A. Schwuchow, J. Bierlich, J. Popp, M. A. Schmidt, and T. Frosch, “Low-loss single-mode guidance in large-core antiresonant hollow-core fibers,” Opt. Lett. 40, 3432–3435 (2015).
[Crossref]

W. Ding and Y. Wang, “Semi-analytical model for hollow-core anti-resonant fibers,” Front. Phys. 3, 16 (2015).
[Crossref]

W. Ding and Y. Y. Wang, “Hybrid transmission bands and large birefringence in hollow-core anti-resonant fibers,” Opt. Express 23, 21165–21174 (2015).
[Crossref]

J. D. Shephard, A. Urich, R. M. Carter, P. Jaworski, R. R. J. Maier, W. Belardi, F. Yu, W. J. Wadsworth, J. C. Knight, and D. P. Hand, “Silica hollow core microstructured fibers for beam delivery in industrial and medical applications,” Front. Phys. 3, 24 (2015).
[Crossref]

P. Jaworski, F. Yu, R. M. Carter, J. C. Knight, J. D. Shephard, and D. P. Hand, “High energy green nanosecond and picosecond pulse delivery through a negative curvature fiber for precision micro-machining,” Opt. Express 23, 8498–8506 (2015).
[Crossref]

A. N. Kolyadin, G. K. Alagasheva, A. D. Pryamikova, L. Mouradianb, A. Zeytunyanb, H. Toneyanb, A. F. Kosolapova, and I. A. Bufetov, “Negative curvature hollow-core fibers: dispersion properties and femtosecond pulse delivery,” Phys. Procedia 73, 59–66 (2015).
[Crossref]

T. Balciunas, C. Fourcade-Dutin, G. Fan, T. Witting, A. A. Voronin, A. M. Zheltikov, F. Gérôme, G. G. Paulus, A. Baltuska, and F. Benabid, “A strong-field driver in the single-cycle regime based on self-compression in a kagome fibre,” Nat. Commun. 6, 6117 (2015).
[Crossref]

F. Guichard, A. Giree, Y. Zaouter, M. Hanna, G. Machinet, B. Debord, F. Gérôme, P. Dupriez, F. Druon, C. Hönninger, E. Mottay, F. Benabid, and P. Georges, “Nonlinear compression of high energy fiber amplifier pulses in air-filled hypocycloid-core Kagome fiber,” Opt. Express 23, 7416–7423 (2015).
[Crossref]

E. N. Fokoua, S. R. Sandoghchi, Y. Chen, G. T. Jasion, N. V. Wheeler, N. K. Baddela, J. R. Hayes, M. N. Petrovich, D. J. Richardson, and F. Poletti, “Accurate modelling of fabricated hollow-core photonic bandgap fibers,” Opt. Express 23, 23117–23132 (2015).
[Crossref]

2014 (21)

E. N. Fokoua, D. J. Richardson, and F. Poletti, “Impact of structural distortions on the performance of hollow-core photonic bandgap fibers,” Opt. Express 22, 2735–2744 (2014).
[Crossref]

S. Okaba, T. Takano, F. Benabid, T. Bradley, L. Vincetti, Z. Maizelis, V. Yampol’skii, F. Nori, and H. Katori, “Lamb-Dicke spectroscopy of atoms in a hollow-core photonic crystal fibre,” Nat. Commun. 5, 4096 (2014).
[Crossref]

W. Lu and A. Argyros, “Terahertz spectroscopy and imaging with flexible tube-lattice fiber probe,” J. Lightwave Technol. 32, 4621–4627 (2014).
[Crossref]

V. Sleiffer, Y. Jung, N. Baddela, J. Surof, M. Kuschnerov, V. Veljanovski, J. Hayes, N. Wheeler, E. Numkam Fokoua, J. Wooler, D. Gray, N. Wong, F. Parmigiani, S. Alam, M. Petrovich, F. Poletti, D. Richardson, and H. de Waardt, “High capacity mode-division multiplexed optical transmission in a novel 37-cell hollow-core photonic bandgap fiber,” J. Lightwave Technol. 32, 854–863 (2014).
[Crossref]

F. Emaury, C. J. Saraceno, B. Debord, D. Ghosh, A. Diebold, F. Gérôme, T. Südmeyer, F. Benabid, and U. Keller, “Efficient spectral broadening in the 100-W average power regime using gas-filled kagome HC-PCF and pulse compression,” Opt. Lett. 39, 6843–6846 (2014).
[Crossref]

F. Tani, J. C. Travers, and P. St.J. Russell, “Multimode ultrafast nonlinear optics in optical waveguides: numerical modeling and experiments in kagome photonic-crystal fiber,” J. Opt. Soc. Am. B 31, 311–320 (2014).
[Crossref]

Z. Wang, F. Yu, W. J. Wadsworth, and J. C. Knight, “Efficient 1.9  μm emission in H2-filled hollow core fiber by pure stimulated vibrational Raman scattering,” Laser Phys. Lett. 11, 105807 (2014).
[Crossref]

B. Debord, M. Alharbi, A. Benoît, D. Ghosh, M. Dontabactouny, L. Vincetti, J.-M. Blondy, F. Gérôme, and F. Benabid, “Ultra low-loss hypocycloid-core Kagome hollow-core photonic crystal fiber for green spectral-range applications,” Opt. Lett. 39, 6245–6248 (2014).
[Crossref]

C. Dumitrache, J. Rath, and A. P. Yalin, “High power spark delivery system using hollow core kagome lattice fibers,” Materials 7, 5700–5710 (2014).
[Crossref]

B. Debord, M. Alharbi, L. Vincetti, A. Husakou, C. Fourcade-Dutin, C. Hoenninger, E. Mottay, F. Gérôme, and F. Benabid, “Multi-meter fiber-delivery and pulse self-compression of milli-Joule femtosecond laser and fiber-aided laser-micromachining,” Opt. Express 22, 10735–10746 (2014).
[Crossref]

S. Wu, C. Wang, C. Fourcade-Dutin, B. R. Washburn, F. Benabid, and K. L. Corwin, “Direct fiber comb stabilization to a gas-filled hollow-core photonic crystal fiber,” Opt. Express 22, 23704–23715 (2014).
[Crossref]

N. V. Wheeler, A. M. Heidt, N. K. Baddela, E. N. Fokoua, J. R. Hayes, S. R. Sandoghchi, F. Poletti, M. N. Petrovich, and D. J. Richardson, “Low-loss and low-bend-sensitivity mid-infrared guidance in a hollow-core-photonic-bandgap fiber,” Opt. Lett. 39, 295–298 (2014).
[Crossref]

A. Hartung, J. Kobelke, A. Schwuchow, K. Wondraczek, J. Bierlich, J. Popp, T. Frosch, and M. A. Schmidt, “Double antiresonant hollow core fiber-guidance in the deep ultraviolet by modified tunneling leaky modes,” Opt. Express 22, 19131–19140 (2014).
[Crossref]

W. Ding and Y. Wang, “Analytic model for light guidance in single wall hollow-core anti-resonant fibers,” Opt. Express 22, 27242–27256 (2014).
[Crossref]

T. D. Bradley, J. Jouin, J. J. McFerran, P. Thomas, F. Gerome, and F. Benabid, “Extended duration of rubidium vapor in aluminosilicate ceramic coated hypocycloidal core kagome HC-PCF,” J. Lightwave Technol. 32, 2486–2491 (2014).
[Crossref]

V. S. Shiryaev, A. F. Kosolapov, A. D. Pryamikov, G. E. Snopatin, M. F. Churbanov, A. S. Biriukov, T. V. Kotereva, S. V. Mishinov, G. K. Alagashev, and A. N. Kolyadin, “Development of technique for preparation of As2S3 glass preforms for hollow core microstructured optical fibers,” J. Optoelectron. Adv. Mater. 16, 1020–1025 (2014).

Z. Wang, W. Belardi, F. Yu, W. J. Wadsworth, and J. C. Knight, “Efficient diode-pumped mid-infrared emission from acetylene-filled hollow-core fiber,” Opt. Express 22, 21872–21878 (2014).
[Crossref]

W. Belardi and J. C. Knight, “Hollow antiresonant fibers with low bending loss,” Opt. Express 22, 10091–10096 (2014).
[Crossref]

W. Belardi and J. C. Knight, “Hollow antiresonant fibers with reduced attenuation,” Opt. Lett. 39, 1853–1856 (2014).
[Crossref]

F. Poletti, “Nested antiresonant nodeless hollow core fiber,” Opt. Express 22, 23807–23828 (2014).
[Crossref]

P. St.J. Russell, P. Hölzer, W. Chang, A. Abdolvand, and J. C. Travers, “Hollow-core photonic crystal fibres for gas-based nonlinear optics,” Nat. Photonics 8, 278–286 (2014).
[Crossref]

2013 (18)

B. Debord, M. Alharbi, T. Bradley, C. Fourcade-Dutin, Y. Y. Wang, L. Vincetti, F. Gérôom, and F. Benabid, “Hypocycloid-shaped hollow-core photonic crystal fiber Part I: arc curvature effect on confinement loss,” Opt. Express 21, 28597–28608 (2013).
[Crossref]

M. Alharbi, T. Bradley, B. Debord, C. Fourcade-Dutin, D. Ghosh, L. Vincetti, F. Gérôme, and F. Benabid, “Hypocycloid-shaped hollow-core photonic crystal fiber Part II: cladding effect on confinement and bend loss,” Opt. Express 21, 28609–28616 (2013).
[Crossref]

F. Poletti, M. N. Petrovich, and D. J. Richardson, “Hollow-core photonic bandgap fibers: technology and applications,” Nanophotonics 2, 315–340 (2013).
[Crossref]

W. Belardi and J. C. Knight, “Effect of core boundary curvature on the confinement losses of hollow antiresonant fibers,” Opt. Express 21, 21912–21917 (2013).
[Crossref]

A. N. Kolyadin, A. F. Kosolapov, A. D. Pryamikov, A. S. Biriukov, V. G. Plotnichenko, and E. M. Dianov, “Light transmission in negative curvature hollow core fiber in extremely high material loss region,” Opt. Express 21, 9514–9519 (2013).
[Crossref]

F. Yu and J. C. Knight, “Spectral attenuation limits of silica hollow core negative curvature fiber,” Opt. Express 21, 21466–21471 (2013).
[Crossref]

A. Urich, R. R. J. Maier, F. Yu, J. C. Knight, D. P. Hand, and J. D. Shephard, “Flexible delivery of Er:YAG radiation at 2.94  μm with negative curvature silica glass fibers: a new solution for minimally invasive surgical procedures,” Biomed. Opt. Express 4, 193–205 (2013).
[Crossref]

P. Jaworski, F. Yu, R. R. J. Maier, W. J. Wadsworth, J. C. Knight, J. D. Shephard, and D. P. Hand, “Picosecond and nanosecond pulse delivery through a hollow-core negative curvature fiber for micro-machining applications,” Opt. Express 21, 22742–22753 (2013).
[Crossref]

V. Setti, L. Vincetti, and A. Argyros, “Flexible tube lattice fibers for terahertz applications,” Opt. Express 21, 3388–3399 (2013).
[Crossref]

T. D. Bradley, Y. Wang, M. Alharbi, B. Debord, C. Fourcade-Dutin, B. Beaudou, F. Gerome, and F. Benabid, “Optical properties of low loss (70  dB/km) hypocycloid-core kagome hollow core photonic crystal fiber for Rb and Cs based optical applications,” J. Lightwave Technol. 31, 2752–2755 (2013).
[Crossref]

F. Emaury, C. F. Dutin, C. J. Saraceno, M. Trant, O. H. Heckl, Y. Y. Wang, C. Schriber, F. Gerome, T. Südmeyer, F. Benabid, and U. Keller, “Beam delivery and pulse compression to sub-50  fs of a mode locked thin disk laser in a gas-filled Kagome-type HC-PCF fiber,” Opt. Express 21, 4986–4994 (2013).
[Crossref]

J. M. Fini, J. W. Nicholson, R. S. Windeler, E. M. Monberg, L. Meng, B. Mangan, A. Desantolo, and F. V. DiMarcello, “Low-loss hollow-core fibers with improved single-modedness,” Opt. Express 21, 6233–6242 (2013).
[Crossref]

M. H. Frosz, J. Nold, T. Weiss, A. Stefani, F. Babic, S. Rammler, and P. St.J. Russell, “Five-ring hollow-core photonic crystal fiber with 1.8  dB/km loss,” Opt. Lett. 38, 2215–2217 (2013).
[Crossref]

F. Poletti, N. V. Wheeler, M. N. Petrovich, N. K. Baddela, E. Numkam Fokoua, J. R. Hayes, D. R. Gray, Z. Li, R. Slavik, and D. J. Richardson, “Towards high-capacity fibre-optic communications at the speed of light in vacuum,” Nat. Photonics 7, 279–284 (2013).
[Crossref]

Y. Wang, M. Alharbi, T. D. Bradley, C. Fourcade-Dutina, B. Deborda, B. Beaudoua, F. Gérôme, and F. Benabid, “Hollow-core photonic crystal fibre for high power laser beam delivery,” High Power Laser Sci. Eng. 1, 17–28 (2013).
[Crossref]

A. Urich, R. R. J. Maier, F. Yu, J. C. Knight, D. P. Hand, and J. D. Shephard, “Silica hollow core microstructured fibres for mid-infrared surgical applications,” J. Non-Cryst. Solids 377, 236–239 (2013).
[Crossref]

A. M. Cubillas, S. Unterkofler, T. G. Euser, B. J. Etzold, A. C. Jones, P. J. Sadler, P. Wasserscheid, and P. St.J. Russell, “Photonic crystal fibres for chemical sensing and photochemistry,” Chem. Soc. Rev. 42, 8629–8648 (2013).
[Crossref]

L. Vincetti and V. Setti, “Elliptical hollow core tube lattice fibers for terahertz applications,” Opt. Fiber Technol. 19, 31–34 (2013).
[Crossref]

2012 (10)

A. M. Stolyarov, A. Gumennik, W. McDaniel, O. Shapira, B. Schell, F. Sorin, K. Kuriki, G. Benoit, A. Rose, and J. D. Joannopoulos, “Enhanced chemiluminescent detection scheme for trace vapor sensing in pneumatically-tuned hollow core photonic bandgap fibers,” Opt. Express 20, 12407–12415 (2012).
[Crossref]

G. J. Leggett, “Light-directed nanosynthesis: near-field optical approaches to integration of the top-down and bottom-up fabrication paradigms,” Nanoscale 4, 1840–1855 (2012).
[Crossref]

B. Beaudou, F. Gérôme, Y. Y. Wang, M. Alharbi, T. D. Bradley, G. Humbert, J.-L. Auguste, J.-M. Blondy, and F. Benabid, “Millijoule laser pulse delivery for spark ignition through kagome hollow-core fiber,” Opt. Lett. 37, 1430–1432 (2012).
[Crossref]

T. Morioka, Y. Awaji, R. Ryf, P. Winzer, D. Richardson, and F. Poletti, “Enhancing optical communications with brand new fibers,” IEEE Commun. Mag. 50(2), S31–S42 (2012).
[Crossref]

E. N. Fokoua, F. Poletti, and D. J. Richardson, “Analysis of light scattering from surface roughness in hollow-core photonic bandgap fibers,” Opt. Express 20, 20980–20991 (2012).
[Crossref]

L. Vincetti and V. Setti, “Confinement loss in kagome and tube lattice fibers: comparison and analysis,” J. Lightwave Technol. 30, 1470–1474 (2012).
[Crossref]

L. Vincetti and V. Setti, “Extra loss due to Fano resonances in inhibited coupling fibers based on a lattice of tubes,” Opt. Express 20, 14350–14361 (2012).
[Crossref]

Y. Y. Wang, X. Peng, M. Alharbi, C. F. Dutin, T. D. Bradley, F. Gérôme, M. Mielke, T. Booth, and F. Benabid, “Design and fabrication of hollow-core photonic crystal fibers for high-power ultrashort pulse transportation and pulse compression,” Opt. Lett. 37, 3111–3113 (2012).
[Crossref]

A. V. V. Nampoothiri, A. M. Jones, C. Fourcade-Dutin, C. Mao, N. Dadashzadeh, B. Baumgart, Y. Y. Wang, M. Alharbi, T. Bradley, N. Campbell, F. Benabid, B. R. Washburn, K. L. Corwin, and W. Rudolph, “Hollow-core optical fiber gas lasers (HOFGLAS): a review [Invited],” Opt. Mater. Express 2, 948–961 (2012).
[Crossref]

F. Yu, W. J. Wadsworth, and J. C. Knight, “Low loss silica hollow core fibers for 3–4  μm spectral region,” Opt. Express 20, 11153–11158 (2012).
[Crossref]

2011 (17)

Y. Y. Wang, N. V. Wheeler, F. Couny, P. J. Roberts, and F. Benabid, “Low loss broadband transmission in hypocycloid-core Kagome hollow-core photonic crystal fiber,” Opt. Lett. 36, 669–671 (2011).
[Crossref]

A. D. Pryamikov, A. S. Biriukov, A. F. Kosolapov, V. G. Plotnichenko, S. L. Semjonov, and E. M. Dianov, “Demonstration of a waveguide regime for a silica hollow-core microstructured optical fiber with a negative curvature of the core boundary in the spectral region >3.5  μm,” Opt. Express 19, 1441–1448 (2011).
[Crossref]

A. F. Kosolapov, A. D. Pryamikov, A. S. Biriukov, V. S. Shiryaev, M. S. Astapovich, G. E. Snopatin, V. G. Plotnichenko, M. F. Churbanov, and E. M. Dianov, “Demonstration of CO2-laser power delivery through chalcogenide-glass fiber with negative-curvature hollow core,” Opt. Express 19, 25723–25728 (2011).
[Crossref]

T. Murao, K. Saitoh, and M. Koshiba, “Multiple resonant coupling mechanism for suppression of higher-order modes in all-solid photonic bandgap fibers with heterostructured cladding,” Opt. Express 19, 1713–1727 (2011).
[Crossref]

F. Jansen, F. Stutzki, C. Jauregui, J. Limpert, and A. Tünnermann, “Avoided crossings in photonic crystal fibers,” Opt. Express 19, 13578–13589 (2011).
[Crossref]

E. Nguema, D. Férachou, G. Humbert, J.-L. Auguste, and J.-M. Blondy, “Broadband terahertz transmission within the air channel of thin-wall pipe,” Opt. Lett. 36, 1782–1784 (2011).
[Crossref]

A. M. Jones, A. V. V. Nampoothiri, A. Ratanavis, T. Fiedler, N. V. Wheeler, F. Couny, R. Kadel, F. Benabid, B. R. Washburn, K. L. Corwin, and W. Rudolph, “Mid-infrared gas filled photonic crystal fiber laser based on population inversion,” Opt. Express 19, 2309–2316 (2011).
[Crossref]

M. R. B. Andreeta, L. S. Cunha, L. F. Vales, L. C. Caraschi, and R. G. Jasinevicius, “Bidimensional codes recorded on an oxide glass surface using a continuous wave CO2 laser,” J. Micromech. Microeng. 21, 025004 (2011).
[Crossref]

M. Deng, C. P. Tang, T. Zhu, and Y. J. Rao, “Highly sensitive bend sensor based on Mach–Zehnder interferometer using photonic crystal fiber,” Opt. Commun. 284, 2849–2853 (2011).
[Crossref]

B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5, 141–148 (2011).

O. H. Heckl, C. J. Saraceno, C. R. E. Baer, T. Südmeyer, Y. Y. Wang, Y. Cheng, F. Benabid, and U. Keller, “Temporal pulse compression in a xenon-filled Kagome-type hollow-core photonic crystal fiber at high average power,” Opt. Express 19, 19142–19149 (2011).
[Crossref]

P. Hölzer, W. Chang, J. C. Travers, A. Nazarkin, J. Nold, N. Y. Joly, M. Saleh, F. Biancalana, and P. St.J. Russell, “Femtosecond nonlinear fiber optics in the ionization regime,” Phys. Rev. Lett. 107, 203901 (2011).
[Crossref]

J. C. Travers, W. Chang, J. Nold, N. Y. Joly, and P. St.J. Russell, “Ultrafast nonlinear optics in gas-filled hollow-core photonic crystal fibers,” J. Opt. Soc. Am. B 28, A11–A26 (2011).
[Crossref]

D. S. Wu, A. Argyros, and S. G. Leon-Saval, “Reducing the size of hollow terahertz waveguides,” J. Lightwave Technol. 29, 97–103 (2011).
[Crossref]

J. Anthony, R. Leonhardt, S. G. Leon-Saval, and A. Argyros, “THz propagation in kagome hollow-core microstructured fibers,” Opt. Express 19, 18470–18478 (2011).
[Crossref]

A. Dupuis, K. Stoeffler, B. Ung, C. Dubois, and M. Skorobogatiy, “Transmission measurements of hollow-core THz Bragg fibers,” J. Opt. Soc. Am. B 28, 896–907 (2011).
[Crossref]

J. T. Lu, C. H. Lai, T. F. Tseng, H. Chen, Y. F. Tsai, I. J. Chen, Y. J. Hwang, H. C. Chang, and C. K. Sun, “Terahertz polarization-sensitive rectangular pipe waveguides,” Opt. Express 19, 21532–21539 (2011).
[Crossref]

2010 (10)

L. Vincetti, V. Setti, and M. Zoboli, “Terahertz tube lattice fibers with octagonal symmetry,” IEEE Photon. Technol. Lett. 22, 972–974 (2010).
[Crossref]

W. Liu, T. Guo, A. C. Wong, H. Y. Tam, and S. He, “Highly sensitive bending sensor based on Er3+-doped DBR fiber laser,” Opt. Express 18, 17834–17840 (2010).
[Crossref]

S. Amini-Nik, D. Kraemer, M. L. Cowan, K. Gunaratne, P. Nadesan, B. A. Alman, and R. J. D. Miller, “Ultrafast mid-IR laser scalpel: protein signals of the fundamental limits to minimally invasive surgery,” PLoS One 5, e13053 (2010).
[Crossref]

J. Hu, C. R. Menyuk, L. B. Shaw, J. S. Sanghera, and I. D. Aggarwal, “Computational study of a 3–5  μm source that is created by using supercontinuum generation in As2S3 chalcogenide fibers with a pump at 2  μm,” Opt. Lett. 35, 2907–2909 (2010).
[Crossref]

A. V. V. Nampoothiri, A. Ratanavis, N. Campbell, and W. Rudolph, “Molecular C2H2 and HCN lasers pumped by an optical parametric oscillator in the 1.5  μm band,” Opt. Express 18, 1946–1951 (2010).
[Crossref]

L. Vincetti, “Single-mode propagation in triangular tube lattice hollow-core terahertz fibers,” Opt. Commun. 283, 979–984 (2010).
[Crossref]

L. Vincetti and V. Setti, “Waveguiding mechanism in tube lattice fibers,” Opt. Express 18, 23133–23146 (2010).
[Crossref]

C. Lai, B. You, J. Lu, T. Lu, J. Peng, C. Sun, and H. Chang, “Modal characteristics of antiresonant reflecting pipe waveguides for terahertz waveguiding,” Opt. Express 18, 309–322 (2010).
[Crossref]

S. Février, B. Beaudou, and P. Viale, “Understanding origin of loss in large pitch hollow-core photonic crystal fibers and their design simplification,” Opt. Express 18, 5142–5150 (2010).
[Crossref]

F. Gérôme, R. Jamier, J.-L. Auguste, G. Humbert, and J.-M. Blondy, “Simplified hollow-core photonic crystal fiber,” Opt. Lett. 35, 1157–1159 (2010).
[Crossref]

2009 (5)

J. Hu and C. R. Menyuk, “Understanding leaky modes: slab waveguide revisited,” Adv. Opt. Photon. 1, 58–106 (2009).
[Crossref]

J. Hu and C. R. Menyuk, “Optimization of the operational bandwidth in air-core photonic bandgap fibers for IR transmission,” Opt. Commun. 282, 18–21 (2009).
[Crossref]

L. Vincetti, “Numerical analysis of plastic hollow core microstructured fiber for Terahertz applications,” Opt. Fiber Technol. 15, 398–401 (2009).
[Crossref]

J. S. Sanghera, L. B. Shaw, and I. D. Aggarwal, “Chalcogenide glass fiber-based mid-IR sources and applications,” IEEE J. Sel. Top. Quantum Electron. 15, 114–119 (2009).
[Crossref]

J. M. Dudley and J. R. Taylor, “Ten years of nonlinear optics in photonic crystal fibre,” Nat. Photonics 3, 85–90 (2009).
[Crossref]

2008 (9)

A. R. Bhagwat and A. L. Gaeta, “Nonlinear optics in hollow-core photonic bandgap fibers,” Opt. Express 16, 5035–5047 (2008).
[Crossref]

N. Gayraud, U. W. Kornaszewski, J. M. Stone, J. C. Knight, D. T. Reid, D. P. Hand, and W. N. MacPherson, “Mid-infrared gas sensing using a photonic bandgap fiber,” Appl. Opt. 47, 1269–1277 (2008).
[Crossref]

C. S. Ponseca, R. Pobre, E. Estacio, N. Sarukura, A. Argyros, M. C. Large, and M. A. van Eijkelenborg, “Transmission of terahertz radiation using a microstructured polymer optical fiber,” Opt. Lett. 33, 902–904 (2008).
[Crossref]

Z. Zhang, Y. Shi, B. Bian, and J. Lu, “Dependence of leaky mode coupling on loss in photonic crystal fiber with hybrid cladding,” Opt. Express 16, 1915–1922 (2008).
[Crossref]

R. Amezcua-Correa, F. Gérôme, S. G. Leon-Saval, N. G. R. Broderick, T. A. Birks, and J. C. Knight, “Control of surface modes in low loss hollow-core photonic bandgap fibers,” Opt Express 16, 1142–1149 (2008).
[Crossref]

J. Lu, C. Yu, H. Chang, H. Chen, Y. Li, C. Pan, and C. Sun, “Terahertz air-core microstructure fiber,” Appl. Phys. Lett. 92, 064105 (2008).
[Crossref]

F. Benabid and P. J. Roberts, “Guidance mechanisms in hollow-core photonic crystal fiber,” Proc. SPIE 6901, 69010U (2008).
[Crossref]

A. Argyros, S. G. Leon-Saval, J. Pla, and A. Docherty, “Antiresonant reflection and inhibited coupling in hollow-core square lattice optical fibers,” Opt. Express 16, 5642–5648 (2008).
[Crossref]

F. Couny, P. J. Roberts, T. A. Birks, and F. Benabid, “Square-lattice large-pitch hollow-core photonic crystal fiber,” Opt. Express 16, 20626–20636 (2008).
[Crossref]

2007 (12)

G. J. Pearce, G. S. Wiederhecker, C. G. Poulton, S. Burger, and P. St.J. Russell, “Models for guidance in kagome-structured hollow-core photonic crystal fibres,” Opt. Express 15, 12680–12685 (2007).
[Crossref]

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and photonic guidance of multi-octave optical-frequency combs,” Science 318, 1118–1121 (2007).
[Crossref]

A. Argyros and J. Pla, “Hollow-core polymer fibres with a kagome lattice: potential for transmission in the infrared,” Opt. Express 15, 7713–7719 (2007).
[Crossref]

F. Couny, F. Benabid, P. J. Roberts, M. T. Burnett, and S. A. Maier, “Identification of Bloch-modes in hollow-core photonic crystal fiber cladding,” Opt. Express 15, 325–338 (2007).
[Crossref]

R. Amezcua-Correa, N. G. Broderick, M. N. Petrovich, F. Poletti, and D. J. Richardson, “Design of 7 and 19 cells core air-guiding photonic crystal fibers for low-loss, wide bandwidth and dispersion controlled operation,” Opt. Express 15, 17577–17586 (2007).
[Crossref]

J. H. V. Price, T. M. Monro, H. Ebendorff-Heidepriem, F. Poletti, P. Horak, V. Finazzi, J. Y. Y. Leong, P. Petropoulos, J. C. Flanagan, G. Brambilla, X. Feng, and D. J. Richardson, “Mid-IR supercontinuum generation from nonsilica microstructured optical fibers,” IEEE J. Sel. Top. Quantum Electron. 13, 738–749 (2007).
[Crossref]

J. Hu and C. R. Menyuk, “Leakage loss and bandgap analysis in air-core photonic bandgap fiber for nonsilica glasses,” Opt. Express 15, 339–349 (2007).
[Crossref]

M. J. Li, J. A. West, and K. W. Koch, “Modeling effects of structural distortions on air-core photonic bandgap fibers,” J. Lightwave Technol. 25, 2463–2468 (2007).
[Crossref]

T. Frosch, M. Schmitt, T. Noll, G. Bringmann, K. Schenzel, and J. Popp, “Ultrasensitive in situ tracing of the alkaloid dioncophylline A in the tropical liana Triphyophyllum peltatum by applying deep-UV resonance Raman microscopy,” Anal. Chem. 79, 986–993 (2007).
[Crossref]

T. Frosch, N. Tarcea, M. Schmitt, H. Thiele, F. Langenhorst, and J. Popp, “UV Raman imaging-A promising tool for astrobiology: comparative Raman studies with different excitation wavelengths on SNC Martian meteorites,” Anal. Chem. 79, 1101–1108 (2007).
[Crossref]

L. W. Kornaszewski, N. Gayraud, J. M. Stone, W. N. Macpherson, A. K. George, J. C. Knight, D. P. Hand, and D. T. Reid, “Mid-infrared methane detection in a photonic bandgap fiber using a broadband optical parametric oscillator,” Opt. Express 15, 11219–11224 (2007).
[Crossref]

S. Stübinger, B. von Rechenberg, H. F. Zeilhofer, R. Sader, and C. Landes, “Er:YAG laser osteotomy for removal of impacted teeth: clinical comparison of two techniques,” Lasers Surg. Med. 39, 583–588 (2007).
[Crossref]

2006 (4)

2005 (6)

2004 (4)

2003 (6)

N. M. Litchinitser, S. C. Dunn, B. Usner, B. J. Eggleton, T. P. White, R. C. McPhedran, and C. M. de Sterke, “Resonances in microstructured optical waveguides,” Opt. Express 11, 1243–1251 (2003).
[Crossref]

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424, 657–659 (2003).
[Crossref]

P. St.J. Russell, “Photonic crystal fibers,” Science 299, 358–362 (2003).
[Crossref]

K. Saitoh and M. Koshiba, “Leakage loss and group velocity dispersion in air-core photonic bandgap fibers,” Opt. Express 11, 3100–3109 (2003).
[Crossref]

G. Ren, Z. Wang, S. Lou, and S. Jian, “Mode classification and degeneracy in photonic crystal fibers,” Opt. Express 11, 1310–1321 (2003).
[Crossref]

K. Saitoh and M. Koshiba, “Confinement losses in air-guiding photonic bandgap fibers,” IEEE Photon. Technol. Lett. 15, 236–238 (2003).
[Crossref]

2002 (6)

P. K. Choudhury and T. Yoshino, “A rigorous analysis of the power distribution in plastic clad annular core optical fibers,” Optik 113, 481–488 (2002).
[Crossref]

T. P. White, B. T. Kuhlmey, R. C. McPhedran, D. Maystre, G. Renversez, C. M. de Sterke, and L. C. Botten, “Multipole method for microstructured optical fibers. I. Formulation,” J. Opt. Soc. Am. B 19, 2322–2330 (2002).
[Crossref]

T. P. White, R. C. McPhedran, C. M. Sterke, N. M. Litchinitser, and B. J. Eggleton, “Resonance and scattering in microstructured optical fibers,” Opt. Lett. 27, 1977–1979 (2002).
[Crossref]

N. M. Litchinitser, A. K. Abeeluck, C. Headley, and B. J. Eggleton, “Antiresonant reflecting photonic crystal optical waveguides,” Opt. Lett. 27, 1592–1594 (2002).
[Crossref]

F. Benabid, J. C. Knight, G. Antonopoulos, and P. St.J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298, 399–402 (2002).
[Crossref]

K. M. Sasaki, A. Aoki, S. Ichinose, T. Yoshino, S. Yamada, and I. Ishikawa, “Scanning electron microscopy and Fourier transformed infrared spectroscopy analysis of bone removal using Er:YAG and CO2 lasers,” J. Periodontol. 73, 643–652 (2002).
[Crossref]

2001 (2)

B. C. Sarkar, P. K. Choudhury, and T. Yoshino, “On the analysis of a weakly guiding doubly clad dielectric optical fiber with annular core,” Microwave Opt. Technol. Lett. 31, 435–439 (2001).
[Crossref]

M. A. Khashan and A. Y. Nassif, “Dispersion of the optical constants of quartz and polymethyl methacrylate glasses in a wide spectral range: 0.2–3  μm,” Opt. Commun. 188, 129–139 (2001).
[Crossref]

2000 (2)

Y. Koyamada, “Analysis of core-mode to radiation-mode coupling in fiber Bragg gratings with finite cladding radius,” J. Lightwave Technol. 18, 1220–1225 (2000).
[Crossref]

E. B. Hanlon, R. Manoharan, T. W. Koo, K. E. Shafer, J. T. Motz, M. Fitzmaurice, J. R. Kramer, I. Itzkan, R. R. Dasari, and M. S. Feld, “Prospects for in vivo Raman spectroscopy,” Phys. Med. Biol. 45, R1–R59 (2000).
[Crossref]

1999 (3)

J. E. McCord, H. C. Miller, G. Hager, A. I. Lampson, and P. G. Crowell, “Experimental investigation of an optically pumped mid-infrared carbon monoxide laser,” IEEE J. Quantum Electron. 35, 1602–1612 (1999).
[Crossref]

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St.J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537–1539 (1999).
[Crossref]

T. A. Birks, D. Mogilevtsev, J. C. Knight, and P. St.J. Russell, “Dispersion compensation using single-material fibers,” IEEE Photon. Technol. Lett. 11, 674–676 (1999).
[Crossref]

1998 (1)

J. C. Knight, J. Broeng, T. A. Birks, and P. St.J. Russell, “Photonic band gap guidance in optical fibers,” Science 282, 1476–1478 (1998).
[Crossref]

1997 (1)

1996 (1)

1989 (1)

1987 (2)

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
[Crossref]

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987).
[Crossref]

1986 (2)

M. A. Duguay, Y. Kokubun, T. L. Koch, and L. Pfeiffer, “Antiresonant reflecting optical waveguides in SiO2 Si multiplayer structures,” Appl. Phys. Lett. 49, 13–15 (1986).
[Crossref]

Y. Kokubun, T. Baba, T. Sakaki, and K. Iga, “Low-loss antiresonant reflecting optical waveguide on Si substrate in visible-wavelength region,” Electron. Lett. 22, 892–893 (1986).
[Crossref]

1978 (1)

1977 (1)

1976 (1)

P. Yeh and A. Yariv, “Bragg reflection waveguides,” Opt. Commun. 19, 427–430 (1976).
[Crossref]

1975 (1)

M. Heiblum and J. H. Harris, “Analysis of curved optical waveguides by conformal transformation,” IEEE J. Quantum Electron. 11, 75–83 (1975).
[Crossref]

1974 (1)

P. V. Kaiser and H. W. Astle, “Low-loss single-material fibers made from pure fused silica,” Bell Syst. Tech. J. 53, 1021–1039 (1974).
[Crossref]

1970 (1)

T. G. Polanyi, H. C. Bredemeier, and T. W. Davis, “A CO2 laser for surgical research,” Med. Biol. Eng. 8, 541–548 (1970).
[Crossref]

Abdolvand, A.

P. St.J. Russell, P. Hölzer, W. Chang, A. Abdolvand, and J. C. Travers, “Hollow-core photonic crystal fibres for gas-based nonlinear optics,” Nat. Photonics 8, 278–286 (2014).
[Crossref]

Abeeluck, A. K.

Abokhamis, M. S.

Abokhamis Mousavi, S. M.

Abouraddy, A. F.

Aggarwal, I. D.

Ahmed, G.

Akhmediev, N.

Alagashev, G.

A. F. Kosolapov, A. Pryamikov, G. Alagashev, A. Kolyadin, A. Biriukov, and E. Dianov, “Negative curvature hollow-core fibers (NCHCFs) for mid-IR applications,” in Advanced Photonics, OSA Technical Digest (online) (Optical Society of America, 2014), paper SoTu2B.3.

Alagashev, G. K.

A. A. Krylov, A. K. Senatorov, A. D. Pryamikov, A. F. Kosolapov, A. N. Kolyadin, G. K. Alagashev, A. V. Gladyshev, and I. A. Bufetov, “1.56  μm sub-microjoule femtosecond pulse delivery through low-loss microstructured revolver hollow-core fiber,” Laser Phys. Lett. 14, 035104 (2017).
[Crossref]

A. F. Kosolapov, G. K. Alagashev, A. N. Kolyadin, A. D. Pryamikov, A. S. Biryukov, I. A. Bufetov, and E. M. Dianov, “Hollow-core revolver fibre with a double-capillary reflective cladding,” Quantum Electron. 46, 267–270 (2016).
[Crossref]

A. D. Pryamikov, G. K. Alagashev, and A. S. Biriukov, “Impact of core cladding boundary shape on the waveguide properties of hollow core microstructured fibers,” Laser Phys. 26, 125104 (2016).
[Crossref]

A. N. Kolyadin, G. K. Alagashev, A. D. Pryamikov, A. V. Gladyshev, A. F. Kosolapov, A. S. Biriukov, and I. A. Bufetov, “Negative curvature hollow core fibers for Raman lasing in the mid IR spectral range,” J. Phys. 737, 012009 (2016).

A. D. Pryamikov, A. F. Kosolapov, G. K. Alagashev, A. N. Kolyadin, V. V. Vel’miskin, A. S. Biriukov, and I. A. Bufetov, “Hollow-core microstructured ‘revolver’ fibre for the UV spectral range,” Quantum Electron. 46, 1129–1133 (2016).
[Crossref]

G. K. Alagashev, A. D. Pryamikov, A. F. Kosolapov, A. N. Kolyadin, A. Y. Lukovkin, and A. S. Biriukov, “Impact of geometrical parameters on the optical properties of negative curvature hollow core fibers,” Laser Phys. 25, 055101 (2015).
[Crossref]

V. S. Shiryaev, A. F. Kosolapov, A. D. Pryamikov, G. E. Snopatin, M. F. Churbanov, A. S. Biriukov, T. V. Kotereva, S. V. Mishinov, G. K. Alagashev, and A. N. Kolyadin, “Development of technique for preparation of As2S3 glass preforms for hollow core microstructured optical fibers,” J. Optoelectron. Adv. Mater. 16, 1020–1025 (2014).

Alagasheva, G. K.

A. N. Kolyadin, G. K. Alagasheva, A. D. Pryamikova, L. Mouradianb, A. Zeytunyanb, H. Toneyanb, A. F. Kosolapova, and I. A. Bufetov, “Negative curvature hollow-core fibers: dispersion properties and femtosecond pulse delivery,” Phys. Procedia 73, 59–66 (2015).
[Crossref]

Alam, S.

V. Sleiffer, Y. Jung, N. Baddela, J. Surof, M. Kuschnerov, V. Veljanovski, J. Hayes, N. Wheeler, E. Numkam Fokoua, J. Wooler, D. Gray, N. Wong, F. Parmigiani, S. Alam, M. Petrovich, F. Poletti, D. Richardson, and H. de Waardt, “High capacity mode-division multiplexed optical transmission in a novel 37-cell hollow-core photonic bandgap fiber,” J. Lightwave Technol. 32, 854–863 (2014).
[Crossref]

Alam, S. U.

V. A. Sleiffer, Y. Jung, P. Leoni, M. Kuschnerov, N. V. Wheeler, N. K. Baddela, R. G. H. van Uden, C. M. Okonkwo, J. R. Hayes, J. Wooler, E. Numkam, R. Slavik, F. Poletti, M. N. Petrovich, V. Veljanovski, S. U. Alam, D. J. Richardson, and H. de Waardt, “30.7  Tb/s (96 × 320  Gb/s) DP-32QAM transmission over 19-cell photonic band gap fiber,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference, OSA Technical Digest (online) (Optical Society of America, 2013), paper OW1I.5.

Alam, S.-U.

Y. Jung, V. A. J. M. Sleiffer, N. K. Baddela, M. N. Petrovich, J. R. Hayes, N. V. Wheeler, D. R. Gray, E. Numkam Fokoua, J. P. Wooler, H. H.-L. Wong, F. Parmigiani, S.-U. Alam, J. Surof, M. Kuschnerov, V. Veljanovski, H. De Waardt, F. Poletti, and D. J. Richardson, “First demonstration of a broadband 37-cell hollow core photonic bandgap fiber and its application to high capacity mode division multiplexing,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference, OSA Technical Digest (online) (Optical Society of America, 2013), paper PDP5A.3.

Alharbi, M.

B. Debord, A. Amsanpally, M. Alharbi, L. Vincetti, J. M. Blondy, F. Gérôme, and F. Benabid, “Ultra-large core size hypocycloid-shape inhibited coupling kagome fibers for high-energy laser beam handling,” J. Lightwave Technol. 33, 3630–3634 (2015).
[Crossref]

A. V. V. Nampoothiri, B. Debord, M. Alharbi, F. Gérôme, F. Benabid, and W. Rudolph, “CW hollow-core optically pumped I2 fiber gas laser,” Opt. Lett. 40, 605–608 (2015).
[Crossref]

A. Benoît, B. Beaudou, M. Alharbi, B. Debord, F. Gérôme, F. Salin, and F. Benabid, “Over-five octaves wide Raman combs in high-power picosecond-laser pumped H2-filled inhibited coupling kagome fiber,” Opt. Express 23, 14002–14009 (2015).
[Crossref]

B. Debord, M. Alharbi, L. Vincetti, A. Husakou, C. Fourcade-Dutin, C. Hoenninger, E. Mottay, F. Gérôme, and F. Benabid, “Multi-meter fiber-delivery and pulse self-compression of milli-Joule femtosecond laser and fiber-aided laser-micromachining,” Opt. Express 22, 10735–10746 (2014).
[Crossref]

B. Debord, M. Alharbi, A. Benoît, D. Ghosh, M. Dontabactouny, L. Vincetti, J.-M. Blondy, F. Gérôme, and F. Benabid, “Ultra low-loss hypocycloid-core Kagome hollow-core photonic crystal fiber for green spectral-range applications,” Opt. Lett. 39, 6245–6248 (2014).
[Crossref]

Y. Wang, M. Alharbi, T. D. Bradley, C. Fourcade-Dutina, B. Deborda, B. Beaudoua, F. Gérôme, and F. Benabid, “Hollow-core photonic crystal fibre for high power laser beam delivery,” High Power Laser Sci. Eng. 1, 17–28 (2013).
[Crossref]

T. D. Bradley, Y. Wang, M. Alharbi, B. Debord, C. Fourcade-Dutin, B. Beaudou, F. Gerome, and F. Benabid, “Optical properties of low loss (70  dB/km) hypocycloid-core kagome hollow core photonic crystal fiber for Rb and Cs based optical applications,” J. Lightwave Technol. 31, 2752–2755 (2013).
[Crossref]

B. Debord, M. Alharbi, T. Bradley, C. Fourcade-Dutin, Y. Y. Wang, L. Vincetti, F. Gérôom, and F. Benabid, “Hypocycloid-shaped hollow-core photonic crystal fiber Part I: arc curvature effect on confinement loss,” Opt. Express 21, 28597–28608 (2013).
[Crossref]

M. Alharbi, T. Bradley, B. Debord, C. Fourcade-Dutin, D. Ghosh, L. Vincetti, F. Gérôme, and F. Benabid, “Hypocycloid-shaped hollow-core photonic crystal fiber Part II: cladding effect on confinement and bend loss,” Opt. Express 21, 28609–28616 (2013).
[Crossref]

Y. Y. Wang, X. Peng, M. Alharbi, C. F. Dutin, T. D. Bradley, F. Gérôme, M. Mielke, T. Booth, and F. Benabid, “Design and fabrication of hollow-core photonic crystal fibers for high-power ultrashort pulse transportation and pulse compression,” Opt. Lett. 37, 3111–3113 (2012).
[Crossref]

A. V. V. Nampoothiri, A. M. Jones, C. Fourcade-Dutin, C. Mao, N. Dadashzadeh, B. Baumgart, Y. Y. Wang, M. Alharbi, T. Bradley, N. Campbell, F. Benabid, B. R. Washburn, K. L. Corwin, and W. Rudolph, “Hollow-core optical fiber gas lasers (HOFGLAS): a review [Invited],” Opt. Mater. Express 2, 948–961 (2012).
[Crossref]

B. Beaudou, F. Gérôme, Y. Y. Wang, M. Alharbi, T. D. Bradley, G. Humbert, J.-L. Auguste, J.-M. Blondy, and F. Benabid, “Millijoule laser pulse delivery for spark ignition through kagome hollow-core fiber,” Opt. Lett. 37, 1430–1432 (2012).
[Crossref]

Alkeskjold, T. T.

Allan, D. C.

J. A. West, C. M. Smith, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Surface modes in air-core photonic band-gap fibers,” Opt. Express 12, 1485–1496 (2004).
[Crossref]

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424, 657–659 (2003).
[Crossref]

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St.J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537–1539 (1999).
[Crossref]

Alman, B. A.

S. Amini-Nik, D. Kraemer, M. L. Cowan, K. Gunaratne, P. Nadesan, B. A. Alman, and R. J. D. Miller, “Ultrafast mid-IR laser scalpel: protein signals of the fundamental limits to minimally invasive surgery,” PLoS One 5, e13053 (2010).
[Crossref]

Almeida, P. J.

C. M. Harvey, F. Yu, J. C. Knight, W. J. Wadsworth, and P. J. Almeida, “Reduced repetition rate Yb3+ mode-locked picosecond fiber laser with hollow core fiber,” IEEE Photon. Technol. Lett. 28, 669–672 (2016).
[Crossref]

Alonso, M. B.

T. Bradley, N. Wheeler, M. Petrovich, G. Jasion, D. Gray, J. Hayes, S. Sandoghchi, Y. Chen, F. Poletti, D. J. Richardson, and M. B. Alonso, “S2 measurement of higher order mode content in low loss hypocycloid kagomé hollow core photonic crystal fiber,” in Conference on Lasers and Electro-Optics (CLEO), OSA Technical Digest (Optical Society of America, 2016), paper STu4P.8.

Altmann, S. L.

S. L. Altmann, Band Theory of Solids: An Introduction from the Point of View of Symmetry (Clarendon, 1994).

Alvarez, O.

C. Wei, O. Alvarez, F. Chenard, and J. Hu, “Empirical glass thickness for chalcogenide negative curvature fibers,” in Summer Topicals Meeting Series (IEEE Photonics Society, 2015), paper TuE3.3.

Alvarez-Aguirre, R.

A. V. Newkirk, J. E. Antonio-Lopez, J. Anderson, R. Alvarez-Aguirre, Z. S. Eznaveh, G. Lopez-Galmiche, R. Amezcua-Correa, and A. Schülzgen, “Modal analysis of antiresonant hollow core fibers using S2 imaging,” Opt. Lett. 41, 3277–3280 (2016).
[Crossref]

A. V. Newkirk, J. E. Antonio-Lopez, J. Anderson, R. Alvarez-Aguirre, R. Amezcua-Correa, and A. Schulzgen, “Higher order modes in anti-resonant hollow core fibers,” in Advanced Photonics (IPR, NOMA, Sensors, Networks, SPPCom, SOF), OSA Technical Digest (online) (Optical Society of America, 2016), paper SoM3F.4.

Amezcua-Correa, R.

A. V. Newkirk, J. E. Antonio-Lopez, J. Anderson, R. Alvarez-Aguirre, Z. S. Eznaveh, G. Lopez-Galmiche, R. Amezcua-Correa, and A. Schülzgen, “Modal analysis of antiresonant hollow core fibers using S2 imaging,” Opt. Lett. 41, 3277–3280 (2016).
[Crossref]

R. Amezcua-Correa, F. Gérôme, S. G. Leon-Saval, N. G. R. Broderick, T. A. Birks, and J. C. Knight, “Control of surface modes in low loss hollow-core photonic bandgap fibers,” Opt Express 16, 1142–1149 (2008).
[Crossref]

R. Amezcua-Correa, N. G. Broderick, M. N. Petrovich, F. Poletti, and D. J. Richardson, “Design of 7 and 19 cells core air-guiding photonic crystal fibers for low-loss, wide bandwidth and dispersion controlled operation,” Opt. Express 15, 17577–17586 (2007).
[Crossref]

A. V. Newkirk, J. E. Antonio-Lopez, J. Anderson, R. Alvarez-Aguirre, R. Amezcua-Correa, and A. Schulzgen, “Higher order modes in anti-resonant hollow core fibers,” in Advanced Photonics (IPR, NOMA, Sensors, Networks, SPPCom, SOF), OSA Technical Digest (online) (Optical Society of America, 2016), paper SoM3F.4.

Amini-Nik, S.

S. Amini-Nik, D. Kraemer, M. L. Cowan, K. Gunaratne, P. Nadesan, B. A. Alman, and R. J. D. Miller, “Ultrafast mid-IR laser scalpel: protein signals of the fundamental limits to minimally invasive surgery,” PLoS One 5, e13053 (2010).
[Crossref]

Amsanpally, A.

Anderson, J.

A. V. Newkirk, J. E. Antonio-Lopez, J. Anderson, R. Alvarez-Aguirre, Z. S. Eznaveh, G. Lopez-Galmiche, R. Amezcua-Correa, and A. Schülzgen, “Modal analysis of antiresonant hollow core fibers using S2 imaging,” Opt. Lett. 41, 3277–3280 (2016).
[Crossref]

A. V. Newkirk, J. E. Antonio-Lopez, J. Anderson, R. Alvarez-Aguirre, R. Amezcua-Correa, and A. Schulzgen, “Higher order modes in anti-resonant hollow core fibers,” in Advanced Photonics (IPR, NOMA, Sensors, Networks, SPPCom, SOF), OSA Technical Digest (online) (Optical Society of America, 2016), paper SoM3F.4.

Andreeta, M. R. B.

M. R. B. Andreeta, L. S. Cunha, L. F. Vales, L. C. Caraschi, and R. G. Jasinevicius, “Bidimensional codes recorded on an oxide glass surface using a continuous wave CO2 laser,” J. Micromech. Microeng. 21, 025004 (2011).
[Crossref]

Anthony, J.

S. Atakaramians, A. Stefani, H. Li, M. S. Habib, J. G. Hayashi, A. Tuniz, X. Tang, J. Anthony, R. Lwin, A. Argyros, S. C. Fleming, and B. T. Kuhlmey, “Fiber-drawn metamaterial for THz waveguiding and imaging,” J. Infrared Millimeter Terahertz Waves 38, 1162–1178 (2017).
[Crossref]

J. Anthony, R. Leonhardt, S. G. Leon-Saval, and A. Argyros, “THz propagation in kagome hollow-core microstructured fibers,” Opt. Express 19, 18470–18478 (2011).
[Crossref]

Antonio-Lopez, J. E.

A. V. Newkirk, J. E. Antonio-Lopez, J. Anderson, R. Alvarez-Aguirre, Z. S. Eznaveh, G. Lopez-Galmiche, R. Amezcua-Correa, and A. Schülzgen, “Modal analysis of antiresonant hollow core fibers using S2 imaging,” Opt. Lett. 41, 3277–3280 (2016).
[Crossref]

A. V. Newkirk, J. E. Antonio-Lopez, J. Anderson, R. Alvarez-Aguirre, R. Amezcua-Correa, and A. Schulzgen, “Higher order modes in anti-resonant hollow core fibers,” in Advanced Photonics (IPR, NOMA, Sensors, Networks, SPPCom, SOF), OSA Technical Digest (online) (Optical Society of America, 2016), paper SoM3F.4.

Antonopoulos, G.

F. Benabid, J. C. Knight, G. Antonopoulos, and P. St.J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298, 399–402 (2002).
[Crossref]

Aoki, A.

K. M. Sasaki, A. Aoki, S. Ichinose, T. Yoshino, S. Yamada, and I. Ishikawa, “Scanning electron microscopy and Fourier transformed infrared spectroscopy analysis of bone removal using Er:YAG and CO2 lasers,” J. Periodontol. 73, 643–652 (2002).
[Crossref]

Argyros, A.

S. Atakaramians, A. Stefani, H. Li, M. S. Habib, J. G. Hayashi, A. Tuniz, X. Tang, J. Anthony, R. Lwin, A. Argyros, S. C. Fleming, and B. T. Kuhlmey, “Fiber-drawn metamaterial for THz waveguiding and imaging,” J. Infrared Millimeter Terahertz Waves 38, 1162–1178 (2017).
[Crossref]

W. Lu, S. Lou, and A. Argyros, “Investigation of flexible low-loss hollow-core fibres with tube-lattice cladding for terahertz radiation,” IEEE J. Sel. Top. Quantum Electron. 22, 214–220 (2016).
[Crossref]

W. Lu and A. Argyros, “Terahertz spectroscopy and imaging with flexible tube-lattice fiber probe,” J. Lightwave Technol. 32, 4621–4627 (2014).
[Crossref]

V. Setti, L. Vincetti, and A. Argyros, “Flexible tube lattice fibers for terahertz applications,” Opt. Express 21, 3388–3399 (2013).
[Crossref]

D. S. Wu, A. Argyros, and S. G. Leon-Saval, “Reducing the size of hollow terahertz waveguides,” J. Lightwave Technol. 29, 97–103 (2011).
[Crossref]

J. Anthony, R. Leonhardt, S. G. Leon-Saval, and A. Argyros, “THz propagation in kagome hollow-core microstructured fibers,” Opt. Express 19, 18470–18478 (2011).
[Crossref]

A. Argyros, S. G. Leon-Saval, J. Pla, and A. Docherty, “Antiresonant reflection and inhibited coupling in hollow-core square lattice optical fibers,” Opt. Express 16, 5642–5648 (2008).
[Crossref]

C. S. Ponseca, R. Pobre, E. Estacio, N. Sarukura, A. Argyros, M. C. Large, and M. A. van Eijkelenborg, “Transmission of terahertz radiation using a microstructured polymer optical fiber,” Opt. Lett. 33, 902–904 (2008).
[Crossref]

A. Argyros and J. Pla, “Hollow-core polymer fibres with a kagome lattice: potential for transmission in the infrared,” Opt. Express 15, 7713–7719 (2007).
[Crossref]

F. Zolla, G. Renversez, A. Nicolet, B. Kuhlmey, S. Guenneau, D. Felbacq, A. Argyros, and S. Leon-Saval, Foundations of Photonic Crystal Fibres, 2nd ed. (Imperial College, 2012).

Aschcroft, N. W.

N. W. Aschcroft and N. D. Mermin, Solid State Physics (Saunders College, 1976).

Astapovich, M. S.

Astle, H. W.

P. V. Kaiser and H. W. Astle, “Low-loss single-material fibers made from pure fused silica,” Bell Syst. Tech. J. 53, 1021–1039 (1974).
[Crossref]

Atakaramians, S.

S. Atakaramians, A. Stefani, H. Li, M. S. Habib, J. G. Hayashi, A. Tuniz, X. Tang, J. Anthony, R. Lwin, A. Argyros, S. C. Fleming, and B. T. Kuhlmey, “Fiber-drawn metamaterial for THz waveguiding and imaging,” J. Infrared Millimeter Terahertz Waves 38, 1162–1178 (2017).
[Crossref]

Atkin, D. M.

J. C. Knight, T. A. Birks, P. St.J. Russell, and D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding,” Opt. Lett. 21, 1547–1549 (1996).
[Crossref]

J. C. Knight, T. A. Birks, P. St.J. Russell, and D. M. Atkin, “Pure silica single-mode fiber with hexagonal photonic crystal cladding,” in Conference on Optical Fiber Communications (Optical Society of America, 1996), postdeadline paper PD3.

Auguste, J.-L.

Awaji, Y.

T. Morioka, Y. Awaji, R. Ryf, P. Winzer, D. Richardson, and F. Poletti, “Enhancing optical communications with brand new fibers,” IEEE Commun. Mag. 50(2), S31–S42 (2012).
[Crossref]

Baba, T.

Y. Kokubun, T. Baba, T. Sakaki, and K. Iga, “Low-loss antiresonant reflecting optical waveguide on Si substrate in visible-wavelength region,” Electron. Lett. 22, 892–893 (1986).
[Crossref]

Babic, F.

X. Jiang, N. Y. Joly, M. A. Finger, F. Babic, G. K. L. Wong, J. C. Travers, and P. St.J. Russell, “Deep-ultraviolet to mid-infrared supercontinuum generated in solid-core ZBLAN photonic crystal fibre,” Nat. Photonics 9, 133–139 (2015).
[Crossref]

M. H. Frosz, J. Nold, T. Weiss, A. Stefani, F. Babic, S. Rammler, and P. St.J. Russell, “Five-ring hollow-core photonic crystal fiber with 1.8  dB/km loss,” Opt. Lett. 38, 2215–2217 (2013).
[Crossref]

Bache, M.

Baddela, N.

V. Sleiffer, Y. Jung, N. Baddela, J. Surof, M. Kuschnerov, V. Veljanovski, J. Hayes, N. Wheeler, E. Numkam Fokoua, J. Wooler, D. Gray, N. Wong, F. Parmigiani, S. Alam, M. Petrovich, F. Poletti, D. Richardson, and H. de Waardt, “High capacity mode-division multiplexed optical transmission in a novel 37-cell hollow-core photonic bandgap fiber,” J. Lightwave Technol. 32, 854–863 (2014).
[Crossref]

Baddela, N. K.

J. R. Hayes, F. Poletti, M. S. Abokhamis, N. V. Wheeler, N. K. Baddela, and D. J. Richardson, “Anti-resonant hexagram hollow core fibers,” Opt. Express 23, 1289–1299 (2015).
[Crossref]

E. N. Fokoua, S. R. Sandoghchi, Y. Chen, G. T. Jasion, N. V. Wheeler, N. K. Baddela, J. R. Hayes, M. N. Petrovich, D. J. Richardson, and F. Poletti, “Accurate modelling of fabricated hollow-core photonic bandgap fibers,” Opt. Express 23, 23117–23132 (2015).
[Crossref]

N. V. Wheeler, A. M. Heidt, N. K. Baddela, E. N. Fokoua, J. R. Hayes, S. R. Sandoghchi, F. Poletti, M. N. Petrovich, and D. J. Richardson, “Low-loss and low-bend-sensitivity mid-infrared guidance in a hollow-core-photonic-bandgap fiber,” Opt. Lett. 39, 295–298 (2014).
[Crossref]

F. Poletti, N. V. Wheeler, M. N. Petrovich, N. K. Baddela, E. Numkam Fokoua, J. R. Hayes, D. R. Gray, Z. Li, R. Slavik, and D. J. Richardson, “Towards high-capacity fibre-optic communications at the speed of light in vacuum,” Nat. Photonics 7, 279–284 (2013).
[Crossref]

V. A. Sleiffer, Y. Jung, P. Leoni, M. Kuschnerov, N. V. Wheeler, N. K. Baddela, R. G. H. van Uden, C. M. Okonkwo, J. R. Hayes, J. Wooler, E. Numkam, R. Slavik, F. Poletti, M. N. Petrovich, V. Veljanovski, S. U. Alam, D. J. Richardson, and H. de Waardt, “30.7  Tb/s (96 × 320  Gb/s) DP-32QAM transmission over 19-cell photonic band gap fiber,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference, OSA Technical Digest (online) (Optical Society of America, 2013), paper OW1I.5.

Y. Jung, V. A. J. M. Sleiffer, N. K. Baddela, M. N. Petrovich, J. R. Hayes, N. V. Wheeler, D. R. Gray, E. Numkam Fokoua, J. P. Wooler, H. H.-L. Wong, F. Parmigiani, S.-U. Alam, J. Surof, M. Kuschnerov, V. Veljanovski, H. De Waardt, F. Poletti, and D. J. Richardson, “First demonstration of a broadband 37-cell hollow core photonic bandgap fiber and its application to high capacity mode division multiplexing,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference, OSA Technical Digest (online) (Optical Society of America, 2013), paper PDP5A.3.

Badding, J. V.

L. D. van Putten, E. N. Fokoua, S. M. A. Mousavi, W. Belardi, S. Chaudhuri, J. V. Badding, and F. Poletti, “Exploring the effect of the core boundary curvature in hollow antiresonant fibers,” IEEE Photon. Technol. Lett. 29, 263–266 (2017).
[Crossref]

G. Tao, H. Ebendorff-Heidepriem, A. M. Stolyarov, S. Danto, J. V. Badding, Y. Fink, J. Ballato, and A. F. Abouraddy, “Infrared fibers,” Adv. Opt. Photon. 7, 379–458 (2015).
[Crossref]

Baer, C. R. E.

Balciunas, T.

T. Balciunas, C. Fourcade-Dutin, G. Fan, T. Witting, A. A. Voronin, A. M. Zheltikov, F. Gérôme, G. G. Paulus, A. Baltuska, and F. Benabid, “A strong-field driver in the single-cycle regime based on self-compression in a kagome fibre,” Nat. Commun. 6, 6117 (2015).
[Crossref]

Ballato, J.

Baltuska, A.

T. Balciunas, C. Fourcade-Dutin, G. Fan, T. Witting, A. A. Voronin, A. M. Zheltikov, F. Gérôme, G. G. Paulus, A. Baltuska, and F. Benabid, “A strong-field driver in the single-cycle regime based on self-compression in a kagome fibre,” Nat. Commun. 6, 6117 (2015).
[Crossref]

Bang, O.

Baumgart, B.

Bayya, S. S.

Baz, A.

B. Debord, A. Amsanpally, M. Chafer, A. Baz, M. Maurel, J. M. Blondy, E. Hugonnot, F. Scol, L. Vincetti, F. Gérôme, and F. Benabid, “Ultralow transmission loss in inhibited-coupling guiding hollow fibers,” Optica 4, 209–217 (2017).
[Crossref]

B. Debord, A. Amsanpally, M. Chafer, A. Baz, L. Vincetti, J. Blondy, F. Gérôme, and F. Benabid, “7.7  dB/km losses in inhibited coupling hollow-core photonic crystal fibers,” in Conference on Lasers and Electro-Optics (CLEO), OSA Technical Digest (online) (Optical Society of America, 2016), paper JTh4C.8.

Beaudou, B.

Beaudoua, B.

Y. Wang, M. Alharbi, T. D. Bradley, C. Fourcade-Dutina, B. Deborda, B. Beaudoua, F. Gérôme, and F. Benabid, “Hollow-core photonic crystal fibre for high power laser beam delivery,” High Power Laser Sci. Eng. 1, 17–28 (2013).
[Crossref]

Beck, R.

R. M. Carter, W. N. MacPherson, P. Jaworski, F. Yu, R. Beck, J. D. Shephard, and D. P. Hand, “Dispersion measurement of microstructured negative curvature hollow core fiber,” Opt. Eng. 55, 116106 (2016).
[Crossref]

Belardi, W.

L. D. van Putten, E. N. Fokoua, S. M. A. Mousavi, W. Belardi, S. Chaudhuri, J. V. Badding, and F. Poletti, “Exploring the effect of the core boundary curvature in hollow antiresonant fibers,” IEEE Photon. Technol. Lett. 29, 263–266 (2017).
[Crossref]

W. Belardi, F. D. Lucia, F. Poletti, and P. J. Sazio, “Composite material hollow antiresonant fibers,” Opt. Lett. 42, 2535–2538 (2017).
[Crossref]

J. D. Shephard, A. Urich, R. M. Carter, P. Jaworski, R. R. J. Maier, W. Belardi, F. Yu, W. J. Wadsworth, J. C. Knight, and D. P. Hand, “Silica hollow core microstructured fibers for beam delivery in industrial and medical applications,” Front. Phys. 3, 24 (2015).
[Crossref]

W. Belardi, “Design and properties of hollow antiresonant fibers for the visible and near infrared spectral range,” J. Lightwave Technol. 33, 4497–4503 (2015).
[Crossref]

Z. Wang, W. Belardi, F. Yu, W. J. Wadsworth, and J. C. Knight, “Efficient diode-pumped mid-infrared emission from acetylene-filled hollow-core fiber,” Opt. Express 22, 21872–21878 (2014).
[Crossref]

W. Belardi and J. C. Knight, “Hollow antiresonant fibers with reduced attenuation,” Opt. Lett. 39, 1853–1856 (2014).
[Crossref]

W. Belardi and J. C. Knight, “Hollow antiresonant fibers with low bending loss,” Opt. Express 22, 10091–10096 (2014).
[Crossref]

W. Belardi and J. C. Knight, “Effect of core boundary curvature on the confinement losses of hollow antiresonant fibers,” Opt. Express 21, 21912–21917 (2013).
[Crossref]

W. Belardi, N. White, J. Lousteau, X. Feng, and F. Poletti, “Hollow core antiresonant fibers in borosilicate glass,” in Workshop on Specialty Optical Fibers and their Applications, OSA Technical Digest (online) (Optical Society of America, 2015), paper WW4A.4.

W. Belardi and J. C. Knight, “Negative curvature fibers with reduced leakage loss,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2014), paper Th2A.45.

Benabid, F.

N. Dadashzadeh, M. P. Thirugnanasambandam, H. W. K. Weerasinghe, B. Debord, M. Chafer, F. Gerome, F. Benabid, B. R. Washburn, and K. L. Corwin, “Near diffraction-limited performance of an OPA pumped acetylene-filled hollow-core fiber laser in the mid-IR,” Opt. Express 25, 13351–13358 (2017).
[Crossref]

B. Debord, A. Amsanpally, M. Chafer, A. Baz, M. Maurel, J. M. Blondy, E. Hugonnot, F. Scol, L. Vincetti, F. Gérôme, and F. Benabid, “Ultralow transmission loss in inhibited-coupling guiding hollow fibers,” Optica 4, 209–217 (2017).
[Crossref]

X. Zheng, B. Debord, L. Vincetti, B. Beaudou, F. Gérôme, and F. Benabid, “Fusion splice between tapered inhibited coupling hypocycloid-core Kagome fiber and SMF,” Opt. Express 24, 14642–14647 (2016).
[Crossref]

B. Debord, A. Amsanpally, M. Alharbi, L. Vincetti, J. M. Blondy, F. Gérôme, and F. Benabid, “Ultra-large core size hypocycloid-shape inhibited coupling kagome fibers for high-energy laser beam handling,” J. Lightwave Technol. 33, 3630–3634 (2015).
[Crossref]

A. Benoît, B. Beaudou, M. Alharbi, B. Debord, F. Gérôme, F. Salin, and F. Benabid, “Over-five octaves wide Raman combs in high-power picosecond-laser pumped H2-filled inhibited coupling kagome fiber,” Opt. Express 23, 14002–14009 (2015).
[Crossref]

A. V. V. Nampoothiri, B. Debord, M. Alharbi, F. Gérôme, F. Benabid, and W. Rudolph, “CW hollow-core optically pumped I2 fiber gas laser,” Opt. Lett. 40, 605–608 (2015).
[Crossref]

T. Balciunas, C. Fourcade-Dutin, G. Fan, T. Witting, A. A. Voronin, A. M. Zheltikov, F. Gérôme, G. G. Paulus, A. Baltuska, and F. Benabid, “A strong-field driver in the single-cycle regime based on self-compression in a kagome fibre,” Nat. Commun. 6, 6117 (2015).
[Crossref]

F. Guichard, A. Giree, Y. Zaouter, M. Hanna, G. Machinet, B. Debord, F. Gérôme, P. Dupriez, F. Druon, C. Hönninger, E. Mottay, F. Benabid, and P. Georges, “Nonlinear compression of high energy fiber amplifier pulses in air-filled hypocycloid-core Kagome fiber,” Opt. Express 23, 7416–7423 (2015).
[Crossref]

F. Emaury, C. J. Saraceno, B. Debord, D. Ghosh, A. Diebold, F. Gérôme, T. Südmeyer, F. Benabid, and U. Keller, “Efficient spectral broadening in the 100-W average power regime using gas-filled kagome HC-PCF and pulse compression,” Opt. Lett. 39, 6843–6846 (2014).
[Crossref]

B. Debord, M. Alharbi, A. Benoît, D. Ghosh, M. Dontabactouny, L. Vincetti, J.-M. Blondy, F. Gérôme, and F. Benabid, “Ultra low-loss hypocycloid-core Kagome hollow-core photonic crystal fiber for green spectral-range applications,” Opt. Lett. 39, 6245–6248 (2014).
[Crossref]

T. D. Bradley, J. Jouin, J. J. McFerran, P. Thomas, F. Gerome, and F. Benabid, “Extended duration of rubidium vapor in aluminosilicate ceramic coated hypocycloidal core kagome HC-PCF,” J. Lightwave Technol. 32, 2486–2491 (2014).
[Crossref]

B. Debord, M. Alharbi, L. Vincetti, A. Husakou, C. Fourcade-Dutin, C. Hoenninger, E. Mottay, F. Gérôme, and F. Benabid, “Multi-meter fiber-delivery and pulse self-compression of milli-Joule femtosecond laser and fiber-aided laser-micromachining,” Opt. Express 22, 10735–10746 (2014).
[Crossref]

S. Wu, C. Wang, C. Fourcade-Dutin, B. R. Washburn, F. Benabid, and K. L. Corwin, “Direct fiber comb stabilization to a gas-filled hollow-core photonic crystal fiber,” Opt. Express 22, 23704–23715 (2014).
[Crossref]

S. Okaba, T. Takano, F. Benabid, T. Bradley, L. Vincetti, Z. Maizelis, V. Yampol’skii, F. Nori, and H. Katori, “Lamb-Dicke spectroscopy of atoms in a hollow-core photonic crystal fibre,” Nat. Commun. 5, 4096 (2014).
[Crossref]

Y. Wang, M. Alharbi, T. D. Bradley, C. Fourcade-Dutina, B. Deborda, B. Beaudoua, F. Gérôme, and F. Benabid, “Hollow-core photonic crystal fibre for high power laser beam delivery,” High Power Laser Sci. Eng. 1, 17–28 (2013).
[Crossref]

T. D. Bradley, Y. Wang, M. Alharbi, B. Debord, C. Fourcade-Dutin, B. Beaudou, F. Gerome, and F. Benabid, “Optical properties of low loss (70  dB/km) hypocycloid-core kagome hollow core photonic crystal fiber for Rb and Cs based optical applications,” J. Lightwave Technol. 31, 2752–2755 (2013).
[Crossref]

F. Emaury, C. F. Dutin, C. J. Saraceno, M. Trant, O. H. Heckl, Y. Y. Wang, C. Schriber, F. Gerome, T. Südmeyer, F. Benabid, and U. Keller, “Beam delivery and pulse compression to sub-50  fs of a mode locked thin disk laser in a gas-filled Kagome-type HC-PCF fiber,” Opt. Express 21, 4986–4994 (2013).
[Crossref]

M. Alharbi, T. Bradley, B. Debord, C. Fourcade-Dutin, D. Ghosh, L. Vincetti, F. Gérôme, and F. Benabid, “Hypocycloid-shaped hollow-core photonic crystal fiber Part II: cladding effect on confinement and bend loss,” Opt. Express 21, 28609–28616 (2013).
[Crossref]

B. Debord, M. Alharbi, T. Bradley, C. Fourcade-Dutin, Y. Y. Wang, L. Vincetti, F. Gérôom, and F. Benabid, “Hypocycloid-shaped hollow-core photonic crystal fiber Part I: arc curvature effect on confinement loss,” Opt. Express 21, 28597–28608 (2013).
[Crossref]

A. V. V. Nampoothiri, A. M. Jones, C. Fourcade-Dutin, C. Mao, N. Dadashzadeh, B. Baumgart, Y. Y. Wang, M. Alharbi, T. Bradley, N. Campbell, F. Benabid, B. R. Washburn, K. L. Corwin, and W. Rudolph, “Hollow-core optical fiber gas lasers (HOFGLAS): a review [Invited],” Opt. Mater. Express 2, 948–961 (2012).
[Crossref]

Y. Y. Wang, X. Peng, M. Alharbi, C. F. Dutin, T. D. Bradley, F. Gérôme, M. Mielke, T. Booth, and F. Benabid, “Design and fabrication of hollow-core photonic crystal fibers for high-power ultrashort pulse transportation and pulse compression,” Opt. Lett. 37, 3111–3113 (2012).
[Crossref]

B. Beaudou, F. Gérôme, Y. Y. Wang, M. Alharbi, T. D. Bradley, G. Humbert, J.-L. Auguste, J.-M. Blondy, and F. Benabid, “Millijoule laser pulse delivery for spark ignition through kagome hollow-core fiber,” Opt. Lett. 37, 1430–1432 (2012).
[Crossref]

A. M. Jones, A. V. V. Nampoothiri, A. Ratanavis, T. Fiedler, N. V. Wheeler, F. Couny, R. Kadel, F. Benabid, B. R. Washburn, K. L. Corwin, and W. Rudolph, “Mid-infrared gas filled photonic crystal fiber laser based on population inversion,” Opt. Express 19, 2309–2316 (2011).
[Crossref]

Y. Y. Wang, N. V. Wheeler, F. Couny, P. J. Roberts, and F. Benabid, “Low loss broadband transmission in hypocycloid-core Kagome hollow-core photonic crystal fiber,” Opt. Lett. 36, 669–671 (2011).
[Crossref]

O. H. Heckl, C. J. Saraceno, C. R. E. Baer, T. Südmeyer, Y. Y. Wang, Y. Cheng, F. Benabid, and U. Keller, “Temporal pulse compression in a xenon-filled Kagome-type hollow-core photonic crystal fiber at high average power,” Opt. Express 19, 19142–19149 (2011).
[Crossref]

F. Couny, P. J. Roberts, T. A. Birks, and F. Benabid, “Square-lattice large-pitch hollow-core photonic crystal fiber,” Opt. Express 16, 20626–20636 (2008).
[Crossref]

F. Benabid and P. J. Roberts, “Guidance mechanisms in hollow-core photonic crystal fiber,” Proc. SPIE 6901, 69010U (2008).
[Crossref]

F. Couny, F. Benabid, P. J. Roberts, M. T. Burnett, and S. A. Maier, “Identification of Bloch-modes in hollow-core photonic crystal fiber cladding,” Opt. Express 15, 325–338 (2007).
[Crossref]

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and photonic guidance of multi-octave optical-frequency combs,” Science 318, 1118–1121 (2007).
[Crossref]

F. Couny, F. Benabid, and P. S. Light, “Large-pitch kagome-structured hollow-core photonic crystal fiber,” Opt. Lett. 31, 3574–3576 (2006).
[Crossref]

F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. St.J. Russell, “Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres,” Nature 434, 488–491 (2005).
[Crossref]

F. Benabid, J. C. Knight, G. Antonopoulos, and P. St.J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298, 399–402 (2002).
[Crossref]

Y. Wang, F. Couny, P. J. Roberts, and F. Benabid, “Low loss broadband transmission in optimized core-shaped Kagome hollow-core PCF,” in Conference on Lasers and Electro-Optics (CLEO), OSA Technical Digest (CD) (Optical Society of America, 2010), paper CPDB4.

B. Debord, A. Amsanpally, M. Chafer, A. Baz, L. Vincetti, J. Blondy, F. Gérôme, and F. Benabid, “7.7  dB/km losses in inhibited coupling hollow-core photonic crystal fibers,” in Conference on Lasers and Electro-Optics (CLEO), OSA Technical Digest (online) (Optical Society of America, 2016), paper JTh4C.8.

Benoit, G.

Benoît, A.

Beravat, R.

Bhagwat, A. R.

Bian, B.

Biancalana, F.

Y. Chen, M. F. Saleh, N. Y. Joly, and F. Biancalana, “Low-loss single-mode negatively curved square-core hollow fibers,” Opt. Lett. 42, 1285–1288 (2017).
[Crossref]

Y. Chen, M. F. Saleh, N. Y. Joly, and F. Biancalana, “Guiding 2.94  μm using low-loss microstructured antiresonant triangular-core fibers,” J. Appl. Phys. 119, 143104 (2016).
[Crossref]

P. Hölzer, W. Chang, J. C. Travers, A. Nazarkin, J. Nold, N. Y. Joly, M. Saleh, F. Biancalana, and P. St.J. Russell, “Femtosecond nonlinear fiber optics in the ionization regime,” Phys. Rev. Lett. 107, 203901 (2011).
[Crossref]

Bierlich, J.

Bird, D.

Biriukov, A.

A. F. Kosolapov, A. Pryamikov, G. Alagashev, A. Kolyadin, A. Biriukov, and E. Dianov, “Negative curvature hollow-core fibers (NCHCFs) for mid-IR applications,” in Advanced Photonics, OSA Technical Digest (online) (Optical Society of America, 2014), paper SoTu2B.3.

Biriukov, A. S.

A. V. Gladyshev, A. F. Kosolapov, M. M. Khudyakov, Y. P. Yatsenko, A. N. Kolyadin, A. A. Krylov, A. D. Pryamikov, A. S. Biriukov, M. E. Likhachev, I. A. Bufetov, and E. M. Dianov, “4.4  μm Raman laser based on hollow-core silica fibre,” Quantum Electron. 47, 491–494 (2017).
[Crossref]

A. V. Gladyshev, A. N. Kolyadin, A. F. Kosolapov, Y. P. Yatsenko, A. D. Pryamikov, A. S. Biriukov, I. A. Bufetov, and E. M. Dianov, “Low-threshold 1.9  μm Raman generation in microstructured hydrogen-filled hollow-core revolver fibre with nested capillaries,” Laser Phys. 27, 025101 (2016).
[Crossref]

A. D. Pryamikov, G. K. Alagashev, and A. S. Biriukov, “Impact of core cladding boundary shape on the waveguide properties of hollow core microstructured fibers,” Laser Phys. 26, 125104 (2016).
[Crossref]

A. D. Pryamikov, A. F. Kosolapov, G. K. Alagashev, A. N. Kolyadin, V. V. Vel’miskin, A. S. Biriukov, and I. A. Bufetov, “Hollow-core microstructured ‘revolver’ fibre for the UV spectral range,” Quantum Electron. 46, 1129–1133 (2016).
[Crossref]

A. N. Kolyadin, G. K. Alagashev, A. D. Pryamikov, A. V. Gladyshev, A. F. Kosolapov, A. S. Biriukov, and I. A. Bufetov, “Negative curvature hollow core fibers for Raman lasing in the mid IR spectral range,” J. Phys. 737, 012009 (2016).

G. K. Alagashev, A. D. Pryamikov, A. F. Kosolapov, A. N. Kolyadin, A. Y. Lukovkin, and A. S. Biriukov, “Impact of geometrical parameters on the optical properties of negative curvature hollow core fibers,” Laser Phys. 25, 055101 (2015).
[Crossref]

D. V. Bogdanovich, A. K. Srivastava, V. G. Chigrinov, A. S. Biriukov, and A. D. Pryamikov, “Hollow core negative curvature fibre with layers of photoaligned optically anisotropic material,” Laser Phys. Lett. 12, 105101 (2015).
[Crossref]

V. S. Shiryaev, A. F. Kosolapov, A. D. Pryamikov, G. E. Snopatin, M. F. Churbanov, A. S. Biriukov, T. V. Kotereva, S. V. Mishinov, G. K. Alagashev, and A. N. Kolyadin, “Development of technique for preparation of As2S3 glass preforms for hollow core microstructured optical fibers,” J. Optoelectron. Adv. Mater. 16, 1020–1025 (2014).

A. N. Kolyadin, A. F. Kosolapov, A. D. Pryamikov, A. S. Biriukov, V. G. Plotnichenko, and E. M. Dianov, “Light transmission in negative curvature hollow core fiber in extremely high material loss region,” Opt. Express 21, 9514–9519 (2013).
[Crossref]

A. F. Kosolapov, A. D. Pryamikov, A. S. Biriukov, V. S. Shiryaev, M. S. Astapovich, G. E. Snopatin, V. G. Plotnichenko, M. F. Churbanov, and E. M. Dianov, “Demonstration of CO2-laser power delivery through chalcogenide-glass fiber with negative-curvature hollow core,” Opt. Express 19, 25723–25728 (2011).
[Crossref]

A. D. Pryamikov, A. S. Biriukov, A. F. Kosolapov, V. G. Plotnichenko, S. L. Semjonov, and E. M. Dianov, “Demonstration of a waveguide regime for a silica hollow-core microstructured optical fiber with a negative curvature of the core boundary in the spectral region >3.5  μm,” Opt. Express 19, 1441–1448 (2011).
[Crossref]

Birks, T. A.

F. Couny, P. J. Roberts, T. A. Birks, and F. Benabid, “Square-lattice large-pitch hollow-core photonic crystal fiber,” Opt. Express 16, 20626–20636 (2008).
[Crossref]

R. Amezcua-Correa, F. Gérôme, S. G. Leon-Saval, N. G. R. Broderick, T. A. Birks, and J. C. Knight, “Control of surface modes in low loss hollow-core photonic bandgap fibers,” Opt Express 16, 1142–1149 (2008).
[Crossref]

P. J. Roberts, D. P. Williams, B. J. Mangan, H. Sabert, F. Couny, W. J. Wadsworth, T. A. Birks, J. C. Knight, and P. St.J. Russell, “Realizing low loss air core photonic crystal fibers by exploiting an antiresonant core surround,” Opt. Express 13, 8277–8285 (2005).
[Crossref]

F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. St.J. Russell, “Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres,” Nature 434, 488–491 (2005).
[Crossref]

P. J. Roberts, F. Couny, H. Sabert, B. J. Mangan, D. P. Williams, L. Farr, M. W. Mason, A. Tomlinson, T. A. Birks, J. C. Knight, and P. St.J. Russell, “Ultimate low loss of hollow-core photonic crystal fibres,” Opt. Express 13, 236–244 (2005).
[Crossref]

T. A. Birks, D. Mogilevtsev, J. C. Knight, and P. St.J. Russell, “Dispersion compensation using single-material fibers,” IEEE Photon. Technol. Lett. 11, 674–676 (1999).
[Crossref]

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St.J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537–1539 (1999).
[Crossref]

J. C. Knight, J. Broeng, T. A. Birks, and P. St.J. Russell, “Photonic band gap guidance in optical fibers,” Science 282, 1476–1478 (1998).
[Crossref]

T. A. Birks, J. C. Knight, and P. St.J. Russell, “Endlessly single-mode photonic crystal fiber,” Opt. Lett. 22, 961–963 (1997).
[Crossref]

J. C. Knight, T. A. Birks, P. St.J. Russell, and D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding,” Opt. Lett. 21, 1547–1549 (1996).
[Crossref]

J. C. Knight, T. A. Birks, P. St.J. Russell, and D. M. Atkin, “Pure silica single-mode fiber with hexagonal photonic crystal cladding,” in Conference on Optical Fiber Communications (Optical Society of America, 1996), postdeadline paper PD3.

B. J. Mangan, L. Farr, A. Langford, P. J. Roberts, D. P. Williams, F. Couny, M. Lawman, M. Mason, S. Coupland, R. Flea, H. Sabert, T. A. Birks, J. C. Knight, and P. St.J. Russell, “Low loss (1.7  dB/km) hollow core photonic bandgap fiber,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2004), paper PD24.

Biryukov, A. S.

A. F. Kosolapov, G. K. Alagashev, A. N. Kolyadin, A. D. Pryamikov, A. S. Biryukov, I. A. Bufetov, and E. M. Dianov, “Hollow-core revolver fibre with a double-capillary reflective cladding,” Quantum Electron. 46, 267–270 (2016).
[Crossref]

A. V. Gladyshev, A. N. Kolyadin, A. F. Kosolapov, Y. P. Yatsenko, A. D. Pryamikov, A. S. Biryukov, I. A. Bufetov, and E. M. Dianov, “Efficient 1.9-μm Raman generation in a hydrogen-filled hollow-core fibre,” Quantum Electron. 45, 807–812 (2015).
[Crossref]

Blondy, J.

B. Debord, A. Amsanpally, M. Chafer, A. Baz, L. Vincetti, J. Blondy, F. Gérôme, and F. Benabid, “7.7  dB/km losses in inhibited coupling hollow-core photonic crystal fibers,” in Conference on Lasers and Electro-Optics (CLEO), OSA Technical Digest (online) (Optical Society of America, 2016), paper JTh4C.8.

Blondy, J. M.

Blondy, J.-M.

Bock, V.

Bogdanovich, D. V.

D. V. Bogdanovich, A. K. Srivastava, V. G. Chigrinov, A. S. Biriukov, and A. D. Pryamikov, “Hollow core negative curvature fibre with layers of photoaligned optically anisotropic material,” Laser Phys. Lett. 12, 105101 (2015).
[Crossref]

Booth, T.

Born, M.

M. Born and E. Wolf, “Elements of the theory of interference and interferometers,” in Principles of Optics, 7th ed. (Cambridge University, 1999), pp. 359–366.

Borrelli, N. F.

J. A. West, C. M. Smith, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Surface modes in air-core photonic band-gap fibers,” Opt. Express 12, 1485–1496 (2004).
[Crossref]

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424, 657–659 (2003).
[Crossref]

Botten, L. C.

Bouwmans, G.

Bradley, T.

S. Okaba, T. Takano, F. Benabid, T. Bradley, L. Vincetti, Z. Maizelis, V. Yampol’skii, F. Nori, and H. Katori, “Lamb-Dicke spectroscopy of atoms in a hollow-core photonic crystal fibre,” Nat. Commun. 5, 4096 (2014).
[Crossref]

M. Alharbi, T. Bradley, B. Debord, C. Fourcade-Dutin, D. Ghosh, L. Vincetti, F. Gérôme, and F. Benabid, “Hypocycloid-shaped hollow-core photonic crystal fiber Part II: cladding effect on confinement and bend loss,” Opt. Express 21, 28609–28616 (2013).
[Crossref]

B. Debord, M. Alharbi, T. Bradley, C. Fourcade-Dutin, Y. Y. Wang, L. Vincetti, F. Gérôom, and F. Benabid, “Hypocycloid-shaped hollow-core photonic crystal fiber Part I: arc curvature effect on confinement loss,” Opt. Express 21, 28597–28608 (2013).
[Crossref]

A. V. V. Nampoothiri, A. M. Jones, C. Fourcade-Dutin, C. Mao, N. Dadashzadeh, B. Baumgart, Y. Y. Wang, M. Alharbi, T. Bradley, N. Campbell, F. Benabid, B. R. Washburn, K. L. Corwin, and W. Rudolph, “Hollow-core optical fiber gas lasers (HOFGLAS): a review [Invited],” Opt. Mater. Express 2, 948–961 (2012).
[Crossref]

T. Bradley, N. Wheeler, M. Petrovich, G. Jasion, D. Gray, J. Hayes, S. Sandoghchi, Y. Chen, F. Poletti, D. J. Richardson, and M. B. Alonso, “S2 measurement of higher order mode content in low loss hypocycloid kagomé hollow core photonic crystal fiber,” in Conference on Lasers and Electro-Optics (CLEO), OSA Technical Digest (Optical Society of America, 2016), paper STu4P.8.

Bradley, T. D.

N. V. Wheeler, T. D. Bradley, J. R. Hayes, M. A. Gouveia, S. Liang, Y. Chen, S. R. Sandoghchi, S. M. Abokhamis Mousavi, F. Poletti, M. N. Petrovich, and D. J. Richardson, “Low-loss Kagome hollow-core fibers operating from the near- to the mid-IR,” Opt. Lett. 42, 2571–2574 (2017).
[Crossref]

J. R. Hayes, S. R. Sandoghchi, T. D. Bradley, Z. Liu, R. Slavik, M. A. Gouveia, N. V. Wheeler, G. Jasion, Y. Chen, E. N. Fokoua, M. N. Petrovich, D. J. Richardson, and F. Poletti, “Antiresonant hollow core fiber with an octave spanning bandwidth for short haul data communications,” J. Lightwave Technol. 35, 437–442 (2017).
[Crossref]

T. D. Bradley, N. V. Wheeler, G. T. Jasion, D. Gray, J. Hayes, M. A. Gouveia, S. R. Sandoghchi, Y. Chen, F. Poletti, D. Richardson, and M. Petrovich, “Modal content in hypocycloid Kagomé hollow core photonic crystal fibers,” Opt. Express 24, 15798–15812 (2016).
[Crossref]

T. D. Bradley, J. Jouin, J. J. McFerran, P. Thomas, F. Gerome, and F. Benabid, “Extended duration of rubidium vapor in aluminosilicate ceramic coated hypocycloidal core kagome HC-PCF,” J. Lightwave Technol. 32, 2486–2491 (2014).
[Crossref]

T. D. Bradley, Y. Wang, M. Alharbi, B. Debord, C. Fourcade-Dutin, B. Beaudou, F. Gerome, and F. Benabid, “Optical properties of low loss (70  dB/km) hypocycloid-core kagome hollow core photonic crystal fiber for Rb and Cs based optical applications,” J. Lightwave Technol. 31, 2752–2755 (2013).
[Crossref]

Y. Wang, M. Alharbi, T. D. Bradley, C. Fourcade-Dutina, B. Deborda, B. Beaudoua, F. Gérôme, and F. Benabid, “Hollow-core photonic crystal fibre for high power laser beam delivery,” High Power Laser Sci. Eng. 1, 17–28 (2013).
[Crossref]

B. Beaudou, F. Gérôme, Y. Y. Wang, M. Alharbi, T. D. Bradley, G. Humbert, J.-L. Auguste, J.-M. Blondy, and F. Benabid, “Millijoule laser pulse delivery for spark ignition through kagome hollow-core fiber,” Opt. Lett. 37, 1430–1432 (2012).
[Crossref]

Y. Y. Wang, X. Peng, M. Alharbi, C. F. Dutin, T. D. Bradley, F. Gérôme, M. Mielke, T. Booth, and F. Benabid, “Design and fabrication of hollow-core photonic crystal fibers for high-power ultrashort pulse transportation and pulse compression,” Opt. Lett. 37, 3111–3113 (2012).
[Crossref]

J. R. Hayes, S. R. Sandoghchi, T. D. Bradley, Z. Liu, R. Slavik, M. A. Gouveia, N. V. Wheeler, G. T. Jasion, Y. Chen, E. Numkam-Fokoua, M. N. Petrovich, D. J. Richardson, and F. Poletti, “Antiresonant hollow core fiber with octave spanning bandwidth for short haul data communications,” in Optical Fiber Communication Conference Postdeadline Papers, OSA Technical Digest (online) (Optical Society of America, 2016), paper Th5A.3.

Brambilla, G.

J. H. V. Price, T. M. Monro, H. Ebendorff-Heidepriem, F. Poletti, P. Horak, V. Finazzi, J. Y. Y. Leong, P. Petropoulos, J. C. Flanagan, G. Brambilla, X. Feng, and D. J. Richardson, “Mid-IR supercontinuum generation from nonsilica microstructured optical fibers,” IEEE J. Sel. Top. Quantum Electron. 13, 738–749 (2007).
[Crossref]

Bredemeier, H. C.

T. G. Polanyi, H. C. Bredemeier, and T. W. Davis, “A CO2 laser for surgical research,” Med. Biol. Eng. 8, 541–548 (1970).
[Crossref]

Bringmann, G.

T. Frosch, M. Schmitt, T. Noll, G. Bringmann, K. Schenzel, and J. Popp, “Ultrasensitive in situ tracing of the alkaloid dioncophylline A in the tropical liana Triphyophyllum peltatum by applying deep-UV resonance Raman microscopy,” Anal. Chem. 79, 986–993 (2007).
[Crossref]

Broderick, N. G.

Broderick, N. G. R.

R. Amezcua-Correa, F. Gérôme, S. G. Leon-Saval, N. G. R. Broderick, T. A. Birks, and J. C. Knight, “Control of surface modes in low loss hollow-core photonic bandgap fibers,” Opt Express 16, 1142–1149 (2008).
[Crossref]

Broeng, J.

J. C. Knight, J. Broeng, T. A. Birks, and P. St.J. Russell, “Photonic band gap guidance in optical fibers,” Science 282, 1476–1478 (1998).
[Crossref]

Bufetov, I. A.

A. A. Krylov, A. K. Senatorov, A. D. Pryamikov, A. F. Kosolapov, A. N. Kolyadin, G. K. Alagashev, A. V. Gladyshev, and I. A. Bufetov, “1.56  μm sub-microjoule femtosecond pulse delivery through low-loss microstructured revolver hollow-core fiber,” Laser Phys. Lett. 14, 035104 (2017).
[Crossref]

Y. P. Yatsenko, E. N. Pleteneva, A. G. Okhrimchuk, A. V. Gladyshev, A. F. Kosolapov, A. N. Kolyadin, and I. A. Bufetov, “Multiband supercontinuum generation in an air-core revolver fibre,” Quantum Electron. 47, 553–560 (2017).
[Crossref]

A. V. Gladyshev, A. F. Kosolapov, M. M. Khudyakov, Y. P. Yatsenko, A. N. Kolyadin, A. A. Krylov, A. D. Pryamikov, A. S. Biriukov, M. E. Likhachev, I. A. Bufetov, and E. M. Dianov, “4.4  μm Raman laser based on hollow-core silica fibre,” Quantum Electron. 47, 491–494 (2017).
[Crossref]

A. V. Gladyshev, A. N. Kolyadin, A. F. Kosolapov, Y. P. Yatsenko, A. D. Pryamikov, A. S. Biriukov, I. A. Bufetov, and E. M. Dianov, “Low-threshold 1.9  μm Raman generation in microstructured hydrogen-filled hollow-core revolver fibre with nested capillaries,” Laser Phys. 27, 025101 (2016).
[Crossref]

A. D. Pryamikov, A. F. Kosolapov, G. K. Alagashev, A. N. Kolyadin, V. V. Vel’miskin, A. S. Biriukov, and I. A. Bufetov, “Hollow-core microstructured ‘revolver’ fibre for the UV spectral range,” Quantum Electron. 46, 1129–1133 (2016).
[Crossref]

A. N. Kolyadin, G. K. Alagashev, A. D. Pryamikov, A. V. Gladyshev, A. F. Kosolapov, A. S. Biriukov, and I. A. Bufetov, “Negative curvature hollow core fibers for Raman lasing in the mid IR spectral range,” J. Phys. 737, 012009 (2016).

Y. P. Yatsenko, A. A. Krylov, A. D. Pryamikov, A. F. Kosolapov, A. N. Kolyadin, A. V. Gladyshev, and I. A. Bufetov, “Propagation of femtosecond pulses in a hollow-core revolver fibre,” Quantum Electron. 46, 617–626 (2016).
[Crossref]

E. M. Dianov, S. L. Semjonov, and I. A. Bufetov, “New generation of optical fibres,” Quantum Electron. 46, 1–10 (2016).
[Crossref]

A. F. Kosolapov, G. K. Alagashev, A. N. Kolyadin, A. D. Pryamikov, A. S. Biryukov, I. A. Bufetov, and E. M. Dianov, “Hollow-core revolver fibre with a double-capillary reflective cladding,” Quantum Electron. 46, 267–270 (2016).
[Crossref]

A. V. Gladyshev, A. N. Kolyadin, A. F. Kosolapov, Y. P. Yatsenko, A. D. Pryamikov, A. S. Biryukov, I. A. Bufetov, and E. M. Dianov, “Efficient 1.9-μm Raman generation in a hydrogen-filled hollow-core fibre,” Quantum Electron. 45, 807–812 (2015).
[Crossref]

A. N. Kolyadin, G. K. Alagasheva, A. D. Pryamikova, L. Mouradianb, A. Zeytunyanb, H. Toneyanb, A. F. Kosolapova, and I. A. Bufetov, “Negative curvature hollow-core fibers: dispersion properties and femtosecond pulse delivery,” Phys. Procedia 73, 59–66 (2015).
[Crossref]

Burger, S.

Burnett, M. T.

Campbell, N.

Cao, L.

Caraschi, L. C.

M. R. B. Andreeta, L. S. Cunha, L. F. Vales, L. C. Caraschi, and R. G. Jasinevicius, “Bidimensional codes recorded on an oxide glass surface using a continuous wave CO2 laser,” J. Micromech. Microeng. 21, 025004 (2011).
[Crossref]

Carter, R. M.

R. M. Carter, W. N. MacPherson, P. Jaworski, F. Yu, R. Beck, J. D. Shephard, and D. P. Hand, “Dispersion measurement of microstructured negative curvature hollow core fiber,” Opt. Eng. 55, 116106 (2016).
[Crossref]

P. Jaworski, F. Yu, R. M. Carter, J. C. Knight, J. D. Shephard, and D. P. Hand, “High energy green nanosecond and picosecond pulse delivery through a negative curvature fiber for precision micro-machining,” Opt. Express 23, 8498–8506 (2015).
[Crossref]

J. D. Shephard, A. Urich, R. M. Carter, P. Jaworski, R. R. J. Maier, W. Belardi, F. Yu, W. J. Wadsworth, J. C. Knight, and D. P. Hand, “Silica hollow core microstructured fibers for beam delivery in industrial and medical applications,” Front. Phys. 3, 24 (2015).
[Crossref]

Cassataro, M.

Chafer, M.

Chang, H.

C. Lai, B. You, J. Lu, T. Lu, J. Peng, C. Sun, and H. Chang, “Modal characteristics of antiresonant reflecting pipe waveguides for terahertz waveguiding,” Opt. Express 18, 309–322 (2010).
[Crossref]

J. Lu, C. Yu, H. Chang, H. Chen, Y. Li, C. Pan, and C. Sun, “Terahertz air-core microstructure fiber,” Appl. Phys. Lett. 92, 064105 (2008).
[Crossref]

Chang, H. C.

Chang, W.

M. I. Hasan, N. Akhmediev, and W. Chang, “Positive and negative curvatures nested in an antiresonant hollow-core fiber,” Opt. Lett. 42, 703–706 (2017).
[Crossref]

M. I. Hasan, N. Akhmediev, and W. Chang, “Mid-infrared supercontinuum generation in supercritical xenon-filled hollow-core negative curvature fibers,” Opt. Lett. 41, 5122–5125 (2016).
[Crossref]

P. St.J. Russell, P. Hölzer, W. Chang, A. Abdolvand, and J. C. Travers, “Hollow-core photonic crystal fibres for gas-based nonlinear optics,” Nat. Photonics 8, 278–286 (2014).
[Crossref]

P. Hölzer, W. Chang, J. C. Travers, A. Nazarkin, J. Nold, N. Y. Joly, M. Saleh, F. Biancalana, and P. St.J. Russell, “Femtosecond nonlinear fiber optics in the ionization regime,” Phys. Rev. Lett. 107, 203901 (2011).
[Crossref]

J. C. Travers, W. Chang, J. Nold, N. Y. Joly, and P. St.J. Russell, “Ultrafast nonlinear optics in gas-filled hollow-core photonic crystal fibers,” J. Opt. Soc. Am. B 28, A11–A26 (2011).
[Crossref]

Chaudhuri, S.

L. D. van Putten, E. N. Fokoua, S. M. A. Mousavi, W. Belardi, S. Chaudhuri, J. V. Badding, and F. Poletti, “Exploring the effect of the core boundary curvature in hollow antiresonant fibers,” IEEE Photon. Technol. Lett. 29, 263–266 (2017).
[Crossref]

S. Chaudhuri, L. Van Putten, F. Poletti, and P. Sazio, “Low loss transmission in negative curvature optical fibers with elliptical capillary tubes,” J. Lightwave Technol. 34, 4228–4231 (2016).
[Crossref]

Chen, H.

Chen, I. J.

Chen, P.

Chen, Y.

Y. Chen, M. F. Saleh, N. Y. Joly, and F. Biancalana, “Low-loss single-mode negatively curved square-core hollow fibers,” Opt. Lett. 42, 1285–1288 (2017).
[Crossref]

N. V. Wheeler, T. D. Bradley, J. R. Hayes, M. A. Gouveia, S. Liang, Y. Chen, S. R. Sandoghchi, S. M. Abokhamis Mousavi, F. Poletti, M. N. Petrovich, and D. J. Richardson, “Low-loss Kagome hollow-core fibers operating from the near- to the mid-IR,” Opt. Lett. 42, 2571–2574 (2017).
[Crossref]

J. R. Hayes, S. R. Sandoghchi, T. D. Bradley, Z. Liu, R. Slavik, M. A. Gouveia, N. V. Wheeler, G. Jasion, Y. Chen, E. N. Fokoua, M. N. Petrovich, D. J. Richardson, and F. Poletti, “Antiresonant hollow core fiber with an octave spanning bandwidth for short haul data communications,” J. Lightwave Technol. 35, 437–442 (2017).
[Crossref]

Y. Chen, M. F. Saleh, N. Y. Joly, and F. Biancalana, “Guiding 2.94  μm using low-loss microstructured antiresonant triangular-core fibers,” J. Appl. Phys. 119, 143104 (2016).
[Crossref]

T. D. Bradley, N. V. Wheeler, G. T. Jasion, D. Gray, J. Hayes, M. A. Gouveia, S. R. Sandoghchi, Y. Chen, F. Poletti, D. Richardson, and M. Petrovich, “Modal content in hypocycloid Kagomé hollow core photonic crystal fibers,” Opt. Express 24, 15798–15812 (2016).
[Crossref]

Y. Chen, Z. Wang, B. Gu, F. Yu, and Q. Lu, “Achieving a 1.5  μm fiber gas Raman laser source with about 400  kW of peak power and a 6.3  GHz linewidth,” Opt. Lett. 41, 5118–5121 (2016).
[Crossref]

B. Gu, Y. Chen, and Z. Wang, “Characteristics of 1.9-μm laser emission from hydrogen-filled hollow-core fiber by vibrational stimulated Raman scattering,” Opt. Eng. 55, 126114 (2016).
[Crossref]

E. N. Fokoua, S. R. Sandoghchi, Y. Chen, G. T. Jasion, N. V. Wheeler, N. K. Baddela, J. R. Hayes, M. N. Petrovich, D. J. Richardson, and F. Poletti, “Accurate modelling of fabricated hollow-core photonic bandgap fibers,” Opt. Express 23, 23117–23132 (2015).
[Crossref]

T. Bradley, N. Wheeler, M. Petrovich, G. Jasion, D. Gray, J. Hayes, S. Sandoghchi, Y. Chen, F. Poletti, D. J. Richardson, and M. B. Alonso, “S2 measurement of higher order mode content in low loss hypocycloid kagomé hollow core photonic crystal fiber,” in Conference on Lasers and Electro-Optics (CLEO), OSA Technical Digest (Optical Society of America, 2016), paper STu4P.8.

J. R. Hayes, S. R. Sandoghchi, T. D. Bradley, Z. Liu, R. Slavik, M. A. Gouveia, N. V. Wheeler, G. T. Jasion, Y. Chen, E. Numkam-Fokoua, M. N. Petrovich, D. J. Richardson, and F. Poletti, “Antiresonant hollow core fiber with octave spanning bandwidth for short haul data communications,” in Optical Fiber Communication Conference Postdeadline Papers, OSA Technical Digest (online) (Optical Society of America, 2016), paper Th5A.3.

Chenard, F.

C. Wei, R. A. Kuis, F. Chenard, C. R. Menyuk, and J. Hu, “Higher-order mode suppression in chalcogenide negative curvature fibers,” Opt. Express 23, 15824–15832 (2015).
[Crossref]

C. Wei, O. Alvarez, F. Chenard, and J. Hu, “Empirical glass thickness for chalcogenide negative curvature fibers,” in Summer Topicals Meeting Series (IEEE Photonics Society, 2015), paper TuE3.3.

C. Wei, R. Kuis, F. Chenard, and J. Hu, “Chalcogenide negative curvature hollow-core photonic crystal fibers with low loss and low power ratio in the glass,” in Conference on Laser and Electro-Optics (CLEO), OSA Technical Digest (online) (Optical Society of America, 2014), paper SM1N.5.

Cheng, Y.

Chigrinov, V. G.

D. V. Bogdanovich, A. K. Srivastava, V. G. Chigrinov, A. S. Biriukov, and A. D. Pryamikov, “Hollow core negative curvature fibre with layers of photoaligned optically anisotropic material,” Laser Phys. Lett. 12, 105101 (2015).
[Crossref]

Choudhury, P. K.

P. K. Choudhury and T. Yoshino, “A rigorous analysis of the power distribution in plastic clad annular core optical fibers,” Optik 113, 481–488 (2002).
[Crossref]

B. C. Sarkar, P. K. Choudhury, and T. Yoshino, “On the analysis of a weakly guiding doubly clad dielectric optical fiber with annular core,” Microwave Opt. Technol. Lett. 31, 435–439 (2001).
[Crossref]

Churbanov, M. F.

V. S. Shiryaev, A. F. Kosolapov, A. D. Pryamikov, G. E. Snopatin, M. F. Churbanov, A. S. Biriukov, T. V. Kotereva, S. V. Mishinov, G. K. Alagashev, and A. N. Kolyadin, “Development of technique for preparation of As2S3 glass preforms for hollow core microstructured optical fibers,” J. Optoelectron. Adv. Mater. 16, 1020–1025 (2014).

A. F. Kosolapov, A. D. Pryamikov, A. S. Biriukov, V. S. Shiryaev, M. S. Astapovich, G. E. Snopatin, V. G. Plotnichenko, M. F. Churbanov, and E. M. Dianov, “Demonstration of CO2-laser power delivery through chalcogenide-glass fiber with negative-curvature hollow core,” Opt. Express 19, 25723–25728 (2011).
[Crossref]

Corwin, K. L.

Couny, F.

A. M. Jones, A. V. V. Nampoothiri, A. Ratanavis, T. Fiedler, N. V. Wheeler, F. Couny, R. Kadel, F. Benabid, B. R. Washburn, K. L. Corwin, and W. Rudolph, “Mid-infrared gas filled photonic crystal fiber laser based on population inversion,” Opt. Express 19, 2309–2316 (2011).
[Crossref]

Y. Y. Wang, N. V. Wheeler, F. Couny, P. J. Roberts, and F. Benabid, “Low loss broadband transmission in hypocycloid-core Kagome hollow-core photonic crystal fiber,” Opt. Lett. 36, 669–671 (2011).
[Crossref]

F. Couny, P. J. Roberts, T. A. Birks, and F. Benabid, “Square-lattice large-pitch hollow-core photonic crystal fiber,” Opt. Express 16, 20626–20636 (2008).
[Crossref]

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and photonic guidance of multi-octave optical-frequency combs,” Science 318, 1118–1121 (2007).
[Crossref]

F. Couny, F. Benabid, P. J. Roberts, M. T. Burnett, and S. A. Maier, “Identification of Bloch-modes in hollow-core photonic crystal fiber cladding,” Opt. Express 15, 325–338 (2007).
[Crossref]

F. Couny, F. Benabid, and P. S. Light, “Large-pitch kagome-structured hollow-core photonic crystal fiber,” Opt. Lett. 31, 3574–3576 (2006).
[Crossref]

F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. St.J. Russell, “Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres,” Nature 434, 488–491 (2005).
[Crossref]

P. J. Roberts, F. Couny, H. Sabert, B. J. Mangan, D. P. Williams, L. Farr, M. W. Mason, A. Tomlinson, T. A. Birks, J. C. Knight, and P. St.J. Russell, “Ultimate low loss of hollow-core photonic crystal fibres,” Opt. Express 13, 236–244 (2005).
[Crossref]

P. J. Roberts, D. P. Williams, B. J. Mangan, H. Sabert, F. Couny, W. J. Wadsworth, T. A. Birks, J. C. Knight, and P. St.J. Russell, “Realizing low loss air core photonic crystal fibers by exploiting an antiresonant core surround,” Opt. Express 13, 8277–8285 (2005).
[Crossref]

Y. Wang, F. Couny, P. J. Roberts, and F. Benabid, “Low loss broadband transmission in optimized core-shaped Kagome hollow-core PCF,” in Conference on Lasers and Electro-Optics (CLEO), OSA Technical Digest (CD) (Optical Society of America, 2010), paper CPDB4.

B. J. Mangan, L. Farr, A. Langford, P. J. Roberts, D. P. Williams, F. Couny, M. Lawman, M. Mason, S. Coupland, R. Flea, H. Sabert, T. A. Birks, J. C. Knight, and P. St.J. Russell, “Low loss (1.7  dB/km) hollow core photonic bandgap fiber,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2004), paper PD24.

Coupland, S.

B. J. Mangan, L. Farr, A. Langford, P. J. Roberts, D. P. Williams, F. Couny, M. Lawman, M. Mason, S. Coupland, R. Flea, H. Sabert, T. A. Birks, J. C. Knight, and P. St.J. Russell, “Low loss (1.7  dB/km) hollow core photonic bandgap fiber,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2004), paper PD24.

Cowan, M. L.

S. Amini-Nik, D. Kraemer, M. L. Cowan, K. Gunaratne, P. Nadesan, B. A. Alman, and R. J. D. Miller, “Ultrafast mid-IR laser scalpel: protein signals of the fundamental limits to minimally invasive surgery,” PLoS One 5, e13053 (2010).
[Crossref]

Cregan, R. F.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St.J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537–1539 (1999).
[Crossref]

Crowell, P. G.

J. E. McCord, H. C. Miller, G. Hager, A. I. Lampson, and P. G. Crowell, “Experimental investigation of an optically pumped mid-infrared carbon monoxide laser,” IEEE J. Quantum Electron. 35, 1602–1612 (1999).
[Crossref]

Cubillas, A. M.

A. M. Cubillas, X. Jiang, T. G. Euser, N. Taccardi, B. J. M. Etzold, P. Wasserscheid, and P. St.J. Russell, “Photochemistry in a soft-glass single-ring hollow-core photonic crystal fiber,” Analyst 142, 925–929 (2017).
[Crossref]

A. M. Cubillas, S. Unterkofler, T. G. Euser, B. J. Etzold, A. C. Jones, P. J. Sadler, P. Wasserscheid, and P. St.J. Russell, “Photonic crystal fibres for chemical sensing and photochemistry,” Chem. Soc. Rev. 42, 8629–8648 (2013).
[Crossref]

Cunha, L. S.

M. R. B. Andreeta, L. S. Cunha, L. F. Vales, L. C. Caraschi, and R. G. Jasinevicius, “Bidimensional codes recorded on an oxide glass surface using a continuous wave CO2 laser,” J. Micromech. Microeng. 21, 025004 (2011).
[Crossref]

Dadashzadeh, N.

Danto, S.

Dasari, R. R.

E. B. Hanlon, R. Manoharan, T. W. Koo, K. E. Shafer, J. T. Motz, M. Fitzmaurice, J. R. Kramer, I. Itzkan, R. R. Dasari, and M. S. Feld, “Prospects for in vivo Raman spectroscopy,” Phys. Med. Biol. 45, R1–R59 (2000).
[Crossref]

Davis, T. W.

T. G. Polanyi, H. C. Bredemeier, and T. W. Davis, “A CO2 laser for surgical research,” Med. Biol. Eng. 8, 541–548 (1970).
[Crossref]

de Sterke, C. M.

de Waardt, H.

V. Sleiffer, Y. Jung, N. Baddela, J. Surof, M. Kuschnerov, V. Veljanovski, J. Hayes, N. Wheeler, E. Numkam Fokoua, J. Wooler, D. Gray, N. Wong, F. Parmigiani, S. Alam, M. Petrovich, F. Poletti, D. Richardson, and H. de Waardt, “High capacity mode-division multiplexed optical transmission in a novel 37-cell hollow-core photonic bandgap fiber,” J. Lightwave Technol. 32, 854–863 (2014).
[Crossref]

Y. Jung, V. A. J. M. Sleiffer, N. K. Baddela, M. N. Petrovich, J. R. Hayes, N. V. Wheeler, D. R. Gray, E. Numkam Fokoua, J. P. Wooler, H. H.-L. Wong, F. Parmigiani, S.-U. Alam, J. Surof, M. Kuschnerov, V. Veljanovski, H. De Waardt, F. Poletti, and D. J. Richardson, “First demonstration of a broadband 37-cell hollow core photonic bandgap fiber and its application to high capacity mode division multiplexing,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference, OSA Technical Digest (online) (Optical Society of America, 2013), paper PDP5A.3.

V. A. Sleiffer, Y. Jung, P. Leoni, M. Kuschnerov, N. V. Wheeler, N. K. Baddela, R. G. H. van Uden, C. M. Okonkwo, J. R. Hayes, J. Wooler, E. Numkam, R. Slavik, F. Poletti, M. N. Petrovich, V. Veljanovski, S. U. Alam, D. J. Richardson, and H. de Waardt, “30.7  Tb/s (96 × 320  Gb/s) DP-32QAM transmission over 19-cell photonic band gap fiber,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference, OSA Technical Digest (online) (Optical Society of America, 2013), paper OW1I.5.

Debord, B.

N. Dadashzadeh, M. P. Thirugnanasambandam, H. W. K. Weerasinghe, B. Debord, M. Chafer, F. Gerome, F. Benabid, B. R. Washburn, and K. L. Corwin, “Near diffraction-limited performance of an OPA pumped acetylene-filled hollow-core fiber laser in the mid-IR,” Opt. Express 25, 13351–13358 (2017).
[Crossref]

B. Debord, A. Amsanpally, M. Chafer, A. Baz, M. Maurel, J. M. Blondy, E. Hugonnot, F. Scol, L. Vincetti, F. Gérôme, and F. Benabid, “Ultralow transmission loss in inhibited-coupling guiding hollow fibers,” Optica 4, 209–217 (2017).
[Crossref]

X. Zheng, B. Debord, L. Vincetti, B. Beaudou, F. Gérôme, and F. Benabid, “Fusion splice between tapered inhibited coupling hypocycloid-core Kagome fiber and SMF,” Opt. Express 24, 14642–14647 (2016).
[Crossref]

A. V. V. Nampoothiri, B. Debord, M. Alharbi, F. Gérôme, F. Benabid, and W. Rudolph, “CW hollow-core optically pumped I2 fiber gas laser,” Opt. Lett. 40, 605–608 (2015).
[Crossref]

B. Debord, A. Amsanpally, M. Alharbi, L. Vincetti, J. M. Blondy, F. Gérôme, and F. Benabid, “Ultra-large core size hypocycloid-shape inhibited coupling kagome fibers for high-energy laser beam handling,” J. Lightwave Technol. 33, 3630–3634 (2015).
[Crossref]

A. Benoît, B. Beaudou, M. Alharbi, B. Debord, F. Gérôme, F. Salin, and F. Benabid, “Over-five octaves wide Raman combs in high-power picosecond-laser pumped H2-filled inhibited coupling kagome fiber,” Opt. Express 23, 14002–14009 (2015).
[Crossref]

F. Guichard, A. Giree, Y. Zaouter, M. Hanna, G. Machinet, B. Debord, F. Gérôme, P. Dupriez, F. Druon, C. Hönninger, E. Mottay, F. Benabid, and P. Georges, “Nonlinear compression of high energy fiber amplifier pulses in air-filled hypocycloid-core Kagome fiber,” Opt. Express 23, 7416–7423 (2015).
[Crossref]

F. Emaury, C. J. Saraceno, B. Debord, D. Ghosh, A. Diebold, F. Gérôme, T. Südmeyer, F. Benabid, and U. Keller, “Efficient spectral broadening in the 100-W average power regime using gas-filled kagome HC-PCF and pulse compression,” Opt. Lett. 39, 6843–6846 (2014).
[Crossref]

B. Debord, M. Alharbi, A. Benoît, D. Ghosh, M. Dontabactouny, L. Vincetti, J.-M. Blondy, F. Gérôme, and F. Benabid, “Ultra low-loss hypocycloid-core Kagome hollow-core photonic crystal fiber for green spectral-range applications,” Opt. Lett. 39, 6245–6248 (2014).
[Crossref]

B. Debord, M. Alharbi, L. Vincetti, A. Husakou, C. Fourcade-Dutin, C. Hoenninger, E. Mottay, F. Gérôme, and F. Benabid, “Multi-meter fiber-delivery and pulse self-compression of milli-Joule femtosecond laser and fiber-aided laser-micromachining,” Opt. Express 22, 10735–10746 (2014).
[Crossref]

T. D. Bradley, Y. Wang, M. Alharbi, B. Debord, C. Fourcade-Dutin, B. Beaudou, F. Gerome, and F. Benabid, “Optical properties of low loss (70  dB/km) hypocycloid-core kagome hollow core photonic crystal fiber for Rb and Cs based optical applications,” J. Lightwave Technol. 31, 2752–2755 (2013).
[Crossref]

M. Alharbi, T. Bradley, B. Debord, C. Fourcade-Dutin, D. Ghosh, L. Vincetti, F. Gérôme, and F. Benabid, “Hypocycloid-shaped hollow-core photonic crystal fiber Part II: cladding effect on confinement and bend loss,” Opt. Express 21, 28609–28616 (2013).
[Crossref]

B. Debord, M. Alharbi, T. Bradley, C. Fourcade-Dutin, Y. Y. Wang, L. Vincetti, F. Gérôom, and F. Benabid, “Hypocycloid-shaped hollow-core photonic crystal fiber Part I: arc curvature effect on confinement loss,” Opt. Express 21, 28597–28608 (2013).
[Crossref]

B. Debord, A. Amsanpally, M. Chafer, A. Baz, L. Vincetti, J. Blondy, F. Gérôme, and F. Benabid, “7.7  dB/km losses in inhibited coupling hollow-core photonic crystal fibers,” in Conference on Lasers and Electro-Optics (CLEO), OSA Technical Digest (online) (Optical Society of America, 2016), paper JTh4C.8.

Deborda, B.

Y. Wang, M. Alharbi, T. D. Bradley, C. Fourcade-Dutina, B. Deborda, B. Beaudoua, F. Gérôme, and F. Benabid, “Hollow-core photonic crystal fibre for high power laser beam delivery,” High Power Laser Sci. Eng. 1, 17–28 (2013).
[Crossref]

Deng, M.

M. Deng, C. P. Tang, T. Zhu, and Y. J. Rao, “Highly sensitive bend sensor based on Mach–Zehnder interferometer using photonic crystal fiber,” Opt. Commun. 284, 2849–2853 (2011).
[Crossref]

Desantolo, A.

Dianov, E.

A. F. Kosolapov, A. Pryamikov, G. Alagashev, A. Kolyadin, A. Biriukov, and E. Dianov, “Negative curvature hollow-core fibers (NCHCFs) for mid-IR applications,” in Advanced Photonics, OSA Technical Digest (online) (Optical Society of America, 2014), paper SoTu2B.3.

Dianov, E. M.

A. V. Gladyshev, A. F. Kosolapov, M. M. Khudyakov, Y. P. Yatsenko, A. N. Kolyadin, A. A. Krylov, A. D. Pryamikov, A. S. Biriukov, M. E. Likhachev, I. A. Bufetov, and E. M. Dianov, “4.4  μm Raman laser based on hollow-core silica fibre,” Quantum Electron. 47, 491–494 (2017).
[Crossref]

A. V. Gladyshev, A. N. Kolyadin, A. F. Kosolapov, Y. P. Yatsenko, A. D. Pryamikov, A. S. Biriukov, I. A. Bufetov, and E. M. Dianov, “Low-threshold 1.9  μm Raman generation in microstructured hydrogen-filled hollow-core revolver fibre with nested capillaries,” Laser Phys. 27, 025101 (2016).
[Crossref]

A. F. Kosolapov, G. K. Alagashev, A. N. Kolyadin, A. D. Pryamikov, A. S. Biryukov, I. A. Bufetov, and E. M. Dianov, “Hollow-core revolver fibre with a double-capillary reflective cladding,” Quantum Electron. 46, 267–270 (2016).
[Crossref]

E. M. Dianov, S. L. Semjonov, and I. A. Bufetov, “New generation of optical fibres,” Quantum Electron. 46, 1–10 (2016).
[Crossref]

A. V. Gladyshev, A. N. Kolyadin, A. F. Kosolapov, Y. P. Yatsenko, A. D. Pryamikov, A. S. Biryukov, I. A. Bufetov, and E. M. Dianov, “Efficient 1.9-μm Raman generation in a hydrogen-filled hollow-core fibre,” Quantum Electron. 45, 807–812 (2015).
[Crossref]

A. N. Kolyadin, A. F. Kosolapov, A. D. Pryamikov, A. S. Biriukov, V. G. Plotnichenko, and E. M. Dianov, “Light transmission in negative curvature hollow core fiber in extremely high material loss region,” Opt. Express 21, 9514–9519 (2013).
[Crossref]

A. D. Pryamikov, A. S. Biriukov, A. F. Kosolapov, V. G. Plotnichenko, S. L. Semjonov, and E. M. Dianov, “Demonstration of a waveguide regime for a silica hollow-core microstructured optical fiber with a negative curvature of the core boundary in the spectral region >3.5  μm,” Opt. Express 19, 1441–1448 (2011).
[Crossref]

A. F. Kosolapov, A. D. Pryamikov, A. S. Biriukov, V. S. Shiryaev, M. S. Astapovich, G. E. Snopatin, V. G. Plotnichenko, M. F. Churbanov, and E. M. Dianov, “Demonstration of CO2-laser power delivery through chalcogenide-glass fiber with negative-curvature hollow core,” Opt. Express 19, 25723–25728 (2011).
[Crossref]

A. D. Pryamikov, A. F. Kosolapov, V. G. Plotnichenko, and E. M. Dianov, “Transmission of CO2 laser radiation through glass hollow core microstructured fibers,” in CO2 Laser-Optimisation and Application, D. C. Dumitras, ed. (InTech, 2012), pp. 227–248.

Diebold, A.

DiMarcello, F. V.

Ding, W.

Docherty, A.

Dontabactouny, M.

Druon, F.

Dubois, C.

Dudley, J. M.

J. M. Dudley and J. R. Taylor, “Ten years of nonlinear optics in photonic crystal fibre,” Nat. Photonics 3, 85–90 (2009).
[Crossref]

Duguay, M. A.

M. A. Duguay, Y. Kokubun, T. L. Koch, and L. Pfeiffer, “Antiresonant reflecting optical waveguides in SiO2 Si multiplayer structures,” Appl. Phys. Lett. 49, 13–15 (1986).
[Crossref]

Dumitrache, C.

C. Dumitrache, J. Rath, and A. P. Yalin, “High power spark delivery system using hollow core kagome lattice fibers,” Materials 7, 5700–5710 (2014).
[Crossref]

Dunn, S. C.

Dunsby, C.

B. Sherlock, F. Yu, J. Stone, S. Warren, C. Paterson, M. A. A. Neil, P. M. W. French, J. Knight, and C. Dunsby, “Tunable fibre-coupled multiphoton microscopy with a negative curvature fibre,” J. Biophotonics 9, 715–720 (2016).
[Crossref]

Dupriez, P.

Dupuis, A.

Dutin, C. F.

Ebendorff-Heidepriem, H.

G. Tao, H. Ebendorff-Heidepriem, A. M. Stolyarov, S. Danto, J. V. Badding, Y. Fink, J. Ballato, and A. F. Abouraddy, “Infrared fibers,” Adv. Opt. Photon. 7, 379–458 (2015).
[Crossref]

J. H. V. Price, T. M. Monro, H. Ebendorff-Heidepriem, F. Poletti, P. Horak, V. Finazzi, J. Y. Y. Leong, P. Petropoulos, J. C. Flanagan, G. Brambilla, X. Feng, and D. J. Richardson, “Mid-IR supercontinuum generation from nonsilica microstructured optical fibers,” IEEE J. Sel. Top. Quantum Electron. 13, 738–749 (2007).
[Crossref]

Eberhardt, R.

Edavalath, N. N.

Eggleton, B. J.

Emaury, F.

Estacio, E.

Etzold, B. J.

A. M. Cubillas, S. Unterkofler, T. G. Euser, B. J. Etzold, A. C. Jones, P. J. Sadler, P. Wasserscheid, and P. St.J. Russell, “Photonic crystal fibres for chemical sensing and photochemistry,” Chem. Soc. Rev. 42, 8629–8648 (2013).
[Crossref]

Etzold, B. J. M.

A. M. Cubillas, X. Jiang, T. G. Euser, N. Taccardi, B. J. M. Etzold, P. Wasserscheid, and P. St.J. Russell, “Photochemistry in a soft-glass single-ring hollow-core photonic crystal fiber,” Analyst 142, 925–929 (2017).
[Crossref]

Euser, T. G.

A. M. Cubillas, X. Jiang, T. G. Euser, N. Taccardi, B. J. M. Etzold, P. Wasserscheid, and P. St.J. Russell, “Photochemistry in a soft-glass single-ring hollow-core photonic crystal fiber,” Analyst 142, 925–929 (2017).
[Crossref]

A. M. Cubillas, S. Unterkofler, T. G. Euser, B. J. Etzold, A. C. Jones, P. J. Sadler, P. Wasserscheid, and P. St.J. Russell, “Photonic crystal fibres for chemical sensing and photochemistry,” Chem. Soc. Rev. 42, 8629–8648 (2013).
[Crossref]

Eznaveh, Z. S.

Fan, G.

T. Balciunas, C. Fourcade-Dutin, G. Fan, T. Witting, A. A. Voronin, A. M. Zheltikov, F. Gérôme, G. G. Paulus, A. Baltuska, and F. Benabid, “A strong-field driver in the single-cycle regime based on self-compression in a kagome fibre,” Nat. Commun. 6, 6117 (2015).
[Crossref]

Fan, Z.

Farr, L.

P. J. Roberts, F. Couny, H. Sabert, B. J. Mangan, D. P. Williams, L. Farr, M. W. Mason, A. Tomlinson, T. A. Birks, J. C. Knight, and P. St.J. Russell, “Ultimate low loss of hollow-core photonic crystal fibres,” Opt. Express 13, 236–244 (2005).
[Crossref]

B. J. Mangan, L. Farr, A. Langford, P. J. Roberts, D. P. Williams, F. Couny, M. Lawman, M. Mason, S. Coupland, R. Flea, H. Sabert, T. A. Birks, J. C. Knight, and P. St.J. Russell, “Low loss (1.7  dB/km) hollow core photonic bandgap fiber,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2004), paper PD24.

Felbacq, D.

F. Zolla, G. Renversez, A. Nicolet, B. Kuhlmey, S. Guenneau, D. Felbacq, A. Argyros, and S. Leon-Saval, Foundations of Photonic Crystal Fibres, 2nd ed. (Imperial College, 2012).

Feld, M. S.

E. B. Hanlon, R. Manoharan, T. W. Koo, K. E. Shafer, J. T. Motz, M. Fitzmaurice, J. R. Kramer, I. Itzkan, R. R. Dasari, and M. S. Feld, “Prospects for in vivo Raman spectroscopy,” Phys. Med. Biol. 45, R1–R59 (2000).
[Crossref]

Feng, X.

X. Liu, W. Ding, Y. Y. Wang, S. Gao, L. Cao, X. Feng, and P. Wang, “Characterization of a liquid-filled nodeless anti-resonant fiber for biochemical sensing,” Opt. Lett. 42, 863–866 (2017).
[Crossref]

J. H. V. Price, T. M. Monro, H. Ebendorff-Heidepriem, F. Poletti, P. Horak, V. Finazzi, J. Y. Y. Leong, P. Petropoulos, J. C. Flanagan, G. Brambilla, X. Feng, and D. J. Richardson, “Mid-IR supercontinuum generation from nonsilica microstructured optical fibers,” IEEE J. Sel. Top. Quantum Electron. 13, 738–749 (2007).
[Crossref]

W. Belardi, N. White, J. Lousteau, X. Feng, and F. Poletti, “Hollow core antiresonant fibers in borosilicate glass,” in Workshop on Specialty Optical Fibers and their Applications, OSA Technical Digest (online) (Optical Society of America, 2015), paper WW4A.4.

Férachou, D.

Février, S.

Fiedler, T.

Finazzi, V.

J. H. V. Price, T. M. Monro, H. Ebendorff-Heidepriem, F. Poletti, P. Horak, V. Finazzi, J. Y. Y. Leong, P. Petropoulos, J. C. Flanagan, G. Brambilla, X. Feng, and D. J. Richardson, “Mid-IR supercontinuum generation from nonsilica microstructured optical fibers,” IEEE J. Sel. Top. Quantum Electron. 13, 738–749 (2007).
[Crossref]

Finger, M. A.

X. Jiang, N. Y. Joly, M. A. Finger, F. Babic, G. K. L. Wong, J. C. Travers, and P. St.J. Russell, “Deep-ultraviolet to mid-infrared supercontinuum generated in solid-core ZBLAN photonic crystal fibre,” Nat. Photonics 9, 133–139 (2015).
[Crossref]

Fini, J. M.

Fink, Y.

Fitzmaurice, M.

E. B. Hanlon, R. Manoharan, T. W. Koo, K. E. Shafer, J. T. Motz, M. Fitzmaurice, J. R. Kramer, I. Itzkan, R. R. Dasari, and M. S. Feld, “Prospects for in vivo Raman spectroscopy,” Phys. Med. Biol. 45, R1–R59 (2000).
[Crossref]

Flanagan, J. C.

J. H. V. Price, T. M. Monro, H. Ebendorff-Heidepriem, F. Poletti, P. Horak, V. Finazzi, J. Y. Y. Leong, P. Petropoulos, J. C. Flanagan, G. Brambilla, X. Feng, and D. J. Richardson, “Mid-IR supercontinuum generation from nonsilica microstructured optical fibers,” IEEE J. Sel. Top. Quantum Electron. 13, 738–749 (2007).
[Crossref]

Flea, R.

B. J. Mangan, L. Farr, A. Langford, P. J. Roberts, D. P. Williams, F. Couny, M. Lawman, M. Mason, S. Coupland, R. Flea, H. Sabert, T. A. Birks, J. C. Knight, and P. St.J. Russell, “Low loss (1.7  dB/km) hollow core photonic bandgap fiber,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2004), paper PD24.

Fleming, S. C.

S. Atakaramians, A. Stefani, H. Li, M. S. Habib, J. G. Hayashi, A. Tuniz, X. Tang, J. Anthony, R. Lwin, A. Argyros, S. C. Fleming, and B. T. Kuhlmey, “Fiber-drawn metamaterial for THz waveguiding and imaging,” J. Infrared Millimeter Terahertz Waves 38, 1162–1178 (2017).
[Crossref]

Florous, N. J.

Fokoua, E. N.

L. D. van Putten, E. N. Fokoua, S. M. A. Mousavi, W. Belardi, S. Chaudhuri, J. V. Badding, and F. Poletti, “Exploring the effect of the core boundary curvature in hollow antiresonant fibers,” IEEE Photon. Technol. Lett. 29, 263–266 (2017).
[Crossref]

J. R. Hayes, S. R. Sandoghchi, T. D. Bradley, Z. Liu, R. Slavik, M. A. Gouveia, N. V. Wheeler, G. Jasion, Y. Chen, E. N. Fokoua, M. N. Petrovich, D. J. Richardson, and F. Poletti, “Antiresonant hollow core fiber with an octave spanning bandwidth for short haul data communications,” J. Lightwave Technol. 35, 437–442 (2017).
[Crossref]

E. N. Fokoua, S. R. Sandoghchi, Y. Chen, G. T. Jasion, N. V. Wheeler, N. K. Baddela, J. R. Hayes, M. N. Petrovich, D. J. Richardson, and F. Poletti, “Accurate modelling of fabricated hollow-core photonic bandgap fibers,” Opt. Express 23, 23117–23132 (2015).
[Crossref]

N. V. Wheeler, A. M. Heidt, N. K. Baddela, E. N. Fokoua, J. R. Hayes, S. R. Sandoghchi, F. Poletti, M. N. Petrovich, and D. J. Richardson, “Low-loss and low-bend-sensitivity mid-infrared guidance in a hollow-core-photonic-bandgap fiber,” Opt. Lett. 39, 295–298 (2014).
[Crossref]

E. N. Fokoua, D. J. Richardson, and F. Poletti, “Impact of structural distortions on the performance of hollow-core photonic bandgap fibers,” Opt. Express 22, 2735–2744 (2014).
[Crossref]

E. N. Fokoua, F. Poletti, and D. J. Richardson, “Analysis of light scattering from surface roughness in hollow-core photonic bandgap fibers,” Opt. Express 20, 20980–20991 (2012).
[Crossref]

Fourcade-Dutin, C.

T. Balciunas, C. Fourcade-Dutin, G. Fan, T. Witting, A. A. Voronin, A. M. Zheltikov, F. Gérôme, G. G. Paulus, A. Baltuska, and F. Benabid, “A strong-field driver in the single-cycle regime based on self-compression in a kagome fibre,” Nat. Commun. 6, 6117 (2015).
[Crossref]

B. Debord, M. Alharbi, L. Vincetti, A. Husakou, C. Fourcade-Dutin, C. Hoenninger, E. Mottay, F. Gérôme, and F. Benabid, “Multi-meter fiber-delivery and pulse self-compression of milli-Joule femtosecond laser and fiber-aided laser-micromachining,” Opt. Express 22, 10735–10746 (2014).
[Crossref]

S. Wu, C. Wang, C. Fourcade-Dutin, B. R. Washburn, F. Benabid, and K. L. Corwin, “Direct fiber comb stabilization to a gas-filled hollow-core photonic crystal fiber,” Opt. Express 22, 23704–23715 (2014).
[Crossref]

T. D. Bradley, Y. Wang, M. Alharbi, B. Debord, C. Fourcade-Dutin, B. Beaudou, F. Gerome, and F. Benabid, “Optical properties of low loss (70  dB/km) hypocycloid-core kagome hollow core photonic crystal fiber for Rb and Cs based optical applications,” J. Lightwave Technol. 31, 2752–2755 (2013).
[Crossref]

B. Debord, M. Alharbi, T. Bradley, C. Fourcade-Dutin, Y. Y. Wang, L. Vincetti, F. Gérôom, and F. Benabid, “Hypocycloid-shaped hollow-core photonic crystal fiber Part I: arc curvature effect on confinement loss,” Opt. Express 21, 28597–28608 (2013).
[Crossref]

M. Alharbi, T. Bradley, B. Debord, C. Fourcade-Dutin, D. Ghosh, L. Vincetti, F. Gérôme, and F. Benabid, “Hypocycloid-shaped hollow-core photonic crystal fiber Part II: cladding effect on confinement and bend loss,” Opt. Express 21, 28609–28616 (2013).
[Crossref]

A. V. V. Nampoothiri, A. M. Jones, C. Fourcade-Dutin, C. Mao, N. Dadashzadeh, B. Baumgart, Y. Y. Wang, M. Alharbi, T. Bradley, N. Campbell, F. Benabid, B. R. Washburn, K. L. Corwin, and W. Rudolph, “Hollow-core optical fiber gas lasers (HOFGLAS): a review [Invited],” Opt. Mater. Express 2, 948–961 (2012).
[Crossref]

Fourcade-Dutina, C.

Y. Wang, M. Alharbi, T. D. Bradley, C. Fourcade-Dutina, B. Deborda, B. Beaudoua, F. Gérôme, and F. Benabid, “Hollow-core photonic crystal fibre for high power laser beam delivery,” High Power Laser Sci. Eng. 1, 17–28 (2013).
[Crossref]

French, P. M. W.

B. Sherlock, F. Yu, J. Stone, S. Warren, C. Paterson, M. A. A. Neil, P. M. W. French, J. Knight, and C. Dunsby, “Tunable fibre-coupled multiphoton microscopy with a negative curvature fibre,” J. Biophotonics 9, 715–720 (2016).
[Crossref]

Frosch, T.

A. Hartung, J. Kobelke, A. Schwuchow, J. Bierlich, J. Popp, M. A. Schmidt, and T. Frosch, “Low-loss single-mode guidance in large-core antiresonant hollow-core fibers,” Opt. Lett. 40, 3432–3435 (2015).
[Crossref]

A. Hartung, J. Kobelke, A. Schwuchow, K. Wondraczek, J. Bierlich, J. Popp, T. Frosch, and M. A. Schmidt, “Origins of modal loss of antiresonant hollow-core optical fibers in the ultraviolet,” Opt. Express 23, 2557–2565 (2015).
[Crossref]

A. Hartung, J. Kobelke, A. Schwuchow, K. Wondraczek, J. Bierlich, J. Popp, T. Frosch, and M. A. Schmidt, “Double antiresonant hollow core fiber-guidance in the deep ultraviolet by modified tunneling leaky modes,” Opt. Express 22, 19131–19140 (2014).
[Crossref]

T. Frosch, N. Tarcea, M. Schmitt, H. Thiele, F. Langenhorst, and J. Popp, “UV Raman imaging-A promising tool for astrobiology: comparative Raman studies with different excitation wavelengths on SNC Martian meteorites,” Anal. Chem. 79, 1101–1108 (2007).
[Crossref]

T. Frosch, M. Schmitt, T. Noll, G. Bringmann, K. Schenzel, and J. Popp, “Ultrasensitive in situ tracing of the alkaloid dioncophylline A in the tropical liana Triphyophyllum peltatum by applying deep-UV resonance Raman microscopy,” Anal. Chem. 79, 986–993 (2007).
[Crossref]

Frosz, M. H.

Gaeta, A. L.

A. R. Bhagwat and A. L. Gaeta, “Nonlinear optics in hollow-core photonic bandgap fibers,” Opt. Express 16, 5035–5047 (2008).
[Crossref]

S. Ghosh, J. E. Sharping, D. G. Ouzounov, and A. L. Gaeta, “Resonant optical interactions with molecules confined in photonic band-gap fibers,” Phys. Rev. Lett. 94, 093902 (2005).
[Crossref]

Gallagher, M. T.

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424, 657–659 (2003).
[Crossref]

Gao, S.

Gao, Y.

Garvie-Cook, H.

H. Garvie-Cook, J. M. Stone, F. Yu, R. H. Guy, and S. N. Gordeev, “Femtosecond pulsed laser ablation to enhance drug delivery across the skin,” J. Biophotonics 9, 144–154 (2016).
[Crossref]

H. Garvie-Cook, “Background,” in Novel (Trans)dermal Drug Delivery Strategies: Micro-and Nano-Scale Assessments (Springer, 2016), pp. 5–28.

Gattass, R. R.

Gayraud, N.

George, A. K.

Georges, P.

Gerome, F.

Gérôme, F.

B. Debord, A. Amsanpally, M. Chafer, A. Baz, M. Maurel, J. M. Blondy, E. Hugonnot, F. Scol, L. Vincetti, F. Gérôme, and F. Benabid, “Ultralow transmission loss in inhibited-coupling guiding hollow fibers,” Optica 4, 209–217 (2017).
[Crossref]

X. Zheng, B. Debord, L. Vincetti, B. Beaudou, F. Gérôme, and F. Benabid, “Fusion splice between tapered inhibited coupling hypocycloid-core Kagome fiber and SMF,” Opt. Express 24, 14642–14647 (2016).
[Crossref]

B. Debord, A. Amsanpally, M. Alharbi, L. Vincetti, J. M. Blondy, F. Gérôme, and F. Benabid, “Ultra-large core size hypocycloid-shape inhibited coupling kagome fibers for high-energy laser beam handling,” J. Lightwave Technol. 33, 3630–3634 (2015).
[Crossref]

A. Benoît, B. Beaudou, M. Alharbi, B. Debord, F. Gérôme, F. Salin, and F. Benabid, “Over-five octaves wide Raman combs in high-power picosecond-laser pumped H2-filled inhibited coupling kagome fiber,” Opt. Express 23, 14002–14009 (2015).
[Crossref]

A. V. V. Nampoothiri, B. Debord, M. Alharbi, F. Gérôme, F. Benabid, and W. Rudolph, “CW hollow-core optically pumped I2 fiber gas laser,” Opt. Lett. 40, 605–608 (2015).
[Crossref]

T. Balciunas, C. Fourcade-Dutin, G. Fan, T. Witting, A. A. Voronin, A. M. Zheltikov, F. Gérôme, G. G. Paulus, A. Baltuska, and F. Benabid, “A strong-field driver in the single-cycle regime based on self-compression in a kagome fibre,” Nat. Commun. 6, 6117 (2015).
[Crossref]

F. Guichard, A. Giree, Y. Zaouter, M. Hanna, G. Machinet, B. Debord, F. Gérôme, P. Dupriez, F. Druon, C. Hönninger, E. Mottay, F. Benabid, and P. Georges, “Nonlinear compression of high energy fiber amplifier pulses in air-filled hypocycloid-core Kagome fiber,” Opt. Express 23, 7416–7423 (2015).
[Crossref]

F. Emaury, C. J. Saraceno, B. Debord, D. Ghosh, A. Diebold, F. Gérôme, T. Südmeyer, F. Benabid, and U. Keller, “Efficient spectral broadening in the 100-W average power regime using gas-filled kagome HC-PCF and pulse compression,” Opt. Lett. 39, 6843–6846 (2014).
[Crossref]

B. Debord, M. Alharbi, A. Benoît, D. Ghosh, M. Dontabactouny, L. Vincetti, J.-M. Blondy, F. Gérôme, and F. Benabid, “Ultra low-loss hypocycloid-core Kagome hollow-core photonic crystal fiber for green spectral-range applications,” Opt. Lett. 39, 6245–6248 (2014).
[Crossref]

B. Debord, M. Alharbi, L. Vincetti, A. Husakou, C. Fourcade-Dutin, C. Hoenninger, E. Mottay, F. Gérôme, and F. Benabid, “Multi-meter fiber-delivery and pulse self-compression of milli-Joule femtosecond laser and fiber-aided laser-micromachining,” Opt. Express 22, 10735–10746 (2014).
[Crossref]

Y. Wang, M. Alharbi, T. D. Bradley, C. Fourcade-Dutina, B. Deborda, B. Beaudoua, F. Gérôme, and F. Benabid, “Hollow-core photonic crystal fibre for high power laser beam delivery,” High Power Laser Sci. Eng. 1, 17–28 (2013).
[Crossref]

M. Alharbi, T. Bradley, B. Debord, C. Fourcade-Dutin, D. Ghosh, L. Vincetti, F. Gérôme, and F. Benabid, “Hypocycloid-shaped hollow-core photonic crystal fiber Part II: cladding effect on confinement and bend loss,” Opt. Express 21, 28609–28616 (2013).
[Crossref]

Y. Y. Wang, X. Peng, M. Alharbi, C. F. Dutin, T. D. Bradley, F. Gérôme, M. Mielke, T. Booth, and F. Benabid, “Design and fabrication of hollow-core photonic crystal fibers for high-power ultrashort pulse transportation and pulse compression,” Opt. Lett. 37, 3111–3113 (2012).
[Crossref]

B. Beaudou, F. Gérôme, Y. Y. Wang, M. Alharbi, T. D. Bradley, G. Humbert, J.-L. Auguste, J.-M. Blondy, and F. Benabid, “Millijoule laser pulse delivery for spark ignition through kagome hollow-core fiber,” Opt. Lett. 37, 1430–1432 (2012).
[Crossref]

F. Gérôme, R. Jamier, J.-L. Auguste, G. Humbert, and J.-M. Blondy, “Simplified hollow-core photonic crystal fiber,” Opt. Lett. 35, 1157–1159 (2010).
[Crossref]

R. Amezcua-Correa, F. Gérôme, S. G. Leon-Saval, N. G. R. Broderick, T. A. Birks, and J. C. Knight, “Control of surface modes in low loss hollow-core photonic bandgap fibers,” Opt Express 16, 1142–1149 (2008).
[Crossref]

B. Debord, A. Amsanpally, M. Chafer, A. Baz, L. Vincetti, J. Blondy, F. Gérôme, and F. Benabid, “7.7  dB/km losses in inhibited coupling hollow-core photonic crystal fibers,” in Conference on Lasers and Electro-Optics (CLEO), OSA Technical Digest (online) (Optical Society of America, 2016), paper JTh4C.8.

Gérôom, F.

Ghosh, D.

Ghosh, S.

S. Ghosh, J. E. Sharping, D. G. Ouzounov, and A. L. Gaeta, “Resonant optical interactions with molecules confined in photonic band-gap fibers,” Phys. Rev. Lett. 94, 093902 (2005).
[Crossref]

Gibson, D.

Giree, A.

Gladyshev, A. V.

A. V. Gladyshev, A. F. Kosolapov, M. M. Khudyakov, Y. P. Yatsenko, A. N. Kolyadin, A. A. Krylov, A. D. Pryamikov, A. S. Biriukov, M. E. Likhachev, I. A. Bufetov, and E. M. Dianov, “4.4  μm Raman laser based on hollow-core silica fibre,” Quantum Electron. 47, 491–494 (2017).
[Crossref]

A. A. Krylov, A. K. Senatorov, A. D. Pryamikov, A. F. Kosolapov, A. N. Kolyadin, G. K. Alagashev, A. V. Gladyshev, and I. A. Bufetov, “1.56  μm sub-microjoule femtosecond pulse delivery through low-loss microstructured revolver hollow-core fiber,” Laser Phys. Lett. 14, 035104 (2017).
[Crossref]

Y. P. Yatsenko, E. N. Pleteneva, A. G. Okhrimchuk, A. V. Gladyshev, A. F. Kosolapov, A. N. Kolyadin, and I. A. Bufetov, “Multiband supercontinuum generation in an air-core revolver fibre,” Quantum Electron. 47, 553–560 (2017).
[Crossref]

A. N. Kolyadin, G. K. Alagashev, A. D. Pryamikov, A. V. Gladyshev, A. F. Kosolapov, A. S. Biriukov, and I. A. Bufetov, “Negative curvature hollow core fibers for Raman lasing in the mid IR spectral range,” J. Phys. 737, 012009 (2016).

Y. P. Yatsenko, A. A. Krylov, A. D. Pryamikov, A. F. Kosolapov, A. N. Kolyadin, A. V. Gladyshev, and I. A. Bufetov, “Propagation of femtosecond pulses in a hollow-core revolver fibre,” Quantum Electron. 46, 617–626 (2016).
[Crossref]

A. V. Gladyshev, A. N. Kolyadin, A. F. Kosolapov, Y. P. Yatsenko, A. D. Pryamikov, A. S. Biriukov, I. A. Bufetov, and E. M. Dianov, “Low-threshold 1.9  μm Raman generation in microstructured hydrogen-filled hollow-core revolver fibre with nested capillaries,” Laser Phys. 27, 025101 (2016).
[Crossref]

A. V. Gladyshev, A. N. Kolyadin, A. F. Kosolapov, Y. P. Yatsenko, A. D. Pryamikov, A. S. Biryukov, I. A. Bufetov, and E. M. Dianov, “Efficient 1.9-μm Raman generation in a hydrogen-filled hollow-core fibre,” Quantum Electron. 45, 807–812 (2015).
[Crossref]

Gong, C.

Gordeev, S. N.

H. Garvie-Cook, J. M. Stone, F. Yu, R. H. Guy, and S. N. Gordeev, “Femtosecond pulsed laser ablation to enhance drug delivery across the skin,” J. Biophotonics 9, 144–154 (2016).
[Crossref]

Gouveia, M. A.

Gray, D.

T. D. Bradley, N. V. Wheeler, G. T. Jasion, D. Gray, J. Hayes, M. A. Gouveia, S. R. Sandoghchi, Y. Chen, F. Poletti, D. Richardson, and M. Petrovich, “Modal content in hypocycloid Kagomé hollow core photonic crystal fibers,” Opt. Express 24, 15798–15812 (2016).
[Crossref]

V. Sleiffer, Y. Jung, N. Baddela, J. Surof, M. Kuschnerov, V. Veljanovski, J. Hayes, N. Wheeler, E. Numkam Fokoua, J. Wooler, D. Gray, N. Wong, F. Parmigiani, S. Alam, M. Petrovich, F. Poletti, D. Richardson, and H. de Waardt, “High capacity mode-division multiplexed optical transmission in a novel 37-cell hollow-core photonic bandgap fiber,” J. Lightwave Technol. 32, 854–863 (2014).
[Crossref]

T. Bradley, N. Wheeler, M. Petrovich, G. Jasion, D. Gray, J. Hayes, S. Sandoghchi, Y. Chen, F. Poletti, D. J. Richardson, and M. B. Alonso, “S2 measurement of higher order mode content in low loss hypocycloid kagomé hollow core photonic crystal fiber,” in Conference on Lasers and Electro-Optics (CLEO), OSA Technical Digest (Optical Society of America, 2016), paper STu4P.8.

Gray, D. R.

F. Poletti, N. V. Wheeler, M. N. Petrovich, N. K. Baddela, E. Numkam Fokoua, J. R. Hayes, D. R. Gray, Z. Li, R. Slavik, and D. J. Richardson, “Towards high-capacity fibre-optic communications at the speed of light in vacuum,” Nat. Photonics 7, 279–284 (2013).
[Crossref]

Y. Jung, V. A. J. M. Sleiffer, N. K. Baddela, M. N. Petrovich, J. R. Hayes, N. V. Wheeler, D. R. Gray, E. Numkam Fokoua, J. P. Wooler, H. H.-L. Wong, F. Parmigiani, S.-U. Alam, J. Surof, M. Kuschnerov, V. Veljanovski, H. De Waardt, F. Poletti, and D. J. Richardson, “First demonstration of a broadband 37-cell hollow core photonic bandgap fiber and its application to high capacity mode division multiplexing,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference, OSA Technical Digest (online) (Optical Society of America, 2013), paper PDP5A.3.

Gu, B.

Y. Chen, Z. Wang, B. Gu, F. Yu, and Q. Lu, “Achieving a 1.5  μm fiber gas Raman laser source with about 400  kW of peak power and a 6.3  GHz linewidth,” Opt. Lett. 41, 5118–5121 (2016).
[Crossref]

B. Gu, Y. Chen, and Z. Wang, “Characteristics of 1.9-μm laser emission from hydrogen-filled hollow-core fiber by vibrational stimulated Raman scattering,” Opt. Eng. 55, 126114 (2016).
[Crossref]

Gu, S.

Guenneau, S.

F. Zolla, G. Renversez, A. Nicolet, B. Kuhlmey, S. Guenneau, D. Felbacq, A. Argyros, and S. Leon-Saval, Foundations of Photonic Crystal Fibres, 2nd ed. (Imperial College, 2012).

Guichard, F.

Gumennik, A.

Gunaratne, K.

S. Amini-Nik, D. Kraemer, M. L. Cowan, K. Gunaratne, P. Nadesan, B. A. Alman, and R. J. D. Miller, “Ultrafast mid-IR laser scalpel: protein signals of the fundamental limits to minimally invasive surgery,” PLoS One 5, e13053 (2010).
[Crossref]

Günendi, M. C.

Guo, T.

Guy, R. H.

H. Garvie-Cook, J. M. Stone, F. Yu, R. H. Guy, and S. N. Gordeev, “Femtosecond pulsed laser ablation to enhance drug delivery across the skin,” J. Biophotonics 9, 144–154 (2016).
[Crossref]

Haarlammert, N.

Habib, M. S.

M. S. Habib, C. Markos, O. Bang, and M. Bache, “Soliton-plasma nonlinear dynamics in mid-IR gas-filled hollow-core fibers,” Opt. Lett. 42, 2232–2235 (2017).
[Crossref]

S. Atakaramians, A. Stefani, H. Li, M. S. Habib, J. G. Hayashi, A. Tuniz, X. Tang, J. Anthony, R. Lwin, A. Argyros, S. C. Fleming, and B. T. Kuhlmey, “Fiber-drawn metamaterial for THz waveguiding and imaging,” J. Infrared Millimeter Terahertz Waves 38, 1162–1178 (2017).
[Crossref]

M. S. Habib, O. Bang, and M. Bache, “Low-loss hollow-core anti-resonant fibers with semi-circular nested tubes,” IEEE J. Sel. Top. Quantum Electron. 22, 4402106 (2016).
[Crossref]

M. S. Habib, O. Bang, and M. Bache, “Low-loss single-mode hollow-core fiber with anisotropic anti-resonant elements,” Opt. Express 24, 8429–8436 (2016).
[Crossref]

M. S. Habib, O. Bang, and M. Bache, “Low-loss hollow-core silica fibers with adjacent nested anti-resonant tubes,” Opt. Express 23, 17394–17406 (2015).
[Crossref]

Hager, G.

J. E. McCord, H. C. Miller, G. Hager, A. I. Lampson, and P. G. Crowell, “Experimental investigation of an optically pumped mid-infrared carbon monoxide laser,” IEEE J. Quantum Electron. 35, 1602–1612 (1999).
[Crossref]

Hand, D. P.

R. M. Carter, W. N. MacPherson, P. Jaworski, F. Yu, R. Beck, J. D. Shephard, and D. P. Hand, “Dispersion measurement of microstructured negative curvature hollow core fiber,” Opt. Eng. 55, 116106 (2016).
[Crossref]

P. Jaworski, F. Yu, R. M. Carter, J. C. Knight, J. D. Shephard, and D. P. Hand, “High energy green nanosecond and picosecond pulse delivery through a negative curvature fiber for precision micro-machining,” Opt. Express 23, 8498–8506 (2015).
[Crossref]

J. D. Shephard, A. Urich, R. M. Carter, P. Jaworski, R. R. J. Maier, W. Belardi, F. Yu, W. J. Wadsworth, J. C. Knight, and D. P. Hand, “Silica hollow core microstructured fibers for beam delivery in industrial and medical applications,” Front. Phys. 3, 24 (2015).
[Crossref]

A. Urich, R. R. J. Maier, F. Yu, J. C. Knight, D. P. Hand, and J. D. Shephard, “Silica hollow core microstructured fibres for mid-infrared surgical applications,” J. Non-Cryst. Solids 377, 236–239 (2013).
[Crossref]

P. Jaworski, F. Yu, R. R. J. Maier, W. J. Wadsworth, J. C. Knight, J. D. Shephard, and D. P. Hand, “Picosecond and nanosecond pulse delivery through a hollow-core negative curvature fiber for micro-machining applications,” Opt. Express 21, 22742–22753 (2013).
[Crossref]

A. Urich, R. R. J. Maier, F. Yu, J. C. Knight, D. P. Hand, and J. D. Shephard, “Flexible delivery of Er:YAG radiation at 2.94  μm with negative curvature silica glass fibers: a new solution for minimally invasive surgical procedures,” Biomed. Opt. Express 4, 193–205 (2013).
[Crossref]

N. Gayraud, U. W. Kornaszewski, J. M. Stone, J. C. Knight, D. T. Reid, D. P. Hand, and W. N. MacPherson, “Mid-infrared gas sensing using a photonic bandgap fiber,” Appl. Opt. 47, 1269–1277 (2008).
[Crossref]

L. W. Kornaszewski, N. Gayraud, J. M. Stone, W. N. Macpherson, A. K. George, J. C. Knight, D. P. Hand, and D. T. Reid, “Mid-infrared methane detection in a photonic bandgap fiber using a broadband optical parametric oscillator,” Opt. Express 15, 11219–11224 (2007).
[Crossref]

J. D. Shephard, J. D. C. Jones, D. P. Hand, G. Bouwmans, J. C. Knight, P. St.J. Russell, and B. J. Mangan, “High energy nanosecond laser pulses delivered single-mode through hollow-core PBG fibers,” Opt. Express 12, 717–723 (2004).
[Crossref]

Hanlon, E. B.

E. B. Hanlon, R. Manoharan, T. W. Koo, K. E. Shafer, J. T. Motz, M. Fitzmaurice, J. R. Kramer, I. Itzkan, R. R. Dasari, and M. S. Feld, “Prospects for in vivo Raman spectroscopy,” Phys. Med. Biol. 45, R1–R59 (2000).
[Crossref]

Hanna, M.

Hansen, T. P.

Harris, J. H.

M. Heiblum and J. H. Harris, “Analysis of curved optical waveguides by conformal transformation,” IEEE J. Quantum Electron. 11, 75–83 (1975).
[Crossref]

Hartung, A.

Harvey, C. M.

C. M. Harvey, F. Yu, J. C. Knight, W. J. Wadsworth, and P. J. Almeida, “Reduced repetition rate Yb3+ mode-locked picosecond fiber laser with hollow core fiber,” IEEE Photon. Technol. Lett. 28, 669–672 (2016).
[Crossref]

Hasan, M. I.

Hassan, M. R. A.

Hautakorpi, M.

Hayashi, J. G.

S. Atakaramians, A. Stefani, H. Li, M. S. Habib, J. G. Hayashi, A. Tuniz, X. Tang, J. Anthony, R. Lwin, A. Argyros, S. C. Fleming, and B. T. Kuhlmey, “Fiber-drawn metamaterial for THz waveguiding and imaging,” J. Infrared Millimeter Terahertz Waves 38, 1162–1178 (2017).
[Crossref]

Hayes, J.

T. D. Bradley, N. V. Wheeler, G. T. Jasion, D. Gray, J. Hayes, M. A. Gouveia, S. R. Sandoghchi, Y. Chen, F. Poletti, D. Richardson, and M. Petrovich, “Modal content in hypocycloid Kagomé hollow core photonic crystal fibers,” Opt. Express 24, 15798–15812 (2016).
[Crossref]

V. Sleiffer, Y. Jung, N. Baddela, J. Surof, M. Kuschnerov, V. Veljanovski, J. Hayes, N. Wheeler, E. Numkam Fokoua, J. Wooler, D. Gray, N. Wong, F. Parmigiani, S. Alam, M. Petrovich, F. Poletti, D. Richardson, and H. de Waardt, “High capacity mode-division multiplexed optical transmission in a novel 37-cell hollow-core photonic bandgap fiber,” J. Lightwave Technol. 32, 854–863 (2014).
[Crossref]

T. Bradley, N. Wheeler, M. Petrovich, G. Jasion, D. Gray, J. Hayes, S. Sandoghchi, Y. Chen, F. Poletti, D. J. Richardson, and M. B. Alonso, “S2 measurement of higher order mode content in low loss hypocycloid kagomé hollow core photonic crystal fiber,” in Conference on Lasers and Electro-Optics (CLEO), OSA Technical Digest (Optical Society of America, 2016), paper STu4P.8.

Hayes, J. R.

N. V. Wheeler, T. D. Bradley, J. R. Hayes, M. A. Gouveia, S. Liang, Y. Chen, S. R. Sandoghchi, S. M. Abokhamis Mousavi, F. Poletti, M. N. Petrovich, and D. J. Richardson, “Low-loss Kagome hollow-core fibers operating from the near- to the mid-IR,” Opt. Lett. 42, 2571–2574 (2017).
[Crossref]

J. R. Hayes, S. R. Sandoghchi, T. D. Bradley, Z. Liu, R. Slavik, M. A. Gouveia, N. V. Wheeler, G. Jasion, Y. Chen, E. N. Fokoua, M. N. Petrovich, D. J. Richardson, and F. Poletti, “Antiresonant hollow core fiber with an octave spanning bandwidth for short haul data communications,” J. Lightwave Technol. 35, 437–442 (2017).
[Crossref]

J. R. Hayes, F. Poletti, M. S. Abokhamis, N. V. Wheeler, N. K. Baddela, and D. J. Richardson, “Anti-resonant hexagram hollow core fibers,” Opt. Express 23, 1289–1299 (2015).
[Crossref]

E. N. Fokoua, S. R. Sandoghchi, Y. Chen, G. T. Jasion, N. V. Wheeler, N. K. Baddela, J. R. Hayes, M. N. Petrovich, D. J. Richardson, and F. Poletti, “Accurate modelling of fabricated hollow-core photonic bandgap fibers,” Opt. Express 23, 23117–23132 (2015).
[Crossref]

N. V. Wheeler, A. M. Heidt, N. K. Baddela, E. N. Fokoua, J. R. Hayes, S. R. Sandoghchi, F. Poletti, M. N. Petrovich, and D. J. Richardson, “Low-loss and low-bend-sensitivity mid-infrared guidance in a hollow-core-photonic-bandgap fiber,” Opt. Lett. 39, 295–298 (2014).
[Crossref]

F. Poletti, N. V. Wheeler, M. N. Petrovich, N. K. Baddela, E. Numkam Fokoua, J. R. Hayes, D. R. Gray, Z. Li, R. Slavik, and D. J. Richardson, “Towards high-capacity fibre-optic communications at the speed of light in vacuum,” Nat. Photonics 7, 279–284 (2013).
[Crossref]

V. A. Sleiffer, Y. Jung, P. Leoni, M. Kuschnerov, N. V. Wheeler, N. K. Baddela, R. G. H. van Uden, C. M. Okonkwo, J. R. Hayes, J. Wooler, E. Numkam, R. Slavik, F. Poletti, M. N. Petrovich, V. Veljanovski, S. U. Alam, D. J. Richardson, and H. de Waardt, “30.7  Tb/s (96 × 320  Gb/s) DP-32QAM transmission over 19-cell photonic band gap fiber,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference, OSA Technical Digest (online) (Optical Society of America, 2013), paper OW1I.5.

Y. Jung, V. A. J. M. Sleiffer, N. K. Baddela, M. N. Petrovich, J. R. Hayes, N. V. Wheeler, D. R. Gray, E. Numkam Fokoua, J. P. Wooler, H. H.-L. Wong, F. Parmigiani, S.-U. Alam, J. Surof, M. Kuschnerov, V. Veljanovski, H. De Waardt, F. Poletti, and D. J. Richardson, “First demonstration of a broadband 37-cell hollow core photonic bandgap fiber and its application to high capacity mode division multiplexing,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference, OSA Technical Digest (online) (Optical Society of America, 2013), paper PDP5A.3.

F. Poletti, J. R. Hayes, and D. Richardson, “Optimising the performances of hollow antiresonant fibres,” in 37th European Conference and Exposition on Optical Communications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper Mo.2.LeCervin.2.

J. R. Hayes, S. R. Sandoghchi, T. D. Bradley, Z. Liu, R. Slavik, M. A. Gouveia, N. V. Wheeler, G. T. Jasion, Y. Chen, E. Numkam-Fokoua, M. N. Petrovich, D. J. Richardson, and F. Poletti, “Antiresonant hollow core fiber with octave spanning bandwidth for short haul data communications,” in Optical Fiber Communication Conference Postdeadline Papers, OSA Technical Digest (online) (Optical Society of America, 2016), paper Th5A.3.

He, S.

Headley, C.

Heckl, O. H.

Heiblum, M.

M. Heiblum and J. H. Harris, “Analysis of curved optical waveguides by conformal transformation,” IEEE J. Quantum Electron. 11, 75–83 (1975).
[Crossref]

Heidt, A. M.

Ho, D.

Hoenninger, C.

Hölzer, P.

P. St.J. Russell, P. Hölzer, W. Chang, A. Abdolvand, and J. C. Travers, “Hollow-core photonic crystal fibres for gas-based nonlinear optics,” Nat. Photonics 8, 278–286 (2014).
[Crossref]

P. Hölzer, W. Chang, J. C. Travers, A. Nazarkin, J. Nold, N. Y. Joly, M. Saleh, F. Biancalana, and P. St.J. Russell, “Femtosecond nonlinear fiber optics in the ionization regime,” Phys. Rev. Lett. 107, 203901 (2011).
[Crossref]

Hong, C.

Hönninger, C.

Horak, P.

J. H. V. Price, T. M. Monro, H. Ebendorff-Heidepriem, F. Poletti, P. Horak, V. Finazzi, J. Y. Y. Leong, P. Petropoulos, J. C. Flanagan, G. Brambilla, X. Feng, and D. J. Richardson, “Mid-IR supercontinuum generation from nonsilica microstructured optical fibers,” IEEE J. Sel. Top. Quantum Electron. 13, 738–749 (2007).
[Crossref]

Hu, J.

C. Wei, J. Hu, and C. R. Menyuk, “Comparison of loss in silica and chalcogenide negative curvature fibers as the wavelength varies,” Front. Phys. 4, 30 (2016).
[Crossref]

C. Wei, C. R. Menyuk, and J. Hu, “Impact of cladding tubes in chalcogenide negative curvature fibers,” IEEE Photon. J. 8, 2200509 (2016).

C. Wei, C. Menyuk, and J. Hu, “Bending-induced mode non-degeneracy and coupling in chalcogenide negative curvature fibers,” Opt. Express 24, 12228–12239 (2016).
[Crossref]

C. Wei, R. A. Kuis, F. Chenard, C. R. Menyuk, and J. Hu, “Higher-order mode suppression in chalcogenide negative curvature fibers,” Opt. Express 23, 15824–15832 (2015).
[Crossref]

J. Hu, C. R. Menyuk, L. B. Shaw, J. S. Sanghera, and I. D. Aggarwal, “Computational study of a 3–5  μm source that is created by using supercontinuum generation in As2S3 chalcogenide fibers with a pump at 2  μm,” Opt. Lett. 35, 2907–2909 (2010).
[Crossref]

J. Hu and C. R. Menyuk, “Optimization of the operational bandwidth in air-core photonic bandgap fibers for IR transmission,” Opt. Commun. 282, 18–21 (2009).
[Crossref]

J. Hu and C. R. Menyuk, “Understanding leaky modes: slab waveguide revisited,” Adv. Opt. Photon. 1, 58–106 (2009).
[Crossref]

J. Hu and C. R. Menyuk, “Leakage loss and bandgap analysis in air-core photonic bandgap fiber for nonsilica glasses,” Opt. Express 15, 339–349 (2007).
[Crossref]

C. Wei, C. Menyuk, and J. Hu, “Higher-order mode suppression in chalcogenide negative curvature fibers with gaps between cladding tubes,” in Advanced Photonics 2016 (IPR, NOMA, Sensors, Networks, SPPCom, SOF), OSA Technical Digest (online) (Optical Society of America, 2016), paper JTu4A.32.

C. Wei, R. Kuis, F. Chenard, and J. Hu, “Chalcogenide negative curvature hollow-core photonic crystal fibers with low loss and low power ratio in the glass,” in Conference on Laser and Electro-Optics (CLEO), OSA Technical Digest (online) (Optical Society of America, 2014), paper SM1N.5.

C. Wei, O. Alvarez, F. Chenard, and J. Hu, “Empirical glass thickness for chalcogenide negative curvature fibers,” in Summer Topicals Meeting Series (IEEE Photonics Society, 2015), paper TuE3.3.

Hu, M.

F. Meng, B. Liu, Y. Li, C. Wang, and M. Hu, “Low loss hollow-core antiresonant fiber with nested elliptical cladding elements,” IEEE Photon. J. 9, 7100211 (2017).

Huang, X.

X. Huang, S. Yoo, and K. Yong, “Function of second cladding layer in hollow core tube lattice fibers,” Sci. Rep. 7, 1618 (2017).
[Crossref]

X. Huang, W. Qi, D. Ho, K. T. Yong, F. Luan, and S. Yoo, “Hollow core anti-resonant fiber with split cladding,” Opt. Express 24, 7670–7678 (2016).
[Crossref]

Hugonnot, E.

Humbert, G.

Husakou, A.

Hwang, Y. J.

Ichinose, S.

K. M. Sasaki, A. Aoki, S. Ichinose, T. Yoshino, S. Yamada, and I. Ishikawa, “Scanning electron microscopy and Fourier transformed infrared spectroscopy analysis of bone removal using Er:YAG and CO2 lasers,” J. Periodontol. 73, 643–652 (2002).
[Crossref]

Iga, K.

Y. Kokubun, T. Baba, T. Sakaki, and K. Iga, “Low-loss antiresonant reflecting optical waveguide on Si substrate in visible-wavelength region,” Electron. Lett. 22, 892–893 (1986).
[Crossref]

Ishikawa, I.

K. M. Sasaki, A. Aoki, S. Ichinose, T. Yoshino, S. Yamada, and I. Ishikawa, “Scanning electron microscopy and Fourier transformed infrared spectroscopy analysis of bone removal using Er:YAG and CO2 lasers,” J. Periodontol. 73, 643–652 (2002).
[Crossref]

Itzkan, I.

E. B. Hanlon, R. Manoharan, T. W. Koo, K. E. Shafer, J. T. Motz, M. Fitzmaurice, J. R. Kramer, I. Itzkan, R. R. Dasari, and M. S. Feld, “Prospects for in vivo Raman spectroscopy,” Phys. Med. Biol. 45, R1–R59 (2000).
[Crossref]

Jakobsen, C.

Jamier, R.

Jansen, F.

Jasinevicius, R. G.

M. R. B. Andreeta, L. S. Cunha, L. F. Vales, L. C. Caraschi, and R. G. Jasinevicius, “Bidimensional codes recorded on an oxide glass surface using a continuous wave CO2 laser,” J. Micromech. Microeng. 21, 025004 (2011).
[Crossref]

Jasion, G.

J. R. Hayes, S. R. Sandoghchi, T. D. Bradley, Z. Liu, R. Slavik, M. A. Gouveia, N. V. Wheeler, G. Jasion, Y. Chen, E. N. Fokoua, M. N. Petrovich, D. J. Richardson, and F. Poletti, “Antiresonant hollow core fiber with an octave spanning bandwidth for short haul data communications,” J. Lightwave Technol. 35, 437–442 (2017).
[Crossref]

T. Bradley, N. Wheeler, M. Petrovich, G. Jasion, D. Gray, J. Hayes, S. Sandoghchi, Y. Chen, F. Poletti, D. J. Richardson, and M. B. Alonso, “S2 measurement of higher order mode content in low loss hypocycloid kagomé hollow core photonic crystal fiber,” in Conference on Lasers and Electro-Optics (CLEO), OSA Technical Digest (Optical Society of America, 2016), paper STu4P.8.

Jasion, G. T.

T. D. Bradley, N. V. Wheeler, G. T. Jasion, D. Gray, J. Hayes, M. A. Gouveia, S. R. Sandoghchi, Y. Chen, F. Poletti, D. Richardson, and M. Petrovich, “Modal content in hypocycloid Kagomé hollow core photonic crystal fibers,” Opt. Express 24, 15798–15812 (2016).
[Crossref]

E. N. Fokoua, S. R. Sandoghchi, Y. Chen, G. T. Jasion, N. V. Wheeler, N. K. Baddela, J. R. Hayes, M. N. Petrovich, D. J. Richardson, and F. Poletti, “Accurate modelling of fabricated hollow-core photonic bandgap fibers,” Opt. Express 23, 23117–23132 (2015).
[Crossref]

J. R. Hayes, S. R. Sandoghchi, T. D. Bradley, Z. Liu, R. Slavik, M. A. Gouveia, N. V. Wheeler, G. T. Jasion, Y. Chen, E. Numkam-Fokoua, M. N. Petrovich, D. J. Richardson, and F. Poletti, “Antiresonant hollow core fiber with octave spanning bandwidth for short haul data communications,” in Optical Fiber Communication Conference Postdeadline Papers, OSA Technical Digest (online) (Optical Society of America, 2016), paper Th5A.3.

Jauregui, C.

Jaworski, P.

R. M. Carter, W. N. MacPherson, P. Jaworski, F. Yu, R. Beck, J. D. Shephard, and D. P. Hand, “Dispersion measurement of microstructured negative curvature hollow core fiber,” Opt. Eng. 55, 116106 (2016).
[Crossref]

P. Jaworski, F. Yu, R. M. Carter, J. C. Knight, J. D. Shephard, and D. P. Hand, “High energy green nanosecond and picosecond pulse delivery through a negative curvature fiber for precision micro-machining,” Opt. Express 23, 8498–8506 (2015).
[Crossref]

J. D. Shephard, A. Urich, R. M. Carter, P. Jaworski, R. R. J. Maier, W. Belardi, F. Yu, W. J. Wadsworth, J. C. Knight, and D. P. Hand, “Silica hollow core microstructured fibers for beam delivery in industrial and medical applications,” Front. Phys. 3, 24 (2015).
[Crossref]

P. Jaworski, F. Yu, R. R. J. Maier, W. J. Wadsworth, J. C. Knight, J. D. Shephard, and D. P. Hand, “Picosecond and nanosecond pulse delivery through a hollow-core negative curvature fiber for micro-machining applications,” Opt. Express 21, 22742–22753 (2013).
[Crossref]

Jian, S.

Jiang, X.

A. M. Cubillas, X. Jiang, T. G. Euser, N. Taccardi, B. J. M. Etzold, P. Wasserscheid, and P. St.J. Russell, “Photochemistry in a soft-glass single-ring hollow-core photonic crystal fiber,” Analyst 142, 925–929 (2017).
[Crossref]

X. Jiang, N. Y. Joly, M. A. Finger, F. Babic, G. K. L. Wong, J. C. Travers, and P. St.J. Russell, “Deep-ultraviolet to mid-infrared supercontinuum generated in solid-core ZBLAN photonic crystal fibre,” Nat. Photonics 9, 133–139 (2015).
[Crossref]

Jin, J.

J. Jin, The Finite Element Method in Electromagnetics, 2nd ed. (Wiley, 2002).

Joannopoulos, J. D.

John, S.

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987).
[Crossref]

Johnson, S. G.

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light (Princeton University, 2011).

Joly, N. Y.

Y. Chen, M. F. Saleh, N. Y. Joly, and F. Biancalana, “Low-loss single-mode negatively curved square-core hollow fibers,” Opt. Lett. 42, 1285–1288 (2017).
[Crossref]

Y. Chen, M. F. Saleh, N. Y. Joly, and F. Biancalana, “Guiding 2.94  μm using low-loss microstructured antiresonant triangular-core fibers,” J. Appl. Phys. 119, 143104 (2016).
[Crossref]

X. Jiang, N. Y. Joly, M. A. Finger, F. Babic, G. K. L. Wong, J. C. Travers, and P. St.J. Russell, “Deep-ultraviolet to mid-infrared supercontinuum generated in solid-core ZBLAN photonic crystal fibre,” Nat. Photonics 9, 133–139 (2015).
[Crossref]

J. C. Travers, W. Chang, J. Nold, N. Y. Joly, and P. St.J. Russell, “Ultrafast nonlinear optics in gas-filled hollow-core photonic crystal fibers,” J. Opt. Soc. Am. B 28, A11–A26 (2011).
[Crossref]

P. Hölzer, W. Chang, J. C. Travers, A. Nazarkin, J. Nold, N. Y. Joly, M. Saleh, F. Biancalana, and P. St.J. Russell, “Femtosecond nonlinear fiber optics in the ionization regime,” Phys. Rev. Lett. 107, 203901 (2011).
[Crossref]

Jones, A. C.

A. M. Cubillas, S. Unterkofler, T. G. Euser, B. J. Etzold, A. C. Jones, P. J. Sadler, P. Wasserscheid, and P. St.J. Russell, “Photonic crystal fibres for chemical sensing and photochemistry,” Chem. Soc. Rev. 42, 8629–8648 (2013).
[Crossref]

Jones, A. M.

Jones, J. D. C.

Jouin, J.

Jung, Y.

V. Sleiffer, Y. Jung, N. Baddela, J. Surof, M. Kuschnerov, V. Veljanovski, J. Hayes, N. Wheeler, E. Numkam Fokoua, J. Wooler, D. Gray, N. Wong, F. Parmigiani, S. Alam, M. Petrovich, F. Poletti, D. Richardson, and H. de Waardt, “High capacity mode-division multiplexed optical transmission in a novel 37-cell hollow-core photonic bandgap fiber,” J. Lightwave Technol. 32, 854–863 (2014).
[Crossref]

Y. Jung, V. A. J. M. Sleiffer, N. K. Baddela, M. N. Petrovich, J. R. Hayes, N. V. Wheeler, D. R. Gray, E. Numkam Fokoua, J. P. Wooler, H. H.-L. Wong, F. Parmigiani, S.-U. Alam, J. Surof, M. Kuschnerov, V. Veljanovski, H. De Waardt, F. Poletti, and D. J. Richardson, “First demonstration of a broadband 37-cell hollow core photonic bandgap fiber and its application to high capacity mode division multiplexing,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference, OSA Technical Digest (online) (Optical Society of America, 2013), paper PDP5A.3.

V. A. Sleiffer, Y. Jung, P. Leoni, M. Kuschnerov, N. V. Wheeler, N. K. Baddela, R. G. H. van Uden, C. M. Okonkwo, J. R. Hayes, J. Wooler, E. Numkam, R. Slavik, F. Poletti, M. N. Petrovich, V. Veljanovski, S. U. Alam, D. J. Richardson, and H. de Waardt, “30.7  Tb/s (96 × 320  Gb/s) DP-32QAM transmission over 19-cell photonic band gap fiber,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference, OSA Technical Digest (online) (Optical Society of America, 2013), paper OW1I.5.

Kadel, R.

Kaiser, P. V.

P. V. Kaiser and H. W. Astle, “Low-loss single-material fibers made from pure fused silica,” Bell Syst. Tech. J. 53, 1021–1039 (1974).
[Crossref]

Kaivola, M.

Katori, H.

S. Okaba, T. Takano, F. Benabid, T. Bradley, L. Vincetti, Z. Maizelis, V. Yampol’skii, F. Nori, and H. Katori, “Lamb-Dicke spectroscopy of atoms in a hollow-core photonic crystal fibre,” Nat. Commun. 5, 4096 (2014).
[Crossref]

Keller, U.

Khashan, M. A.

M. A. Khashan and A. Y. Nassif, “Dispersion of the optical constants of quartz and polymethyl methacrylate glasses in a wide spectral range: 0.2–3  μm,” Opt. Commun. 188, 129–139 (2001).
[Crossref]

Khudyakov, M. M.

A. V. Gladyshev, A. F. Kosolapov, M. M. Khudyakov, Y. P. Yatsenko, A. N. Kolyadin, A. A. Krylov, A. D. Pryamikov, A. S. Biriukov, M. E. Likhachev, I. A. Bufetov, and E. M. Dianov, “4.4  μm Raman laser based on hollow-core silica fibre,” Quantum Electron. 47, 491–494 (2017).
[Crossref]

Knight, J.

B. Sherlock, F. Yu, J. Stone, S. Warren, C. Paterson, M. A. A. Neil, P. M. W. French, J. Knight, and C. Dunsby, “Tunable fibre-coupled multiphoton microscopy with a negative curvature fibre,” J. Biophotonics 9, 715–720 (2016).
[Crossref]

G. Pearce, J. Pottage, D. Bird, P. Roberts, J. Knight, and P. St.J. Russell, “Hollow-core PCF for guidance in the mid to far infra-red,” Opt. Express 13, 6937–6946 (2005).
[Crossref]

M. Xu, F. Yu, and J. Knight, “Low-loss anti-resonant hollow-core fibers with single-mode performance,” in Advanced Photonics (IPR, NOMA, Sensors, Networks, SPPCom, SOF), OSA Technical Digest (online) (Optical Society of America, 2016), paper SoM3F.5.

Knight, J. C.

F. Yu and J. C. Knight, “Negative curvature hollow-core optical fiber,” IEEE J. Sel. Top. Quantum Electron. 22, 4400610 (2016).
[Crossref]

C. M. Harvey, F. Yu, J. C. Knight, W. J. Wadsworth, and P. J. Almeida, “Reduced repetition rate Yb3+ mode-locked picosecond fiber laser with hollow core fiber,” IEEE Photon. Technol. Lett. 28, 669–672 (2016).
[Crossref]

M. R. A. Hassan, F. Yu, W. J. Wadsworth, and J. C. Knight, “Cavity-based mid-IR fiber gas laser pumped by a diode laser,” Optica 3, 218–221 (2016).
[Crossref]

F. Yu, M. Xu, and J. C. Knight, “Experimental study of low-loss single-mode performance in anti-resonant hollow-core fibers,” Opt. Express 24, 12969–12975 (2016).
[Crossref]

P. Jaworski, F. Yu, R. M. Carter, J. C. Knight, J. D. Shephard, and D. P. Hand, “High energy green nanosecond and picosecond pulse delivery through a negative curvature fiber for precision micro-machining,” Opt. Express 23, 8498–8506 (2015).
[Crossref]

J. D. Shephard, A. Urich, R. M. Carter, P. Jaworski, R. R. J. Maier, W. Belardi, F. Yu, W. J. Wadsworth, J. C. Knight, and D. P. Hand, “Silica hollow core microstructured fibers for beam delivery in industrial and medical applications,” Front. Phys. 3, 24 (2015).
[Crossref]

Z. Wang, F. Yu, W. J. Wadsworth, and J. C. Knight, “Efficient 1.9  μm emission in H2-filled hollow core fiber by pure stimulated vibrational Raman scattering,” Laser Phys. Lett. 11, 105807 (2014).
[Crossref]

Z. Wang, W. Belardi, F. Yu, W. J. Wadsworth, and J. C. Knight, “Efficient diode-pumped mid-infrared emission from acetylene-filled hollow-core fiber,” Opt. Express 22, 21872–21878 (2014).
[Crossref]

W. Belardi and J. C. Knight, “Hollow antiresonant fibers with low bending loss,” Opt. Express 22, 10091–10096 (2014).
[Crossref]

W. Belardi and J. C. Knight, “Hollow antiresonant fibers with reduced attenuation,” Opt. Lett. 39, 1853–1856 (2014).
[Crossref]

W. Belardi and J. C. Knight, “Effect of core boundary curvature on the confinement losses of hollow antiresonant fibers,” Opt. Express 21, 21912–21917 (2013).
[Crossref]

P. Jaworski, F. Yu, R. R. J. Maier, W. J. Wadsworth, J. C. Knight, J. D. Shephard, and D. P. Hand, “Picosecond and nanosecond pulse delivery through a hollow-core negative curvature fiber for micro-machining applications,” Opt. Express 21, 22742–22753 (2013).
[Crossref]

F. Yu and J. C. Knight, “Spectral attenuation limits of silica hollow core negative curvature fiber,” Opt. Express 21, 21466–21471 (2013).
[Crossref]

A. Urich, R. R. J. Maier, F. Yu, J. C. Knight, D. P. Hand, and J. D. Shephard, “Flexible delivery of Er:YAG radiation at 2.94  μm with negative curvature silica glass fibers: a new solution for minimally invasive surgical procedures,” Biomed. Opt. Express 4, 193–205 (2013).
[Crossref]

A. Urich, R. R. J. Maier, F. Yu, J. C. Knight, D. P. Hand, and J. D. Shephard, “Silica hollow core microstructured fibres for mid-infrared surgical applications,” J. Non-Cryst. Solids 377, 236–239 (2013).
[Crossref]

F. Yu, W. J. Wadsworth, and J. C. Knight, “Low loss silica hollow core fibers for 3–4  μm spectral region,” Opt. Express 20, 11153–11158 (2012).
[Crossref]

R. Amezcua-Correa, F. Gérôme, S. G. Leon-Saval, N. G. R. Broderick, T. A. Birks, and J. C. Knight, “Control of surface modes in low loss hollow-core photonic bandgap fibers,” Opt Express 16, 1142–1149 (2008).
[Crossref]

N. Gayraud, U. W. Kornaszewski, J. M. Stone, J. C. Knight, D. T. Reid, D. P. Hand, and W. N. MacPherson, “Mid-infrared gas sensing using a photonic bandgap fiber,” Appl. Opt. 47, 1269–1277 (2008).
[Crossref]

L. W. Kornaszewski, N. Gayraud, J. M. Stone, W. N. Macpherson, A. K. George, J. C. Knight, D. P. Hand, and D. T. Reid, “Mid-infrared methane detection in a photonic bandgap fiber using a broadband optical parametric oscillator,” Opt. Express 15, 11219–11224 (2007).
[Crossref]

P. J. Roberts, D. P. Williams, B. J. Mangan, H. Sabert, F. Couny, W. J. Wadsworth, T. A. Birks, J. C. Knight, and P. St.J. Russell, “Realizing low loss air core photonic crystal fibers by exploiting an antiresonant core surround,” Opt. Express 13, 8277–8285 (2005).
[Crossref]

P. J. Roberts, F. Couny, H. Sabert, B. J. Mangan, D. P. Williams, L. Farr, M. W. Mason, A. Tomlinson, T. A. Birks, J. C. Knight, and P. St.J. Russell, “Ultimate low loss of hollow-core photonic crystal fibres,” Opt. Express 13, 236–244 (2005).
[Crossref]

F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. St.J. Russell, “Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres,” Nature 434, 488–491 (2005).
[Crossref]

J. D. Shephard, J. D. C. Jones, D. P. Hand, G. Bouwmans, J. C. Knight, P. St.J. Russell, and B. J. Mangan, “High energy nanosecond laser pulses delivered single-mode through hollow-core PBG fibers,” Opt. Express 12, 717–723 (2004).
[Crossref]

F. Benabid, J. C. Knight, G. Antonopoulos, and P. St.J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298, 399–402 (2002).
[Crossref]

T. A. Birks, D. Mogilevtsev, J. C. Knight, and P. St.J. Russell, “Dispersion compensation using single-material fibers,” IEEE Photon. Technol. Lett. 11, 674–676 (1999).
[Crossref]

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St.J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537–1539 (1999).
[Crossref]

J. C. Knight, J. Broeng, T. A. Birks, and P. St.J. Russell, “Photonic band gap guidance in optical fibers,” Science 282, 1476–1478 (1998).
[Crossref]

T. A. Birks, J. C. Knight, and P. St.J. Russell, “Endlessly single-mode photonic crystal fiber,” Opt. Lett. 22, 961–963 (1997).
[Crossref]

J. C. Knight, T. A. Birks, P. St.J. Russell, and D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding,” Opt. Lett. 21, 1547–1549 (1996).
[Crossref]

J. C. Knight, T. A. Birks, P. St.J. Russell, and D. M. Atkin, “Pure silica single-mode fiber with hexagonal photonic crystal cladding,” in Conference on Optical Fiber Communications (Optical Society of America, 1996), postdeadline paper PD3.

W. Belardi and J. C. Knight, “Negative curvature fibers with reduced leakage loss,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2014), paper Th2A.45.

B. J. Mangan, L. Farr, A. Langford, P. J. Roberts, D. P. Williams, F. Couny, M. Lawman, M. Mason, S. Coupland, R. Flea, H. Sabert, T. A. Birks, J. C. Knight, and P. St.J. Russell, “Low loss (1.7  dB/km) hollow core photonic bandgap fiber,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2004), paper PD24.

W. J. Wadsworth, F. Yu, and J. C. Knight, “Useful light from photonic crystal fibres,” in Conference on Lasers and Electro-Optics (CLEO), OSA Technical Digest (Optical Society of America, 2016), paper SW1I.5. (Mentioned in the talk).

Kobelke, J.

Koch, K. W.

Koch, T. L.

M. A. Duguay, Y. Kokubun, T. L. Koch, and L. Pfeiffer, “Antiresonant reflecting optical waveguides in SiO2 Si multiplayer structures,” Appl. Phys. Lett. 49, 13–15 (1986).
[Crossref]

Kokubun, Y.

M. A. Duguay, Y. Kokubun, T. L. Koch, and L. Pfeiffer, “Antiresonant reflecting optical waveguides in SiO2 Si multiplayer structures,” Appl. Phys. Lett. 49, 13–15 (1986).
[Crossref]

Y. Kokubun, T. Baba, T. Sakaki, and K. Iga, “Low-loss antiresonant reflecting optical waveguide on Si substrate in visible-wavelength region,” Electron. Lett. 22, 892–893 (1986).
[Crossref]

Kolyadin, A.

A. F. Kosolapov, A. Pryamikov, G. Alagashev, A. Kolyadin, A. Biriukov, and E. Dianov, “Negative curvature hollow-core fibers (NCHCFs) for mid-IR applications,” in Advanced Photonics, OSA Technical Digest (online) (Optical Society of America, 2014), paper SoTu2B.3.

Kolyadin, A. N.

A. A. Krylov, A. K. Senatorov, A. D. Pryamikov, A. F. Kosolapov, A. N. Kolyadin, G. K. Alagashev, A. V. Gladyshev, and I. A. Bufetov, “1.56  μm sub-microjoule femtosecond pulse delivery through low-loss microstructured revolver hollow-core fiber,” Laser Phys. Lett. 14, 035104 (2017).
[Crossref]

Y. P. Yatsenko, E. N. Pleteneva, A. G. Okhrimchuk, A. V. Gladyshev, A. F. Kosolapov, A. N. Kolyadin, and I. A. Bufetov, “Multiband supercontinuum generation in an air-core revolver fibre,” Quantum Electron. 47, 553–560 (2017).
[Crossref]

A. V. Gladyshev, A. F. Kosolapov, M. M. Khudyakov, Y. P. Yatsenko, A. N. Kolyadin, A. A. Krylov, A. D. Pryamikov, A. S. Biriukov, M. E. Likhachev, I. A. Bufetov, and E. M. Dianov, “4.4  μm Raman laser based on hollow-core silica fibre,” Quantum Electron. 47, 491–494 (2017).
[Crossref]

A. V. Gladyshev, A. N. Kolyadin, A. F. Kosolapov, Y. P. Yatsenko, A. D. Pryamikov, A. S. Biriukov, I. A. Bufetov, and E. M. Dianov, “Low-threshold 1.9  μm Raman generation in microstructured hydrogen-filled hollow-core revolver fibre with nested capillaries,” Laser Phys. 27, 025101 (2016).
[Crossref]

A. D. Pryamikov, A. F. Kosolapov, G. K. Alagashev, A. N. Kolyadin, V. V. Vel’miskin, A. S. Biriukov, and I. A. Bufetov, “Hollow-core microstructured ‘revolver’ fibre for the UV spectral range,” Quantum Electron. 46, 1129–1133 (2016).
[Crossref]

Y. P. Yatsenko, A. A. Krylov, A. D. Pryamikov, A. F. Kosolapov, A. N. Kolyadin, A. V. Gladyshev, and I. A. Bufetov, “Propagation of femtosecond pulses in a hollow-core revolver fibre,” Quantum Electron. 46, 617–626 (2016).
[Crossref]

A. N. Kolyadin, G. K. Alagashev, A. D. Pryamikov, A. V. Gladyshev, A. F. Kosolapov, A. S. Biriukov, and I. A. Bufetov, “Negative curvature hollow core fibers for Raman lasing in the mid IR spectral range,” J. Phys. 737, 012009 (2016).

A. F. Kosolapov, G. K. Alagashev, A. N. Kolyadin, A. D. Pryamikov, A. S. Biryukov, I. A. Bufetov, and E. M. Dianov, “Hollow-core revolver fibre with a double-capillary reflective cladding,” Quantum Electron. 46, 267–270 (2016).
[Crossref]

G. K. Alagashev, A. D. Pryamikov, A. F. Kosolapov, A. N. Kolyadin, A. Y. Lukovkin, and A. S. Biriukov, “Impact of geometrical parameters on the optical properties of negative curvature hollow core fibers,” Laser Phys. 25, 055101 (2015).
[Crossref]

A. V. Gladyshev, A. N. Kolyadin, A. F. Kosolapov, Y. P. Yatsenko, A. D. Pryamikov, A. S. Biryukov, I. A. Bufetov, and E. M. Dianov, “Efficient 1.9-μm Raman generation in a hydrogen-filled hollow-core fibre,” Quantum Electron. 45, 807–812 (2015).
[Crossref]

A. N. Kolyadin, G. K. Alagasheva, A. D. Pryamikova, L. Mouradianb, A. Zeytunyanb, H. Toneyanb, A. F. Kosolapova, and I. A. Bufetov, “Negative curvature hollow-core fibers: dispersion properties and femtosecond pulse delivery,” Phys. Procedia 73, 59–66 (2015).
[Crossref]

V. S. Shiryaev, A. F. Kosolapov, A. D. Pryamikov, G. E. Snopatin, M. F. Churbanov, A. S. Biriukov, T. V. Kotereva, S. V. Mishinov, G. K. Alagashev, and A. N. Kolyadin, “Development of technique for preparation of As2S3 glass preforms for hollow core microstructured optical fibers,” J. Optoelectron. Adv. Mater. 16, 1020–1025 (2014).

A. N. Kolyadin, A. F. Kosolapov, A. D. Pryamikov, A. S. Biriukov, V. G. Plotnichenko, and E. M. Dianov, “Light transmission in negative curvature hollow core fiber in extremely high material loss region,” Opt. Express 21, 9514–9519 (2013).
[Crossref]

Koo, T. W.

E. B. Hanlon, R. Manoharan, T. W. Koo, K. E. Shafer, J. T. Motz, M. Fitzmaurice, J. R. Kramer, I. Itzkan, R. R. Dasari, and M. S. Feld, “Prospects for in vivo Raman spectroscopy,” Phys. Med. Biol. 45, R1–R59 (2000).
[Crossref]

Kornaszewski, L. W.

Kornaszewski, U. W.

Koshiba, M.

Kosolapov, A. F.

Y. P. Yatsenko, E. N. Pleteneva, A. G. Okhrimchuk, A. V. Gladyshev, A. F. Kosolapov, A. N. Kolyadin, and I. A. Bufetov, “Multiband supercontinuum generation in an air-core revolver fibre,” Quantum Electron. 47, 553–560 (2017).
[Crossref]

A. A. Krylov, A. K. Senatorov, A. D. Pryamikov, A. F. Kosolapov, A. N. Kolyadin, G. K. Alagashev, A. V. Gladyshev, and I. A. Bufetov, “1.56  μm sub-microjoule femtosecond pulse delivery through low-loss microstructured revolver hollow-core fiber,” Laser Phys. Lett. 14, 035104 (2017).
[Crossref]

A. V. Gladyshev, A. F. Kosolapov, M. M. Khudyakov, Y. P. Yatsenko, A. N. Kolyadin, A. A. Krylov, A. D. Pryamikov, A. S. Biriukov, M. E. Likhachev, I. A. Bufetov, and E. M. Dianov, “4.4  μm Raman laser based on hollow-core silica fibre,” Quantum Electron. 47, 491–494 (2017).
[Crossref]

A. V. Gladyshev, A. N. Kolyadin, A. F. Kosolapov, Y. P. Yatsenko, A. D. Pryamikov, A. S. Biriukov, I. A. Bufetov, and E. M. Dianov, “Low-threshold 1.9  μm Raman generation in microstructured hydrogen-filled hollow-core revolver fibre with nested capillaries,” Laser Phys. 27, 025101 (2016).
[Crossref]

A. D. Pryamikov, A. F. Kosolapov, G. K. Alagashev, A. N. Kolyadin, V. V. Vel’miskin, A. S. Biriukov, and I. A. Bufetov, “Hollow-core microstructured ‘revolver’ fibre for the UV spectral range,” Quantum Electron. 46, 1129–1133 (2016).
[Crossref]

A. F. Kosolapov, G. K. Alagashev, A. N. Kolyadin, A. D. Pryamikov, A. S. Biryukov, I. A. Bufetov, and E. M. Dianov, “Hollow-core revolver fibre with a double-capillary reflective cladding,” Quantum Electron. 46, 267–270 (2016).
[Crossref]

Y. P. Yatsenko, A. A. Krylov, A. D. Pryamikov, A. F. Kosolapov, A. N. Kolyadin, A. V. Gladyshev, and I. A. Bufetov, “Propagation of femtosecond pulses in a hollow-core revolver fibre,” Quantum Electron. 46, 617–626 (2016).
[Crossref]

A. N. Kolyadin, G. K. Alagashev, A. D. Pryamikov, A. V. Gladyshev, A. F. Kosolapov, A. S. Biriukov, and I. A. Bufetov, “Negative curvature hollow core fibers for Raman lasing in the mid IR spectral range,” J. Phys. 737, 012009 (2016).

G. K. Alagashev, A. D. Pryamikov, A. F. Kosolapov, A. N. Kolyadin, A. Y. Lukovkin, and A. S. Biriukov, “Impact of geometrical parameters on the optical properties of negative curvature hollow core fibers,” Laser Phys. 25, 055101 (2015).
[Crossref]

A. V. Gladyshev, A. N. Kolyadin, A. F. Kosolapov, Y. P. Yatsenko, A. D. Pryamikov, A. S. Biryukov, I. A. Bufetov, and E. M. Dianov, “Efficient 1.9-μm Raman generation in a hydrogen-filled hollow-core fibre,” Quantum Electron. 45, 807–812 (2015).
[Crossref]

V. S. Shiryaev, A. F. Kosolapov, A. D. Pryamikov, G. E. Snopatin, M. F. Churbanov, A. S. Biriukov, T. V. Kotereva, S. V. Mishinov, G. K. Alagashev, and A. N. Kolyadin, “Development of technique for preparation of As2S3 glass preforms for hollow core microstructured optical fibers,” J. Optoelectron. Adv. Mater. 16, 1020–1025 (2014).

A. N. Kolyadin, A. F. Kosolapov, A. D. Pryamikov, A. S. Biriukov, V. G. Plotnichenko, and E. M. Dianov, “Light transmission in negative curvature hollow core fiber in extremely high material loss region,” Opt. Express 21, 9514–9519 (2013).
[Crossref]

A. F. Kosolapov, A. D. Pryamikov, A. S. Biriukov, V. S. Shiryaev, M. S. Astapovich, G. E. Snopatin, V. G. Plotnichenko, M. F. Churbanov, and E. M. Dianov, “Demonstration of CO2-laser power delivery through chalcogenide-glass fiber with negative-curvature hollow core,” Opt. Express 19, 25723–25728 (2011).
[Crossref]

A. D. Pryamikov, A. S. Biriukov, A. F. Kosolapov, V. G. Plotnichenko, S. L. Semjonov, and E. M. Dianov, “Demonstration of a waveguide regime for a silica hollow-core microstructured optical fiber with a negative curvature of the core boundary in the spectral region >3.5  μm,” Opt. Express 19, 1441–1448 (2011).
[Crossref]

A. F. Kosolapov, A. Pryamikov, G. Alagashev, A. Kolyadin, A. Biriukov, and E. Dianov, “Negative curvature hollow-core fibers (NCHCFs) for mid-IR applications,” in Advanced Photonics, OSA Technical Digest (online) (Optical Society of America, 2014), paper SoTu2B.3.

A. D. Pryamikov, A. F. Kosolapov, V. G. Plotnichenko, and E. M. Dianov, “Transmission of CO2 laser radiation through glass hollow core microstructured fibers,” in CO2 Laser-Optimisation and Application, D. C. Dumitras, ed. (InTech, 2012), pp. 227–248.

Kosolapova, A. F.

A. N. Kolyadin, G. K. Alagasheva, A. D. Pryamikova, L. Mouradianb, A. Zeytunyanb, H. Toneyanb, A. F. Kosolapova, and I. A. Bufetov, “Negative curvature hollow-core fibers: dispersion properties and femtosecond pulse delivery,” Phys. Procedia 73, 59–66 (2015).
[Crossref]

Kotereva, T. V.

V. S. Shiryaev, A. F. Kosolapov, A. D. Pryamikov, G. E. Snopatin, M. F. Churbanov, A. S. Biriukov, T. V. Kotereva, S. V. Mishinov, G. K. Alagashev, and A. N. Kolyadin, “Development of technique for preparation of As2S3 glass preforms for hollow core microstructured optical fibers,” J. Optoelectron. Adv. Mater. 16, 1020–1025 (2014).

Koyamada, Y.

Kraemer, D.

S. Amini-Nik, D. Kraemer, M. L. Cowan, K. Gunaratne, P. Nadesan, B. A. Alman, and R. J. D. Miller, “Ultrafast mid-IR laser scalpel: protein signals of the fundamental limits to minimally invasive surgery,” PLoS One 5, e13053 (2010).
[Crossref]

Kramer, J. R.

E. B. Hanlon, R. Manoharan, T. W. Koo, K. E. Shafer, J. T. Motz, M. Fitzmaurice, J. R. Kramer, I. Itzkan, R. R. Dasari, and M. S. Feld, “Prospects for in vivo Raman spectroscopy,” Phys. Med. Biol. 45, R1–R59 (2000).
[Crossref]

Krylov, A. A.

A. A. Krylov, A. K. Senatorov, A. D. Pryamikov, A. F. Kosolapov, A. N. Kolyadin, G. K. Alagashev, A. V. Gladyshev, and I. A. Bufetov, “1.56  μm sub-microjoule femtosecond pulse delivery through low-loss microstructured revolver hollow-core fiber,” Laser Phys. Lett. 14, 035104 (2017).
[Crossref]

A. V. Gladyshev, A. F. Kosolapov, M. M. Khudyakov, Y. P. Yatsenko, A. N. Kolyadin, A. A. Krylov, A. D. Pryamikov, A. S. Biriukov, M. E. Likhachev, I. A. Bufetov, and E. M. Dianov, “4.4  μm Raman laser based on hollow-core silica fibre,” Quantum Electron. 47, 491–494 (2017).
[Crossref]

Y. P. Yatsenko, A. A. Krylov, A. D. Pryamikov, A. F. Kosolapov, A. N. Kolyadin, A. V. Gladyshev, and I. A. Bufetov, “Propagation of femtosecond pulses in a hollow-core revolver fibre,” Quantum Electron. 46, 617–626 (2016).
[Crossref]

Kuhlmey, B.

F. Zolla, G. Renversez, A. Nicolet, B. Kuhlmey, S. Guenneau, D. Felbacq, A. Argyros, and S. Leon-Saval, Foundations of Photonic Crystal Fibres, 2nd ed. (Imperial College, 2012).

Kuhlmey, B. T.

S. Atakaramians, A. Stefani, H. Li, M. S. Habib, J. G. Hayashi, A. Tuniz, X. Tang, J. Anthony, R. Lwin, A. Argyros, S. C. Fleming, and B. T. Kuhlmey, “Fiber-drawn metamaterial for THz waveguiding and imaging,” J. Infrared Millimeter Terahertz Waves 38, 1162–1178 (2017).
[Crossref]

T. P. White, B. T. Kuhlmey, R. C. McPhedran, D. Maystre, G. Renversez, C. M. de Sterke, and L. C. Botten, “Multipole method for microstructured optical fibers. I. Formulation,” J. Opt. Soc. Am. B 19, 2322–2330 (2002).
[Crossref]

Kuis, R.

C. Wei, R. Kuis, F. Chenard, and J. Hu, “Chalcogenide negative curvature hollow-core photonic crystal fibers with low loss and low power ratio in the glass,” in Conference on Laser and Electro-Optics (CLEO), OSA Technical Digest (online) (Optical Society of America, 2014), paper SM1N.5.

Kuis, R. A.

Kuriki, K.

Kuschnerov, M.

V. Sleiffer, Y. Jung, N. Baddela, J. Surof, M. Kuschnerov, V. Veljanovski, J. Hayes, N. Wheeler, E. Numkam Fokoua, J. Wooler, D. Gray, N. Wong, F. Parmigiani, S. Alam, M. Petrovich, F. Poletti, D. Richardson, and H. de Waardt, “High capacity mode-division multiplexed optical transmission in a novel 37-cell hollow-core photonic bandgap fiber,” J. Lightwave Technol. 32, 854–863 (2014).
[Crossref]

V. A. Sleiffer, Y. Jung, P. Leoni, M. Kuschnerov, N. V. Wheeler, N. K. Baddela, R. G. H. van Uden, C. M. Okonkwo, J. R. Hayes, J. Wooler, E. Numkam, R. Slavik, F. Poletti, M. N. Petrovich, V. Veljanovski, S. U. Alam, D. J. Richardson, and H. de Waardt, “30.7  Tb/s (96 × 320  Gb/s) DP-32QAM transmission over 19-cell photonic band gap fiber,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference, OSA Technical Digest (online) (Optical Society of America, 2013), paper OW1I.5.

Y. Jung, V. A. J. M. Sleiffer, N. K. Baddela, M. N. Petrovich, J. R. Hayes, N. V. Wheeler, D. R. Gray, E. Numkam Fokoua, J. P. Wooler, H. H.-L. Wong, F. Parmigiani, S.-U. Alam, J. Surof, M. Kuschnerov, V. Veljanovski, H. De Waardt, F. Poletti, and D. J. Richardson, “First demonstration of a broadband 37-cell hollow core photonic bandgap fiber and its application to high capacity mode division multiplexing,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference, OSA Technical Digest (online) (Optical Society of America, 2013), paper PDP5A.3.

Lai, C.

Lai, C. H.

Lampson, A. I.

J. E. McCord, H. C. Miller, G. Hager, A. I. Lampson, and P. G. Crowell, “Experimental investigation of an optically pumped mid-infrared carbon monoxide laser,” IEEE J. Quantum Electron. 35, 1602–1612 (1999).
[Crossref]

Landes, C.

S. Stübinger, B. von Rechenberg, H. F. Zeilhofer, R. Sader, and C. Landes, “Er:YAG laser osteotomy for removal of impacted teeth: clinical comparison of two techniques,” Lasers Surg. Med. 39, 583–588 (2007).
[Crossref]

Langenhorst, F.

T. Frosch, N. Tarcea, M. Schmitt, H. Thiele, F. Langenhorst, and J. Popp, “UV Raman imaging-A promising tool for astrobiology: comparative Raman studies with different excitation wavelengths on SNC Martian meteorites,” Anal. Chem. 79, 1101–1108 (2007).
[Crossref]

Langford, A.

B. J. Mangan, L. Farr, A. Langford, P. J. Roberts, D. P. Williams, F. Couny, M. Lawman, M. Mason, S. Coupland, R. Flea, H. Sabert, T. A. Birks, J. C. Knight, and P. St.J. Russell, “Low loss (1.7  dB/km) hollow core photonic bandgap fiber,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2004), paper PD24.

Large, M. C.

Lawman, M.

B. J. Mangan, L. Farr, A. Langford, P. J. Roberts, D. P. Williams, F. Couny, M. Lawman, M. Mason, S. Coupland, R. Flea, H. Sabert, T. A. Birks, J. C. Knight, and P. St.J. Russell, “Low loss (1.7  dB/km) hollow core photonic bandgap fiber,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2004), paper PD24.

Leggett, G. J.

G. J. Leggett, “Light-directed nanosynthesis: near-field optical approaches to integration of the top-down and bottom-up fabrication paradigms,” Nanoscale 4, 1840–1855 (2012).
[Crossref]

Leong, J. Y. Y.

J. H. V. Price, T. M. Monro, H. Ebendorff-Heidepriem, F. Poletti, P. Horak, V. Finazzi, J. Y. Y. Leong, P. Petropoulos, J. C. Flanagan, G. Brambilla, X. Feng, and D. J. Richardson, “Mid-IR supercontinuum generation from nonsilica microstructured optical fibers,” IEEE J. Sel. Top. Quantum Electron. 13, 738–749 (2007).
[Crossref]

Leonhardt, R.

Leoni, P.

V. A. Sleiffer, Y. Jung, P. Leoni, M. Kuschnerov, N. V. Wheeler, N. K. Baddela, R. G. H. van Uden, C. M. Okonkwo, J. R. Hayes, J. Wooler, E. Numkam, R. Slavik, F. Poletti, M. N. Petrovich, V. Veljanovski, S. U. Alam, D. J. Richardson, and H. de Waardt, “30.7  Tb/s (96 × 320  Gb/s) DP-32QAM transmission over 19-cell photonic band gap fiber,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference, OSA Technical Digest (online) (Optical Society of America, 2013), paper OW1I.5.

Leon-Saval, S.

F. Zolla, G. Renversez, A. Nicolet, B. Kuhlmey, S. Guenneau, D. Felbacq, A. Argyros, and S. Leon-Saval, Foundations of Photonic Crystal Fibres, 2nd ed. (Imperial College, 2012).

Leon-Saval, S. G.

Lgsgaard, J.

Li, H.

S. Atakaramians, A. Stefani, H. Li, M. S. Habib, J. G. Hayashi, A. Tuniz, X. Tang, J. Anthony, R. Lwin, A. Argyros, S. C. Fleming, and B. T. Kuhlmey, “Fiber-drawn metamaterial for THz waveguiding and imaging,” J. Infrared Millimeter Terahertz Waves 38, 1162–1178 (2017).
[Crossref]

H. Li, G. Ren, B. Zhu, Y. Gao, B. Yin, J. Wang, and S. Jian, “Guiding terahertz orbital angular momentum beams in multimode Kagome hollow-core fibers,” Opt. Lett. 42, 179–182 (2017).
[Crossref]

Li, M. J.

Li, Y.

F. Meng, B. Liu, Y. Li, C. Wang, and M. Hu, “Low loss hollow-core antiresonant fiber with nested elliptical cladding elements,” IEEE Photon. J. 9, 7100211 (2017).

J. Lu, C. Yu, H. Chang, H. Chen, Y. Li, C. Pan, and C. Sun, “Terahertz air-core microstructure fiber,” Appl. Phys. Lett. 92, 064105 (2008).
[Crossref]

Li, Z.

F. Poletti, N. V. Wheeler, M. N. Petrovich, N. K. Baddela, E. Numkam Fokoua, J. R. Hayes, D. R. Gray, Z. Li, R. Slavik, and D. J. Richardson, “Towards high-capacity fibre-optic communications at the speed of light in vacuum,” Nat. Photonics 7, 279–284 (2013).
[Crossref]

Liang, S.

Light, P. S.

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and photonic guidance of multi-octave optical-frequency combs,” Science 318, 1118–1121 (2007).
[Crossref]

F. Couny, F. Benabid, and P. S. Light, “Large-pitch kagome-structured hollow-core photonic crystal fiber,” Opt. Lett. 31, 3574–3576 (2006).
[Crossref]

Likhachev, M. E.

A. V. Gladyshev, A. F. Kosolapov, M. M. Khudyakov, Y. P. Yatsenko, A. N. Kolyadin, A. A. Krylov, A. D. Pryamikov, A. S. Biriukov, M. E. Likhachev, I. A. Bufetov, and E. M. Dianov, “4.4  μm Raman laser based on hollow-core silica fibre,” Quantum Electron. 47, 491–494 (2017).
[Crossref]

Limpert, J.

Lin, L.

Litchinitser, N. M.

Liu, B.

F. Meng, B. Liu, Y. Li, C. Wang, and M. Hu, “Low loss hollow-core antiresonant fiber with nested elliptical cladding elements,” IEEE Photon. J. 9, 7100211 (2017).

Liu, W.

Liu, X.

Liu, Z.

J. R. Hayes, S. R. Sandoghchi, T. D. Bradley, Z. Liu, R. Slavik, M. A. Gouveia, N. V. Wheeler, G. Jasion, Y. Chen, E. N. Fokoua, M. N. Petrovich, D. J. Richardson, and F. Poletti, “Antiresonant hollow core fiber with an octave spanning bandwidth for short haul data communications,” J. Lightwave Technol. 35, 437–442 (2017).
[Crossref]

J. R. Hayes, S. R. Sandoghchi, T. D. Bradley, Z. Liu, R. Slavik, M. A. Gouveia, N. V. Wheeler, G. T. Jasion, Y. Chen, E. Numkam-Fokoua, M. N. Petrovich, D. J. Richardson, and F. Poletti, “Antiresonant hollow core fiber with octave spanning bandwidth for short haul data communications,” in Optical Fiber Communication Conference Postdeadline Papers, OSA Technical Digest (online) (Optical Society of America, 2016), paper Th5A.3.

Lopez-Galmiche, G.

Lou, S.

W. Lu, S. Lou, and A. Argyros, “Investigation of flexible low-loss hollow-core fibres with tube-lattice cladding for terahertz radiation,” IEEE J. Sel. Top. Quantum Electron. 22, 214–220 (2016).
[Crossref]

G. Ren, Z. Wang, S. Lou, and S. Jian, “Mode classification and degeneracy in photonic crystal fibers,” Opt. Express 11, 1310–1321 (2003).
[Crossref]

Lousteau, J.

W. Belardi, N. White, J. Lousteau, X. Feng, and F. Poletti, “Hollow core antiresonant fibers in borosilicate glass,” in Workshop on Specialty Optical Fibers and their Applications, OSA Technical Digest (online) (Optical Society of America, 2015), paper WW4A.4.

Lu, J.

Lu, J. T.

Lu, Q.

Lu, T.

Lu, W.

W. Lu, S. Lou, and A. Argyros, “Investigation of flexible low-loss hollow-core fibres with tube-lattice cladding for terahertz radiation,” IEEE J. Sel. Top. Quantum Electron. 22, 214–220 (2016).
[Crossref]

W. Lu and A. Argyros, “Terahertz spectroscopy and imaging with flexible tube-lattice fiber probe,” J. Lightwave Technol. 32, 4621–4627 (2014).
[Crossref]

Luan, F.

Lucia, F. D.

Ludvigsen, H.

Lukovkin, A. Y.

G. K. Alagashev, A. D. Pryamikov, A. F. Kosolapov, A. N. Kolyadin, A. Y. Lukovkin, and A. S. Biriukov, “Impact of geometrical parameters on the optical properties of negative curvature hollow core fibers,” Laser Phys. 25, 055101 (2015).
[Crossref]

Luther-Davies, B.

B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5, 141–148 (2011).

Lwin, R.

S. Atakaramians, A. Stefani, H. Li, M. S. Habib, J. G. Hayashi, A. Tuniz, X. Tang, J. Anthony, R. Lwin, A. Argyros, S. C. Fleming, and B. T. Kuhlmey, “Fiber-drawn metamaterial for THz waveguiding and imaging,” J. Infrared Millimeter Terahertz Waves 38, 1162–1178 (2017).
[Crossref]

Lyngs, J. K.

Ma, Y.

Machinet, G.

MacPherson, W. N.

Maier, R. R. J.

J. D. Shephard, A. Urich, R. M. Carter, P. Jaworski, R. R. J. Maier, W. Belardi, F. Yu, W. J. Wadsworth, J. C. Knight, and D. P. Hand, “Silica hollow core microstructured fibers for beam delivery in industrial and medical applications,” Front. Phys. 3, 24 (2015).
[Crossref]

A. Urich, R. R. J. Maier, F. Yu, J. C. Knight, D. P. Hand, and J. D. Shephard, “Silica hollow core microstructured fibres for mid-infrared surgical applications,” J. Non-Cryst. Solids 377, 236–239 (2013).
[Crossref]

P. Jaworski, F. Yu, R. R. J. Maier, W. J. Wadsworth, J. C. Knight, J. D. Shephard, and D. P. Hand, “Picosecond and nanosecond pulse delivery through a hollow-core negative curvature fiber for micro-machining applications,” Opt. Express 21, 22742–22753 (2013).
[Crossref]

A. Urich, R. R. J. Maier, F. Yu, J. C. Knight, D. P. Hand, and J. D. Shephard, “Flexible delivery of Er:YAG radiation at 2.94  μm with negative curvature silica glass fibers: a new solution for minimally invasive surgical procedures,” Biomed. Opt. Express 4, 193–205 (2013).
[Crossref]

Maier, S. A.

Maizelis, Z.

S. Okaba, T. Takano, F. Benabid, T. Bradley, L. Vincetti, Z. Maizelis, V. Yampol’skii, F. Nori, and H. Katori, “Lamb-Dicke spectroscopy of atoms in a hollow-core photonic crystal fibre,” Nat. Commun. 5, 4096 (2014).
[Crossref]

Mangan, B.

Mangan, B. J.

P. J. Roberts, F. Couny, H. Sabert, B. J. Mangan, D. P. Williams, L. Farr, M. W. Mason, A. Tomlinson, T. A. Birks, J. C. Knight, and P. St.J. Russell, “Ultimate low loss of hollow-core photonic crystal fibres,” Opt. Express 13, 236–244 (2005).
[Crossref]

P. J. Roberts, D. P. Williams, B. J. Mangan, H. Sabert, F. Couny, W. J. Wadsworth, T. A. Birks, J. C. Knight, and P. St.J. Russell, “Realizing low loss air core photonic crystal fibers by exploiting an antiresonant core surround,” Opt. Express 13, 8277–8285 (2005).
[Crossref]

J. D. Shephard, J. D. C. Jones, D. P. Hand, G. Bouwmans, J. C. Knight, P. St.J. Russell, and B. J. Mangan, “High energy nanosecond laser pulses delivered single-mode through hollow-core PBG fibers,” Opt. Express 12, 717–723 (2004).
[Crossref]

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St.J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537–1539 (1999).
[Crossref]

B. J. Mangan, L. Farr, A. Langford, P. J. Roberts, D. P. Williams, F. Couny, M. Lawman, M. Mason, S. Coupland, R. Flea, H. Sabert, T. A. Birks, J. C. Knight, and P. St.J. Russell, “Low loss (1.7  dB/km) hollow core photonic bandgap fiber,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2004), paper PD24.

Manoharan, R.

E. B. Hanlon, R. Manoharan, T. W. Koo, K. E. Shafer, J. T. Motz, M. Fitzmaurice, J. R. Kramer, I. Itzkan, R. R. Dasari, and M. S. Feld, “Prospects for in vivo Raman spectroscopy,” Phys. Med. Biol. 45, R1–R59 (2000).
[Crossref]

Mao, C.

Marcuse, D.

D. Marcuse, Theory of Dielectric Optical Waveguides, 2nd ed. (Academic, 1991).

Markos, C.

Marom, E.

Mason, M.

B. J. Mangan, L. Farr, A. Langford, P. J. Roberts, D. P. Williams, F. Couny, M. Lawman, M. Mason, S. Coupland, R. Flea, H. Sabert, T. A. Birks, J. C. Knight, and P. St.J. Russell, “Low loss (1.7  dB/km) hollow core photonic bandgap fiber,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2004), paper PD24.

Mason, M. W.

Maurel, M.

Maystre, D.

McClain, C. C.

McCord, J. E.

J. E. McCord, H. C. Miller, G. Hager, A. I. Lampson, and P. G. Crowell, “Experimental investigation of an optically pumped mid-infrared carbon monoxide laser,” IEEE J. Quantum Electron. 35, 1602–1612 (1999).
[Crossref]

McDaniel, W.

McFerran, J. J.

McPhedran, R. C.

Meade, R. D.

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light (Princeton University, 2011).

Ménard, J.-M.

Meng, F.

F. Meng, B. Liu, Y. Li, C. Wang, and M. Hu, “Low loss hollow-core antiresonant fiber with nested elliptical cladding elements,” IEEE Photon. J. 9, 7100211 (2017).

Meng, L.

Menyuk, C.

C. Wei, C. Menyuk, and J. Hu, “Bending-induced mode non-degeneracy and coupling in chalcogenide negative curvature fibers,” Opt. Express 24, 12228–12239 (2016).
[Crossref]

C. Wei, C. Menyuk, and J. Hu, “Higher-order mode suppression in chalcogenide negative curvature fibers with gaps between cladding tubes,” in Advanced Photonics 2016 (IPR, NOMA, Sensors, Networks, SPPCom, SOF), OSA Technical Digest (online) (Optical Society of America, 2016), paper JTu4A.32.

Menyuk, C. R.

C. Wei, C. R. Menyuk, and J. Hu, “Impact of cladding tubes in chalcogenide negative curvature fibers,” IEEE Photon. J. 8, 2200509 (2016).

C. Wei, J. Hu, and C. R. Menyuk, “Comparison of loss in silica and chalcogenide negative curvature fibers as the wavelength varies,” Front. Phys. 4, 30 (2016).
[Crossref]

R. R. Gattass, D. Rhonehouse, D. Gibson, C. C. McClain, R. Thapa, V. Q. Nguyen, S. S. Bayya, R. J. Weiblen, C. R. Menyuk, L. B. Shaw, and J. S. Sanghera, “Infrared glass-based negative-curvature anti-resonant fibers fabricated through extrusion,” Opt. Express 24, 25697–25703 (2016).
[Crossref]

R. J. Weiblen, C. R. Menyuk, R. R. Gattass, L. B. Shaw, and J. S. Sanghera, “Fabrication tolerances in As2S3 negative-curvature antiresonant fibers,” Opt. Lett. 41, 2624–2627 (2016).
[Crossref]

C. Wei, R. A. Kuis, F. Chenard, C. R. Menyuk, and J. Hu, “Higher-order mode suppression in chalcogenide negative curvature fibers,” Opt. Express 23, 15824–15832 (2015).
[Crossref]

J. Hu, C. R. Menyuk, L. B. Shaw, J. S. Sanghera, and I. D. Aggarwal, “Computational study of a 3–5  μm source that is created by using supercontinuum generation in As2S3 chalcogenide fibers with a pump at 2  μm,” Opt. Lett. 35, 2907–2909 (2010).
[Crossref]

J. Hu and C. R. Menyuk, “Understanding leaky modes: slab waveguide revisited,” Adv. Opt. Photon. 1, 58–106 (2009).
[Crossref]

J. Hu and C. R. Menyuk, “Optimization of the operational bandwidth in air-core photonic bandgap fibers for IR transmission,” Opt. Commun. 282, 18–21 (2009).
[Crossref]

J. Hu and C. R. Menyuk, “Leakage loss and bandgap analysis in air-core photonic bandgap fiber for nonsilica glasses,” Opt. Express 15, 339–349 (2007).
[Crossref]

Mermin, N. D.

N. W. Aschcroft and N. D. Mermin, Solid State Physics (Saunders College, 1976).

Michieletto, M.

Mielke, M.

Miller, H. C.

J. E. McCord, H. C. Miller, G. Hager, A. I. Lampson, and P. G. Crowell, “Experimental investigation of an optically pumped mid-infrared carbon monoxide laser,” IEEE J. Quantum Electron. 35, 1602–1612 (1999).
[Crossref]

Miller, R. J. D.

S. Amini-Nik, D. Kraemer, M. L. Cowan, K. Gunaratne, P. Nadesan, B. A. Alman, and R. J. D. Miller, “Ultrafast mid-IR laser scalpel: protein signals of the fundamental limits to minimally invasive surgery,” PLoS One 5, e13053 (2010).
[Crossref]

Mishinov, S. V.

V. S. Shiryaev, A. F. Kosolapov, A. D. Pryamikov, G. E. Snopatin, M. F. Churbanov, A. S. Biriukov, T. V. Kotereva, S. V. Mishinov, G. K. Alagashev, and A. N. Kolyadin, “Development of technique for preparation of As2S3 glass preforms for hollow core microstructured optical fibers,” J. Optoelectron. Adv. Mater. 16, 1020–1025 (2014).

Mogilevtsev, D.

T. A. Birks, D. Mogilevtsev, J. C. Knight, and P. St.J. Russell, “Dispersion compensation using single-material fibers,” IEEE Photon. Technol. Lett. 11, 674–676 (1999).
[Crossref]

Monberg, E. M.

Monro, T. M.

J. H. V. Price, T. M. Monro, H. Ebendorff-Heidepriem, F. Poletti, P. Horak, V. Finazzi, J. Y. Y. Leong, P. Petropoulos, J. C. Flanagan, G. Brambilla, X. Feng, and D. J. Richardson, “Mid-IR supercontinuum generation from nonsilica microstructured optical fibers,” IEEE J. Sel. Top. Quantum Electron. 13, 738–749 (2007).
[Crossref]

Morioka, T.

T. Morioka, Y. Awaji, R. Ryf, P. Winzer, D. Richardson, and F. Poletti, “Enhancing optical communications with brand new fibers,” IEEE Commun. Mag. 50(2), S31–S42 (2012).
[Crossref]

Mortensen, N. A.

Mottay, E.

Motz, J. T.

E. B. Hanlon, R. Manoharan, T. W. Koo, K. E. Shafer, J. T. Motz, M. Fitzmaurice, J. R. Kramer, I. Itzkan, R. R. Dasari, and M. S. Feld, “Prospects for in vivo Raman spectroscopy,” Phys. Med. Biol. 45, R1–R59 (2000).
[Crossref]

Mouradianb, L.

A. N. Kolyadin, G. K. Alagasheva, A. D. Pryamikova, L. Mouradianb, A. Zeytunyanb, H. Toneyanb, A. F. Kosolapova, and I. A. Bufetov, “Negative curvature hollow-core fibers: dispersion properties and femtosecond pulse delivery,” Phys. Procedia 73, 59–66 (2015).
[Crossref]

Mousavi, S. A.

S. A. Mousavi, S. R. Sandoghchi, D. J. Richardson, and F. Poletti, “Broadband high birefringence and polarizing hollow core antiresonant fibers,” Opt. Express 24, 22943–22958 (2016).
[Crossref]

S. A. Mousavi, D. J. Richardson, S. R. Sandoghchi, and F. Poletti, “First design of high birefringence and polarising hollow core anti-resonant fibre,” in European Conference on Optical Communication (ECOC), Valencia (2015), pp. 1–3.

Mousavi, S. M. A.

L. D. van Putten, E. N. Fokoua, S. M. A. Mousavi, W. Belardi, S. Chaudhuri, J. V. Badding, and F. Poletti, “Exploring the effect of the core boundary curvature in hollow antiresonant fibers,” IEEE Photon. Technol. Lett. 29, 263–266 (2017).
[Crossref]

Müller, D.

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424, 657–659 (2003).
[Crossref]

Murao, T.

Nadesan, P.

S. Amini-Nik, D. Kraemer, M. L. Cowan, K. Gunaratne, P. Nadesan, B. A. Alman, and R. J. D. Miller, “Ultrafast mid-IR laser scalpel: protein signals of the fundamental limits to minimally invasive surgery,” PLoS One 5, e13053 (2010).
[Crossref]

Nampoothiri, A. V. V.

Nassif, A. Y.

M. A. Khashan and A. Y. Nassif, “Dispersion of the optical constants of quartz and polymethyl methacrylate glasses in a wide spectral range: 0.2–3  μm,” Opt. Commun. 188, 129–139 (2001).
[Crossref]

Nazarkin, A.

P. Hölzer, W. Chang, J. C. Travers, A. Nazarkin, J. Nold, N. Y. Joly, M. Saleh, F. Biancalana, and P. St.J. Russell, “Femtosecond nonlinear fiber optics in the ionization regime,” Phys. Rev. Lett. 107, 203901 (2011).
[Crossref]

Neil, M. A. A.

B. Sherlock, F. Yu, J. Stone, S. Warren, C. Paterson, M. A. A. Neil, P. M. W. French, J. Knight, and C. Dunsby, “Tunable fibre-coupled multiphoton microscopy with a negative curvature fibre,” J. Biophotonics 9, 715–720 (2016).
[Crossref]

Newkirk, A. V.

A. V. Newkirk, J. E. Antonio-Lopez, J. Anderson, R. Alvarez-Aguirre, Z. S. Eznaveh, G. Lopez-Galmiche, R. Amezcua-Correa, and A. Schülzgen, “Modal analysis of antiresonant hollow core fibers using S2 imaging,” Opt. Lett. 41, 3277–3280 (2016).
[Crossref]

A. V. Newkirk, J. E. Antonio-Lopez, J. Anderson, R. Alvarez-Aguirre, R. Amezcua-Correa, and A. Schulzgen, “Higher order modes in anti-resonant hollow core fibers,” in Advanced Photonics (IPR, NOMA, Sensors, Networks, SPPCom, SOF), OSA Technical Digest (online) (Optical Society of America, 2016), paper SoM3F.4.

Nguema, E.

Nguyen, V. Q.

Nicholson, J. W.

Nicolet, A.

F. Zolla, G. Renversez, A. Nicolet, B. Kuhlmey, S. Guenneau, D. Felbacq, A. Argyros, and S. Leon-Saval, Foundations of Photonic Crystal Fibres, 2nd ed. (Imperial College, 2012).

Nold, J.

Noll, T.

T. Frosch, M. Schmitt, T. Noll, G. Bringmann, K. Schenzel, and J. Popp, “Ultrasensitive in situ tracing of the alkaloid dioncophylline A in the tropical liana Triphyophyllum peltatum by applying deep-UV resonance Raman microscopy,” Anal. Chem. 79, 986–993 (2007).
[Crossref]

Nori, F.

S. Okaba, T. Takano, F. Benabid, T. Bradley, L. Vincetti, Z. Maizelis, V. Yampol’skii, F. Nori, and H. Katori, “Lamb-Dicke spectroscopy of atoms in a hollow-core photonic crystal fibre,” Nat. Commun. 5, 4096 (2014).
[Crossref]

Novoa, D.

Numkam, E.

V. A. Sleiffer, Y. Jung, P. Leoni, M. Kuschnerov, N. V. Wheeler, N. K. Baddela, R. G. H. van Uden, C. M. Okonkwo, J. R. Hayes, J. Wooler, E. Numkam, R. Slavik, F. Poletti, M. N. Petrovich, V. Veljanovski, S. U. Alam, D. J. Richardson, and H. de Waardt, “30.7  Tb/s (96 × 320  Gb/s) DP-32QAM transmission over 19-cell photonic band gap fiber,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference, OSA Technical Digest (online) (Optical Society of America, 2013), paper OW1I.5.

Numkam Fokoua, E.

V. Sleiffer, Y. Jung, N. Baddela, J. Surof, M. Kuschnerov, V. Veljanovski, J. Hayes, N. Wheeler, E. Numkam Fokoua, J. Wooler, D. Gray, N. Wong, F. Parmigiani, S. Alam, M. Petrovich, F. Poletti, D. Richardson, and H. de Waardt, “High capacity mode-division multiplexed optical transmission in a novel 37-cell hollow-core photonic bandgap fiber,” J. Lightwave Technol. 32, 854–863 (2014).
[Crossref]

F. Poletti, N. V. Wheeler, M. N. Petrovich, N. K. Baddela, E. Numkam Fokoua, J. R. Hayes, D. R. Gray, Z. Li, R. Slavik, and D. J. Richardson, “Towards high-capacity fibre-optic communications at the speed of light in vacuum,” Nat. Photonics 7, 279–284 (2013).
[Crossref]

Y. Jung, V. A. J. M. Sleiffer, N. K. Baddela, M. N. Petrovich, J. R. Hayes, N. V. Wheeler, D. R. Gray, E. Numkam Fokoua, J. P. Wooler, H. H.-L. Wong, F. Parmigiani, S.-U. Alam, J. Surof, M. Kuschnerov, V. Veljanovski, H. De Waardt, F. Poletti, and D. J. Richardson, “First demonstration of a broadband 37-cell hollow core photonic bandgap fiber and its application to high capacity mode division multiplexing,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference, OSA Technical Digest (online) (Optical Society of America, 2013), paper PDP5A.3.

Numkam-Fokoua, E.

J. R. Hayes, S. R. Sandoghchi, T. D. Bradley, Z. Liu, R. Slavik, M. A. Gouveia, N. V. Wheeler, G. T. Jasion, Y. Chen, E. Numkam-Fokoua, M. N. Petrovich, D. J. Richardson, and F. Poletti, “Antiresonant hollow core fiber with octave spanning bandwidth for short haul data communications,” in Optical Fiber Communication Conference Postdeadline Papers, OSA Technical Digest (online) (Optical Society of America, 2016), paper Th5A.3.

Okaba, S.

S. Okaba, T. Takano, F. Benabid, T. Bradley, L. Vincetti, Z. Maizelis, V. Yampol’skii, F. Nori, and H. Katori, “Lamb-Dicke spectroscopy of atoms in a hollow-core photonic crystal fibre,” Nat. Commun. 5, 4096 (2014).
[Crossref]

Okhrimchuk, A. G.

Y. P. Yatsenko, E. N. Pleteneva, A. G. Okhrimchuk, A. V. Gladyshev, A. F. Kosolapov, A. N. Kolyadin, and I. A. Bufetov, “Multiband supercontinuum generation in an air-core revolver fibre,” Quantum Electron. 47, 553–560 (2017).
[Crossref]

Okonkwo, C. M.

V. A. Sleiffer, Y. Jung, P. Leoni, M. Kuschnerov, N. V. Wheeler, N. K. Baddela, R. G. H. van Uden, C. M. Okonkwo, J. R. Hayes, J. Wooler, E. Numkam, R. Slavik, F. Poletti, M. N. Petrovich, V. Veljanovski, S. U. Alam, D. J. Richardson, and H. de Waardt, “30.7  Tb/s (96 × 320  Gb/s) DP-32QAM transmission over 19-cell photonic band gap fiber,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference, OSA Technical Digest (online) (Optical Society of America, 2013), paper OW1I.5.

Ouzounov, D. G.

S. Ghosh, J. E. Sharping, D. G. Ouzounov, and A. L. Gaeta, “Resonant optical interactions with molecules confined in photonic band-gap fibers,” Phys. Rev. Lett. 94, 093902 (2005).
[Crossref]

Pan, C.

J. Lu, C. Yu, H. Chang, H. Chen, Y. Li, C. Pan, and C. Sun, “Terahertz air-core microstructure fiber,” Appl. Phys. Lett. 92, 064105 (2008).
[Crossref]

Parmigiani, F.

V. Sleiffer, Y. Jung, N. Baddela, J. Surof, M. Kuschnerov, V. Veljanovski, J. Hayes, N. Wheeler, E. Numkam Fokoua, J. Wooler, D. Gray, N. Wong, F. Parmigiani, S. Alam, M. Petrovich, F. Poletti, D. Richardson, and H. de Waardt, “High capacity mode-division multiplexed optical transmission in a novel 37-cell hollow-core photonic bandgap fiber,” J. Lightwave Technol. 32, 854–863 (2014).
[Crossref]

Y. Jung, V. A. J. M. Sleiffer, N. K. Baddela, M. N. Petrovich, J. R. Hayes, N. V. Wheeler, D. R. Gray, E. Numkam Fokoua, J. P. Wooler, H. H.-L. Wong, F. Parmigiani, S.-U. Alam, J. Surof, M. Kuschnerov, V. Veljanovski, H. De Waardt, F. Poletti, and D. J. Richardson, “First demonstration of a broadband 37-cell hollow core photonic bandgap fiber and its application to high capacity mode division multiplexing,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference, OSA Technical Digest (online) (Optical Society of America, 2013), paper PDP5A.3.

Paterson, C.

B. Sherlock, F. Yu, J. Stone, S. Warren, C. Paterson, M. A. A. Neil, P. M. W. French, J. Knight, and C. Dunsby, “Tunable fibre-coupled multiphoton microscopy with a negative curvature fibre,” J. Biophotonics 9, 715–720 (2016).
[Crossref]

Paulus, G. G.

T. Balciunas, C. Fourcade-Dutin, G. Fan, T. Witting, A. A. Voronin, A. M. Zheltikov, F. Gérôme, G. G. Paulus, A. Baltuska, and F. Benabid, “A strong-field driver in the single-cycle regime based on self-compression in a kagome fibre,” Nat. Commun. 6, 6117 (2015).
[Crossref]

Pearce, G.

Pearce, G. J.

Peng, J.

Peng, X.

Petersen, J. C.

Petropoulos, P.

J. H. V. Price, T. M. Monro, H. Ebendorff-Heidepriem, F. Poletti, P. Horak, V. Finazzi, J. Y. Y. Leong, P. Petropoulos, J. C. Flanagan, G. Brambilla, X. Feng, and D. J. Richardson, “Mid-IR supercontinuum generation from nonsilica microstructured optical fibers,” IEEE J. Sel. Top. Quantum Electron. 13, 738–749 (2007).
[Crossref]

Petrovich, M.

T. D. Bradley, N. V. Wheeler, G. T. Jasion, D. Gray, J. Hayes, M. A. Gouveia, S. R. Sandoghchi, Y. Chen, F. Poletti, D. Richardson, and M. Petrovich, “Modal content in hypocycloid Kagomé hollow core photonic crystal fibers,” Opt. Express 24, 15798–15812 (2016).
[Crossref]

V. Sleiffer, Y. Jung, N. Baddela, J. Surof, M. Kuschnerov, V. Veljanovski, J. Hayes, N. Wheeler, E. Numkam Fokoua, J. Wooler, D. Gray, N. Wong, F. Parmigiani, S. Alam, M. Petrovich, F. Poletti, D. Richardson, and H. de Waardt, “High capacity mode-division multiplexed optical transmission in a novel 37-cell hollow-core photonic bandgap fiber,” J. Lightwave Technol. 32, 854–863 (2014).
[Crossref]

T. Bradley, N. Wheeler, M. Petrovich, G. Jasion, D. Gray, J. Hayes, S. Sandoghchi, Y. Chen, F. Poletti, D. J. Richardson, and M. B. Alonso, “S2 measurement of higher order mode content in low loss hypocycloid kagomé hollow core photonic crystal fiber,” in Conference on Lasers and Electro-Optics (CLEO), OSA Technical Digest (Optical Society of America, 2016), paper STu4P.8.

Petrovich, M. N.

J. R. Hayes, S. R. Sandoghchi, T. D. Bradley, Z. Liu, R. Slavik, M. A. Gouveia, N. V. Wheeler, G. Jasion, Y. Chen, E. N. Fokoua, M. N. Petrovich, D. J. Richardson, and F. Poletti, “Antiresonant hollow core fiber with an octave spanning bandwidth for short haul data communications,” J. Lightwave Technol. 35, 437–442 (2017).
[Crossref]

N. V. Wheeler, T. D. Bradley, J. R. Hayes, M. A. Gouveia, S. Liang, Y. Chen, S. R. Sandoghchi, S. M. Abokhamis Mousavi, F. Poletti, M. N. Petrovich, and D. J. Richardson, “Low-loss Kagome hollow-core fibers operating from the near- to the mid-IR,” Opt. Lett. 42, 2571–2574 (2017).
[Crossref]

E. N. Fokoua, S. R. Sandoghchi, Y. Chen, G. T. Jasion, N. V. Wheeler, N. K. Baddela, J. R. Hayes, M. N. Petrovich, D. J. Richardson, and F. Poletti, “Accurate modelling of fabricated hollow-core photonic bandgap fibers,” Opt. Express 23, 23117–23132 (2015).
[Crossref]

N. V. Wheeler, A. M. Heidt, N. K. Baddela, E. N. Fokoua, J. R. Hayes, S. R. Sandoghchi, F. Poletti, M. N. Petrovich, and D. J. Richardson, “Low-loss and low-bend-sensitivity mid-infrared guidance in a hollow-core-photonic-bandgap fiber,” Opt. Lett. 39, 295–298 (2014).
[Crossref]

F. Poletti, N. V. Wheeler, M. N. Petrovich, N. K. Baddela, E. Numkam Fokoua, J. R. Hayes, D. R. Gray, Z. Li, R. Slavik, and D. J. Richardson, “Towards high-capacity fibre-optic communications at the speed of light in vacuum,” Nat. Photonics 7, 279–284 (2013).
[Crossref]

F. Poletti, M. N. Petrovich, and D. J. Richardson, “Hollow-core photonic bandgap fibers: technology and applications,” Nanophotonics 2, 315–340 (2013).
[Crossref]

R. Amezcua-Correa, N. G. Broderick, M. N. Petrovich, F. Poletti, and D. J. Richardson, “Design of 7 and 19 cells core air-guiding photonic crystal fibers for low-loss, wide bandwidth and dispersion controlled operation,” Opt. Express 15, 17577–17586 (2007).
[Crossref]

J. R. Hayes, S. R. Sandoghchi, T. D. Bradley, Z. Liu, R. Slavik, M. A. Gouveia, N. V. Wheeler, G. T. Jasion, Y. Chen, E. Numkam-Fokoua, M. N. Petrovich, D. J. Richardson, and F. Poletti, “Antiresonant hollow core fiber with octave spanning bandwidth for short haul data communications,” in Optical Fiber Communication Conference Postdeadline Papers, OSA Technical Digest (online) (Optical Society of America, 2016), paper Th5A.3.

V. A. Sleiffer, Y. Jung, P. Leoni, M. Kuschnerov, N. V. Wheeler, N. K. Baddela, R. G. H. van Uden, C. M. Okonkwo, J. R. Hayes, J. Wooler, E. Numkam, R. Slavik, F. Poletti, M. N. Petrovich, V. Veljanovski, S. U. Alam, D. J. Richardson, and H. de Waardt, “30.7  Tb/s (96 × 320  Gb/s) DP-32QAM transmission over 19-cell photonic band gap fiber,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference, OSA Technical Digest (online) (Optical Society of America, 2013), paper OW1I.5.

Y. Jung, V. A. J. M. Sleiffer, N. K. Baddela, M. N. Petrovich, J. R. Hayes, N. V. Wheeler, D. R. Gray, E. Numkam Fokoua, J. P. Wooler, H. H.-L. Wong, F. Parmigiani, S.-U. Alam, J. Surof, M. Kuschnerov, V. Veljanovski, H. De Waardt, F. Poletti, and D. J. Richardson, “First demonstration of a broadband 37-cell hollow core photonic bandgap fiber and its application to high capacity mode division multiplexing,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference, OSA Technical Digest (online) (Optical Society of America, 2013), paper PDP5A.3.

Pfeiffer, L.

M. A. Duguay, Y. Kokubun, T. L. Koch, and L. Pfeiffer, “Antiresonant reflecting optical waveguides in SiO2 Si multiplayer structures,” Appl. Phys. Lett. 49, 13–15 (1986).
[Crossref]

Pla, J.

Pleteneva, E. N.

Y. P. Yatsenko, E. N. Pleteneva, A. G. Okhrimchuk, A. V. Gladyshev, A. F. Kosolapov, A. N. Kolyadin, and I. A. Bufetov, “Multiband supercontinuum generation in an air-core revolver fibre,” Quantum Electron. 47, 553–560 (2017).
[Crossref]

Plötner, M.

Plotnichenko, V. G.

Pobre, R.

Polanyi, T. G.

T. G. Polanyi, H. C. Bredemeier, and T. W. Davis, “A CO2 laser for surgical research,” Med. Biol. Eng. 8, 541–548 (1970).
[Crossref]

Poletti, F.

W. Belardi, F. D. Lucia, F. Poletti, and P. J. Sazio, “Composite material hollow antiresonant fibers,” Opt. Lett. 42, 2535–2538 (2017).
[Crossref]

L. D. van Putten, E. N. Fokoua, S. M. A. Mousavi, W. Belardi, S. Chaudhuri, J. V. Badding, and F. Poletti, “Exploring the effect of the core boundary curvature in hollow antiresonant fibers,” IEEE Photon. Technol. Lett. 29, 263–266 (2017).
[Crossref]

N. V. Wheeler, T. D. Bradley, J. R. Hayes, M. A. Gouveia, S. Liang, Y. Chen, S. R. Sandoghchi, S. M. Abokhamis Mousavi, F. Poletti, M. N. Petrovich, and D. J. Richardson, “Low-loss Kagome hollow-core fibers operating from the near- to the mid-IR,” Opt. Lett. 42, 2571–2574 (2017).
[Crossref]

J. R. Hayes, S. R. Sandoghchi, T. D. Bradley, Z. Liu, R. Slavik, M. A. Gouveia, N. V. Wheeler, G. Jasion, Y. Chen, E. N. Fokoua, M. N. Petrovich, D. J. Richardson, and F. Poletti, “Antiresonant hollow core fiber with an octave spanning bandwidth for short haul data communications,” J. Lightwave Technol. 35, 437–442 (2017).
[Crossref]

S. Chaudhuri, L. Van Putten, F. Poletti, and P. Sazio, “Low loss transmission in negative curvature optical fibers with elliptical capillary tubes,” J. Lightwave Technol. 34, 4228–4231 (2016).
[Crossref]

T. D. Bradley, N. V. Wheeler, G. T. Jasion, D. Gray, J. Hayes, M. A. Gouveia, S. R. Sandoghchi, Y. Chen, F. Poletti, D. Richardson, and M. Petrovich, “Modal content in hypocycloid Kagomé hollow core photonic crystal fibers,” Opt. Express 24, 15798–15812 (2016).
[Crossref]

S. A. Mousavi, S. R. Sandoghchi, D. J. Richardson, and F. Poletti, “Broadband high birefringence and polarizing hollow core antiresonant fibers,” Opt. Express 24, 22943–22958 (2016).
[Crossref]

J. R. Hayes, F. Poletti, M. S. Abokhamis, N. V. Wheeler, N. K. Baddela, and D. J. Richardson, “Anti-resonant hexagram hollow core fibers,” Opt. Express 23, 1289–1299 (2015).
[Crossref]

E. N. Fokoua, S. R. Sandoghchi, Y. Chen, G. T. Jasion, N. V. Wheeler, N. K. Baddela, J. R. Hayes, M. N. Petrovich, D. J. Richardson, and F. Poletti, “Accurate modelling of fabricated hollow-core photonic bandgap fibers,” Opt. Express 23, 23117–23132 (2015).
[Crossref]

N. V. Wheeler, A. M. Heidt, N. K. Baddela, E. N. Fokoua, J. R. Hayes, S. R. Sandoghchi, F. Poletti, M. N. Petrovich, and D. J. Richardson, “Low-loss and low-bend-sensitivity mid-infrared guidance in a hollow-core-photonic-bandgap fiber,” Opt. Lett. 39, 295–298 (2014).
[Crossref]

F. Poletti, “Nested antiresonant nodeless hollow core fiber,” Opt. Express 22, 23807–23828 (2014).
[Crossref]

E. N. Fokoua, D. J. Richardson, and F. Poletti, “Impact of structural distortions on the performance of hollow-core photonic bandgap fibers,” Opt. Express 22, 2735–2744 (2014).
[Crossref]

V. Sleiffer, Y. Jung, N. Baddela, J. Surof, M. Kuschnerov, V. Veljanovski, J. Hayes, N. Wheeler, E. Numkam Fokoua, J. Wooler, D. Gray, N. Wong, F. Parmigiani, S. Alam, M. Petrovich, F. Poletti, D. Richardson, and H. de Waardt, “High capacity mode-division multiplexed optical transmission in a novel 37-cell hollow-core photonic bandgap fiber,” J. Lightwave Technol. 32, 854–863 (2014).
[Crossref]

F. Poletti, M. N. Petrovich, and D. J. Richardson, “Hollow-core photonic bandgap fibers: technology and applications,” Nanophotonics 2, 315–340 (2013).
[Crossref]

F. Poletti, N. V. Wheeler, M. N. Petrovich, N. K. Baddela, E. Numkam Fokoua, J. R. Hayes, D. R. Gray, Z. Li, R. Slavik, and D. J. Richardson, “Towards high-capacity fibre-optic communications at the speed of light in vacuum,” Nat. Photonics 7, 279–284 (2013).
[Crossref]

E. N. Fokoua, F. Poletti, and D. J. Richardson, “Analysis of light scattering from surface roughness in hollow-core photonic bandgap fibers,” Opt. Express 20, 20980–20991 (2012).
[Crossref]

T. Morioka, Y. Awaji, R. Ryf, P. Winzer, D. Richardson, and F. Poletti, “Enhancing optical communications with brand new fibers,” IEEE Commun. Mag. 50(2), S31–S42 (2012).
[Crossref]

R. Amezcua-Correa, N. G. Broderick, M. N. Petrovich, F. Poletti, and D. J. Richardson, “Design of 7 and 19 cells core air-guiding photonic crystal fibers for low-loss, wide bandwidth and dispersion controlled operation,” Opt. Express 15, 17577–17586 (2007).
[Crossref]

J. H. V. Price, T. M. Monro, H. Ebendorff-Heidepriem, F. Poletti, P. Horak, V. Finazzi, J. Y. Y. Leong, P. Petropoulos, J. C. Flanagan, G. Brambilla, X. Feng, and D. J. Richardson, “Mid-IR supercontinuum generation from nonsilica microstructured optical fibers,” IEEE J. Sel. Top. Quantum Electron. 13, 738–749 (2007).
[Crossref]

W. Belardi, N. White, J. Lousteau, X. Feng, and F. Poletti, “Hollow core antiresonant fibers in borosilicate glass,” in Workshop on Specialty Optical Fibers and their Applications, OSA Technical Digest (online) (Optical Society of America, 2015), paper WW4A.4.

J. R. Hayes, S. R. Sandoghchi, T. D. Bradley, Z. Liu, R. Slavik, M. A. Gouveia, N. V. Wheeler, G. T. Jasion, Y. Chen, E. Numkam-Fokoua, M. N. Petrovich, D. J. Richardson, and F. Poletti, “Antiresonant hollow core fiber with octave spanning bandwidth for short haul data communications,” in Optical Fiber Communication Conference Postdeadline Papers, OSA Technical Digest (online) (Optical Society of America, 2016), paper Th5A.3.

T. Bradley, N. Wheeler, M. Petrovich, G. Jasion, D. Gray, J. Hayes, S. Sandoghchi, Y. Chen, F. Poletti, D. J. Richardson, and M. B. Alonso, “S2 measurement of higher order mode content in low loss hypocycloid kagomé hollow core photonic crystal fiber,” in Conference on Lasers and Electro-Optics (CLEO), OSA Technical Digest (Optical Society of America, 2016), paper STu4P.8.

F. Poletti, J. R. Hayes, and D. Richardson, “Optimising the performances of hollow antiresonant fibres,” in 37th European Conference and Exposition on Optical Communications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper Mo.2.LeCervin.2.

V. A. Sleiffer, Y. Jung, P. Leoni, M. Kuschnerov, N. V. Wheeler, N. K. Baddela, R. G. H. van Uden, C. M. Okonkwo, J. R. Hayes, J. Wooler, E. Numkam, R. Slavik, F. Poletti, M. N. Petrovich, V. Veljanovski, S. U. Alam, D. J. Richardson, and H. de Waardt, “30.7  Tb/s (96 × 320  Gb/s) DP-32QAM transmission over 19-cell photonic band gap fiber,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference, OSA Technical Digest (online) (Optical Society of America, 2013), paper OW1I.5.

Y. Jung, V. A. J. M. Sleiffer, N. K. Baddela, M. N. Petrovich, J. R. Hayes, N. V. Wheeler, D. R. Gray, E. Numkam Fokoua, J. P. Wooler, H. H.-L. Wong, F. Parmigiani, S.-U. Alam, J. Surof, M. Kuschnerov, V. Veljanovski, H. De Waardt, F. Poletti, and D. J. Richardson, “First demonstration of a broadband 37-cell hollow core photonic bandgap fiber and its application to high capacity mode division multiplexing,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference, OSA Technical Digest (online) (Optical Society of America, 2013), paper PDP5A.3.

S. A. Mousavi, D. J. Richardson, S. R. Sandoghchi, and F. Poletti, “First design of high birefringence and polarising hollow core anti-resonant fibre,” in European Conference on Optical Communication (ECOC), Valencia (2015), pp. 1–3.

Ponseca, C. S.

Popp, J.

A. Hartung, J. Kobelke, A. Schwuchow, K. Wondraczek, J. Bierlich, J. Popp, T. Frosch, and M. A. Schmidt, “Origins of modal loss of antiresonant hollow-core optical fibers in the ultraviolet,” Opt. Express 23, 2557–2565 (2015).
[Crossref]

A. Hartung, J. Kobelke, A. Schwuchow, J. Bierlich, J. Popp, M. A. Schmidt, and T. Frosch, “Low-loss single-mode guidance in large-core antiresonant hollow-core fibers,” Opt. Lett. 40, 3432–3435 (2015).
[Crossref]

A. Hartung, J. Kobelke, A. Schwuchow, K. Wondraczek, J. Bierlich, J. Popp, T. Frosch, and M. A. Schmidt, “Double antiresonant hollow core fiber-guidance in the deep ultraviolet by modified tunneling leaky modes,” Opt. Express 22, 19131–19140 (2014).
[Crossref]

T. Frosch, M. Schmitt, T. Noll, G. Bringmann, K. Schenzel, and J. Popp, “Ultrasensitive in situ tracing of the alkaloid dioncophylline A in the tropical liana Triphyophyllum peltatum by applying deep-UV resonance Raman microscopy,” Anal. Chem. 79, 986–993 (2007).
[Crossref]

T. Frosch, N. Tarcea, M. Schmitt, H. Thiele, F. Langenhorst, and J. Popp, “UV Raman imaging-A promising tool for astrobiology: comparative Raman studies with different excitation wavelengths on SNC Martian meteorites,” Anal. Chem. 79, 1101–1108 (2007).
[Crossref]

Pottage, J.

Poulton, C. G.

Price, J. H. V.

J. H. V. Price, T. M. Monro, H. Ebendorff-Heidepriem, F. Poletti, P. Horak, V. Finazzi, J. Y. Y. Leong, P. Petropoulos, J. C. Flanagan, G. Brambilla, X. Feng, and D. J. Richardson, “Mid-IR supercontinuum generation from nonsilica microstructured optical fibers,” IEEE J. Sel. Top. Quantum Electron. 13, 738–749 (2007).
[Crossref]

Pryamikov, A.

A. F. Kosolapov, A. Pryamikov, G. Alagashev, A. Kolyadin, A. Biriukov, and E. Dianov, “Negative curvature hollow-core fibers (NCHCFs) for mid-IR applications,” in Advanced Photonics, OSA Technical Digest (online) (Optical Society of America, 2014), paper SoTu2B.3.

Pryamikov, A. D.

A. A. Krylov, A. K. Senatorov, A. D. Pryamikov, A. F. Kosolapov, A. N. Kolyadin, G. K. Alagashev, A. V. Gladyshev, and I. A. Bufetov, “1.56  μm sub-microjoule femtosecond pulse delivery through low-loss microstructured revolver hollow-core fiber,” Laser Phys. Lett. 14, 035104 (2017).
[Crossref]

A. V. Gladyshev, A. F. Kosolapov, M. M. Khudyakov, Y. P. Yatsenko, A. N. Kolyadin, A. A. Krylov, A. D. Pryamikov, A. S. Biriukov, M. E. Likhachev, I. A. Bufetov, and E. M. Dianov, “4.4  μm Raman laser based on hollow-core silica fibre,” Quantum Electron. 47, 491–494 (2017).
[Crossref]

A. V. Gladyshev, A. N. Kolyadin, A. F. Kosolapov, Y. P. Yatsenko, A. D. Pryamikov, A. S. Biriukov, I. A. Bufetov, and E. M. Dianov, “Low-threshold 1.9  μm Raman generation in microstructured hydrogen-filled hollow-core revolver fibre with nested capillaries,” Laser Phys. 27, 025101 (2016).
[Crossref]

A. D. Pryamikov, A. F. Kosolapov, G. K. Alagashev, A. N. Kolyadin, V. V. Vel’miskin, A. S. Biriukov, and I. A. Bufetov, “Hollow-core microstructured ‘revolver’ fibre for the UV spectral range,” Quantum Electron. 46, 1129–1133 (2016).
[Crossref]

A. F. Kosolapov, G. K. Alagashev, A. N. Kolyadin, A. D. Pryamikov, A. S. Biryukov, I. A. Bufetov, and E. M. Dianov, “Hollow-core revolver fibre with a double-capillary reflective cladding,” Quantum Electron. 46, 267–270 (2016).
[Crossref]

A. D. Pryamikov, G. K. Alagashev, and A. S. Biriukov, “Impact of core cladding boundary shape on the waveguide properties of hollow core microstructured fibers,” Laser Phys. 26, 125104 (2016).
[Crossref]

Y. P. Yatsenko, A. A. Krylov, A. D. Pryamikov, A. F. Kosolapov, A. N. Kolyadin, A. V. Gladyshev, and I. A. Bufetov, “Propagation of femtosecond pulses in a hollow-core revolver fibre,” Quantum Electron. 46, 617–626 (2016).
[Crossref]

A. N. Kolyadin, G. K. Alagashev, A. D. Pryamikov, A. V. Gladyshev, A. F. Kosolapov, A. S. Biriukov, and I. A. Bufetov, “Negative curvature hollow core fibers for Raman lasing in the mid IR spectral range,” J. Phys. 737, 012009 (2016).

G. K. Alagashev, A. D. Pryamikov, A. F. Kosolapov, A. N. Kolyadin, A. Y. Lukovkin, and A. S. Biriukov, “Impact of geometrical parameters on the optical properties of negative curvature hollow core fibers,” Laser Phys. 25, 055101 (2015).
[Crossref]

A. V. Gladyshev, A. N. Kolyadin, A. F. Kosolapov, Y. P. Yatsenko, A. D. Pryamikov, A. S. Biryukov, I. A. Bufetov, and E. M. Dianov, “Efficient 1.9-μm Raman generation in a hydrogen-filled hollow-core fibre,” Quantum Electron. 45, 807–812 (2015).
[Crossref]

D. V. Bogdanovich, A. K. Srivastava, V. G. Chigrinov, A. S. Biriukov, and A. D. Pryamikov, “Hollow core negative curvature fibre with layers of photoaligned optically anisotropic material,” Laser Phys. Lett. 12, 105101 (2015).
[Crossref]

V. S. Shiryaev, A. F. Kosolapov, A. D. Pryamikov, G. E. Snopatin, M. F. Churbanov, A. S. Biriukov, T. V. Kotereva, S. V. Mishinov, G. K. Alagashev, and A. N. Kolyadin, “Development of technique for preparation of As2S3 glass preforms for hollow core microstructured optical fibers,” J. Optoelectron. Adv. Mater. 16, 1020–1025 (2014).

A. N. Kolyadin, A. F. Kosolapov, A. D. Pryamikov, A. S. Biriukov, V. G. Plotnichenko, and E. M. Dianov, “Light transmission in negative curvature hollow core fiber in extremely high material loss region,” Opt. Express 21, 9514–9519 (2013).
[Crossref]

A. F. Kosolapov, A. D. Pryamikov, A. S. Biriukov, V. S. Shiryaev, M. S. Astapovich, G. E. Snopatin, V. G. Plotnichenko, M. F. Churbanov, and E. M. Dianov, “Demonstration of CO2-laser power delivery through chalcogenide-glass fiber with negative-curvature hollow core,” Opt. Express 19, 25723–25728 (2011).
[Crossref]

A. D. Pryamikov, A. S. Biriukov, A. F. Kosolapov, V. G. Plotnichenko, S. L. Semjonov, and E. M. Dianov, “Demonstration of a waveguide regime for a silica hollow-core microstructured optical fiber with a negative curvature of the core boundary in the spectral region >3.5  μm,” Opt. Express 19, 1441–1448 (2011).
[Crossref]

A. D. Pryamikov, A. F. Kosolapov, V. G. Plotnichenko, and E. M. Dianov, “Transmission of CO2 laser radiation through glass hollow core microstructured fibers,” in CO2 Laser-Optimisation and Application, D. C. Dumitras, ed. (InTech, 2012), pp. 227–248.

Pryamikova, A. D.

A. N. Kolyadin, G. K. Alagasheva, A. D. Pryamikova, L. Mouradianb, A. Zeytunyanb, H. Toneyanb, A. F. Kosolapova, and I. A. Bufetov, “Negative curvature hollow-core fibers: dispersion properties and femtosecond pulse delivery,” Phys. Procedia 73, 59–66 (2015).
[Crossref]

Qi, W.

Rammler, S.

Rao, Y. J.

M. Deng, C. P. Tang, T. Zhu, and Y. J. Rao, “Highly sensitive bend sensor based on Mach–Zehnder interferometer using photonic crystal fiber,” Opt. Commun. 284, 2849–2853 (2011).
[Crossref]

Ratanavis, A.

Rath, J.

C. Dumitrache, J. Rath, and A. P. Yalin, “High power spark delivery system using hollow core kagome lattice fibers,” Materials 7, 5700–5710 (2014).
[Crossref]

Raymer, M. G.

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and photonic guidance of multi-octave optical-frequency combs,” Science 318, 1118–1121 (2007).
[Crossref]

Reid, D. T.

Ren, G.

Renversez, G.

T. P. White, B. T. Kuhlmey, R. C. McPhedran, D. Maystre, G. Renversez, C. M. de Sterke, and L. C. Botten, “Multipole method for microstructured optical fibers. I. Formulation,” J. Opt. Soc. Am. B 19, 2322–2330 (2002).
[Crossref]

F. Zolla, G. Renversez, A. Nicolet, B. Kuhlmey, S. Guenneau, D. Felbacq, A. Argyros, and S. Leon-Saval, Foundations of Photonic Crystal Fibres, 2nd ed. (Imperial College, 2012).

Rhonehouse, D.

Richardson, D.

T. D. Bradley, N. V. Wheeler, G. T. Jasion, D. Gray, J. Hayes, M. A. Gouveia, S. R. Sandoghchi, Y. Chen, F. Poletti, D. Richardson, and M. Petrovich, “Modal content in hypocycloid Kagomé hollow core photonic crystal fibers,” Opt. Express 24, 15798–15812 (2016).
[Crossref]

V. Sleiffer, Y. Jung, N. Baddela, J. Surof, M. Kuschnerov, V. Veljanovski, J. Hayes, N. Wheeler, E. Numkam Fokoua, J. Wooler, D. Gray, N. Wong, F. Parmigiani, S. Alam, M. Petrovich, F. Poletti, D. Richardson, and H. de Waardt, “High capacity mode-division multiplexed optical transmission in a novel 37-cell hollow-core photonic bandgap fiber,” J. Lightwave Technol. 32, 854–863 (2014).
[Crossref]

T. Morioka, Y. Awaji, R. Ryf, P. Winzer, D. Richardson, and F. Poletti, “Enhancing optical communications with brand new fibers,” IEEE Commun. Mag. 50(2), S31–S42 (2012).
[Crossref]

F. Poletti, J. R. Hayes, and D. Richardson, “Optimising the performances of hollow antiresonant fibres,” in 37th European Conference and Exposition on Optical Communications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper Mo.2.LeCervin.2.

Richardson, D. J.

J. R. Hayes, S. R. Sandoghchi, T. D. Bradley, Z. Liu, R. Slavik, M. A. Gouveia, N. V. Wheeler, G. Jasion, Y. Chen, E. N. Fokoua, M. N. Petrovich, D. J. Richardson, and F. Poletti, “Antiresonant hollow core fiber with an octave spanning bandwidth for short haul data communications,” J. Lightwave Technol. 35, 437–442 (2017).
[Crossref]

N. V. Wheeler, T. D. Bradley, J. R. Hayes, M. A. Gouveia, S. Liang, Y. Chen, S. R. Sandoghchi, S. M. Abokhamis Mousavi, F. Poletti, M. N. Petrovich, and D. J. Richardson, “Low-loss Kagome hollow-core fibers operating from the near- to the mid-IR,” Opt. Lett. 42, 2571–2574 (2017).
[Crossref]

S. A. Mousavi, S. R. Sandoghchi, D. J. Richardson, and F. Poletti, “Broadband high birefringence and polarizing hollow core antiresonant fibers,” Opt. Express 24, 22943–22958 (2016).
[Crossref]

J. R. Hayes, F. Poletti, M. S. Abokhamis, N. V. Wheeler, N. K. Baddela, and D. J. Richardson, “Anti-resonant hexagram hollow core fibers,” Opt. Express 23, 1289–1299 (2015).
[Crossref]

E. N. Fokoua, S. R. Sandoghchi, Y. Chen, G. T. Jasion, N. V. Wheeler, N. K. Baddela, J. R. Hayes, M. N. Petrovich, D. J. Richardson, and F. Poletti, “Accurate modelling of fabricated hollow-core photonic bandgap fibers,” Opt. Express 23, 23117–23132 (2015).
[Crossref]

N. V. Wheeler, A. M. Heidt, N. K. Baddela, E. N. Fokoua, J. R. Hayes, S. R. Sandoghchi, F. Poletti, M. N. Petrovich, and D. J. Richardson, “Low-loss and low-bend-sensitivity mid-infrared guidance in a hollow-core-photonic-bandgap fiber,” Opt. Lett. 39, 295–298 (2014).
[Crossref]

E. N. Fokoua, D. J. Richardson, and F. Poletti, “Impact of structural distortions on the performance of hollow-core photonic bandgap fibers,” Opt. Express 22, 2735–2744 (2014).
[Crossref]

F. Poletti, N. V. Wheeler, M. N. Petrovich, N. K. Baddela, E. Numkam Fokoua, J. R. Hayes, D. R. Gray, Z. Li, R. Slavik, and D. J. Richardson, “Towards high-capacity fibre-optic communications at the speed of light in vacuum,” Nat. Photonics 7, 279–284 (2013).
[Crossref]

F. Poletti, M. N. Petrovich, and D. J. Richardson, “Hollow-core photonic bandgap fibers: technology and applications,” Nanophotonics 2, 315–340 (2013).
[Crossref]

E. N. Fokoua, F. Poletti, and D. J. Richardson, “Analysis of light scattering from surface roughness in hollow-core photonic bandgap fibers,” Opt. Express 20, 20980–20991 (2012).
[Crossref]

R. Amezcua-Correa, N. G. Broderick, M. N. Petrovich, F. Poletti, and D. J. Richardson, “Design of 7 and 19 cells core air-guiding photonic crystal fibers for low-loss, wide bandwidth and dispersion controlled operation,” Opt. Express 15, 17577–17586 (2007).
[Crossref]

J. H. V. Price, T. M. Monro, H. Ebendorff-Heidepriem, F. Poletti, P. Horak, V. Finazzi, J. Y. Y. Leong, P. Petropoulos, J. C. Flanagan, G. Brambilla, X. Feng, and D. J. Richardson, “Mid-IR supercontinuum generation from nonsilica microstructured optical fibers,” IEEE J. Sel. Top. Quantum Electron. 13, 738–749 (2007).
[Crossref]

J. R. Hayes, S. R. Sandoghchi, T. D. Bradley, Z. Liu, R. Slavik, M. A. Gouveia, N. V. Wheeler, G. T. Jasion, Y. Chen, E. Numkam-Fokoua, M. N. Petrovich, D. J. Richardson, and F. Poletti, “Antiresonant hollow core fiber with octave spanning bandwidth for short haul data communications,” in Optical Fiber Communication Conference Postdeadline Papers, OSA Technical Digest (online) (Optical Society of America, 2016), paper Th5A.3.

T. Bradley, N. Wheeler, M. Petrovich, G. Jasion, D. Gray, J. Hayes, S. Sandoghchi, Y. Chen, F. Poletti, D. J. Richardson, and M. B. Alonso, “S2 measurement of higher order mode content in low loss hypocycloid kagomé hollow core photonic crystal fiber,” in Conference on Lasers and Electro-Optics (CLEO), OSA Technical Digest (Optical Society of America, 2016), paper STu4P.8.

V. A. Sleiffer, Y. Jung, P. Leoni, M. Kuschnerov, N. V. Wheeler, N. K. Baddela, R. G. H. van Uden, C. M. Okonkwo, J. R. Hayes, J. Wooler, E. Numkam, R. Slavik, F. Poletti, M. N. Petrovich, V. Veljanovski, S. U. Alam, D. J. Richardson, and H. de Waardt, “30.7  Tb/s (96 × 320  Gb/s) DP-32QAM transmission over 19-cell photonic band gap fiber,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference, OSA Technical Digest (online) (Optical Society of America, 2013), paper OW1I.5.

Y. Jung, V. A. J. M. Sleiffer, N. K. Baddela, M. N. Petrovich, J. R. Hayes, N. V. Wheeler, D. R. Gray, E. Numkam Fokoua, J. P. Wooler, H. H.-L. Wong, F. Parmigiani, S.-U. Alam, J. Surof, M. Kuschnerov, V. Veljanovski, H. De Waardt, F. Poletti, and D. J. Richardson, “First demonstration of a broadband 37-cell hollow core photonic bandgap fiber and its application to high capacity mode division multiplexing,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference, OSA Technical Digest (online) (Optical Society of America, 2013), paper PDP5A.3.

S. A. Mousavi, D. J. Richardson, S. R. Sandoghchi, and F. Poletti, “First design of high birefringence and polarising hollow core anti-resonant fibre,” in European Conference on Optical Communication (ECOC), Valencia (2015), pp. 1–3.

Richardson, K.

B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5, 141–148 (2011).

Ritari, T.

Roberts, P.

Roberts, P. J.

Y. Y. Wang, N. V. Wheeler, F. Couny, P. J. Roberts, and F. Benabid, “Low loss broadband transmission in hypocycloid-core Kagome hollow-core photonic crystal fiber,” Opt. Lett. 36, 669–671 (2011).
[Crossref]

F. Couny, P. J. Roberts, T. A. Birks, and F. Benabid, “Square-lattice large-pitch hollow-core photonic crystal fiber,” Opt. Express 16, 20626–20636 (2008).
[Crossref]

F. Benabid and P. J. Roberts, “Guidance mechanisms in hollow-core photonic crystal fiber,” Proc. SPIE 6901, 69010U (2008).
[Crossref]

F. Couny, F. Benabid, P. J. Roberts, M. T. Burnett, and S. A. Maier, “Identification of Bloch-modes in hollow-core photonic crystal fiber cladding,” Opt. Express 15, 325–338 (2007).
[Crossref]

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and photonic guidance of multi-octave optical-frequency combs,” Science 318, 1118–1121 (2007).
[Crossref]

P. J. Roberts, F. Couny, H. Sabert, B. J. Mangan, D. P. Williams, L. Farr, M. W. Mason, A. Tomlinson, T. A. Birks, J. C. Knight, and P. St.J. Russell, “Ultimate low loss of hollow-core photonic crystal fibres,” Opt. Express 13, 236–244 (2005).
[Crossref]

P. J. Roberts, D. P. Williams, B. J. Mangan, H. Sabert, F. Couny, W. J. Wadsworth, T. A. Birks, J. C. Knight, and P. St.J. Russell, “Realizing low loss air core photonic crystal fibers by exploiting an antiresonant core surround,” Opt. Express 13, 8277–8285 (2005).
[Crossref]

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St.J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537–1539 (1999).
[Crossref]

Y. Wang, F. Couny, P. J. Roberts, and F. Benabid, “Low loss broadband transmission in optimized core-shaped Kagome hollow-core PCF,” in Conference on Lasers and Electro-Optics (CLEO), OSA Technical Digest (CD) (Optical Society of America, 2010), paper CPDB4.

B. J. Mangan, L. Farr, A. Langford, P. J. Roberts, D. P. Williams, F. Couny, M. Lawman, M. Mason, S. Coupland, R. Flea, H. Sabert, T. A. Birks, J. C. Knight, and P. St.J. Russell, “Low loss (1.7  dB/km) hollow core photonic bandgap fiber,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2004), paper PD24.

Rose, A.

Roth, P.

Rudolph, W.

Ryf, R.

T. Morioka, Y. Awaji, R. Ryf, P. Winzer, D. Richardson, and F. Poletti, “Enhancing optical communications with brand new fibers,” IEEE Commun. Mag. 50(2), S31–S42 (2012).
[Crossref]

Sabert, H.

P. J. Roberts, D. P. Williams, B. J. Mangan, H. Sabert, F. Couny, W. J. Wadsworth, T. A. Birks, J. C. Knight, and P. St.J. Russell, “Realizing low loss air core photonic crystal fibers by exploiting an antiresonant core surround,” Opt. Express 13, 8277–8285 (2005).
[Crossref]

P. J. Roberts, F. Couny, H. Sabert, B. J. Mangan, D. P. Williams, L. Farr, M. W. Mason, A. Tomlinson, T. A. Birks, J. C. Knight, and P. St.J. Russell, “Ultimate low loss of hollow-core photonic crystal fibres,” Opt. Express 13, 236–244 (2005).
[Crossref]

B. J. Mangan, L. Farr, A. Langford, P. J. Roberts, D. P. Williams, F. Couny, M. Lawman, M. Mason, S. Coupland, R. Flea, H. Sabert, T. A. Birks, J. C. Knight, and P. St.J. Russell, “Low loss (1.7  dB/km) hollow core photonic bandgap fiber,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2004), paper PD24.

Sader, R.

S. Stübinger, B. von Rechenberg, H. F. Zeilhofer, R. Sader, and C. Landes, “Er:YAG laser osteotomy for removal of impacted teeth: clinical comparison of two techniques,” Lasers Surg. Med. 39, 583–588 (2007).
[Crossref]

Sadiku, M. N. O.

M. N. O. Sadiku, Numerical Techniques in Electromagnetics, 2nd ed. (CRC Press, 2001).

Sadler, P. J.

A. M. Cubillas, S. Unterkofler, T. G. Euser, B. J. Etzold, A. C. Jones, P. J. Sadler, P. Wasserscheid, and P. St.J. Russell, “Photonic crystal fibres for chemical sensing and photochemistry,” Chem. Soc. Rev. 42, 8629–8648 (2013).
[Crossref]

Saitoh, K.

Sakaki, T.

Y. Kokubun, T. Baba, T. Sakaki, and K. Iga, “Low-loss antiresonant reflecting optical waveguide on Si substrate in visible-wavelength region,” Electron. Lett. 22, 892–893 (1986).
[Crossref]

Saleh, B. E. A.

B. E. A. Saleh and M. C. Teich, “Guided-wave optics,” in Fundamentals of Photonics, 2nd ed. (Wiley, 2007), pp. 289–299.

Saleh, M.

P. Hölzer, W. Chang, J. C. Travers, A. Nazarkin, J. Nold, N. Y. Joly, M. Saleh, F. Biancalana, and P. St.J. Russell, “Femtosecond nonlinear fiber optics in the ionization regime,” Phys. Rev. Lett. 107, 203901 (2011).
[Crossref]

Saleh, M. F.

Y. Chen, M. F. Saleh, N. Y. Joly, and F. Biancalana, “Low-loss single-mode negatively curved square-core hollow fibers,” Opt. Lett. 42, 1285–1288 (2017).
[Crossref]

Y. Chen, M. F. Saleh, N. Y. Joly, and F. Biancalana, “Guiding 2.94  μm using low-loss microstructured antiresonant triangular-core fibers,” J. Appl. Phys. 119, 143104 (2016).
[Crossref]

Salin, F.

Sandoghchi, S.

T. Bradley, N. Wheeler, M. Petrovich, G. Jasion, D. Gray, J. Hayes, S. Sandoghchi, Y. Chen, F. Poletti, D. J. Richardson, and M. B. Alonso, “S2 measurement of higher order mode content in low loss hypocycloid kagomé hollow core photonic crystal fiber,” in Conference on Lasers and Electro-Optics (CLEO), OSA Technical Digest (Optical Society of America, 2016), paper STu4P.8.

Sandoghchi, S. R.

J. R. Hayes, S. R. Sandoghchi, T. D. Bradley, Z. Liu, R. Slavik, M. A. Gouveia, N. V. Wheeler, G. Jasion, Y. Chen, E. N. Fokoua, M. N. Petrovich, D. J. Richardson, and F. Poletti, “Antiresonant hollow core fiber with an octave spanning bandwidth for short haul data communications,” J. Lightwave Technol. 35, 437–442 (2017).
[Crossref]

N. V. Wheeler, T. D. Bradley, J. R. Hayes, M. A. Gouveia, S. Liang, Y. Chen, S. R. Sandoghchi, S. M. Abokhamis Mousavi, F. Poletti, M. N. Petrovich, and D. J. Richardson, “Low-loss Kagome hollow-core fibers operating from the near- to the mid-IR,” Opt. Lett. 42, 2571–2574 (2017).
[Crossref]

T. D. Bradley, N. V. Wheeler, G. T. Jasion, D. Gray, J. Hayes, M. A. Gouveia, S. R. Sandoghchi, Y. Chen, F. Poletti, D. Richardson, and M. Petrovich, “Modal content in hypocycloid Kagomé hollow core photonic crystal fibers,” Opt. Express 24, 15798–15812 (2016).
[Crossref]

S. A. Mousavi, S. R. Sandoghchi, D. J. Richardson, and F. Poletti, “Broadband high birefringence and polarizing hollow core antiresonant fibers,” Opt. Express 24, 22943–22958 (2016).
[Crossref]

E. N. Fokoua, S. R. Sandoghchi, Y. Chen, G. T. Jasion, N. V. Wheeler, N. K. Baddela, J. R. Hayes, M. N. Petrovich, D. J. Richardson, and F. Poletti, “Accurate modelling of fabricated hollow-core photonic bandgap fibers,” Opt. Express 23, 23117–23132 (2015).
[Crossref]

N. V. Wheeler, A. M. Heidt, N. K. Baddela, E. N. Fokoua, J. R. Hayes, S. R. Sandoghchi, F. Poletti, M. N. Petrovich, and D. J. Richardson, “Low-loss and low-bend-sensitivity mid-infrared guidance in a hollow-core-photonic-bandgap fiber,” Opt. Lett. 39, 295–298 (2014).
[Crossref]

J. R. Hayes, S. R. Sandoghchi, T. D. Bradley, Z. Liu, R. Slavik, M. A. Gouveia, N. V. Wheeler, G. T. Jasion, Y. Chen, E. Numkam-Fokoua, M. N. Petrovich, D. J. Richardson, and F. Poletti, “Antiresonant hollow core fiber with octave spanning bandwidth for short haul data communications,” in Optical Fiber Communication Conference Postdeadline Papers, OSA Technical Digest (online) (Optical Society of America, 2016), paper Th5A.3.

S. A. Mousavi, D. J. Richardson, S. R. Sandoghchi, and F. Poletti, “First design of high birefringence and polarising hollow core anti-resonant fibre,” in European Conference on Optical Communication (ECOC), Valencia (2015), pp. 1–3.

Sanghera, J. S.

Saraceno, C. J.

Sarkar, B. C.

B. C. Sarkar, P. K. Choudhury, and T. Yoshino, “On the analysis of a weakly guiding doubly clad dielectric optical fiber with annular core,” Microwave Opt. Technol. Lett. 31, 435–439 (2001).
[Crossref]

Sarukura, N.

Sasaki, K. M.

K. M. Sasaki, A. Aoki, S. Ichinose, T. Yoshino, S. Yamada, and I. Ishikawa, “Scanning electron microscopy and Fourier transformed infrared spectroscopy analysis of bone removal using Er:YAG and CO2 lasers,” J. Periodontol. 73, 643–652 (2002).
[Crossref]

Sazio, P.

Sazio, P. J.

Schell, B.

Schenzel, K.

T. Frosch, M. Schmitt, T. Noll, G. Bringmann, K. Schenzel, and J. Popp, “Ultrasensitive in situ tracing of the alkaloid dioncophylline A in the tropical liana Triphyophyllum peltatum by applying deep-UV resonance Raman microscopy,” Anal. Chem. 79, 986–993 (2007).
[Crossref]

Schmidt, M. A.

Schmitt, M.

T. Frosch, M. Schmitt, T. Noll, G. Bringmann, K. Schenzel, and J. Popp, “Ultrasensitive in situ tracing of the alkaloid dioncophylline A in the tropical liana Triphyophyllum peltatum by applying deep-UV resonance Raman microscopy,” Anal. Chem. 79, 986–993 (2007).
[Crossref]

T. Frosch, N. Tarcea, M. Schmitt, H. Thiele, F. Langenhorst, and J. Popp, “UV Raman imaging-A promising tool for astrobiology: comparative Raman studies with different excitation wavelengths on SNC Martian meteorites,” Anal. Chem. 79, 1101–1108 (2007).
[Crossref]

Schreiber, T.

Schriber, C.

Schulzgen, A.

A. V. Newkirk, J. E. Antonio-Lopez, J. Anderson, R. Alvarez-Aguirre, R. Amezcua-Correa, and A. Schulzgen, “Higher order modes in anti-resonant hollow core fibers,” in Advanced Photonics (IPR, NOMA, Sensors, Networks, SPPCom, SOF), OSA Technical Digest (online) (Optical Society of America, 2016), paper SoM3F.4.

Schülzgen, A.

Schwuchow, A.

Scol, F.

Semjonov, S. L.

Senatorov, A. K.

A. A. Krylov, A. K. Senatorov, A. D. Pryamikov, A. F. Kosolapov, A. N. Kolyadin, G. K. Alagashev, A. V. Gladyshev, and I. A. Bufetov, “1.56  μm sub-microjoule femtosecond pulse delivery through low-loss microstructured revolver hollow-core fiber,” Laser Phys. Lett. 14, 035104 (2017).
[Crossref]

Setti, V.

Shafer, K. E.

E. B. Hanlon, R. Manoharan, T. W. Koo, K. E. Shafer, J. T. Motz, M. Fitzmaurice, J. R. Kramer, I. Itzkan, R. R. Dasari, and M. S. Feld, “Prospects for in vivo Raman spectroscopy,” Phys. Med. Biol. 45, R1–R59 (2000).
[Crossref]

Shapira, O.

Sharping, J. E.

S. Ghosh, J. E. Sharping, D. G. Ouzounov, and A. L. Gaeta, “Resonant optical interactions with molecules confined in photonic band-gap fibers,” Phys. Rev. Lett. 94, 093902 (2005).
[Crossref]

Shaw, L. B.

Shephard, J. D.

R. M. Carter, W. N. MacPherson, P. Jaworski, F. Yu, R. Beck, J. D. Shephard, and D. P. Hand, “Dispersion measurement of microstructured negative curvature hollow core fiber,” Opt. Eng. 55, 116106 (2016).
[Crossref]

P. Jaworski, F. Yu, R. M. Carter, J. C. Knight, J. D. Shephard, and D. P. Hand, “High energy green nanosecond and picosecond pulse delivery through a negative curvature fiber for precision micro-machining,” Opt. Express 23, 8498–8506 (2015).
[Crossref]

J. D. Shephard, A. Urich, R. M. Carter, P. Jaworski, R. R. J. Maier, W. Belardi, F. Yu, W. J. Wadsworth, J. C. Knight, and D. P. Hand, “Silica hollow core microstructured fibers for beam delivery in industrial and medical applications,” Front. Phys. 3, 24 (2015).
[Crossref]

A. Urich, R. R. J. Maier, F. Yu, J. C. Knight, D. P. Hand, and J. D. Shephard, “Silica hollow core microstructured fibres for mid-infrared surgical applications,” J. Non-Cryst. Solids 377, 236–239 (2013).
[Crossref]

P. Jaworski, F. Yu, R. R. J. Maier, W. J. Wadsworth, J. C. Knight, J. D. Shephard, and D. P. Hand, “Picosecond and nanosecond pulse delivery through a hollow-core negative curvature fiber for micro-machining applications,” Opt. Express 21, 22742–22753 (2013).
[Crossref]

A. Urich, R. R. J. Maier, F. Yu, J. C. Knight, D. P. Hand, and J. D. Shephard, “Flexible delivery of Er:YAG radiation at 2.94  μm with negative curvature silica glass fibers: a new solution for minimally invasive surgical procedures,” Biomed. Opt. Express 4, 193–205 (2013).
[Crossref]

J. D. Shephard, J. D. C. Jones, D. P. Hand, G. Bouwmans, J. C. Knight, P. St.J. Russell, and B. J. Mangan, “High energy nanosecond laser pulses delivered single-mode through hollow-core PBG fibers,” Opt. Express 12, 717–723 (2004).
[Crossref]

Sherlock, B.

B. Sherlock, F. Yu, J. Stone, S. Warren, C. Paterson, M. A. A. Neil, P. M. W. French, J. Knight, and C. Dunsby, “Tunable fibre-coupled multiphoton microscopy with a negative curvature fibre,” J. Biophotonics 9, 715–720 (2016).
[Crossref]

Shi, Y.

Shi, Z.

Shiryaev, V. S.

V. S. Shiryaev, “Chalcogenide glass hollow-core microstructured optical fibers,” Front. Mater. 2, 24 (2015).
[Crossref]

V. S. Shiryaev, A. F. Kosolapov, A. D. Pryamikov, G. E. Snopatin, M. F. Churbanov, A. S. Biriukov, T. V. Kotereva, S. V. Mishinov, G. K. Alagashev, and A. N. Kolyadin, “Development of technique for preparation of As2S3 glass preforms for hollow core microstructured optical fibers,” J. Optoelectron. Adv. Mater. 16, 1020–1025 (2014).

A. F. Kosolapov, A. D. Pryamikov, A. S. Biriukov, V. S. Shiryaev, M. S. Astapovich, G. E. Snopatin, V. G. Plotnichenko, M. F. Churbanov, and E. M. Dianov, “Demonstration of CO2-laser power delivery through chalcogenide-glass fiber with negative-curvature hollow core,” Opt. Express 19, 25723–25728 (2011).
[Crossref]

Simonsen, H. R.

Skorobogatiy, M.

Slavik, R.

J. R. Hayes, S. R. Sandoghchi, T. D. Bradley, Z. Liu, R. Slavik, M. A. Gouveia, N. V. Wheeler, G. Jasion, Y. Chen, E. N. Fokoua, M. N. Petrovich, D. J. Richardson, and F. Poletti, “Antiresonant hollow core fiber with an octave spanning bandwidth for short haul data communications,” J. Lightwave Technol. 35, 437–442 (2017).
[Crossref]

F. Poletti, N. V. Wheeler, M. N. Petrovich, N. K. Baddela, E. Numkam Fokoua, J. R. Hayes, D. R. Gray, Z. Li, R. Slavik, and D. J. Richardson, “Towards high-capacity fibre-optic communications at the speed of light in vacuum,” Nat. Photonics 7, 279–284 (2013).
[Crossref]

V. A. Sleiffer, Y. Jung, P. Leoni, M. Kuschnerov, N. V. Wheeler, N. K. Baddela, R. G. H. van Uden, C. M. Okonkwo, J. R. Hayes, J. Wooler, E. Numkam, R. Slavik, F. Poletti, M. N. Petrovich, V. Veljanovski, S. U. Alam, D. J. Richardson, and H. de Waardt, “30.7  Tb/s (96 × 320  Gb/s) DP-32QAM transmission over 19-cell photonic band gap fiber,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference, OSA Technical Digest (online) (Optical Society of America, 2013), paper OW1I.5.

J. R. Hayes, S. R. Sandoghchi, T. D. Bradley, Z. Liu, R. Slavik, M. A. Gouveia, N. V. Wheeler, G. T. Jasion, Y. Chen, E. Numkam-Fokoua, M. N. Petrovich, D. J. Richardson, and F. Poletti, “Antiresonant hollow core fiber with octave spanning bandwidth for short haul data communications,” in Optical Fiber Communication Conference Postdeadline Papers, OSA Technical Digest (online) (Optical Society of America, 2016), paper Th5A.3.

Sleiffer, V.

V. Sleiffer, Y. Jung, N. Baddela, J. Surof, M. Kuschnerov, V. Veljanovski, J. Hayes, N. Wheeler, E. Numkam Fokoua, J. Wooler, D. Gray, N. Wong, F. Parmigiani, S. Alam, M. Petrovich, F. Poletti, D. Richardson, and H. de Waardt, “High capacity mode-division multiplexed optical transmission in a novel 37-cell hollow-core photonic bandgap fiber,” J. Lightwave Technol. 32, 854–863 (2014).
[Crossref]

Sleiffer, V. A.

V. A. Sleiffer, Y. Jung, P. Leoni, M. Kuschnerov, N. V. Wheeler, N. K. Baddela, R. G. H. van Uden, C. M. Okonkwo, J. R. Hayes, J. Wooler, E. Numkam, R. Slavik, F. Poletti, M. N. Petrovich, V. Veljanovski, S. U. Alam, D. J. Richardson, and H. de Waardt, “30.7  Tb/s (96 × 320  Gb/s) DP-32QAM transmission over 19-cell photonic band gap fiber,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference, OSA Technical Digest (online) (Optical Society of America, 2013), paper OW1I.5.

Sleiffer, V. A. J. M.

Y. Jung, V. A. J. M. Sleiffer, N. K. Baddela, M. N. Petrovich, J. R. Hayes, N. V. Wheeler, D. R. Gray, E. Numkam Fokoua, J. P. Wooler, H. H.-L. Wong, F. Parmigiani, S.-U. Alam, J. Surof, M. Kuschnerov, V. Veljanovski, H. De Waardt, F. Poletti, and D. J. Richardson, “First demonstration of a broadband 37-cell hollow core photonic bandgap fiber and its application to high capacity mode division multiplexing,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference, OSA Technical Digest (online) (Optical Society of America, 2013), paper PDP5A.3.

Smith, C. M.

J. A. West, C. M. Smith, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Surface modes in air-core photonic band-gap fibers,” Opt. Express 12, 1485–1496 (2004).
[Crossref]

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424, 657–659 (2003).
[Crossref]

Snopatin, G. E.

V. S. Shiryaev, A. F. Kosolapov, A. D. Pryamikov, G. E. Snopatin, M. F. Churbanov, A. S. Biriukov, T. V. Kotereva, S. V. Mishinov, G. K. Alagashev, and A. N. Kolyadin, “Development of technique for preparation of As2S3 glass preforms for hollow core microstructured optical fibers,” J. Optoelectron. Adv. Mater. 16, 1020–1025 (2014).

A. F. Kosolapov, A. D. Pryamikov, A. S. Biriukov, V. S. Shiryaev, M. S. Astapovich, G. E. Snopatin, V. G. Plotnichenko, M. F. Churbanov, and E. M. Dianov, “Demonstration of CO2-laser power delivery through chalcogenide-glass fiber with negative-curvature hollow core,” Opt. Express 19, 25723–25728 (2011).
[Crossref]

Sorensen, H.

Sorin, F.

Srivastava, A. K.

D. V. Bogdanovich, A. K. Srivastava, V. G. Chigrinov, A. S. Biriukov, and A. D. Pryamikov, “Hollow core negative curvature fibre with layers of photoaligned optically anisotropic material,” Laser Phys. Lett. 12, 105101 (2015).
[Crossref]

St.J. Russell, P.

N. N. Edavalath, M. C. Günendi, R. Beravat, G. K. L. Wong, M. H. Frosz, J.-M. Ménard, and P. St.J. Russell, “Higher-order mode suppression in twisted single-ring hollow-core photonic crystal fibers,” Opt. Lett. 42, 2074–2077 (2017).
[Crossref]

M. H. Frosz, P. Roth, M. C. Günendi, and P. St.J. Russell, “Analytical formulation for the bend loss in single-ring hollow-core photonic crystal fibers,” Photon. Res. 5, 88–91 (2017).
[Crossref]

M. Cassataro, D. Novoa, M. C. Günendi, N. N. Edavalath, M. H. Frosz, J. C. Travers, and P. St.J. Russell, “Generation of broadband mid-IR and UV light in gas-filled single-ring hollow-core PCF,” Opt. Express 25, 7637–7644 (2017).
[Crossref]

A. M. Cubillas, X. Jiang, T. G. Euser, N. Taccardi, B. J. M. Etzold, P. Wasserscheid, and P. St.J. Russell, “Photochemistry in a soft-glass single-ring hollow-core photonic crystal fiber,” Analyst 142, 925–929 (2017).
[Crossref]

P. Uebel, M. C. Günendi, M. H. Frosz, G. Ahmed, N. N. Edavalath, J.-M. Ménard, and P. St.J. Russell, “Broadband robustly single-mode hollow-core PCF by resonant filtering of higher-order modes,” Opt. Lett. 41, 1961–1964 (2016).
[Crossref]

X. Jiang, N. Y. Joly, M. A. Finger, F. Babic, G. K. L. Wong, J. C. Travers, and P. St.J. Russell, “Deep-ultraviolet to mid-infrared supercontinuum generated in solid-core ZBLAN photonic crystal fibre,” Nat. Photonics 9, 133–139 (2015).
[Crossref]

P. St.J. Russell, P. Hölzer, W. Chang, A. Abdolvand, and J. C. Travers, “Hollow-core photonic crystal fibres for gas-based nonlinear optics,” Nat. Photonics 8, 278–286 (2014).
[Crossref]

F. Tani, J. C. Travers, and P. St.J. Russell, “Multimode ultrafast nonlinear optics in optical waveguides: numerical modeling and experiments in kagome photonic-crystal fiber,” J. Opt. Soc. Am. B 31, 311–320 (2014).
[Crossref]

M. H. Frosz, J. Nold, T. Weiss, A. Stefani, F. Babic, S. Rammler, and P. St.J. Russell, “Five-ring hollow-core photonic crystal fiber with 1.8  dB/km loss,” Opt. Lett. 38, 2215–2217 (2013).
[Crossref]

A. M. Cubillas, S. Unterkofler, T. G. Euser, B. J. Etzold, A. C. Jones, P. J. Sadler, P. Wasserscheid, and P. St.J. Russell, “Photonic crystal fibres for chemical sensing and photochemistry,” Chem. Soc. Rev. 42, 8629–8648 (2013).
[Crossref]

P. Hölzer, W. Chang, J. C. Travers, A. Nazarkin, J. Nold, N. Y. Joly, M. Saleh, F. Biancalana, and P. St.J. Russell, “Femtosecond nonlinear fiber optics in the ionization regime,” Phys. Rev. Lett. 107, 203901 (2011).
[Crossref]

J. C. Travers, W. Chang, J. Nold, N. Y. Joly, and P. St.J. Russell, “Ultrafast nonlinear optics in gas-filled hollow-core photonic crystal fibers,” J. Opt. Soc. Am. B 28, A11–A26 (2011).
[Crossref]

G. J. Pearce, G. S. Wiederhecker, C. G. Poulton, S. Burger, and P. St.J. Russell, “Models for guidance in kagome-structured hollow-core photonic crystal fibres,” Opt. Express 15, 12680–12685 (2007).
[Crossref]

P. St.J. Russell, “Photonic-crystal fibers,” J. Lightwave Technol. 24, 4729–4749 (2006).
[Crossref]

F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. St.J. Russell, “Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres,” Nature 434, 488–491 (2005).
[Crossref]

P. J. Roberts, F. Couny, H. Sabert, B. J. Mangan, D. P. Williams, L. Farr, M. W. Mason, A. Tomlinson, T. A. Birks, J. C. Knight, and P. St.J. Russell, “Ultimate low loss of hollow-core photonic crystal fibres,” Opt. Express 13, 236–244 (2005).
[Crossref]

G. Pearce, J. Pottage, D. Bird, P. Roberts, J. Knight, and P. St.J. Russell, “Hollow-core PCF for guidance in the mid to far infra-red,” Opt. Express 13, 6937–6946 (2005).
[Crossref]

P. J. Roberts, D. P. Williams, B. J. Mangan, H. Sabert, F. Couny, W. J. Wadsworth, T. A. Birks, J. C. Knight, and P. St.J. Russell, “Realizing low loss air core photonic crystal fibers by exploiting an antiresonant core surround,” Opt. Express 13, 8277–8285 (2005).
[Crossref]

J. D. Shephard, J. D. C. Jones, D. P. Hand, G. Bouwmans, J. C. Knight, P. St.J. Russell, and B. J. Mangan, “High energy nanosecond laser pulses delivered single-mode through hollow-core PBG fibers,” Opt. Express 12, 717–723 (2004).
[Crossref]

P. St.J. Russell, “Photonic crystal fibers,” Science 299, 358–362 (2003).
[Crossref]

F. Benabid, J. C. Knight, G. Antonopoulos, and P. St.J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298, 399–402 (2002).
[Crossref]

T. A. Birks, D. Mogilevtsev, J. C. Knight, and P. St.J. Russell, “Dispersion compensation using single-material fibers,” IEEE Photon. Technol. Lett. 11, 674–676 (1999).
[Crossref]

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St.J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537–1539 (1999).
[Crossref]

J. C. Knight, J. Broeng, T. A. Birks, and P. St.J. Russell, “Photonic band gap guidance in optical fibers,” Science 282, 1476–1478 (1998).
[Crossref]

T. A. Birks, J. C. Knight, and P. St.J. Russell, “Endlessly single-mode photonic crystal fiber,” Opt. Lett. 22, 961–963 (1997).
[Crossref]

J. C. Knight, T. A. Birks, P. St.J. Russell, and D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding,” Opt. Lett. 21, 1547–1549 (1996).
[Crossref]

J. C. Knight, T. A. Birks, P. St.J. Russell, and D. M. Atkin, “Pure silica single-mode fiber with hexagonal photonic crystal cladding,” in Conference on Optical Fiber Communications (Optical Society of America, 1996), postdeadline paper PD3.

B. J. Mangan, L. Farr, A. Langford, P. J. Roberts, D. P. Williams, F. Couny, M. Lawman, M. Mason, S. Coupland, R. Flea, H. Sabert, T. A. Birks, J. C. Knight, and P. St.J. Russell, “Low loss (1.7  dB/km) hollow core photonic bandgap fiber,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2004), paper PD24.

Stefani, A.

S. Atakaramians, A. Stefani, H. Li, M. S. Habib, J. G. Hayashi, A. Tuniz, X. Tang, J. Anthony, R. Lwin, A. Argyros, S. C. Fleming, and B. T. Kuhlmey, “Fiber-drawn metamaterial for THz waveguiding and imaging,” J. Infrared Millimeter Terahertz Waves 38, 1162–1178 (2017).
[Crossref]

M. H. Frosz, J. Nold, T. Weiss, A. Stefani, F. Babic, S. Rammler, and P. St.J. Russell, “Five-ring hollow-core photonic crystal fiber with 1.8  dB/km loss,” Opt. Lett. 38, 2215–2217 (2013).
[Crossref]

Stegeman, G. I.

Sterke, C. M.

Stoeffler, K.

Stolen, R. H.

Stolyarov, A. M.

Stone, J.

B. Sherlock, F. Yu, J. Stone, S. Warren, C. Paterson, M. A. A. Neil, P. M. W. French, J. Knight, and C. Dunsby, “Tunable fibre-coupled multiphoton microscopy with a negative curvature fibre,” J. Biophotonics 9, 715–720 (2016).
[Crossref]

Stone, J. M.

Stübinger, S.

S. Stübinger, B. von Rechenberg, H. F. Zeilhofer, R. Sader, and C. Landes, “Er:YAG laser osteotomy for removal of impacted teeth: clinical comparison of two techniques,” Lasers Surg. Med. 39, 583–588 (2007).
[Crossref]

Stutzki, F.

Südmeyer, T.

Sun, C.

C. Lai, B. You, J. Lu, T. Lu, J. Peng, C. Sun, and H. Chang, “Modal characteristics of antiresonant reflecting pipe waveguides for terahertz waveguiding,” Opt. Express 18, 309–322 (2010).
[Crossref]

J. Lu, C. Yu, H. Chang, H. Chen, Y. Li, C. Pan, and C. Sun, “Terahertz air-core microstructure fiber,” Appl. Phys. Lett. 92, 064105 (2008).
[Crossref]

Sun, C. K.

Sun, L.

Surof, J.

V. Sleiffer, Y. Jung, N. Baddela, J. Surof, M. Kuschnerov, V. Veljanovski, J. Hayes, N. Wheeler, E. Numkam Fokoua, J. Wooler, D. Gray, N. Wong, F. Parmigiani, S. Alam, M. Petrovich, F. Poletti, D. Richardson, and H. de Waardt, “High capacity mode-division multiplexed optical transmission in a novel 37-cell hollow-core photonic bandgap fiber,” J. Lightwave Technol. 32, 854–863 (2014).
[Crossref]

Y. Jung, V. A. J. M. Sleiffer, N. K. Baddela, M. N. Petrovich, J. R. Hayes, N. V. Wheeler, D. R. Gray, E. Numkam Fokoua, J. P. Wooler, H. H.-L. Wong, F. Parmigiani, S.-U. Alam, J. Surof, M. Kuschnerov, V. Veljanovski, H. De Waardt, F. Poletti, and D. J. Richardson, “First demonstration of a broadband 37-cell hollow core photonic bandgap fiber and its application to high capacity mode division multiplexing,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference, OSA Technical Digest (online) (Optical Society of America, 2013), paper PDP5A.3.

Taccardi, N.

A. M. Cubillas, X. Jiang, T. G. Euser, N. Taccardi, B. J. M. Etzold, P. Wasserscheid, and P. St.J. Russell, “Photochemistry in a soft-glass single-ring hollow-core photonic crystal fiber,” Analyst 142, 925–929 (2017).
[Crossref]

Takano, T.

S. Okaba, T. Takano, F. Benabid, T. Bradley, L. Vincetti, Z. Maizelis, V. Yampol’skii, F. Nori, and H. Katori, “Lamb-Dicke spectroscopy of atoms in a hollow-core photonic crystal fibre,” Nat. Commun. 5, 4096 (2014).
[Crossref]

Tam, H. Y.

Tang, C. P.

M. Deng, C. P. Tang, T. Zhu, and Y. J. Rao, “Highly sensitive bend sensor based on Mach–Zehnder interferometer using photonic crystal fiber,” Opt. Commun. 284, 2849–2853 (2011).
[Crossref]

Tang, X.

S. Atakaramians, A. Stefani, H. Li, M. S. Habib, J. G. Hayashi, A. Tuniz, X. Tang, J. Anthony, R. Lwin, A. Argyros, S. C. Fleming, and B. T. Kuhlmey, “Fiber-drawn metamaterial for THz waveguiding and imaging,” J. Infrared Millimeter Terahertz Waves 38, 1162–1178 (2017).
[Crossref]

Tani, F.

Tao, G.

Tarcea, N.

T. Frosch, N. Tarcea, M. Schmitt, H. Thiele, F. Langenhorst, and J. Popp, “UV Raman imaging-A promising tool for astrobiology: comparative Raman studies with different excitation wavelengths on SNC Martian meteorites,” Anal. Chem. 79, 1101–1108 (2007).
[Crossref]

Taylor, J. R.

J. M. Dudley and J. R. Taylor, “Ten years of nonlinear optics in photonic crystal fibre,” Nat. Photonics 3, 85–90 (2009).
[Crossref]

Teich, M. C.

B. E. A. Saleh and M. C. Teich, “Guided-wave optics,” in Fundamentals of Photonics, 2nd ed. (Wiley, 2007), pp. 289–299.

Thapa, R.

Thiele, H.

T. Frosch, N. Tarcea, M. Schmitt, H. Thiele, F. Langenhorst, and J. Popp, “UV Raman imaging-A promising tool for astrobiology: comparative Raman studies with different excitation wavelengths on SNC Martian meteorites,” Anal. Chem. 79, 1101–1108 (2007).
[Crossref]

Thirugnanasambandam, M. P.

Thomas, P.

Tian, H.

Tomlinson, A.

Toneyanb, H.

A. N. Kolyadin, G. K. Alagasheva, A. D. Pryamikova, L. Mouradianb, A. Zeytunyanb, H. Toneyanb, A. F. Kosolapova, and I. A. Bufetov, “Negative curvature hollow-core fibers: dispersion properties and femtosecond pulse delivery,” Phys. Procedia 73, 59–66 (2015).
[Crossref]

Trant, M.

Travers, J. C.

M. Cassataro, D. Novoa, M. C. Günendi, N. N. Edavalath, M. H. Frosz, J. C. Travers, and P. St.J. Russell, “Generation of broadband mid-IR and UV light in gas-filled single-ring hollow-core PCF,” Opt. Express 25, 7637–7644 (2017).
[Crossref]

X. Jiang, N. Y. Joly, M. A. Finger, F. Babic, G. K. L. Wong, J. C. Travers, and P. St.J. Russell, “Deep-ultraviolet to mid-infrared supercontinuum generated in solid-core ZBLAN photonic crystal fibre,” Nat. Photonics 9, 133–139 (2015).
[Crossref]

P. St.J. Russell, P. Hölzer, W. Chang, A. Abdolvand, and J. C. Travers, “Hollow-core photonic crystal fibres for gas-based nonlinear optics,” Nat. Photonics 8, 278–286 (2014).
[Crossref]

F. Tani, J. C. Travers, and P. St.J. Russell, “Multimode ultrafast nonlinear optics in optical waveguides: numerical modeling and experiments in kagome photonic-crystal fiber,” J. Opt. Soc. Am. B 31, 311–320 (2014).
[Crossref]

P. Hölzer, W. Chang, J. C. Travers, A. Nazarkin, J. Nold, N. Y. Joly, M. Saleh, F. Biancalana, and P. St.J. Russell, “Femtosecond nonlinear fiber optics in the ionization regime,” Phys. Rev. Lett. 107, 203901 (2011).
[Crossref]

J. C. Travers, W. Chang, J. Nold, N. Y. Joly, and P. St.J. Russell, “Ultrafast nonlinear optics in gas-filled hollow-core photonic crystal fibers,” J. Opt. Soc. Am. B 28, A11–A26 (2011).
[Crossref]

Tsai, Y. F.

Tseng, T. F.

Tuniz, A.

S. Atakaramians, A. Stefani, H. Li, M. S. Habib, J. G. Hayashi, A. Tuniz, X. Tang, J. Anthony, R. Lwin, A. Argyros, S. C. Fleming, and B. T. Kuhlmey, “Fiber-drawn metamaterial for THz waveguiding and imaging,” J. Infrared Millimeter Terahertz Waves 38, 1162–1178 (2017).
[Crossref]

Tünnermann, A.

Tuominen, J.

Uebel, P.

Ung, B.

Unterkofler, S.

A. M. Cubillas, S. Unterkofler, T. G. Euser, B. J. Etzold, A. C. Jones, P. J. Sadler, P. Wasserscheid, and P. St.J. Russell, “Photonic crystal fibres for chemical sensing and photochemistry,” Chem. Soc. Rev. 42, 8629–8648 (2013).
[Crossref]

Urich, A.

J. D. Shephard, A. Urich, R. M. Carter, P. Jaworski, R. R. J. Maier, W. Belardi, F. Yu, W. J. Wadsworth, J. C. Knight, and D. P. Hand, “Silica hollow core microstructured fibers for beam delivery in industrial and medical applications,” Front. Phys. 3, 24 (2015).
[Crossref]

A. Urich, R. R. J. Maier, F. Yu, J. C. Knight, D. P. Hand, and J. D. Shephard, “Silica hollow core microstructured fibres for mid-infrared surgical applications,” J. Non-Cryst. Solids 377, 236–239 (2013).
[Crossref]

A. Urich, R. R. J. Maier, F. Yu, J. C. Knight, D. P. Hand, and J. D. Shephard, “Flexible delivery of Er:YAG radiation at 2.94  μm with negative curvature silica glass fibers: a new solution for minimally invasive surgical procedures,” Biomed. Opt. Express 4, 193–205 (2013).
[Crossref]

Usner, B.

Vales, L. F.

M. R. B. Andreeta, L. S. Cunha, L. F. Vales, L. C. Caraschi, and R. G. Jasinevicius, “Bidimensional codes recorded on an oxide glass surface using a continuous wave CO2 laser,” J. Micromech. Microeng. 21, 025004 (2011).
[Crossref]

van Eijkelenborg, M. A.

Van Putten, L.

van Putten, L. D.

L. D. van Putten, E. N. Fokoua, S. M. A. Mousavi, W. Belardi, S. Chaudhuri, J. V. Badding, and F. Poletti, “Exploring the effect of the core boundary curvature in hollow antiresonant fibers,” IEEE Photon. Technol. Lett. 29, 263–266 (2017).
[Crossref]

van Uden, R. G. H.

V. A. Sleiffer, Y. Jung, P. Leoni, M. Kuschnerov, N. V. Wheeler, N. K. Baddela, R. G. H. van Uden, C. M. Okonkwo, J. R. Hayes, J. Wooler, E. Numkam, R. Slavik, F. Poletti, M. N. Petrovich, V. Veljanovski, S. U. Alam, D. J. Richardson, and H. de Waardt, “30.7  Tb/s (96 × 320  Gb/s) DP-32QAM transmission over 19-cell photonic band gap fiber,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference, OSA Technical Digest (online) (Optical Society of America, 2013), paper OW1I.5.

Vel’miskin, V. V.

A. D. Pryamikov, A. F. Kosolapov, G. K. Alagashev, A. N. Kolyadin, V. V. Vel’miskin, A. S. Biriukov, and I. A. Bufetov, “Hollow-core microstructured ‘revolver’ fibre for the UV spectral range,” Quantum Electron. 46, 1129–1133 (2016).
[Crossref]

Veljanovski, V.

V. Sleiffer, Y. Jung, N. Baddela, J. Surof, M. Kuschnerov, V. Veljanovski, J. Hayes, N. Wheeler, E. Numkam Fokoua, J. Wooler, D. Gray, N. Wong, F. Parmigiani, S. Alam, M. Petrovich, F. Poletti, D. Richardson, and H. de Waardt, “High capacity mode-division multiplexed optical transmission in a novel 37-cell hollow-core photonic bandgap fiber,” J. Lightwave Technol. 32, 854–863 (2014).
[Crossref]

V. A. Sleiffer, Y. Jung, P. Leoni, M. Kuschnerov, N. V. Wheeler, N. K. Baddela, R. G. H. van Uden, C. M. Okonkwo, J. R. Hayes, J. Wooler, E. Numkam, R. Slavik, F. Poletti, M. N. Petrovich, V. Veljanovski, S. U. Alam, D. J. Richardson, and H. de Waardt, “30.7  Tb/s (96 × 320  Gb/s) DP-32QAM transmission over 19-cell photonic band gap fiber,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference, OSA Technical Digest (online) (Optical Society of America, 2013), paper OW1I.5.

Y. Jung, V. A. J. M. Sleiffer, N. K. Baddela, M. N. Petrovich, J. R. Hayes, N. V. Wheeler, D. R. Gray, E. Numkam Fokoua, J. P. Wooler, H. H.-L. Wong, F. Parmigiani, S.-U. Alam, J. Surof, M. Kuschnerov, V. Veljanovski, H. De Waardt, F. Poletti, and D. J. Richardson, “First demonstration of a broadband 37-cell hollow core photonic bandgap fiber and its application to high capacity mode division multiplexing,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference, OSA Technical Digest (online) (Optical Society of America, 2013), paper PDP5A.3.

Venkataraman, N.

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424, 657–659 (2003).
[Crossref]

Viale, P.

Vincetti, L.

B. Debord, A. Amsanpally, M. Chafer, A. Baz, M. Maurel, J. M. Blondy, E. Hugonnot, F. Scol, L. Vincetti, F. Gérôme, and F. Benabid, “Ultralow transmission loss in inhibited-coupling guiding hollow fibers,” Optica 4, 209–217 (2017).
[Crossref]

X. Zheng, B. Debord, L. Vincetti, B. Beaudou, F. Gérôme, and F. Benabid, “Fusion splice between tapered inhibited coupling hypocycloid-core Kagome fiber and SMF,” Opt. Express 24, 14642–14647 (2016).
[Crossref]

L. Vincetti, “Empirical formulas for calculating loss in hollow core tube lattice fibers,” Opt. Express 24, 10313–10325 (2016).
[Crossref]

B. Debord, A. Amsanpally, M. Alharbi, L. Vincetti, J. M. Blondy, F. Gérôme, and F. Benabid, “Ultra-large core size hypocycloid-shape inhibited coupling kagome fibers for high-energy laser beam handling,” J. Lightwave Technol. 33, 3630–3634 (2015).
[Crossref]

B. Debord, M. Alharbi, L. Vincetti, A. Husakou, C. Fourcade-Dutin, C. Hoenninger, E. Mottay, F. Gérôme, and F. Benabid, “Multi-meter fiber-delivery and pulse self-compression of milli-Joule femtosecond laser and fiber-aided laser-micromachining,” Opt. Express 22, 10735–10746 (2014).
[Crossref]

B. Debord, M. Alharbi, A. Benoît, D. Ghosh, M. Dontabactouny, L. Vincetti, J.-M. Blondy, F. Gérôme, and F. Benabid, “Ultra low-loss hypocycloid-core Kagome hollow-core photonic crystal fiber for green spectral-range applications,” Opt. Lett. 39, 6245–6248 (2014).
[Crossref]

S. Okaba, T. Takano, F. Benabid, T. Bradley, L. Vincetti, Z. Maizelis, V. Yampol’skii, F. Nori, and H. Katori, “Lamb-Dicke spectroscopy of atoms in a hollow-core photonic crystal fibre,” Nat. Commun. 5, 4096 (2014).
[Crossref]

V. Setti, L. Vincetti, and A. Argyros, “Flexible tube lattice fibers for terahertz applications,” Opt. Express 21, 3388–3399 (2013).
[Crossref]

M. Alharbi, T. Bradley, B. Debord, C. Fourcade-Dutin, D. Ghosh, L. Vincetti, F. Gérôme, and F. Benabid, “Hypocycloid-shaped hollow-core photonic crystal fiber Part II: cladding effect on confinement and bend loss,” Opt. Express 21, 28609–28616 (2013).
[Crossref]

B. Debord, M. Alharbi, T. Bradley, C. Fourcade-Dutin, Y. Y. Wang, L. Vincetti, F. Gérôom, and F. Benabid, “Hypocycloid-shaped hollow-core photonic crystal fiber Part I: arc curvature effect on confinement loss,” Opt. Express 21, 28597–28608 (2013).
[Crossref]

L. Vincetti and V. Setti, “Elliptical hollow core tube lattice fibers for terahertz applications,” Opt. Fiber Technol. 19, 31–34 (2013).
[Crossref]

L. Vincetti and V. Setti, “Extra loss due to Fano resonances in inhibited coupling fibers based on a lattice of tubes,” Opt. Express 20, 14350–14361 (2012).
[Crossref]

L. Vincetti and V. Setti, “Confinement loss in kagome and tube lattice fibers: comparison and analysis,” J. Lightwave Technol. 30, 1470–1474 (2012).
[Crossref]

L. Vincetti and V. Setti, “Waveguiding mechanism in tube lattice fibers,” Opt. Express 18, 23133–23146 (2010).
[Crossref]

L. Vincetti, “Single-mode propagation in triangular tube lattice hollow-core terahertz fibers,” Opt. Commun. 283, 979–984 (2010).
[Crossref]

L. Vincetti, V. Setti, and M. Zoboli, “Terahertz tube lattice fibers with octagonal symmetry,” IEEE Photon. Technol. Lett. 22, 972–974 (2010).
[Crossref]

L. Vincetti, “Numerical analysis of plastic hollow core microstructured fiber for Terahertz applications,” Opt. Fiber Technol. 15, 398–401 (2009).
[Crossref]

B. Debord, A. Amsanpally, M. Chafer, A. Baz, L. Vincetti, J. Blondy, F. Gérôme, and F. Benabid, “7.7  dB/km losses in inhibited coupling hollow-core photonic crystal fibers,” in Conference on Lasers and Electro-Optics (CLEO), OSA Technical Digest (online) (Optical Society of America, 2016), paper JTh4C.8.

von Rechenberg, B.

S. Stübinger, B. von Rechenberg, H. F. Zeilhofer, R. Sader, and C. Landes, “Er:YAG laser osteotomy for removal of impacted teeth: clinical comparison of two techniques,” Lasers Surg. Med. 39, 583–588 (2007).
[Crossref]

Voronin, A. A.

T. Balciunas, C. Fourcade-Dutin, G. Fan, T. Witting, A. A. Voronin, A. M. Zheltikov, F. Gérôme, G. G. Paulus, A. Baltuska, and F. Benabid, “A strong-field driver in the single-cycle regime based on self-compression in a kagome fibre,” Nat. Commun. 6, 6117 (2015).
[Crossref]

Vries, O. D.

Wadsworth, W. J.

C. M. Harvey, F. Yu, J. C. Knight, W. J. Wadsworth, and P. J. Almeida, “Reduced repetition rate Yb3+ mode-locked picosecond fiber laser with hollow core fiber,” IEEE Photon. Technol. Lett. 28, 669–672 (2016).
[Crossref]

M. R. A. Hassan, F. Yu, W. J. Wadsworth, and J. C. Knight, “Cavity-based mid-IR fiber gas laser pumped by a diode laser,” Optica 3, 218–221 (2016).
[Crossref]

J. D. Shephard, A. Urich, R. M. Carter, P. Jaworski, R. R. J. Maier, W. Belardi, F. Yu, W. J. Wadsworth, J. C. Knight, and D. P. Hand, “Silica hollow core microstructured fibers for beam delivery in industrial and medical applications,” Front. Phys. 3, 24 (2015).
[Crossref]

Z. Wang, W. Belardi, F. Yu, W. J. Wadsworth, and J. C. Knight, “Efficient diode-pumped mid-infrared emission from acetylene-filled hollow-core fiber,” Opt. Express 22, 21872–21878 (2014).
[Crossref]

Z. Wang, F. Yu, W. J. Wadsworth, and J. C. Knight, “Efficient 1.9  μm emission in H2-filled hollow core fiber by pure stimulated vibrational Raman scattering,” Laser Phys. Lett. 11, 105807 (2014).
[Crossref]

P. Jaworski, F. Yu, R. R. J. Maier, W. J. Wadsworth, J. C. Knight, J. D. Shephard, and D. P. Hand, “Picosecond and nanosecond pulse delivery through a hollow-core negative curvature fiber for micro-machining applications,” Opt. Express 21, 22742–22753 (2013).
[Crossref]

F. Yu, W. J. Wadsworth, and J. C. Knight, “Low loss silica hollow core fibers for 3–4  μm spectral region,” Opt. Express 20, 11153–11158 (2012).
[Crossref]

P. J. Roberts, D. P. Williams, B. J. Mangan, H. Sabert, F. Couny, W. J. Wadsworth, T. A. Birks, J. C. Knight, and P. St.J. Russell, “Realizing low loss air core photonic crystal fibers by exploiting an antiresonant core surround,” Opt. Express 13, 8277–8285 (2005).
[Crossref]

W. J. Wadsworth, F. Yu, and J. C. Knight, “Useful light from photonic crystal fibres,” in Conference on Lasers and Electro-Optics (CLEO), OSA Technical Digest (Optical Society of America, 2016), paper SW1I.5. (Mentioned in the talk).

Wang, C.

F. Meng, B. Liu, Y. Li, C. Wang, and M. Hu, “Low loss hollow-core antiresonant fiber with nested elliptical cladding elements,” IEEE Photon. J. 9, 7100211 (2017).

S. Wu, C. Wang, C. Fourcade-Dutin, B. R. Washburn, F. Benabid, and K. L. Corwin, “Direct fiber comb stabilization to a gas-filled hollow-core photonic crystal fiber,” Opt. Express 22, 23704–23715 (2014).
[Crossref]

Wang, J.

Wang, P.

Wang, Y.

S. Gao, Y. Wang, X. Liu, W. Ding, and P. Wang, “Bending loss characterization in nodeless hollow-core anti-resonant fiber,” Opt. Express 24, 14801–14811 (2016).
[Crossref]

W. Ding and Y. Wang, “Semi-analytical model for hollow-core anti-resonant fibers,” Front. Phys. 3, 16 (2015).
[Crossref]

W. Ding and Y. Wang, “Analytic model for light guidance in single wall hollow-core anti-resonant fibers,” Opt. Express 22, 27242–27256 (2014).
[Crossref]

T. D. Bradley, Y. Wang, M. Alharbi, B. Debord, C. Fourcade-Dutin, B. Beaudou, F. Gerome, and F. Benabid, “Optical properties of low loss (70  dB/km) hypocycloid-core kagome hollow core photonic crystal fiber for Rb and Cs based optical applications,” J. Lightwave Technol. 31, 2752–2755 (2013).
[Crossref]

Y. Wang, M. Alharbi, T. D. Bradley, C. Fourcade-Dutina, B. Deborda, B. Beaudoua, F. Gérôme, and F. Benabid, “Hollow-core photonic crystal fibre for high power laser beam delivery,” High Power Laser Sci. Eng. 1, 17–28 (2013).
[Crossref]

S. Gao, Y. Wang, X. Liu, W. Ding, and P. Wang, “Optical performance of nodeless hollow-core anti-resonant fiber under bending: the observation of sub-bands,” in Advanced Photonics (IPR, NOMA, Sensors, Networks, SPPCom, SOF), OSA Technical Digest (online) (Optical Society of America, 2016), paper SoM3F.6.

Y. Wang, F. Couny, P. J. Roberts, and F. Benabid, “Low loss broadband transmission in optimized core-shaped Kagome hollow-core PCF,” in Conference on Lasers and Electro-Optics (CLEO), OSA Technical Digest (CD) (Optical Society of America, 2010), paper CPDB4.

Wang, Y. Y.

X. Liu, W. Ding, Y. Y. Wang, S. Gao, L. Cao, X. Feng, and P. Wang, “Characterization of a liquid-filled nodeless anti-resonant fiber for biochemical sensing,” Opt. Lett. 42, 863–866 (2017).
[Crossref]

S. Gao, Y. Y. Wang, X. Liu, C. Hong, S. Gu, and P. Wang, “Nodeless hollow-core fiber for the visible spectral range,” Opt. Lett. 42, 61–64 (2017).
[Crossref]

W. Ding and Y. Y. Wang, “Hybrid transmission bands and large birefringence in hollow-core anti-resonant fibers,” Opt. Express 23, 21165–21174 (2015).
[Crossref]

F. Emaury, C. F. Dutin, C. J. Saraceno, M. Trant, O. H. Heckl, Y. Y. Wang, C. Schriber, F. Gerome, T. Südmeyer, F. Benabid, and U. Keller, “Beam delivery and pulse compression to sub-50  fs of a mode locked thin disk laser in a gas-filled Kagome-type HC-PCF fiber,” Opt. Express 21, 4986–4994 (2013).
[Crossref]

B. Debord, M. Alharbi, T. Bradley, C. Fourcade-Dutin, Y. Y. Wang, L. Vincetti, F. Gérôom, and F. Benabid, “Hypocycloid-shaped hollow-core photonic crystal fiber Part I: arc curvature effect on confinement loss,” Opt. Express 21, 28597–28608 (2013).
[Crossref]

A. V. V. Nampoothiri, A. M. Jones, C. Fourcade-Dutin, C. Mao, N. Dadashzadeh, B. Baumgart, Y. Y. Wang, M. Alharbi, T. Bradley, N. Campbell, F. Benabid, B. R. Washburn, K. L. Corwin, and W. Rudolph, “Hollow-core optical fiber gas lasers (HOFGLAS): a review [Invited],” Opt. Mater. Express 2, 948–961 (2012).
[Crossref]

Y. Y. Wang, X. Peng, M. Alharbi, C. F. Dutin, T. D. Bradley, F. Gérôme, M. Mielke, T. Booth, and F. Benabid, “Design and fabrication of hollow-core photonic crystal fibers for high-power ultrashort pulse transportation and pulse compression,” Opt. Lett. 37, 3111–3113 (2012).
[Crossref]

B. Beaudou, F. Gérôme, Y. Y. Wang, M. Alharbi, T. D. Bradley, G. Humbert, J.-L. Auguste, J.-M. Blondy, and F. Benabid, “Millijoule laser pulse delivery for spark ignition through kagome hollow-core fiber,” Opt. Lett. 37, 1430–1432 (2012).
[Crossref]

Y. Y. Wang, N. V. Wheeler, F. Couny, P. J. Roberts, and F. Benabid, “Low loss broadband transmission in hypocycloid-core Kagome hollow-core photonic crystal fiber,” Opt. Lett. 36, 669–671 (2011).
[Crossref]

O. H. Heckl, C. J. Saraceno, C. R. E. Baer, T. Südmeyer, Y. Y. Wang, Y. Cheng, F. Benabid, and U. Keller, “Temporal pulse compression in a xenon-filled Kagome-type hollow-core photonic crystal fiber at high average power,” Opt. Express 19, 19142–19149 (2011).
[Crossref]

Wang, Z.

B. Gu, Y. Chen, and Z. Wang, “Characteristics of 1.9-μm laser emission from hydrogen-filled hollow-core fiber by vibrational stimulated Raman scattering,” Opt. Eng. 55, 126114 (2016).
[Crossref]

Y. Chen, Z. Wang, B. Gu, F. Yu, and Q. Lu, “Achieving a 1.5  μm fiber gas Raman laser source with about 400  kW of peak power and a 6.3  GHz linewidth,” Opt. Lett. 41, 5118–5121 (2016).
[Crossref]

J. Yang, B. Yang, Z. Wang, and W. Liu, “Design of the low-loss wide bandwidth hollow-core terahertz inhibited coupling fibers,” Opt. Commun. 343, 150–156 (2015).
[Crossref]

Z. Wang, W. Belardi, F. Yu, W. J. Wadsworth, and J. C. Knight, “Efficient diode-pumped mid-infrared emission from acetylene-filled hollow-core fiber,” Opt. Express 22, 21872–21878 (2014).
[Crossref]

Z. Wang, F. Yu, W. J. Wadsworth, and J. C. Knight, “Efficient 1.9  μm emission in H2-filled hollow core fiber by pure stimulated vibrational Raman scattering,” Laser Phys. Lett. 11, 105807 (2014).
[Crossref]

G. Ren, Z. Wang, S. Lou, and S. Jian, “Mode classification and degeneracy in photonic crystal fibers,” Opt. Express 11, 1310–1321 (2003).
[Crossref]

Warren, S.

B. Sherlock, F. Yu, J. Stone, S. Warren, C. Paterson, M. A. A. Neil, P. M. W. French, J. Knight, and C. Dunsby, “Tunable fibre-coupled multiphoton microscopy with a negative curvature fibre,” J. Biophotonics 9, 715–720 (2016).
[Crossref]

Washburn, B. R.