Abstract

Frequency combs are optical spectra composed of a set of discrete equally spaced lines. Such spectra can be generated by diverse sources such as mode-locked lasers, resonators, or electro-optic modulators. This last possibility has shown a growing interest in the recent years for its advantageous features in providing high repetition rates, intrinsic mutual coherence, or high power per comb lines. Moreover, applications of electro-optic modulator-based combs have flourished in fundamental physics, spectroscopy, or instrumental calibrations. In this paper, we present the most recent progresses made on frequency combs generated by electro-optic modulators, along with the applications where these combs have shown a particular interest.

© 2020 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Emerging material systems for integrated optical Kerr frequency combs

Andre Kovach, Dongyu Chen, Jinghan He, Hyungwoo Choi, Adil Han Dogan, Mohammadreza Ghasemkhani, Hossein Taheri, and Andrea M. Armani
Adv. Opt. Photon. 12(1) 135-222 (2020)

Ultralow-noise mode-locked fiber lasers and frequency combs: principles, status, and applications

Jungwon Kim and Youjian Song
Adv. Opt. Photon. 8(3) 465-540 (2016)

Optical pulling forces and their applications

Hang Li, Yongyin Cao, Lei-Ming Zhou, Xiaohao Xu, Tongtong Zhu, Yuzhi Shi, Cheng-Wei Qiu, and Weiqiang Ding
Adv. Opt. Photon. 12(2) 288-366 (2020)

References

  • View by:
  • |
  • |
  • |

  1. T. H. Maiman, “Stimulated optical radiation in ruby,” Nature 187, 493–494 (1960).
    [Crossref]
  2. L. E. Hargrove, R. L. Fork, and M. A. Pollack, “Locking of He-Ne laser modes induced by synchronous intracavity modulation,” Appl. Phys. Lett. 5, 4–5 (1964).
    [Crossref]
  3. T. W. Hänsch, “Nobel lecture: passion for precision,” Rev. Mod. Phys. 78, 1297–1309 (2006).
    [Crossref]
  4. J. L. Hall, “Nobel lecture: defining and measuring optical frequencies,” Rev. Mod. Phys. 78, 1279–1295 (2006).
    [Crossref]
  5. T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416, 233–237 (2002).
    [Crossref]
  6. T. Wilken, G. L. Curto, R. A. Probst, T. Steinmetz, A. Manescau, L. Pasquini, J. I. G. Hernández, R. Rebolo, T. W. Hänsch, T. Udem, and R. Holzwarth, “A spectrograph for exoplanet observations calibrated at the centimetre-per-second level,” Nature 485, 611–614 (2012).
    [Crossref]
  7. A. Matveev, C. G. Parthey, K. Predehl, J. Alnis, A. Beyer, R. Holzwarth, T. Udem, T. Wilken, N. Kolachevsky, M. Abgrall, D. Rovera, C. Salomon, P. Laurent, G. Grosche, O. Terra, T. Legero, H. Schnatz, S. Weyers, B. Altschul, and T. W. Hänsch, “Precision measurement of the hydrogen 1S–2S frequency via a 920-km fiber link,” Phys. Rev. Lett. 110, 230801 (2013).
    [Crossref]
  8. F. X. Kärtner, U. Morgner, T. Schibli, R. Ell, H. A. Haus, J. G. Fujimoto, and E. P. Ippen, Few-Cycle Pulses Directly from a Laser (Springer, 2004), pp. 73–136.
  9. J. Reichert, R. Holzwarth, T. Udem, and T. Hänsch, “Measuring the frequency of light with mode-locked lasers,” Opt. Commun. 172, 59–68 (1999).
    [Crossref]
  10. D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
    [Crossref]
  11. J. Reichert, M. Niering, R. Holzwarth, M. Weitz, T. Udem, and T. W. Hänsch, “Phase coherent vacuum-ultraviolet to radio frequency comparison with a mode-locked laser,” Phys. Rev. Lett. 84, 3232–3235 (2000).
    [Crossref]
  12. D. E. Spence, P. N. Kean, and W. Sibbett, “60-fsec pulse generation from a self-mode-locked Ti:sapphire laser,” Opt. Lett. 16, 42–44 (1991).
    [Crossref]
  13. S. T. Cundiff and J. Ye, “Colloquium: femtosecond optical frequency combs,” Rev. Mod. Phys. 75, 325–342 (2003).
    [Crossref]
  14. V. J. Matsas, T. P. Newson, D. J. Richardson, and D. N. Payne, “Selfstarting passively mode-locked fibre ring soliton laser exploiting nonlinear polarisation rotation,” Electron. Lett. 28, 1391–1393 (1992).
    [Crossref]
  15. K. Tamura, H. A. Haus, and E. P. Ippen, “Self-starting additive pulse mode-locked erbium fibre ring laser,” Electron. Lett. 28, 2226–2228 (1992).
    [Crossref]
  16. S. Droste, G. Ycas, B. R. Washburn, I. Coddington, and N. R. Newbury, “Optical frequency comb generation based on erbium fiber lasers,” Nanophotonics 5, 196–213 (2016).
    [Crossref]
  17. J. Ye and S. Cundiff, Femtosecond Optical Frequency Comb: Principle, Operation and Applications (Springer, 2006).
  18. T. Udem, R. Holzwarth, and T. Hänsch, “Femtosecond optical frequency combs,” Eur. Phys. J. Spec. Top. 172, 69–79 (2009).
    [Crossref]
  19. J. Kim and Y. Song, “Ultralow-noise mode-locked fiber lasers and frequency combs: principles, status, and applications,” Adv. Opt. Photon. 8, 465–540 (2016).
    [Crossref]
  20. P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450, 1214–1217 (2007).
    [Crossref]
  21. G. Lin, A. Coillet, and Y. K. Chembo, “Nonlinear photonics with high-Q whispering-gallery-mode resonators,” Adv. Opt. Photon. 9, 828–890 (2017).
    [Crossref]
  22. A. Pasquazi, M. Peccianti, L. Razzari, D. J. Moss, S. Coen, M. Erkintalo, Y. K. Chembo, T. Hansson, S. Wabnitz, P. Del’Haye, X. Xue, A. M. Weiner, and R. Morandotti, “Micro-combs: a novel generation of optical sources,” Phys. Rep. 729, 1–81 (2018).
    [Crossref]
  23. T. J. Kippenberg, A. L. Gaeta, M. Lipson, and M. L. Gorodetsky, “Dissipative Kerr solitons in optical microresonators,” Science 361, eaan8083 (2018).
    [Crossref]
  24. G. Agrawal, Nonlinear Fiber Optics, Optics and Photonics Series, 6th ed. (Academic, 2019).
  25. M. I. Kayes and M. Rochette, “Optical frequency comb generation with ultra-narrow spectral lines,” Opt. Lett. 42, 2718–2721 (2017).
    [Crossref]
  26. E. Myslivets, B. P. Kuo, N. Alic, and S. Radic, “Generation of wideband frequency combs by continuous-wave seeding of multistage mixers with synthesized dispersion,” Opt. Express 20, 3331–3344 (2012).
    [Crossref]
  27. A. Antikainen and G. P. Agrawal, “Dual-pump frequency comb generation in normally dispersive optical fibers,” J. Opt. Soc. Am. B 32, 1705–1711 (2015).
    [Crossref]
  28. V. Durán, C. Schnébelin, and H. G. de Chatellus, “Coherent multi-heterodyne spectroscopy using acousto-optic frequency combs,” Opt. Express 26, 13800–13809 (2018).
    [Crossref]
  29. T. Chen, W. Kong, H. Liu, and R. Shu, “Frequency-stepped pulse train generation in an amplified frequency-shifted loop for oxygen A-band spectroscopy,” Opt. Express 26, 34753–34762 (2018).
    [Crossref]
  30. R. W. Boyd, Nonlinear Optics, 3rd ed. (Academic, 2008).
  31. F. Pockels, “Ueber den Einfluss elastischer Deformationen, speciell einseitigen Druckes, auf das optische Verhalten krystallinischer Körper,” Ann. Phys. 273, 144–172 (1889).
    [Crossref]
  32. A. Kundt, “Ueber das optische Verhalten des Quarzes im electrischen Felde,” Ann. Phys. 254, 228–233 (1883).
    [Crossref]
  33. W. Röntgen, “Ueber die durch elektrische Kräfte erzeugte Aenderung der Doppelbrechung des Quarzes,” Ber. Oberhess. Ges. Nat. Heilkd. Giessen Naturwiss. Abt. 22, 49–64 (1883).
  34. J. Kerr, “Xl. A new relation between electricity and light: dielectrified media birefringent,” London Edinburgh Dublin Philos. Mag. J. Sci. 50, 337–348 (1875).
    [Crossref]
  35. L. Zehnder, “Ein neuer Interferenzrefractor,” Z. Instrumentenkd. 11, 275–285 (1891).
  36. L. Mach, “Uber einer Interferenzrefractor,” Z. Instrumentenkd. 12, 89–93 (1892).
  37. W. Steier, “A push-pull optical amplitude modulator,” IEEE J. Quantum Electron. 3, 664–667 (1967).
    [Crossref]
  38. G. B. Arfken, H. J. Weber, and F. E. Harris, Mathematical Methods for Physicists, 7th ed. (Academic, 2013).
  39. K. E. Iverson, A Programming Language (Wiley, 1962).
  40. R. L. Graham, D. E. Knuth, and O. Patashnik, Concrete Mathematics: a Foundation for Computer Science, 2nd ed. (Addison-Wesley, 1994).
  41. T. Sakamoto, T. Kawanishi, and M. Izutsu, “Widely wavelength-tunable ultra-flat frequency comb generation using conventional dual-drive Mach-Zehnder modulator,” Electron. Lett. 43, 1039–1040 (2007).
    [Crossref]
  42. T. Sakamoto, T. Kawanishi, and M. Izutsu, “Asymptotic formalism for ultraflat optical frequency comb generation using a Mach–Zehnder modulator,” Opt. Lett. 32, 1515–1517 (2007).
    [Crossref]
  43. T. Sakamoto, T. Kawanishi, and M. Tsuchiya, “10  GHz, 2.4  ps pulse generation using a single-stage dual-drive Mach–Zehnder modulator,” Opt. Lett. 33, 890–892 (2008).
    [Crossref]
  44. N. Yokota, K. Abe, S. Mieda, and H. Yasaka, “Harmonic superposition for tailored optical frequency comb generation by a Mach–Zehnder modulator,” Opt. Lett. 41, 1026–1029 (2016).
    [Crossref]
  45. K. Qu, S. Zhao, X. Li, Z. Zhu, D. Liang, and D. Liang, “Ultra-flat and broadband optical frequency comb generator via a single Mach–Zehnder modulator,” IEEE Photon. Technol. Lett. 29, 255–258 (2017).
    [Crossref]
  46. L. Liu, X. Zhang, T. Xu, Z. Dai, S. Dai, and T. Liu, “Simple and seamless broadband optical frequency comb generation using an InAs/InP quantum dot laser,” Opt. Lett. 42, 1173–1176 (2017).
    [Crossref]
  47. L. Liu, X. Zhang, T. Xu, Z. Dai, and T. Liu, “Simple optical frequency comb generation using a passively mode-locked quantum dot laser,” Opt. Commun. 396, 105–109 (2017).
    [Crossref]
  48. M. Fujiwara, M. Teshima, J. Kani, H. Suzuki, N. Takachio, and K. Iwatsuki, “Optical carrier supply module using flattened optical multicarrier generation based on sinusoidal amplitude and phase hybrid modulation,” J. Lightwave Technol. 21, 2705–2714 (2003).
    [Crossref]
  49. C.-B. Huang, S.-G. Park, D. E. Leaird, and A. M. Weiner, “Nonlinearly broadened phase-modulated continuous-wave laser frequency combs characterized using DPSK decoding,” Opt. Express 16, 2520–2527 (2008).
    [Crossref]
  50. A. Ishizawa, T. Nishikawa, A. Mizutori, H. Takara, S. Aozasa, A. Mori, H. Nakano, A. Takada, and M. Koga, “Octave-spanning frequency comb generated by 250  fs pulse train emitted from 25  GHz externally phase-modulated laser diode for carrier-envelope-offset-locking,” Electron. Lett. 46, 1343–1344 (2010).
    [Crossref]
  51. R. Wu, V. R. Supradeepa, C. M. Long, D. E. Leaird, and A. M. Weiner, “Generation of very flat optical frequency combs from continuous-wave lasers using cascaded intensity and phase modulators driven by tailored radio frequency waveforms,” Opt. Lett. 35, 3234–3236 (2010).
    [Crossref]
  52. Y. Dou, H. Zhang, and M. Yao, “Generation of flat optical-frequency comb using cascaded intensity and phase modulators,” IEEE Photon. Technol. Lett. 24, 727–729 (2012).
    [Crossref]
  53. V. Torres-Company and A. M. Weiner, “Optical frequency comb technology for ultra-broadband radio-frequency photonics,” Laser Photon. Rev. 8, 368–393 (2014).
    [Crossref]
  54. A. Ishizawa, T. Nishikawa, A. Mizutori, H. Takara, H. Nakano, T. Sogawa, A. Takada, and M. Koga, “Generation of 120-fs laser pulses at 1-GHz repetition rate derived from continuous wave laser diode,” Opt. Express 19, 22402–22409 (2011).
    [Crossref]
  55. R. Wu, V. Torres-Company, D. E. Leaird, and A. M. Weiner, “Supercontinuum-based 10-GHz flat-topped optical frequency comb generation,” Opt. Express 21, 6045–6052 (2013).
    [Crossref]
  56. A. J. Metcalf, V. Torres-Company, D. E. Leaird, and A. M. Weiner, “High-power broadly tunable electrooptic frequency comb generator,” IEEE J. Sel. Top. Quantum Electron. 19, 231–236 (2013).
    [Crossref]
  57. A. Aubourg, J. Lhermite, S. Hocquet, E. Cormier, and G. Santarelli, “Generation of picosecond laser pulses at 1030  nm with gigahertz range continuously tunable repetition rate,” Opt. Lett. 40, 5610–5613 (2015).
    [Crossref]
  58. D. C. Cole, K. M. Beha, S. A. Diddams, and S. B. Papp, “Octave-spanning supercontinuum generation via microwave frequency multiplication,” J. Phys. Conf. Ser. 723, 012035 (2016).
    [Crossref]
  59. K. Kashiwagi, T. Kurokawa, Y. Okuyama, T. Mori, Y. Tanaka, Y. Yamamoto, and M. Hirano, “Direct generation of 12.5-GHz-spaced optical frequency comb with ultrabroad coverage in near-infrared region by cascaded fiber configuration,” Opt. Express 24, 8120–8131 (2016).
    [Crossref]
  60. C. Chen, F. Zhang, and S. Pan, “Generation of seven-line optical frequency comb based on a single polarization modulator,” IEEE Photon. Technol. Lett. 25, 2164–2166 (2013).
    [Crossref]
  61. T. Healy, F. C. G. Gunning, A. D. Ellis, and J. D. Bull, “Multi-wavelength source using low drive-voltage amplitude modulators for optical communications,” Opt. Express 15, 2981–2986 (2007).
    [Crossref]
  62. C. He, S. Pan, R. Guo, Y. Zhao, and M. Pan, “Ultraflat optical frequency comb generated based on cascaded polarization modulators,” Opt. Lett. 37, 3834–3836 (2012).
    [Crossref]
  63. Y. Yang, J. Ma, X. Xin, Q. Zhang, Y. Zhang, X. Yin, R. Zhang, and W. Liu, “Optical frequency comb generation using two cascaded polarization modulators,” Photon. Netw. Commun. 32, 126–132 (2016).
    [Crossref]
  64. C. Chen, C. He, D. Zhu, R. Guo, F. Zhang, and S. Pan, “Generation of a flat optical frequency comb based on a cascaded polarization modulator and phase modulator,” Opt. Lett. 38, 3137–3139 (2013).
    [Crossref]
  65. S. Pan and J. Yao, “Generation of a chirp-free optical pulse train with tunable pulse width based on a polarization modulator and an intensity modulator,” Opt. Lett. 34, 2186–2188 (2009).
    [Crossref]
  66. F. Zhang, X. Ge, and S. Pan, “A two-stage optical frequency comb generator based on polarization modulators and a Mach–Zehnder interferometer,” Opt. Commun. 354, 94–102 (2015).
    [Crossref]
  67. X. Zou, W. Pan, B. Luo, and L. Yan, “Generation of repetition-rate-quadrupled optical pulse trains using a PolM or a pair of PolMs,” IEEE J. Quantum Electron. 48, 3–7 (2012).
    [Crossref]
  68. R. B. Chaudhuri and A. D. Barman, “Generation of an optical frequency comb based on two cascaded dual-parallel polarization modulators,” Appl. Opt. 57, 9164–9171 (2018).
    [Crossref]
  69. T. Kobayashi, T. Sueta, Y. Cho, and Y. Matsuo, “High-repetition-rate optical pulse generator using a Fabry-Perot electro-optic modulator,” Appl. Phys. Lett. 21, 341–343 (1972).
    [Crossref]
  70. M. Kourogi, K. Nakagawa, and M. Ohtsu, “Wide-span optical frequency comb generator for accurate optical frequency difference measurement,” IEEE J. Quantum Electron. 29, 2693–2701 (1993).
    [Crossref]
  71. R. P. Kovacich, U. Sterr, and H. R. Telle, “Short-pulse properties of optical frequency comb generators,” Appl. Opt. 39, 4372–4376 (2000).
    [Crossref]
  72. J. Kim, D. J. Richardson, and R. Slavík, “Cavity-induced phase noise suppression in a Fabry–Perot modulator-based optical frequency comb,” Opt. Lett. 42, 1536–1539 (2017).
    [Crossref]
  73. K. Ho and J. M. Kahn, “Optical frequency comb generator using phase modulation in amplified circulating loop,” IEEE Photon. Technol. Lett. 5, 721–725 (1993).
    [Crossref]
  74. P. Shen, N. J. Gomes, P. A. Davies, P. G. Huggard, and B. N. Ellison, “Analysis and demonstration of a fast tunable fiber-ring-based optical frequency comb generator,” J. Lightwave Technol. 25, 3257–3264 (2007).
    [Crossref]
  75. M. Hirano and A. Morimoto, “Generation of flat optical frequency comb by fiber loop modulation,” Opt. Rev. 18, 13–18 (2011).
    [Crossref]
  76. J. Zhang, N. Chi, J. Yu, Y. Shao, J. Zhu, B. Huang, and L. Tao, “Generation of coherent and frequency-lock multi-carriers using cascaded phase modulators and recirculating frequency shifter for Tb/s optical communication,” Opt. Express 19, 12891–12902 (2011).
    [Crossref]
  77. J. Zhang, J. Yu, Z. Dong, Y. Shao, and N. Chi, “Generation of full C-band coherent and frequency-lock multi-carriers by using recirculating frequency shifter loops based on phase modulator with external injection,” Opt. Express 19, 26370–26381 (2011).
    [Crossref]
  78. L. Ponnampalam, M. Fice, H. Shams, C. Renaud, and A. Seeds, “Optical comb for generation of a continuously tunable coherent THz signal from 122.5  GHz to > 2.7  THz,” Opt. Lett. 43, 2507–2510 (2018).
    [Crossref]
  79. N. Dupuis, C. R. Doerr, L. Zhang, L. Chen, N. J. Sauer, P. Dong, L. L. Buhl, and D. Ahn, “InP-based comb generator for optical OFDM,” J. Lightwave Technol. 30, 466–472 (2012).
    [Crossref]
  80. V. Corral, R. Guzmán, C. Gordón, X. J. M. Leijtens, and G. Carpintero, “Optical frequency comb generator based on a monolithically integrated passive mode-locked ring laser with a Mach–Zehnder interferometer,” Opt. Lett. 41, 1937–1940 (2016).
    [Crossref]
  81. I. Demirtzioglou, C. Lacava, K. R. H. Bottrill, D. J. Thomson, G. T. Reed, D. J. Richardson, and P. Petropoulos, “Frequency comb generation in a silicon ring resonator modulator,” Opt. Express 26, 790–796 (2018).
    [Crossref]
  82. M. Zhang, B. Buscaino, C. Wang, A. Shams-Ansari, C. Reimer, R. Zhu, J. M. Kahn, and M. Loncar, “Broadband electro-optic frequency comb generation in a lithium niobate microring resonator,” Nature 568, 373–377 (2019).
    [Crossref]
  83. V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, and L. Maleki, “Whispering-gallery-mode electro-optic modulator and photonic microwave receiver,” J. Opt. Soc. Am. B 20, 333–342 (2003).
    [Crossref]
  84. A. Rueda, F. Sedlmeir, M. Kumari, G. Leuchs, and H. G. L. Schwefel, “Resonant electro-optic frequency comb,” Nature 568, 378–381 (2019).
    [Crossref]
  85. I. El Mansouri, J. Fatome, C. Finot, M. Lintz, and S. Pitois, “All-fibered high-quality stable 20- and 40-GHz picosecond pulse generators for 160-Gb/s OTDM applications,” IEEE Photon. Technol. Lett. 23, 1487–1489 (2011).
    [Crossref]
  86. J. Fatome, K. Hammani, B. Kibler, and C. Finot, “80 GHz waveform generated by the optical Fourier synthesis of four spectral sidebands,” Laser Phys. Lett. 13, 015102 (2016).
    [Crossref]
  87. T. Sakamoto and A. Chiba, “Multiple-frequency-spaced flat optical comb generation using a multiple-parallel phase modulator,” Opt. Lett. 42, 4462–4465 (2017).
    [Crossref]
  88. J. Fatome, I. El-Mansouri, J.-L. Blanchet, S. Pitois, G. Millot, S. Trillo, and S. Wabnitz, “Even harmonic pulse train generation by cross-polarization-modulation seeded instability in optical fibers,” J. Opt. Soc. Am. B 30, 99–106 (2013).
    [Crossref]
  89. B. Zheng, Q. Xie, and C. Shu, “Comb spacing multiplication enabled widely spaced flexible frequency comb generation,” J. Lightwave Technol. 36, 2651–2659 (2018).
    [Crossref]
  90. Y. Dou, H. Zhang, and M. Yao, “Improvement of flatness of optical frequency comb based on nonlinear effect of intensity modulator,” Opt. Lett. 36, 2749–2751 (2011).
    [Crossref]
  91. M. E. Plascak, R. Bustos Ramirez, K. Bagnell, and P. J. Delfyett, “Tunable broadband electro-optic comb generation using an optically filtered optoelectronic oscillator,” IEEE Photon. Technol. Lett. 30, 335–338 (2018).
    [Crossref]
  92. T. Yamamoto, T. Komukai, K. Suzuki, and A. Takada, “Spectrally flattened phase-locked multi-carrier light generator with phase modulators and chirped fibre Bragg grating,” Electron. Lett. 43, 1040–1042 (2007).
    [Crossref]
  93. T. Yamamoto, T. Komukai, K. Suzuki, and A. Takada, “Multicarrier light source with flattened spectrum using phase modulators and dispersion medium,” J. Lightwave Technol. 27, 4297–4305 (2009).
    [Crossref]
  94. V. Torres-Company, J. Lancis, and P. Andrés, “Lossless equalization of frequency combs,” Opt. Lett. 33, 1822–1824 (2008).
    [Crossref]
  95. Y. Xing, Q. Wang, L. Huo, and C. Lou, “Frequency chirp linearization for ultraflat optical frequency comb generation based on group velocity dispersion,” Opt. Lett. 38, 2188–2190 (2013).
    [Crossref]
  96. I. L. Gheorma and G. K. Gopalakrishnan, “Flat frequency comb generation with an integrated dual-parallel modulator,” IEEE Photon. Technol. Lett. 19, 1011–1013 (2007).
    [Crossref]
  97. Q. Wang, L. Huo, Y. Xing, and B. Zhou, “Ultra-flat optical frequency comb generator using a single-driven dual-parallel Mach–Zehnder modulator,” Opt. Lett. 39, 3050–3053 (2014).
    [Crossref]
  98. L. Shang, Y. Li, L. Ma, and J. Chen, “A flexible and ultra-flat optical frequency comb generator using a parallel Mach–Zehnder modulator with a single DC bias,” Opt. Commun. 356, 70–73 (2015).
    [Crossref]
  99. J. Li, H. Ma, Z. Li, and X. Zhang, “Optical frequency comb generation based on dual-polarization IQ modulator shared by two polarization-orthogonal recirculating frequency shifting loops,” IEEE Photon. J. 9, 2745558 (2017).
    [Crossref]
  100. T. Lin, S. Zhao, Z. Zhu, X. Li, and K. Qu, “Generation of flat optical frequency comb based on a DP-QPSK modulator,” IEEE Photon. Technol. Lett. 29, 146–149 (2017).
    [Crossref]
  101. A. K. Mishra, R. Schmogrow, I. Tomkos, D. Hillerkuss, C. Koos, W. Freude, and J. Leuthold, “Flexible RF-based comb generator,” IEEE Photon. Technol. Lett. 25, 701–704 (2013).
    [Crossref]
  102. S. Ozharar, F. Quinlan, I. Ozdur, S. Gee, and P. J. Delfyett, “Ultraflat optical comb generation by phase-only modulation of continuous-wave light,” IEEE Photon. Technol. Lett. 20, 36–38 (2008).
    [Crossref]
  103. R. Wei, J. Yan, Y. Peng, X. Yao, M. Bai, and Z. Zheng, “Optical frequency comb generation based on electro-optical modulation with high-order harmonic of a sine RF signal,” Opt. Commun. 291, 269–273 (2013).
    [Crossref]
  104. J. Zhang, J. Yu, N. Chi, Z. Dong, X. Li, Y. Shao, J. Yu, and L. Tao, “Flattened comb generation using only phase modulators driven by fundamental frequency sinusoidal sources with small frequency offset,” Opt. Lett. 38, 552–554 (2013).
    [Crossref]
  105. Y. Bao, X. Yi, Z. Li, Q. Chen, J. Li, X. Fan, and X. Zhang, “A digitally generated ultrafine optical frequency comb for spectral measurements with 0.01-pm resolution and 0.7-µs response time,” Light Sci. Appl. 4, e300 (2015).
    [Crossref]
  106. X. Yan, X. Zou, W. Pan, L. Yan, and J. Azaña, “Fully digital programmable optical frequency comb generation and application,” Opt. Lett. 43, 283–286 (2018).
    [Crossref]
  107. M. A. Soto, M. Alem, M. A. Shoaie, A. Vedadi, C.-S. Brès, L. Thévenaz, and T. Schneider, “Optical sinc-shaped Nyquist pulses of exceptional quality,” Nat. Commun. 4, 2898 (2013).
    [Crossref]
  108. S. Preußler, N. Wenzel, and T. Schneider, “Flexible Nyquist pulse sequence generation with variable bandwidth and repetition rate,” IEEE Photon. J. 6, 7901608 (2014).
    [Crossref]
  109. S. Cordette, A. Vedadi, M. A. Shoaie, and C.-S. Brès, “Bandwidth and repetition rate programmable Nyquist sinc-shaped pulse train source based on intensity modulators and four-wave mixing,” Opt. Lett. 39, 6668–6671 (2014).
    [Crossref]
  110. Y. Fang, J. Yu, J. Zhang, X. Li, N. Chi, and J. Xiao, “Frequency comb selection enabled flexible all optical Nyquist pulse generation,” Opt. Commun. 349, 60–64 (2015).
    [Crossref]
  111. J. Wu, J. Zang, Y. Li, D. Kong, J. Qiu, S. Zhou, J. Shi, and J. Lin, “Investigation on Nyquist pulse generation using a single dual-parallel Mach-Zehnder modulator,” Opt. Express 22, 20463–20472 (2014).
    [Crossref]
  112. N. Yokota, R. Igarashi, and H. Yasaka, “Optical Nyquist pulse generation by using a dual-electrode Mach–Zehnder modulator,” Opt. Lett. 42, 1856–1859 (2017).
    [Crossref]
  113. E. A. Whittaker, M. Gehrtz, and G. C. Bjorklund, “Residual amplitude modulation in laser electro-optic phase modulation,” J. Opt. Soc. Am. B 2, 1320–1326 (1985).
    [Crossref]
  114. N. C. Wong and J. L. Hall, “Servo control of amplitude modulation in frequency-modulation spectroscopy: demonstration of shot-noise-limited detection,” J. Opt. Soc. Am. B 2, 1527–1533 (1985).
    [Crossref]
  115. J. Sathian and E. Jaatinen, “Intensity dependent residual amplitude modulation in electro-optic phase modulators,” Appl. Opt. 51, 3684–3691 (2012).
    [Crossref]
  116. K. Kokeyama, K. Izumi, W. Z. Korth, N. Smith-Lefebvre, K. Arai, and R. X. Adhikari, “Residual amplitude modulation in interferometric gravitational wave detectors,” J. Opt. Soc. Am. A 31, 81–88 (2014).
    [Crossref]
  117. W. Zhang, M. J. Martin, C. Benko, J. L. Hall, J. Ye, C. Hagemann, T. Legero, U. Sterr, F. Riehle, G. D. Cole, and M. Aspelmeyer, “Reduction of residual amplitude modulation to for frequency modulation and laser stabilization,” Opt. Lett. 39, 1980–1983 (2014).
    [Crossref]
  118. J. Bi, Y. Zhi, L. Li, and L. Chen, “Suppressing residual amplitude modulation to the level in optical phase modulation,” Appl. Opt. 58, 690–694 (2019).
    [Crossref]
  119. J. Chiles and S. Fathpour, “Mid-infrared integrated waveguide modulators based on silicon-on-lithium-niobate photonics,” Optica 1, 350–355 (2014).
    [Crossref]
  120. R. Peng, K. Khaliji, N. Youngblood, R. Grassi, T. Low, and M. Li, “Midinfrared electro-optic modulation in few-layer black phosphorus,” Nano Lett. 17, 6315–6320 (2017).
    [Crossref]
  121. K. Kashiwagi, S. Okubo, and H. Inaba, “High repetition rate visible frequency comb generation from electro-optic modulation in the 1550  nm region,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2019), paper JW2A.97.
  122. G. Xu, V. Pêcheur, J. Fatome, M. Chauvet, and B. Kibler, “Optical cavity-less 40-GHz picosecond pulse generator in the visible wavelength range,” in Conference on Lasers and Electro-Optics Europe and European Quantum Electronics Conference (Optical Society of America, 2019), paper cd_12_5.
  123. A. J. Metcalf, C. D. Fredrick, R. C. Terrien, S. B. Papp, and S. A. Diddams, “30  GHz electro-optic frequency comb spanning 300  THz in the near infrared and visible,” Opt. Lett. 44, 2673–2676 (2019).
    [Crossref]
  124. E. Obrzud, V. Brasch, T. Voumard, A. Stroganov, M. Geiselmann, F. Wildi, F. Pepe, S. Lecomte, and T. Herr, “Visible blue-to-red 10  GHz frequency comb via on-chip triple-sum-frequency generation,” Opt. Lett. 44, 5290–5293 (2019).
    [Crossref]
  125. A. Parriaux, K. Hammani, and G. Millot, “Two-micron all-fibered dual-comb spectrometer based on electro-optic modulators and wavelength conversion,” Commun. Phys. 1, 17 (2018).
    [Crossref]
  126. M. Yan, P.-L. Luo, K. Iwakuni, G. Millot, T. W. Hänsch, and N. Picqué, “Mid-infrared dual-comb spectroscopy with electro-optic modulators,” Light Sci. Appl. 6, e17076 (2017).
    [Crossref]
  127. B. Jerez, P. Martín-Mateos, F. Walla, C. de Dios, and P. Acedo, “Flexible electro-optic, single-crystal difference frequency generation architecture for ultrafast mid-infrared dual-comb spectroscopy,” ACS Photon. 5, 2348–2353 (2018).
    [Crossref]
  128. P.-L. Luo, E.-C. Horng, and Y.-C. Guan, “Fast molecular fingerprinting with coherent, rapidly tunable dual-comb spectrometer near 3  µm,” Phys. Chem. Chem. Phys. 21, 18400–18405 (2019).
    [Crossref]
  129. S. Xiao, L. Hollberg, N. R. Newbury, and S. A. Diddams, “Toward a low-jitter 10  GHz pulsed source with an optical frequency comb generator,” Opt. Express 16, 8498–8508 (2008).
    [Crossref]
  130. A. J. Metcalf, F. Quinlan, T. M. Fortier, S. A. Diddams, and A. M. Weiner, “Broadly tunable, low timing jitter, high repetition rate optoelectronic comb generator,” Electron. Lett. 51, 1596–1598 (2015).
    [Crossref]
  131. Z. Tong, A. O. J. Wiberg, E. Myslivets, B. P. P. Kuo, N. Alic, and S. Radic, “Spectral linewidth preservation in parametric frequency combs seeded by dual pumps,” Opt. Express 20, 17610–17619 (2012).
    [Crossref]
  132. K. Beha, D. C. Cole, P. Del’Haye, A. Coillet, S. A. Diddams, and S. B. Papp, “Electronic synthesis of light,” Optica 4, 406–411 (2017).
    [Crossref]
  133. D. R. Carlson, D. D. Hickstein, W. Zhang, A. J. Metcalf, F. Quinlan, S. A. Diddams, and S. B. Papp, “Ultrafast electro-optic light with subcycle control,” Science 361, 1358–1363 (2018).
    [Crossref]
  134. A. Ishizawa, T. Nishikawa, A. Mizutori, H. Takara, A. Takada, T. Sogawa, and M. Koga, “Phase-noise characteristics of a 25-GHz-spaced optical frequency comb based on a phase- and intensity-modulated laser,” Opt. Express 21, 29186–29194 (2013).
    [Crossref]
  135. L. Lundberg, M. Mazur, A. Fülöp, V. Torres-Company, M. Karlsson, and P. A. Andrekson, “Phase correlation between lines of electro-optical frequency combs,” in Conference on Lasers and Electro-Optics (CLEO) (Optical Society of America, 2018), paper JW2A.149.
  136. R. T. Watts, S. G. Murdoch, and L. P. Barry, “Phase noise reduction of an optical frequency comb using a feed-forward heterodyne detection scheme,” IEEE Photon. J. 8, 1–7 (2016).
    [Crossref]
  137. A. Ishizawa, T. Nishikawa, T. Goto, K. Hitachi, T. Sogawa, and H. Gotoh, “Ultralow-phase-noise millimetre-wave signal generator assisted with an electro-optics-modulator-based optical frequency comb,” Sci. Rep. 6, 24621 (2016).
    [Crossref]
  138. N. Kuse, T. R. Schibli, and M. E. Fermann, “Low noise electro-optic comb generation by fully stabilizing to a mode-locked fiber comb,” Opt. Express 24, 16884–16893 (2016).
    [Crossref]
  139. N. Ismail, C. C. Kores, D. Geskus, and M. Pollnau, “Fabry-Pérot resonator: spectral line shapes, generic and related Airy distributions, linewidths, finesses, and performance at low or frequency-dependent reflectivity,” Opt. Express 24, 16366–16389 (2016).
    [Crossref]
  140. R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
    [Crossref]
  141. T. Kobayashi, H. Yao, K. Amano, Y. Fukushima, A. Morimoto, and T. Sueta, “Optical pulse compression using high-frequency electrooptic phase modulation,” IEEE J. Quantum Electron. 24, 382–387 (1988).
    [Crossref]
  142. M. A. Prantil, E. Cormier, J. W. Dawson, D. J. Gibson, M. J. Messerly, and C. P. J. Barty, “Widely tunable 11  GHz femtosecond fiber laser based on a nonmode-locked source,” Opt. Lett. 38, 3216–3218 (2013).
    [Crossref]
  143. K. R. Tamura, H. Kuhota, and M. Nakazawa, “Fundamentals of stable continuum generation at high repetition rates,” IEEE J. Quantum Electron. 36, 773–779 (2000).
    [Crossref]
  144. I. Morohashi, T. Sakamoto, H. Sotobayashi, T. Kawanishi, I. Hosako, and M. Tsuchiya, “Widely repetition-tunable 200  fs pulse source using a Mach–Zehnder-modulator-based flat comb generator and dispersion-flattened dispersion-decreasing fiber,” Opt. Lett. 33, 1192–1194 (2008).
    [Crossref]
  145. I. Morohashi, T. Sakamoto, H. Sotobayashi, T. Kawanishi, and I. Hosako, “Broadband wavelength-tunable ultrashort pulse source using a Mach–Zehnder modulator and dispersion-flattened dispersion-decreasing fiber,” Opt. Lett. 34, 2297–2299 (2009).
    [Crossref]
  146. V. Ataie, E. Temprana, L. Liu, E. Myslivets, B. P. Kuo, N. Alic, and S. Radic, “Ultrahigh count coherent WDM channels transmission using optical parametric comb-based frequency synthesizer,” J. Lightwave Technol. 33, 694–699 (2015).
    [Crossref]
  147. I. Morohashi, T. Sakamoto, N. Sekine, A. Kasamatsu, and I. Hosako, “Ultrashort optical pulse source using Mach-Zehnder-modulator-based flat comb generator,” Nano Commun. Network 10, 79–84 (2016), Special Issue on Terahertz Communications.
    [Crossref]
  148. T. Kurokawa, T. Shioda, M. Koriba, M. Ito, K. Kashiwagi, T. Serizawa, and Y. Tanaka, “Generation of broadband frequency-variable laser comb allowing full-frequency sweep in the near-infrared region,” Opt. Commun. 438, 13–17 (2019).
    [Crossref]
  149. T. Yang, J. Dong, S. Liao, D. Huang, and X. Zhang, “Comparison analysis of optical frequency comb generation with nonlinear effects in highly nonlinear fibers,” Opt. Express 21, 8508–8520 (2013).
    [Crossref]
  150. S. Yu, F. Bao, and H. Hu, “Broadband optical frequency comb generation with flexible frequency spacing and center wavelength,” IEEE Photon. J. 10, 7202107 (2018).
    [Crossref]
  151. E. Obrzud, M. Rainer, A. Harutyunyan, B. Chazelas, M. Cecconi, A. Ghedina, E. Molinari, S. Kundermann, S. Lecomte, F. Pepe, F. Wildi, F. Bouchy, and T. Herr, “Broadband near-infrared astronomical spectrometer calibration and on-sky validation with an electro-optic laser frequency comb,” Opt. Express 26, 34830–34841 (2018).
    [Crossref]
  152. N. J. Doran and D. Wood, “Nonlinear-optical loop mirror,” Opt. Lett. 13, 56–58 (1988).
    [Crossref]
  153. M. E. Fermann, F. Haberl, M. Hofer, and H. Hochreiter, “Nonlinear amplifying loop mirror,” Opt. Lett. 15, 752–754 (1990).
    [Crossref]
  154. S. Yang and X. Bao, “Generating a high-extinction-ratio pulse from a phase-modulated optical signal with a dispersion-imbalanced nonlinear loop mirror,” Opt. Lett. 31, 1032–1034 (2006).
    [Crossref]
  155. V. Ataie, E. Myslivets, B. P. Kuo, N. Alic, and S. Radic, “Spectrally equalized frequency comb generation in multistage parametric mixer with nonlinear pulse shaping,” J. Lightwave Technol. 32, 840–846 (2014).
    [Crossref]
  156. E. Obrzud, V. Brasch, S. Lecomte, F. Wildi, F. Bouchy, F. Pepe, and T. Herr, “All-fiber electro-optic frequency comb for near-infrared astronomical spectrograph calibration,” in Conference on Lasers and Electro-Optics (CLEO) (Optical Society of America, 2019), paper AF2K.2.
  157. D. R. Carlson, D. D. Hickstein, S. A. Diddams, and S. B. Papp, “High-speed ultra-broadband dual-comb spectroscopy using electro-optics,” in Conference on Lasers and Electro-Optics (CLEO) (Optical Society of America, 2018), paper SW4L.2.
  158. A. J. Metcalf, T. Anderson, C. F. Bender, S. Blakeslee, W. Brand, D. R. Carlson, W. D. Cochran, S. A. Diddams, M. Endl, C. Fredrick, S. Halverson, D. D. Hickstein, F. Hearty, J. Jennings, S. Kanodia, K. F. Kaplan, E. Levi, E. Lubar, S. Mahadevan, A. Monson, J. P. Ninan, C. Nitroy, S. Osterman, S. B. Papp, F. Quinlan, L. Ramsey, P. Robertson, A. Roy, C. Schwab, S. Sigurdsson, K. Srinivasan, G. Stefansson, D. A. Sterner, R. Terrien, A. Wolszczan, J. T. Wright, and G. Ycas, “Stellar spectroscopy in the near-infrared with a laser frequency comb,” Optica 6, 233–239 (2019).
    [Crossref]
  159. V. R. Supradeepa and A. M. Weiner, “Bandwidth scaling and spectral flatness enhancement of optical frequency combs from phase-modulated continuous-wave lasers using cascaded four-wave mixing,” Opt. Lett. 37, 3066–3068 (2012).
    [Crossref]
  160. V. R. Supradeepa, C. M. Long, R. Wu, F. Ferdous, E. Hamidi, D. E. Leaird, and A. M. Weiner, “Comb-based radiofrequency photonic filters with rapid tunability and high selectivity,” Nat. Photonics 6, 186–194 (2012).
    [Crossref]
  161. Y. Liu, A. J. Metcalf, V. T. Company, R. Wu, L. Fan, L. T. Varghese, M. Qi, and A. M. Weiner, “Bandwidth scaling of a phase-modulated continuous-wave comb through four-wave mixing in a silicon nano-waveguide,” Opt. Lett. 39, 6478–6481 (2014).
    [Crossref]
  162. C. Finot, B. Kibler, L. Provost, and S. Wabnitz, “Beneficial impact of wave-breaking for coherent continuum formation in normally dispersive nonlinear fibers,” J. Opt. Soc. Am. B 25, 1938–1948 (2008).
    [Crossref]
  163. G. Millot, S. Pitois, M. Yan, T. Hovhannisyan, A. Bendahmane, T. W. Hänsch, and N. Picqué, “Frequency-agile dual-comb spectroscopy,” Nat. Photonics 10, 27–30 (2016).
    [Crossref]
  164. V. Durán, P. A. Andrekson, and V. Torres-Company, “Electro-optic dual-comb interferometry over 40  nm bandwidth,” Opt. Lett. 41, 4190–4193 (2016).
    [Crossref]
  165. A. Parriaux, M. Conforti, A. Bendahmane, J. Fatome, C. Finot, S. Trillo, N. Picqué, and G. Millot, “Spectral broadening of picosecond pulses forming dispersive shock waves in optical fibers,” Opt. Lett. 42, 3044–3047 (2017).
    [Crossref]
  166. J. Kang, P. Feng, B. Li, C. Zhang, X. Wei, E. Y. Lam, K. K. Tsia, and K. K. Y. Wong, “Video-rate centimeter-range optical coherence tomography based on dual optical frequency combs by electro-optic modulators,” Opt. Express 26, 24928–24939 (2018).
    [Crossref]
  167. P. Feng, J. Kang, S. Tan, Y.-X. Ren, C. Zhang, and K. K. Y. Wong, “Dual-comb spectrally encoded confocal microscopy by electro-optic modulators,” Opt. Lett. 44, 2919–2922 (2019).
    [Crossref]
  168. N. B. Hébert, V. Michaud-Belleau, J. D. Anstie, J.-D. Deschênes, A. N. Luiten, and J. Genest, “Self-heterodyne interference spectroscopy using a comb generated by pseudo-random modulation,” Opt. Express 23, 27806–27818 (2015).
    [Crossref]
  169. N. B. Hébert, V. Michaud-Belleau, C. Perrella, G.-W. Truong, J. D. Anstie, T. M. Stace, J. Genest, and A. N. Luiten, “Real-time dynamic atomic spectroscopy using electro-optic frequency combs,” Phys. Rev. Appl. 6, 044012 (2016).
    [Crossref]
  170. D. A. Long, A. J. Fleisher, D. F. Plusquellic, and J. T. Hodges, “Multiplexed sub-Doppler spectroscopy with an optical frequency comb,” Phys. Rev. A 94, 061801 (2016).
    [Crossref]
  171. D. A. Long, A. J. Fleisher, D. F. Plusquellic, and J. T. Hodges, “Electromagnetically induced transparency in vacuum and buffer gas potassium cells probed via electro-optic frequency combs,” Opt. Lett. 42, 4430–4433 (2017).
    [Crossref]
  172. N. Wilson, N. B. Hébert, C. Perrella, P. Light, J. Genest, S. Pustelny, and A. Luiten, “Simultaneous observation of nonlinear magneto-optical rotation in the temporal and spectral domains with an electro-optic frequency comb,” Phys. Rev. Appl. 10, 034012 (2018).
    [Crossref]
  173. S. Schiller, “Spectrometry with frequency combs,” Opt. Lett. 27, 766–768 (2002).
    [Crossref]
  174. I. Coddington, N. Newbury, and W. Swann, “Dual-comb spectroscopy,” Optica 3, 414–426 (2016).
    [Crossref]
  175. I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett. 100, 013902 (2008).
    [Crossref]
  176. T. Ideguchi, A. Poisson, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Adaptive real-time dual-comb spectroscopy,” Nat. Commun. 5, 3375 (2014).
    [Crossref]
  177. D. A. Long, A. J. Fleisher, K. O. Douglass, S. E. Maxwell, K. Bielska, J. T. Hodges, and D. F. Plusquellic, “Multiheterodyne spectroscopy with optical frequency combs generated from a continuous-wave laser,” Opt. Lett. 39, 2688–2690 (2014).
    [Crossref]
  178. P. Guay, J. Genest, and A. J. Fleisher, “Precision spectroscopy of CN using a free-running, all-fiber dual electro-optic frequency comb system,” Opt. Lett. 43, 1407–1410 (2018).
    [Crossref]
  179. A. J. Fleisher, D. A. Long, and J. T. Hodges, “Quantitative modeling of complex molecular response in coherent cavity-enhanced dual-comb spectroscopy,” J. Mol. Spectrosc. 352, 26–35 (2018).
    [Crossref]
  180. P. Martin-Mateos, M. Ruiz-Llata, J. Posada-Roman, and P. Acedo, “Dual-comb architecture for fast spectroscopic measurements and spectral characterization,” IEEE Photon. Technol. Lett. 27, 1309–1312 (2015).
    [Crossref]
  181. A. J. Fleisher, D. A. Long, Z. D. Reed, J. T. Hodges, and D. F. Plusquellic, “Coherent cavity-enhanced dual-comb spectroscopy,” Opt. Express 24, 10424–10434 (2016).
    [Crossref]
  182. P. Martin-Mateos, B. Jerez, P. Largo-Izquierdo, and P. Acedo, “Frequency accurate coherent electro-optic dual-comb spectroscopy in real-time,” Opt. Express 26, 9700–9713 (2018).
    [Crossref]
  183. P. Martin-Mateos, B. Jerez, and P. Acedo, “Dual electro-optic optical frequency combs for multiheterodyne molecular dispersion spectroscopy,” Opt. Express 23, 21149–21158 (2015).
    [Crossref]
  184. K. Fdil, V. Michaud-Belleau, N. B. Hébert, P. Guay, A. J. Fleisher, J.-D. Deschênes, and J. Genest, “Dual electro-optic frequency comb spectroscopy using pseudo-random modulation,” Opt. Lett. 44, 4415–4418 (2019).
    [Crossref]
  185. http://www.cfa.harvard.edu/hitran/ .
  186. A. Parriaux, K. Hammani, and G. Millot, “Electro-optic dual-comb spectrometer in the thulium amplification band for gas sensing applications,” Opt. Lett. 44, 4335–4338 (2019).
    [Crossref]
  187. A. Ishizawa, T. Nishikawa, M. Yan, G. Millot, H. Gotoh, T. W. Hänsch, and N. Picqué, “Optical frequency combs of multi-GHz line-spacing for real-time multi-heterodyne spectroscopy,” in Conference on Lasers and Electro-Optics (CLEO) (2015), pp. 1–2.
  188. T. Nishikawa, A. Ishizawa, M. Yan, H. Gotoh, T. Hänsch, and N. Picqué, “Broadband dual-comb spectroscopy with cascaded-electro-optic-modulator-based frequency combs,” in Conference on Lasers and Electro-Optics (CLEO) (Optical Society of America, 2015), paper SW3G.2.
  189. T. Nishikawa, A. Oohara, S. Uda, A. Ishizawa, K. Hitachi, N. Picqué, and T. Hänsch, “Automatic interpolation of 25  GHz mode spacing in dual EOM comb spectroscopy,” in Conference on Lasers and Electro-Optics (CLEO) (Optical Society of America, 2019), paper SF1I.3.
  190. V. Durán, S. Tainta, and V. Torres-Company, “Ultrafast electrooptic dual-comb interferometry,” Opt. Express 23, 30557–30569 (2015).
    [Crossref]
  191. S. Wang, X. Fan, B. Xu, and Z. He, “Dense electro-optic frequency comb generated by two-stage modulation for dual-comb spectroscopy,” Opt. Lett. 42, 3984–3987 (2017).
    [Crossref]
  192. B. Xu, X. Fan, S. Wang, and Z. He, “Broadband and high-resolution electro-optic dual-comb interferometer with frequency agility,” Opt. Express 27, 9266–9275 (2019).
    [Crossref]
  193. S. Wang, X. Fan, B. Xu, B. Wang, J. Du, and Z. He, “Hybrid dual-comb interferometer with easily established mutual coherence and a very high refresh rate,” Opt. Lett. 43, 3441–3444 (2018).
    [Crossref]
  194. N. B. Hébert, S. Boudreau, J. Genest, and J.-D. Deschênes, “Coherent dual-comb interferometry with quasi-integer-ratio repetition rates,” Opt. Express 22, 29152–29160 (2014).
    [Crossref]
  195. S. Wang, X. Fan, B. Xu, and Z. He, “Fast MHz spectral-resolution dual-comb spectroscopy with electro-optic modulators,” Opt. Lett. 44, 65–68 (2019).
    [Crossref]
  196. M. I. Kayes and M. Rochette, “Fourier transform spectroscopy by repetition rate sweeping of a single electro-optic frequency comb,” Opt. Lett. 43, 967–970 (2018).
    [Crossref]
  197. D. R. Carlson, D. D. Hickstein, D. C. Cole, S. A. Diddams, and S. B. Papp, “Dual-comb interferometry via repetition rate switching of a single frequency comb,” Opt. Lett. 43, 3614–3617 (2018).
    [Crossref]
  198. A. Shams-Ansari, M. Yu, Z. Chen, C. Reimer, M. Zhang, N. Picqué, and M. Loncar, “Microring electro-optic frequency comb sources for dual-comb spectroscopy,” in Conference on Lasers and Electro-Optics(CLEO) (Optical Society of America, 2019), paper JTh5B.8.
  199. B. Jerez, F. Walla, A. Betancur, P. Martín-Mateos, C. de Dios, and P. Acedo, “Electro-optic THz dual-comb architecture for high-resolution, absolute spectroscopy,” Opt. Lett. 44, 415–418 (2019).
    [Crossref]
  200. S.-J. Lee, B. Widiyatmoko, M. Kourogi, and M. Ohtsu, “Ultrahigh scanning speed optical coherence tomography using optical frequency comb generators,” Jpn. J. Appl. Phys. 40, L878–L880 (2001).
    [Crossref]
  201. Z. Zhu and G. Wu, “Dual-comb ranging,” Engineering 4, 772–778 (2018).
    [Crossref]
  202. O. P. Lay, S. Dubovitsky, R. D. Peters, J. P. Burger, S.-W. Ahn, W. H. Steier, H. R. Fetterman, and Y. Chang, “MSTAR: a submicrometer absolute metrology system,” Opt. Lett. 28, 890–892 (2003).
    [Crossref]
  203. R. Yang, F. Pollinger, K. Meiners-Hagen, J. Tan, and H. Bosse, “Heterodyne multi-wavelength absolute interferometry based on a cavity-enhanced electro-optic frequency comb pair,” Opt. Lett. 39, 5834–5837 (2014).
    [Crossref]
  204. J. Posada-Roman, J. Garcia-Souto, D. Poiana, and P. Acedo, “Fast interrogation of fiber Bragg gratings with electro-optical dual optical frequency combs,” Sensors 16, 2007 (2016).
    [Crossref]
  205. E. L. Teleanu, V. Durán, and V. Torres-Company, “Electro-optic dual-comb interferometer for high-speed vibrometry,” Opt. Express 25, 16427–16436 (2017).
    [Crossref]
  206. J. E. Posada-Roman, H. Angelina, B. Jerez, M. Ruiz-Llata, and P. Acedo, “Laser range finder approach based on a fieldable electro-optic dual optical frequency comb: a proof of concept,” Appl. Opt. 56, 6087–6093 (2017).
    [Crossref]
  207. B. Xue, Z. Wang, H. Zhang, K. Zhang, Y. Chen, M. He, B. Lin, and H. Wu, “Absolute distance measurement by self-heterodyne EO comb interferometry,” IEEE Photon. Technol. Lett. 30, 861–864 (2018).
    [Crossref]
  208. H. Wu, T. Zhao, Z. Wang, K. Zhang, B. Xue, J. Li, M. He, and X. Qu, “Long distance measurement up to 1.2  km by electro-optic dual-comb interferometry,” Appl. Phys. Lett. 111, 251901 (2017).
    [Crossref]
  209. M. I. Kayes and M. Rochette, “Precise distance measurement by a single electro-optic frequency comb,” IEEE Photon. Technol. Lett. 31, 775–778 (2019).
    [Crossref]
  210. X. Zhao, X. Qu, F. Zhang, Y. Zhao, and G. Tang, “Absolute distance measurement by multi-heterodyne interferometry using an electro-optic triple comb,” Opt. Lett. 43, 807–810 (2018).
    [Crossref]
  211. C. Weimann, A. Messner, T. Baumgartner, S. Wolf, F. Hoeller, W. Freude, and C. Koos, “Fast high-precision distance metrology using a pair of modulator-generated dual-color frequency combs,” Opt. Express 26, 34305–34335 (2018).
    [Crossref]
  212. F. Ferdous, D. E. Leaird, C.-B. Huang, and A. M. Weiner, “Dual-comb electric-field cross-correlation technique for optical arbitrary waveform characterization,” Opt. Lett. 34, 3875–3877 (2009).
    [Crossref]
  213. O. E. Bonilla-Manrique, P. Martín-Mateos, B. Jerez, M. Ruiz-Llata, and P. Acedo, “High-resolution optical thickness measurement based on electro-optic dual-optical frequency comb sources,” IEEE J. Sel. Top. Quantum Electron. 23, 140–146 (2017).
    [Crossref]
  214. M. T. Murphy, T. Udem, R. Holzwarth, A. Sizmann, L. Pasquini, C. Araujo, H. Dekker, S. D’Odorico, M. Fischer, T. Hänsch, and A. Manescau, “High-precision wavelength calibration of astronomical spectrographs with laser frequency combs,” Mon. Not. R. Astron. Soc. 380, 839–847 (2007).
    [Crossref]
  215. T. Wilken, C. Lovis, A. Manescau, T. Steinmetz, L. Pasquini, G. Lo Curto, T. Hänsch, R. Holzwarth, and T. Udem, “High-precision calibration of spectrographs,” Mon. Not. R. Astron. Soc. Lett. 405, L16–L20 (2010).
    [Crossref]
  216. M. Mayor and D. Queloz, “A Jupiter-mass companion to a solar-type star,” Nature 378, 355–359 (1995).
    [Crossref]
  217. T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations,” Science 321, 1335–1337 (2008).
    [Crossref]
  218. R. A. McCracken, J. M. Charsley, and D. T. Reid, “A decade of astrocombs: recent advances in frequency combs for astronomy [Invited],” Opt. Express 25, 15058–15078 (2017).
    [Crossref]
  219. X. Bonfils, X. Delfosse, S. Udry, T. Forveille, M. Mayor, C. Perrier, F. Bouchy, M. Gillon, C. Lovis, F. Pepe, D. Queloz, N. C. Santos, D. Ségransan, and J.-L. Bertaux, “The HARPS search for southern extra-solar planets - XXXI. The M-dwarf sample,” Astron. Astrophys. 549, A109 (2013).
    [Crossref]
  220. X. Yi, K. Vahala, J. Li, S. Diddams, G. Ycas, P. Plavchan, S. Leifer, J. Sandhu, G. Vasisht, P. Chen, P. Gao, J. Gagne, E. Furlan, M. Bottom, E. C. Martin, M. P. Fitzgerald, G. Doppmann, and C. Beichman, “Demonstration of a near-IR line-referenced electro-optical laser frequency comb for precision radial velocity measurements in astronomy,” Nat. Commun. 7, 10436 (2016).
    [Crossref]
  221. B. Dai, Z. Gao, X. Wang, H. Chen, N. Kataoka, and N. Wada, “Generation of versatile waveforms from CW light using a dual-drive Mach-Zehnder modulator and employing chromatic dispersion,” J. Lightwave Technol. 31, 145–151 (2013).
    [Crossref]
  222. A. M. Weiner, “Ultrafast optical pulse shaping: a tutorial review,” Opt. Commun. 284, 3669–3692 (2011), Special Issue on Optical Pulse Shaping, Arbitrary Waveform Generation, and Pulse Characterization.
    [Crossref]
  223. Z. Jiang, D. S. Seo, D. E. Leaird, and A. M. Weiner, “Spectral line-by-line pulse shaping,” Opt. Lett. 30, 1557–1559 (2005).
    [Crossref]
  224. C.-B. Huang, Z. Jiang, D. Leaird, J. Caraquitena, and A. Weiner, “Spectral line-by-line shaping for optical and microwave arbitrary waveform generations,” Laser Photon. Rev. 2, 227–248 (2008).
    [Crossref]
  225. Z. Jiang, D. E. Leaird, and A. M. Weiner, “Optical processing based on spectral line-by-line pulse shaping on a phase-modulated CW laser,” IEEE J. Quantum Electron. 42, 657–665 (2006).
    [Crossref]
  226. Z. Jiang, C.-B. Huang, D. E. Leaird, and A. M. Weiner, “Optical arbitrary waveform processing of more than 100 spectral comb lines,” Nat. Photonics 1, 463–467 (2007).
    [Crossref]
  227. Z. Jiang, D. E. Leaird, C. Huang, H. Miao, M. Kourogi, K. Imai, and A. M. Weiner, “Spectral line-by-line pulse shaping on an optical frequency comb generator,” IEEE J. Quantum Electron. 43, 1163–1174 (2007).
    [Crossref]
  228. V. Torres-Company, A. J. Metcalf, D. E. Leaird, and A. M. Weiner, “Multichannel radio-frequency arbitrary waveform generation based on multiwavelength comb switching and 2-D line-by-line pulse shaping,” IEEE Photon. Technol. Lett. 24, 891–893 (2012).
    [Crossref]
  229. C. Finot, “40-GHz photonic waveform generator by linear shaping of four spectral sidebands,” Opt. Lett. 40, 1422–1425 (2015).
    [Crossref]
  230. D. Miyamoto, K. Mandai, T. Kurokawa, S. Takeda, T. Shioda, and H. Tsuda, “Waveform-controllable optical pulse generation using an optical pulse synthesizer,” IEEE Photon. Technol. Lett. 18, 721–723 (2006).
    [Crossref]
  231. A. J. Metcalf, H.-J. Kim, D. E. Leaird, J. A. Jaramillo-Villegas, K. A. McKinzie, V. Lal, A. Hosseini, G. E. Hoefler, F. Kish, and A. M. Weiner, “Integrated line-by-line optical pulse shaper for high-fidelity and rapidly reconfigurable RF-filtering,” Opt. Express 24, 23925–23940 (2016).
    [Crossref]
  232. B. Frisquet, B. Kibler, and G. Millot, “Collision of Akhmediev breathers in nonlinear fiber optics,” Phys. Rev. X 3, 041032 (2013).
    [Crossref]
  233. B. Kibler, A. Chabchoub, A. Gelash, N. Akhmediev, and V. E. Zakharov, “Superregular breathers in optics and hydrodynamics: omnipresent modulation instability beyond simple periodicity,” Phys. Rev. X 5, 041026 (2015).
    [Crossref]
  234. G. Xu, A. Gelash, A. Chabchoub, V. Zakharov, and B. Kibler, “Breather wave molecules,” Phys. Rev. Lett. 122, 084101 (2019).
    [Crossref]
  235. B. Frisquet, A. Chabchoub, J. Fatome, C. Finot, B. Kibler, and G. Millot, “Two-stage linear-nonlinear shaping of an optical frequency comb as rogue nonlinear-Schrödinger-equation-solution generator,” Phys. Rev. A 89, 023821 (2014).
    [Crossref]
  236. F. Baronio, B. Frisquet, S. Chen, G. Millot, S. Wabnitz, and B. Kibler, “Observation of a group of dark rogue waves in a telecommunication optical fiber,” Phys. Rev. A 97, 013852 (2018).
    [Crossref]
  237. K. Hammani, B. Kibler, C. Finot, P. Morin, J. Fatome, J. M. Dudley, and G. Millot, “Peregrine soliton generation and breakup in standard telecommunications fiber,” Opt. Lett. 36, 112–114 (2011).
    [Crossref]
  238. F. Audo, B. Kibler, J. Fatome, and C. Finot, “Experimental observation of the emergence of Peregrine-like events in focusing dam break flows,” Opt. Lett. 43, 2864–2867 (2018).
    [Crossref]
  239. G. Xu, K. Hammani, A. Chabchoub, J. M. Dudley, B. Kibler, and C. Finot, “Phase evolution of Peregrine-like breathers in optics and hydrodynamics,” Phys. Rev. E 99, 012207 (2019).
    [Crossref]
  240. B. Kibler, J. Fatome, C. Finot, G. Millot, F. Dias, G. Genty, N. Akhmediev, and J. M. Dudley, “The Peregrine soliton in nonlinear fibre optics,” Nat. Phys. 6, 790–795 (2010).
    [Crossref]
  241. K. Hammani, B. Kibler, J. Fatome, S. Boscolo, G. Genty, J. M. Dudley, G. Millot, and C. Finot, “Nonlinear spectral shaping and optical rogue events in fiber-based systems,” Opt. Fiber Technol. 18, 248–256 (2012), Special Issue on Fiber Supercontinuum Sources and Their Applications.
    [Crossref]
  242. B. Kibler, J. Fatome, C. Finot, G. Millot, G. Genty, B. Wetzel, N. Akhmediev, F. Dias, and J. M. Dudley, “Observation of Kuznetsov-Ma soliton dynamics in optical fibre,” Sci. Rep. 2, 463 (2012).
    [Crossref]
  243. L. Lundberg, M. Karlsson, A. Lorences-Riesgo, M. Mazur, V. Torres-Company, J. Schröder, and P. Andrekson, “Frequency comb-based WDM transmission systems enabling joint signal processing,” Appl. Sci. 8, 718 (2018).
    [Crossref]
  244. X. Zou, B. Lu, W. Pan, L. Yan, A. Stöhr, and J. Yao, “Photonics for microwave measurements,” Laser Photon. Rev. 10, 711–734 (2016).
    [Crossref]
  245. I. Morohashi, I. Katayama, M. Kirigaya, Y. Irimajiri, N. Sekine, and I. Hosako, “High precision frequency measurement of terahertz waves using optical combs from a Mach–Zehnder-modulator-based flat comb generator,” Opt. Lett. 44, 487–490 (2019).
    [Crossref]
  246. J. M. Lukens, D. E. Leaird, and A. M. Weiner, “A temporal cloak at telecommunication data rate,” Nature 498, 205–208 (2013).
    [Crossref]
  247. F. Zhou, J. Dong, S. Yan, and T. Yang, “Temporal cloak with large fractional hiding window at telecommunication data rate,” Opt. Commun. 388, 77–83 (2017).
    [Crossref]
  248. J. M. Lukens, A. J. Metcalf, D. E. Leaird, and A. M. Weiner, “Temporal cloaking for data suppression and retrieval,” Optica 1, 372–375 (2014).
    [Crossref]
  249. L. R. Cortés, M. Seghilani, R. Maram, and J. Azaña, “Full-field broadband invisibility through reversible wave frequency-spectrum control,” Optica 5, 779–786 (2018).
    [Crossref]
  250. P. O. Weigel, J. Zhao, K. Fang, H. Al-Rubaye, D. Trotter, D. Hood, J. Mudrick, C. Dallo, A. T. Pomerene, A. L. Starbuck, C. T. DeRose, A. L. Lentine, G. Rebeiz, and S. Mookherjea, “Bonded thin film lithium niobate modulator on a silicon photonics platform exceeding 100  GHz 3-dB electrical modulation bandwidth,” Opt. Express 26, 23728–23739 (2018).
    [Crossref]
  251. M. He, M. Xu, Y. Ren, J. Jian, Z. Ruan, Y. Xu, S. Gao, S. Sun, X. Wen, L. Zhou, L. Liu, C. Guo, H. Chen, S. Yu, L. Liu, and X. Cai, “High-performance hybrid silicon and lithium niobate Mach–Zehnder modulators for 100  Gbit/s−1 and beyond,” Nat. Photonics 13, 359–364 (2019).
    [Crossref]
  252. C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Lončar, “Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages,” Nature 562, 101–104 (2018).
    [Crossref]
  253. A. J. Mercante, S. Shi, P. Yao, L. Xie, R. M. Weikle, and D. W. Prather, “Thin film lithium niobate electro-optic modulator with terahertz operating bandwidth,” Opt. Express 26, 14810–14816 (2018).
    [Crossref]
  254. L. Alloatti, R. Palmer, S. Diebold, K. P. Pahl, B. Chen, R. Dinu, M. Fournier, J.-M. Fedeli, T. Zwick, W. Freude, C. Koos, and J. Leuthold, “100  GHz silicon-organic hybrid modulator,” Light Sci. Appl. 3, e173 (2014).
    [Crossref]
  255. A. Melikyan, L. Alloatti, A. Muslija, D. Hillerkuss, P. C. Schindler, J. Li, R. Palmer, D. Korn, S. Muehlbrandt, D. V. Thourhout, B. Chen, R. Dinu, M. Sommer, C. Koos, M. Kohl, W. Freude, and J. Leuthold, “High-speed plasmonic phase modulators,” Nat. Photonics 8, 229–233 (2014).
    [Crossref]
  256. C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold, “All-plasmonic Mach–Zehnder modulator enabling optical high-speed communication at the microscale,” Nat. Photonics 9, 525–528 (2015).
    [Crossref]
  257. M. Ayata, Y. Fedoryshyn, W. Heni, B. Baeuerle, A. Josten, M. Zahner, U. Koch, Y. Salamin, C. Hoessbacher, C. Haffner, D. L. Elder, L. R. Dalton, and J. Leuthold, “High-speed plasmonic modulator in a single metal layer,” Science 358, 630–632 (2017).
    [Crossref]
  258. B. Baeuerle, W. Heni, C. Hoessbacher, Y. Fedoryshyn, U. Koch, A. Josten, T. Watanabe, C. Uhl, H. Hettrich, D. L. Elder, L. R. Dalton, M. Möller, and J. Leuthold, “120  GBd plasmonic Mach-Zehnder modulator with a novel differential electrode design operated at a peak-to-peak drive voltage of 178  mV,” Opt. Express 27, 16823–16832 (2019).
    [Crossref]
  259. S. Abel, F. Eltes, J. E. Ortmann, A. Messner, P. Castera, T. Wagner, D. Urbonas, A. Rosa, A. M. Gutierrez, D. Tulli, P. Ma, B. Baeuerle, A. Josten, W. Heni, D. Caimi, L. Czornomaz, A. A. Demkov, J. Leuthold, P. Sanchis, and J. Fompeyrine, “Large Pockels effect in micro- and nanostructured barium titanate integrated on silicon,” Nat. Mater. 18, 42–47 (2018).
    [Crossref]
  260. F. Eltes, C. Mai, D. Caimi, M. Kroh, Y. Popoff, G. Winzer, D. Petousi, S. Lischke, J. E. Ortmann, L. Czornomaz, L. Zimmermann, J. Fompeyrine, and S. Abel, “A BaTiO3-based electro-optic Pockels modulator monolithically integrated on an advanced silicon photonics platform,” J. Lightwave Technol. 37, 1456–1462 (2019).
    [Crossref]
  261. M. Li, L. Wang, X. Li, X. Xiao, and S. Yu, “Silicon intensity Mach–Zehnder modulator for single lane 100  Gb/s applications,” Photon. Res. 6, 109–116 (2018).
    [Crossref]
  262. H. Sepehrian, J. Lin, L. A. Rusch, and W. Shi, “Silicon photonic IQ modulators for 400  Gb/s and beyond,” J. Lightwave Technol. 37, 3078–3086 (2019).
    [Crossref]
  263. L. Fan, C.-L. Zou, N. Zhu, and H. X. Tang, “Spectrotemporal shaping of itinerant photons via distributed nanomechanics,” Nat. Photonics 13, 323–327 (2019).
    [Crossref]
  264. T. Ideguchi, S. Holzner, B. Bernhardt, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Coherent Raman spectro-imaging with laser frequency combs,” Nature 502, 355–358 (2013).
    [Crossref]
  265. D. Carlson, D. Hickstein, S. A. Diddams, and S. B. Papp, “An ultrafast electro-optic dual comb for linear and nonlinear spectroscopy,” in Light, Energy and the Environment 2018 (E2, FTS, HISE, SOLAR, SSL) (Optical Society of America, 2018), paper FT4B.2.

2019 (23)

M. Zhang, B. Buscaino, C. Wang, A. Shams-Ansari, C. Reimer, R. Zhu, J. M. Kahn, and M. Loncar, “Broadband electro-optic frequency comb generation in a lithium niobate microring resonator,” Nature 568, 373–377 (2019).
[Crossref]

A. Rueda, F. Sedlmeir, M. Kumari, G. Leuchs, and H. G. L. Schwefel, “Resonant electro-optic frequency comb,” Nature 568, 378–381 (2019).
[Crossref]

J. Bi, Y. Zhi, L. Li, and L. Chen, “Suppressing residual amplitude modulation to the level in optical phase modulation,” Appl. Opt. 58, 690–694 (2019).
[Crossref]

A. J. Metcalf, C. D. Fredrick, R. C. Terrien, S. B. Papp, and S. A. Diddams, “30  GHz electro-optic frequency comb spanning 300  THz in the near infrared and visible,” Opt. Lett. 44, 2673–2676 (2019).
[Crossref]

E. Obrzud, V. Brasch, T. Voumard, A. Stroganov, M. Geiselmann, F. Wildi, F. Pepe, S. Lecomte, and T. Herr, “Visible blue-to-red 10  GHz frequency comb via on-chip triple-sum-frequency generation,” Opt. Lett. 44, 5290–5293 (2019).
[Crossref]

P.-L. Luo, E.-C. Horng, and Y.-C. Guan, “Fast molecular fingerprinting with coherent, rapidly tunable dual-comb spectrometer near 3  µm,” Phys. Chem. Chem. Phys. 21, 18400–18405 (2019).
[Crossref]

T. Kurokawa, T. Shioda, M. Koriba, M. Ito, K. Kashiwagi, T. Serizawa, and Y. Tanaka, “Generation of broadband frequency-variable laser comb allowing full-frequency sweep in the near-infrared region,” Opt. Commun. 438, 13–17 (2019).
[Crossref]

A. J. Metcalf, T. Anderson, C. F. Bender, S. Blakeslee, W. Brand, D. R. Carlson, W. D. Cochran, S. A. Diddams, M. Endl, C. Fredrick, S. Halverson, D. D. Hickstein, F. Hearty, J. Jennings, S. Kanodia, K. F. Kaplan, E. Levi, E. Lubar, S. Mahadevan, A. Monson, J. P. Ninan, C. Nitroy, S. Osterman, S. B. Papp, F. Quinlan, L. Ramsey, P. Robertson, A. Roy, C. Schwab, S. Sigurdsson, K. Srinivasan, G. Stefansson, D. A. Sterner, R. Terrien, A. Wolszczan, J. T. Wright, and G. Ycas, “Stellar spectroscopy in the near-infrared with a laser frequency comb,” Optica 6, 233–239 (2019).
[Crossref]

P. Feng, J. Kang, S. Tan, Y.-X. Ren, C. Zhang, and K. K. Y. Wong, “Dual-comb spectrally encoded confocal microscopy by electro-optic modulators,” Opt. Lett. 44, 2919–2922 (2019).
[Crossref]

K. Fdil, V. Michaud-Belleau, N. B. Hébert, P. Guay, A. J. Fleisher, J.-D. Deschênes, and J. Genest, “Dual electro-optic frequency comb spectroscopy using pseudo-random modulation,” Opt. Lett. 44, 4415–4418 (2019).
[Crossref]

A. Parriaux, K. Hammani, and G. Millot, “Electro-optic dual-comb spectrometer in the thulium amplification band for gas sensing applications,” Opt. Lett. 44, 4335–4338 (2019).
[Crossref]

B. Xu, X. Fan, S. Wang, and Z. He, “Broadband and high-resolution electro-optic dual-comb interferometer with frequency agility,” Opt. Express 27, 9266–9275 (2019).
[Crossref]

S. Wang, X. Fan, B. Xu, and Z. He, “Fast MHz spectral-resolution dual-comb spectroscopy with electro-optic modulators,” Opt. Lett. 44, 65–68 (2019).
[Crossref]

B. Jerez, F. Walla, A. Betancur, P. Martín-Mateos, C. de Dios, and P. Acedo, “Electro-optic THz dual-comb architecture for high-resolution, absolute spectroscopy,” Opt. Lett. 44, 415–418 (2019).
[Crossref]

M. I. Kayes and M. Rochette, “Precise distance measurement by a single electro-optic frequency comb,” IEEE Photon. Technol. Lett. 31, 775–778 (2019).
[Crossref]

G. Xu, A. Gelash, A. Chabchoub, V. Zakharov, and B. Kibler, “Breather wave molecules,” Phys. Rev. Lett. 122, 084101 (2019).
[Crossref]

G. Xu, K. Hammani, A. Chabchoub, J. M. Dudley, B. Kibler, and C. Finot, “Phase evolution of Peregrine-like breathers in optics and hydrodynamics,” Phys. Rev. E 99, 012207 (2019).
[Crossref]

I. Morohashi, I. Katayama, M. Kirigaya, Y. Irimajiri, N. Sekine, and I. Hosako, “High precision frequency measurement of terahertz waves using optical combs from a Mach–Zehnder-modulator-based flat comb generator,” Opt. Lett. 44, 487–490 (2019).
[Crossref]

M. He, M. Xu, Y. Ren, J. Jian, Z. Ruan, Y. Xu, S. Gao, S. Sun, X. Wen, L. Zhou, L. Liu, C. Guo, H. Chen, S. Yu, L. Liu, and X. Cai, “High-performance hybrid silicon and lithium niobate Mach–Zehnder modulators for 100  Gbit/s−1 and beyond,” Nat. Photonics 13, 359–364 (2019).
[Crossref]

B. Baeuerle, W. Heni, C. Hoessbacher, Y. Fedoryshyn, U. Koch, A. Josten, T. Watanabe, C. Uhl, H. Hettrich, D. L. Elder, L. R. Dalton, M. Möller, and J. Leuthold, “120  GBd plasmonic Mach-Zehnder modulator with a novel differential electrode design operated at a peak-to-peak drive voltage of 178  mV,” Opt. Express 27, 16823–16832 (2019).
[Crossref]

F. Eltes, C. Mai, D. Caimi, M. Kroh, Y. Popoff, G. Winzer, D. Petousi, S. Lischke, J. E. Ortmann, L. Czornomaz, L. Zimmermann, J. Fompeyrine, and S. Abel, “A BaTiO3-based electro-optic Pockels modulator monolithically integrated on an advanced silicon photonics platform,” J. Lightwave Technol. 37, 1456–1462 (2019).
[Crossref]

H. Sepehrian, J. Lin, L. A. Rusch, and W. Shi, “Silicon photonic IQ modulators for 400  Gb/s and beyond,” J. Lightwave Technol. 37, 3078–3086 (2019).
[Crossref]

L. Fan, C.-L. Zou, N. Zhu, and H. X. Tang, “Spectrotemporal shaping of itinerant photons via distributed nanomechanics,” Nat. Photonics 13, 323–327 (2019).
[Crossref]

2018 (36)

M. Li, L. Wang, X. Li, X. Xiao, and S. Yu, “Silicon intensity Mach–Zehnder modulator for single lane 100  Gb/s applications,” Photon. Res. 6, 109–116 (2018).
[Crossref]

S. Abel, F. Eltes, J. E. Ortmann, A. Messner, P. Castera, T. Wagner, D. Urbonas, A. Rosa, A. M. Gutierrez, D. Tulli, P. Ma, B. Baeuerle, A. Josten, W. Heni, D. Caimi, L. Czornomaz, A. A. Demkov, J. Leuthold, P. Sanchis, and J. Fompeyrine, “Large Pockels effect in micro- and nanostructured barium titanate integrated on silicon,” Nat. Mater. 18, 42–47 (2018).
[Crossref]

C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Lončar, “Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages,” Nature 562, 101–104 (2018).
[Crossref]

A. J. Mercante, S. Shi, P. Yao, L. Xie, R. M. Weikle, and D. W. Prather, “Thin film lithium niobate electro-optic modulator with terahertz operating bandwidth,” Opt. Express 26, 14810–14816 (2018).
[Crossref]

L. R. Cortés, M. Seghilani, R. Maram, and J. Azaña, “Full-field broadband invisibility through reversible wave frequency-spectrum control,” Optica 5, 779–786 (2018).
[Crossref]

P. O. Weigel, J. Zhao, K. Fang, H. Al-Rubaye, D. Trotter, D. Hood, J. Mudrick, C. Dallo, A. T. Pomerene, A. L. Starbuck, C. T. DeRose, A. L. Lentine, G. Rebeiz, and S. Mookherjea, “Bonded thin film lithium niobate modulator on a silicon photonics platform exceeding 100  GHz 3-dB electrical modulation bandwidth,” Opt. Express 26, 23728–23739 (2018).
[Crossref]

L. Lundberg, M. Karlsson, A. Lorences-Riesgo, M. Mazur, V. Torres-Company, J. Schröder, and P. Andrekson, “Frequency comb-based WDM transmission systems enabling joint signal processing,” Appl. Sci. 8, 718 (2018).
[Crossref]

F. Audo, B. Kibler, J. Fatome, and C. Finot, “Experimental observation of the emergence of Peregrine-like events in focusing dam break flows,” Opt. Lett. 43, 2864–2867 (2018).
[Crossref]

F. Baronio, B. Frisquet, S. Chen, G. Millot, S. Wabnitz, and B. Kibler, “Observation of a group of dark rogue waves in a telecommunication optical fiber,” Phys. Rev. A 97, 013852 (2018).
[Crossref]

X. Zhao, X. Qu, F. Zhang, Y. Zhao, and G. Tang, “Absolute distance measurement by multi-heterodyne interferometry using an electro-optic triple comb,” Opt. Lett. 43, 807–810 (2018).
[Crossref]

C. Weimann, A. Messner, T. Baumgartner, S. Wolf, F. Hoeller, W. Freude, and C. Koos, “Fast high-precision distance metrology using a pair of modulator-generated dual-color frequency combs,” Opt. Express 26, 34305–34335 (2018).
[Crossref]

M. I. Kayes and M. Rochette, “Fourier transform spectroscopy by repetition rate sweeping of a single electro-optic frequency comb,” Opt. Lett. 43, 967–970 (2018).
[Crossref]

D. R. Carlson, D. D. Hickstein, D. C. Cole, S. A. Diddams, and S. B. Papp, “Dual-comb interferometry via repetition rate switching of a single frequency comb,” Opt. Lett. 43, 3614–3617 (2018).
[Crossref]

S. Wang, X. Fan, B. Xu, B. Wang, J. Du, and Z. He, “Hybrid dual-comb interferometer with easily established mutual coherence and a very high refresh rate,” Opt. Lett. 43, 3441–3444 (2018).
[Crossref]

Z. Zhu and G. Wu, “Dual-comb ranging,” Engineering 4, 772–778 (2018).
[Crossref]

B. Xue, Z. Wang, H. Zhang, K. Zhang, Y. Chen, M. He, B. Lin, and H. Wu, “Absolute distance measurement by self-heterodyne EO comb interferometry,” IEEE Photon. Technol. Lett. 30, 861–864 (2018).
[Crossref]

P. Martin-Mateos, B. Jerez, P. Largo-Izquierdo, and P. Acedo, “Frequency accurate coherent electro-optic dual-comb spectroscopy in real-time,” Opt. Express 26, 9700–9713 (2018).
[Crossref]

P. Guay, J. Genest, and A. J. Fleisher, “Precision spectroscopy of CN using a free-running, all-fiber dual electro-optic frequency comb system,” Opt. Lett. 43, 1407–1410 (2018).
[Crossref]

A. J. Fleisher, D. A. Long, and J. T. Hodges, “Quantitative modeling of complex molecular response in coherent cavity-enhanced dual-comb spectroscopy,” J. Mol. Spectrosc. 352, 26–35 (2018).
[Crossref]

J. Kang, P. Feng, B. Li, C. Zhang, X. Wei, E. Y. Lam, K. K. Tsia, and K. K. Y. Wong, “Video-rate centimeter-range optical coherence tomography based on dual optical frequency combs by electro-optic modulators,” Opt. Express 26, 24928–24939 (2018).
[Crossref]

N. Wilson, N. B. Hébert, C. Perrella, P. Light, J. Genest, S. Pustelny, and A. Luiten, “Simultaneous observation of nonlinear magneto-optical rotation in the temporal and spectral domains with an electro-optic frequency comb,” Phys. Rev. Appl. 10, 034012 (2018).
[Crossref]

S. Yu, F. Bao, and H. Hu, “Broadband optical frequency comb generation with flexible frequency spacing and center wavelength,” IEEE Photon. J. 10, 7202107 (2018).
[Crossref]

E. Obrzud, M. Rainer, A. Harutyunyan, B. Chazelas, M. Cecconi, A. Ghedina, E. Molinari, S. Kundermann, S. Lecomte, F. Pepe, F. Wildi, F. Bouchy, and T. Herr, “Broadband near-infrared astronomical spectrometer calibration and on-sky validation with an electro-optic laser frequency comb,” Opt. Express 26, 34830–34841 (2018).
[Crossref]

B. Jerez, P. Martín-Mateos, F. Walla, C. de Dios, and P. Acedo, “Flexible electro-optic, single-crystal difference frequency generation architecture for ultrafast mid-infrared dual-comb spectroscopy,” ACS Photon. 5, 2348–2353 (2018).
[Crossref]

A. Parriaux, K. Hammani, and G. Millot, “Two-micron all-fibered dual-comb spectrometer based on electro-optic modulators and wavelength conversion,” Commun. Phys. 1, 17 (2018).
[Crossref]

D. R. Carlson, D. D. Hickstein, W. Zhang, A. J. Metcalf, F. Quinlan, S. A. Diddams, and S. B. Papp, “Ultrafast electro-optic light with subcycle control,” Science 361, 1358–1363 (2018).
[Crossref]

I. Demirtzioglou, C. Lacava, K. R. H. Bottrill, D. J. Thomson, G. T. Reed, D. J. Richardson, and P. Petropoulos, “Frequency comb generation in a silicon ring resonator modulator,” Opt. Express 26, 790–796 (2018).
[Crossref]

B. Zheng, Q. Xie, and C. Shu, “Comb spacing multiplication enabled widely spaced flexible frequency comb generation,” J. Lightwave Technol. 36, 2651–2659 (2018).
[Crossref]

M. E. Plascak, R. Bustos Ramirez, K. Bagnell, and P. J. Delfyett, “Tunable broadband electro-optic comb generation using an optically filtered optoelectronic oscillator,” IEEE Photon. Technol. Lett. 30, 335–338 (2018).
[Crossref]

X. Yan, X. Zou, W. Pan, L. Yan, and J. Azaña, “Fully digital programmable optical frequency comb generation and application,” Opt. Lett. 43, 283–286 (2018).
[Crossref]

A. Pasquazi, M. Peccianti, L. Razzari, D. J. Moss, S. Coen, M. Erkintalo, Y. K. Chembo, T. Hansson, S. Wabnitz, P. Del’Haye, X. Xue, A. M. Weiner, and R. Morandotti, “Micro-combs: a novel generation of optical sources,” Phys. Rep. 729, 1–81 (2018).
[Crossref]

T. J. Kippenberg, A. L. Gaeta, M. Lipson, and M. L. Gorodetsky, “Dissipative Kerr solitons in optical microresonators,” Science 361, eaan8083 (2018).
[Crossref]

V. Durán, C. Schnébelin, and H. G. de Chatellus, “Coherent multi-heterodyne spectroscopy using acousto-optic frequency combs,” Opt. Express 26, 13800–13809 (2018).
[Crossref]

T. Chen, W. Kong, H. Liu, and R. Shu, “Frequency-stepped pulse train generation in an amplified frequency-shifted loop for oxygen A-band spectroscopy,” Opt. Express 26, 34753–34762 (2018).
[Crossref]

R. B. Chaudhuri and A. D. Barman, “Generation of an optical frequency comb based on two cascaded dual-parallel polarization modulators,” Appl. Opt. 57, 9164–9171 (2018).
[Crossref]

L. Ponnampalam, M. Fice, H. Shams, C. Renaud, and A. Seeds, “Optical comb for generation of a continuously tunable coherent THz signal from 122.5  GHz to > 2.7  THz,” Opt. Lett. 43, 2507–2510 (2018).
[Crossref]

2017 (23)

J. Kim, D. J. Richardson, and R. Slavík, “Cavity-induced phase noise suppression in a Fabry–Perot modulator-based optical frequency comb,” Opt. Lett. 42, 1536–1539 (2017).
[Crossref]

K. Qu, S. Zhao, X. Li, Z. Zhu, D. Liang, and D. Liang, “Ultra-flat and broadband optical frequency comb generator via a single Mach–Zehnder modulator,” IEEE Photon. Technol. Lett. 29, 255–258 (2017).
[Crossref]

L. Liu, X. Zhang, T. Xu, Z. Dai, S. Dai, and T. Liu, “Simple and seamless broadband optical frequency comb generation using an InAs/InP quantum dot laser,” Opt. Lett. 42, 1173–1176 (2017).
[Crossref]

L. Liu, X. Zhang, T. Xu, Z. Dai, and T. Liu, “Simple optical frequency comb generation using a passively mode-locked quantum dot laser,” Opt. Commun. 396, 105–109 (2017).
[Crossref]

M. I. Kayes and M. Rochette, “Optical frequency comb generation with ultra-narrow spectral lines,” Opt. Lett. 42, 2718–2721 (2017).
[Crossref]

G. Lin, A. Coillet, and Y. K. Chembo, “Nonlinear photonics with high-Q whispering-gallery-mode resonators,” Adv. Opt. Photon. 9, 828–890 (2017).
[Crossref]

J. Li, H. Ma, Z. Li, and X. Zhang, “Optical frequency comb generation based on dual-polarization IQ modulator shared by two polarization-orthogonal recirculating frequency shifting loops,” IEEE Photon. J. 9, 2745558 (2017).
[Crossref]

T. Lin, S. Zhao, Z. Zhu, X. Li, and K. Qu, “Generation of flat optical frequency comb based on a DP-QPSK modulator,” IEEE Photon. Technol. Lett. 29, 146–149 (2017).
[Crossref]

T. Sakamoto and A. Chiba, “Multiple-frequency-spaced flat optical comb generation using a multiple-parallel phase modulator,” Opt. Lett. 42, 4462–4465 (2017).
[Crossref]

K. Beha, D. C. Cole, P. Del’Haye, A. Coillet, S. A. Diddams, and S. B. Papp, “Electronic synthesis of light,” Optica 4, 406–411 (2017).
[Crossref]

M. Yan, P.-L. Luo, K. Iwakuni, G. Millot, T. W. Hänsch, and N. Picqué, “Mid-infrared dual-comb spectroscopy with electro-optic modulators,” Light Sci. Appl. 6, e17076 (2017).
[Crossref]

R. Peng, K. Khaliji, N. Youngblood, R. Grassi, T. Low, and M. Li, “Midinfrared electro-optic modulation in few-layer black phosphorus,” Nano Lett. 17, 6315–6320 (2017).
[Crossref]

N. Yokota, R. Igarashi, and H. Yasaka, “Optical Nyquist pulse generation by using a dual-electrode Mach–Zehnder modulator,” Opt. Lett. 42, 1856–1859 (2017).
[Crossref]

A. Parriaux, M. Conforti, A. Bendahmane, J. Fatome, C. Finot, S. Trillo, N. Picqué, and G. Millot, “Spectral broadening of picosecond pulses forming dispersive shock waves in optical fibers,” Opt. Lett. 42, 3044–3047 (2017).
[Crossref]

D. A. Long, A. J. Fleisher, D. F. Plusquellic, and J. T. Hodges, “Electromagnetically induced transparency in vacuum and buffer gas potassium cells probed via electro-optic frequency combs,” Opt. Lett. 42, 4430–4433 (2017).
[Crossref]

H. Wu, T. Zhao, Z. Wang, K. Zhang, B. Xue, J. Li, M. He, and X. Qu, “Long distance measurement up to 1.2  km by electro-optic dual-comb interferometry,” Appl. Phys. Lett. 111, 251901 (2017).
[Crossref]

E. L. Teleanu, V. Durán, and V. Torres-Company, “Electro-optic dual-comb interferometer for high-speed vibrometry,” Opt. Express 25, 16427–16436 (2017).
[Crossref]

J. E. Posada-Roman, H. Angelina, B. Jerez, M. Ruiz-Llata, and P. Acedo, “Laser range finder approach based on a fieldable electro-optic dual optical frequency comb: a proof of concept,” Appl. Opt. 56, 6087–6093 (2017).
[Crossref]

S. Wang, X. Fan, B. Xu, and Z. He, “Dense electro-optic frequency comb generated by two-stage modulation for dual-comb spectroscopy,” Opt. Lett. 42, 3984–3987 (2017).
[Crossref]

O. E. Bonilla-Manrique, P. Martín-Mateos, B. Jerez, M. Ruiz-Llata, and P. Acedo, “High-resolution optical thickness measurement based on electro-optic dual-optical frequency comb sources,” IEEE J. Sel. Top. Quantum Electron. 23, 140–146 (2017).
[Crossref]

R. A. McCracken, J. M. Charsley, and D. T. Reid, “A decade of astrocombs: recent advances in frequency combs for astronomy [Invited],” Opt. Express 25, 15058–15078 (2017).
[Crossref]

F. Zhou, J. Dong, S. Yan, and T. Yang, “Temporal cloak with large fractional hiding window at telecommunication data rate,” Opt. Commun. 388, 77–83 (2017).
[Crossref]

M. Ayata, Y. Fedoryshyn, W. Heni, B. Baeuerle, A. Josten, M. Zahner, U. Koch, Y. Salamin, C. Hoessbacher, C. Haffner, D. L. Elder, L. R. Dalton, and J. Leuthold, “High-speed plasmonic modulator in a single metal layer,” Science 358, 630–632 (2017).
[Crossref]

2016 (23)

X. Zou, B. Lu, W. Pan, L. Yan, A. Stöhr, and J. Yao, “Photonics for microwave measurements,” Laser Photon. Rev. 10, 711–734 (2016).
[Crossref]

A. J. Metcalf, H.-J. Kim, D. E. Leaird, J. A. Jaramillo-Villegas, K. A. McKinzie, V. Lal, A. Hosseini, G. E. Hoefler, F. Kish, and A. M. Weiner, “Integrated line-by-line optical pulse shaper for high-fidelity and rapidly reconfigurable RF-filtering,” Opt. Express 24, 23925–23940 (2016).
[Crossref]

X. Yi, K. Vahala, J. Li, S. Diddams, G. Ycas, P. Plavchan, S. Leifer, J. Sandhu, G. Vasisht, P. Chen, P. Gao, J. Gagne, E. Furlan, M. Bottom, E. C. Martin, M. P. Fitzgerald, G. Doppmann, and C. Beichman, “Demonstration of a near-IR line-referenced electro-optical laser frequency comb for precision radial velocity measurements in astronomy,” Nat. Commun. 7, 10436 (2016).
[Crossref]

A. J. Fleisher, D. A. Long, Z. D. Reed, J. T. Hodges, and D. F. Plusquellic, “Coherent cavity-enhanced dual-comb spectroscopy,” Opt. Express 24, 10424–10434 (2016).
[Crossref]

J. Posada-Roman, J. Garcia-Souto, D. Poiana, and P. Acedo, “Fast interrogation of fiber Bragg gratings with electro-optical dual optical frequency combs,” Sensors 16, 2007 (2016).
[Crossref]

N. B. Hébert, V. Michaud-Belleau, C. Perrella, G.-W. Truong, J. D. Anstie, T. M. Stace, J. Genest, and A. N. Luiten, “Real-time dynamic atomic spectroscopy using electro-optic frequency combs,” Phys. Rev. Appl. 6, 044012 (2016).
[Crossref]

D. A. Long, A. J. Fleisher, D. F. Plusquellic, and J. T. Hodges, “Multiplexed sub-Doppler spectroscopy with an optical frequency comb,” Phys. Rev. A 94, 061801 (2016).
[Crossref]

I. Coddington, N. Newbury, and W. Swann, “Dual-comb spectroscopy,” Optica 3, 414–426 (2016).
[Crossref]

G. Millot, S. Pitois, M. Yan, T. Hovhannisyan, A. Bendahmane, T. W. Hänsch, and N. Picqué, “Frequency-agile dual-comb spectroscopy,” Nat. Photonics 10, 27–30 (2016).
[Crossref]

V. Durán, P. A. Andrekson, and V. Torres-Company, “Electro-optic dual-comb interferometry over 40  nm bandwidth,” Opt. Lett. 41, 4190–4193 (2016).
[Crossref]

I. Morohashi, T. Sakamoto, N. Sekine, A. Kasamatsu, and I. Hosako, “Ultrashort optical pulse source using Mach-Zehnder-modulator-based flat comb generator,” Nano Commun. Network 10, 79–84 (2016), Special Issue on Terahertz Communications.
[Crossref]

R. T. Watts, S. G. Murdoch, and L. P. Barry, “Phase noise reduction of an optical frequency comb using a feed-forward heterodyne detection scheme,” IEEE Photon. J. 8, 1–7 (2016).
[Crossref]

A. Ishizawa, T. Nishikawa, T. Goto, K. Hitachi, T. Sogawa, and H. Gotoh, “Ultralow-phase-noise millimetre-wave signal generator assisted with an electro-optics-modulator-based optical frequency comb,” Sci. Rep. 6, 24621 (2016).
[Crossref]

N. Kuse, T. R. Schibli, and M. E. Fermann, “Low noise electro-optic comb generation by fully stabilizing to a mode-locked fiber comb,” Opt. Express 24, 16884–16893 (2016).
[Crossref]

N. Ismail, C. C. Kores, D. Geskus, and M. Pollnau, “Fabry-Pérot resonator: spectral line shapes, generic and related Airy distributions, linewidths, finesses, and performance at low or frequency-dependent reflectivity,” Opt. Express 24, 16366–16389 (2016).
[Crossref]

J. Fatome, K. Hammani, B. Kibler, and C. Finot, “80 GHz waveform generated by the optical Fourier synthesis of four spectral sidebands,” Laser Phys. Lett. 13, 015102 (2016).
[Crossref]

V. Corral, R. Guzmán, C. Gordón, X. J. M. Leijtens, and G. Carpintero, “Optical frequency comb generator based on a monolithically integrated passive mode-locked ring laser with a Mach–Zehnder interferometer,” Opt. Lett. 41, 1937–1940 (2016).
[Crossref]

J. Kim and Y. Song, “Ultralow-noise mode-locked fiber lasers and frequency combs: principles, status, and applications,” Adv. Opt. Photon. 8, 465–540 (2016).
[Crossref]

S. Droste, G. Ycas, B. R. Washburn, I. Coddington, and N. R. Newbury, “Optical frequency comb generation based on erbium fiber lasers,” Nanophotonics 5, 196–213 (2016).
[Crossref]

N. Yokota, K. Abe, S. Mieda, and H. Yasaka, “Harmonic superposition for tailored optical frequency comb generation by a Mach–Zehnder modulator,” Opt. Lett. 41, 1026–1029 (2016).
[Crossref]

D. C. Cole, K. M. Beha, S. A. Diddams, and S. B. Papp, “Octave-spanning supercontinuum generation via microwave frequency multiplication,” J. Phys. Conf. Ser. 723, 012035 (2016).
[Crossref]

K. Kashiwagi, T. Kurokawa, Y. Okuyama, T. Mori, Y. Tanaka, Y. Yamamoto, and M. Hirano, “Direct generation of 12.5-GHz-spaced optical frequency comb with ultrabroad coverage in near-infrared region by cascaded fiber configuration,” Opt. Express 24, 8120–8131 (2016).
[Crossref]

Y. Yang, J. Ma, X. Xin, Q. Zhang, Y. Zhang, X. Yin, R. Zhang, and W. Liu, “Optical frequency comb generation using two cascaded polarization modulators,” Photon. Netw. Commun. 32, 126–132 (2016).
[Crossref]

2015 (15)

A. Aubourg, J. Lhermite, S. Hocquet, E. Cormier, and G. Santarelli, “Generation of picosecond laser pulses at 1030  nm with gigahertz range continuously tunable repetition rate,” Opt. Lett. 40, 5610–5613 (2015).
[Crossref]

F. Zhang, X. Ge, and S. Pan, “A two-stage optical frequency comb generator based on polarization modulators and a Mach–Zehnder interferometer,” Opt. Commun. 354, 94–102 (2015).
[Crossref]

A. Antikainen and G. P. Agrawal, “Dual-pump frequency comb generation in normally dispersive optical fibers,” J. Opt. Soc. Am. B 32, 1705–1711 (2015).
[Crossref]

L. Shang, Y. Li, L. Ma, and J. Chen, “A flexible and ultra-flat optical frequency comb generator using a parallel Mach–Zehnder modulator with a single DC bias,” Opt. Commun. 356, 70–73 (2015).
[Crossref]

Y. Fang, J. Yu, J. Zhang, X. Li, N. Chi, and J. Xiao, “Frequency comb selection enabled flexible all optical Nyquist pulse generation,” Opt. Commun. 349, 60–64 (2015).
[Crossref]

A. J. Metcalf, F. Quinlan, T. M. Fortier, S. A. Diddams, and A. M. Weiner, “Broadly tunable, low timing jitter, high repetition rate optoelectronic comb generator,” Electron. Lett. 51, 1596–1598 (2015).
[Crossref]

V. Ataie, E. Temprana, L. Liu, E. Myslivets, B. P. Kuo, N. Alic, and S. Radic, “Ultrahigh count coherent WDM channels transmission using optical parametric comb-based frequency synthesizer,” J. Lightwave Technol. 33, 694–699 (2015).
[Crossref]

Y. Bao, X. Yi, Z. Li, Q. Chen, J. Li, X. Fan, and X. Zhang, “A digitally generated ultrafine optical frequency comb for spectral measurements with 0.01-pm resolution and 0.7-µs response time,” Light Sci. Appl. 4, e300 (2015).
[Crossref]

N. B. Hébert, V. Michaud-Belleau, J. D. Anstie, J.-D. Deschênes, A. N. Luiten, and J. Genest, “Self-heterodyne interference spectroscopy using a comb generated by pseudo-random modulation,” Opt. Express 23, 27806–27818 (2015).
[Crossref]

P. Martin-Mateos, M. Ruiz-Llata, J. Posada-Roman, and P. Acedo, “Dual-comb architecture for fast spectroscopic measurements and spectral characterization,” IEEE Photon. Technol. Lett. 27, 1309–1312 (2015).
[Crossref]

P. Martin-Mateos, B. Jerez, and P. Acedo, “Dual electro-optic optical frequency combs for multiheterodyne molecular dispersion spectroscopy,” Opt. Express 23, 21149–21158 (2015).
[Crossref]

V. Durán, S. Tainta, and V. Torres-Company, “Ultrafast electrooptic dual-comb interferometry,” Opt. Express 23, 30557–30569 (2015).
[Crossref]

C. Finot, “40-GHz photonic waveform generator by linear shaping of four spectral sidebands,” Opt. Lett. 40, 1422–1425 (2015).
[Crossref]

B. Kibler, A. Chabchoub, A. Gelash, N. Akhmediev, and V. E. Zakharov, “Superregular breathers in optics and hydrodynamics: omnipresent modulation instability beyond simple periodicity,” Phys. Rev. X 5, 041026 (2015).
[Crossref]

C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold, “All-plasmonic Mach–Zehnder modulator enabling optical high-speed communication at the microscale,” Nat. Photonics 9, 525–528 (2015).
[Crossref]

2014 (18)

L. Alloatti, R. Palmer, S. Diebold, K. P. Pahl, B. Chen, R. Dinu, M. Fournier, J.-M. Fedeli, T. Zwick, W. Freude, C. Koos, and J. Leuthold, “100  GHz silicon-organic hybrid modulator,” Light Sci. Appl. 3, e173 (2014).
[Crossref]

A. Melikyan, L. Alloatti, A. Muslija, D. Hillerkuss, P. C. Schindler, J. Li, R. Palmer, D. Korn, S. Muehlbrandt, D. V. Thourhout, B. Chen, R. Dinu, M. Sommer, C. Koos, M. Kohl, W. Freude, and J. Leuthold, “High-speed plasmonic phase modulators,” Nat. Photonics 8, 229–233 (2014).
[Crossref]

J. M. Lukens, A. J. Metcalf, D. E. Leaird, and A. M. Weiner, “Temporal cloaking for data suppression and retrieval,” Optica 1, 372–375 (2014).
[Crossref]

B. Frisquet, A. Chabchoub, J. Fatome, C. Finot, B. Kibler, and G. Millot, “Two-stage linear-nonlinear shaping of an optical frequency comb as rogue nonlinear-Schrödinger-equation-solution generator,” Phys. Rev. A 89, 023821 (2014).
[Crossref]

T. Ideguchi, A. Poisson, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Adaptive real-time dual-comb spectroscopy,” Nat. Commun. 5, 3375 (2014).
[Crossref]

D. A. Long, A. J. Fleisher, K. O. Douglass, S. E. Maxwell, K. Bielska, J. T. Hodges, and D. F. Plusquellic, “Multiheterodyne spectroscopy with optical frequency combs generated from a continuous-wave laser,” Opt. Lett. 39, 2688–2690 (2014).
[Crossref]

V. Ataie, E. Myslivets, B. P. Kuo, N. Alic, and S. Radic, “Spectrally equalized frequency comb generation in multistage parametric mixer with nonlinear pulse shaping,” J. Lightwave Technol. 32, 840–846 (2014).
[Crossref]

Y. Liu, A. J. Metcalf, V. T. Company, R. Wu, L. Fan, L. T. Varghese, M. Qi, and A. M. Weiner, “Bandwidth scaling of a phase-modulated continuous-wave comb through four-wave mixing in a silicon nano-waveguide,” Opt. Lett. 39, 6478–6481 (2014).
[Crossref]

R. Yang, F. Pollinger, K. Meiners-Hagen, J. Tan, and H. Bosse, “Heterodyne multi-wavelength absolute interferometry based on a cavity-enhanced electro-optic frequency comb pair,” Opt. Lett. 39, 5834–5837 (2014).
[Crossref]

N. B. Hébert, S. Boudreau, J. Genest, and J.-D. Deschênes, “Coherent dual-comb interferometry with quasi-integer-ratio repetition rates,” Opt. Express 22, 29152–29160 (2014).
[Crossref]

J. Chiles and S. Fathpour, “Mid-infrared integrated waveguide modulators based on silicon-on-lithium-niobate photonics,” Optica 1, 350–355 (2014).
[Crossref]

K. Kokeyama, K. Izumi, W. Z. Korth, N. Smith-Lefebvre, K. Arai, and R. X. Adhikari, “Residual amplitude modulation in interferometric gravitational wave detectors,” J. Opt. Soc. Am. A 31, 81–88 (2014).
[Crossref]

W. Zhang, M. J. Martin, C. Benko, J. L. Hall, J. Ye, C. Hagemann, T. Legero, U. Sterr, F. Riehle, G. D. Cole, and M. Aspelmeyer, “Reduction of residual amplitude modulation to for frequency modulation and laser stabilization,” Opt. Lett. 39, 1980–1983 (2014).
[Crossref]

J. Wu, J. Zang, Y. Li, D. Kong, J. Qiu, S. Zhou, J. Shi, and J. Lin, “Investigation on Nyquist pulse generation using a single dual-parallel Mach-Zehnder modulator,” Opt. Express 22, 20463–20472 (2014).
[Crossref]

S. Preußler, N. Wenzel, and T. Schneider, “Flexible Nyquist pulse sequence generation with variable bandwidth and repetition rate,” IEEE Photon. J. 6, 7901608 (2014).
[Crossref]

S. Cordette, A. Vedadi, M. A. Shoaie, and C.-S. Brès, “Bandwidth and repetition rate programmable Nyquist sinc-shaped pulse train source based on intensity modulators and four-wave mixing,” Opt. Lett. 39, 6668–6671 (2014).
[Crossref]

Q. Wang, L. Huo, Y. Xing, and B. Zhou, “Ultra-flat optical frequency comb generator using a single-driven dual-parallel Mach–Zehnder modulator,” Opt. Lett. 39, 3050–3053 (2014).
[Crossref]

V. Torres-Company and A. M. Weiner, “Optical frequency comb technology for ultra-broadband radio-frequency photonics,” Laser Photon. Rev. 8, 368–393 (2014).
[Crossref]

2013 (19)

R. Wu, V. Torres-Company, D. E. Leaird, and A. M. Weiner, “Supercontinuum-based 10-GHz flat-topped optical frequency comb generation,” Opt. Express 21, 6045–6052 (2013).
[Crossref]

A. J. Metcalf, V. Torres-Company, D. E. Leaird, and A. M. Weiner, “High-power broadly tunable electrooptic frequency comb generator,” IEEE J. Sel. Top. Quantum Electron. 19, 231–236 (2013).
[Crossref]

C. Chen, F. Zhang, and S. Pan, “Generation of seven-line optical frequency comb based on a single polarization modulator,” IEEE Photon. Technol. Lett. 25, 2164–2166 (2013).
[Crossref]

C. Chen, C. He, D. Zhu, R. Guo, F. Zhang, and S. Pan, “Generation of a flat optical frequency comb based on a cascaded polarization modulator and phase modulator,” Opt. Lett. 38, 3137–3139 (2013).
[Crossref]

A. Matveev, C. G. Parthey, K. Predehl, J. Alnis, A. Beyer, R. Holzwarth, T. Udem, T. Wilken, N. Kolachevsky, M. Abgrall, D. Rovera, C. Salomon, P. Laurent, G. Grosche, O. Terra, T. Legero, H. Schnatz, S. Weyers, B. Altschul, and T. W. Hänsch, “Precision measurement of the hydrogen 1S–2S frequency via a 920-km fiber link,” Phys. Rev. Lett. 110, 230801 (2013).
[Crossref]

Y. Xing, Q. Wang, L. Huo, and C. Lou, “Frequency chirp linearization for ultraflat optical frequency comb generation based on group velocity dispersion,” Opt. Lett. 38, 2188–2190 (2013).
[Crossref]

A. K. Mishra, R. Schmogrow, I. Tomkos, D. Hillerkuss, C. Koos, W. Freude, and J. Leuthold, “Flexible RF-based comb generator,” IEEE Photon. Technol. Lett. 25, 701–704 (2013).
[Crossref]

M. A. Soto, M. Alem, M. A. Shoaie, A. Vedadi, C.-S. Brès, L. Thévenaz, and T. Schneider, “Optical sinc-shaped Nyquist pulses of exceptional quality,” Nat. Commun. 4, 2898 (2013).
[Crossref]

R. Wei, J. Yan, Y. Peng, X. Yao, M. Bai, and Z. Zheng, “Optical frequency comb generation based on electro-optical modulation with high-order harmonic of a sine RF signal,” Opt. Commun. 291, 269–273 (2013).
[Crossref]

J. Zhang, J. Yu, N. Chi, Z. Dong, X. Li, Y. Shao, J. Yu, and L. Tao, “Flattened comb generation using only phase modulators driven by fundamental frequency sinusoidal sources with small frequency offset,” Opt. Lett. 38, 552–554 (2013).
[Crossref]

J. Fatome, I. El-Mansouri, J.-L. Blanchet, S. Pitois, G. Millot, S. Trillo, and S. Wabnitz, “Even harmonic pulse train generation by cross-polarization-modulation seeded instability in optical fibers,” J. Opt. Soc. Am. B 30, 99–106 (2013).
[Crossref]

M. A. Prantil, E. Cormier, J. W. Dawson, D. J. Gibson, M. J. Messerly, and C. P. J. Barty, “Widely tunable 11  GHz femtosecond fiber laser based on a nonmode-locked source,” Opt. Lett. 38, 3216–3218 (2013).
[Crossref]

A. Ishizawa, T. Nishikawa, A. Mizutori, H. Takara, A. Takada, T. Sogawa, and M. Koga, “Phase-noise characteristics of a 25-GHz-spaced optical frequency comb based on a phase- and intensity-modulated laser,” Opt. Express 21, 29186–29194 (2013).
[Crossref]

B. Dai, Z. Gao, X. Wang, H. Chen, N. Kataoka, and N. Wada, “Generation of versatile waveforms from CW light using a dual-drive Mach-Zehnder modulator and employing chromatic dispersion,” J. Lightwave Technol. 31, 145–151 (2013).
[Crossref]

X. Bonfils, X. Delfosse, S. Udry, T. Forveille, M. Mayor, C. Perrier, F. Bouchy, M. Gillon, C. Lovis, F. Pepe, D. Queloz, N. C. Santos, D. Ségransan, and J.-L. Bertaux, “The HARPS search for southern extra-solar planets - XXXI. The M-dwarf sample,” Astron. Astrophys. 549, A109 (2013).
[Crossref]

T. Yang, J. Dong, S. Liao, D. Huang, and X. Zhang, “Comparison analysis of optical frequency comb generation with nonlinear effects in highly nonlinear fibers,” Opt. Express 21, 8508–8520 (2013).
[Crossref]

B. Frisquet, B. Kibler, and G. Millot, “Collision of Akhmediev breathers in nonlinear fiber optics,” Phys. Rev. X 3, 041032 (2013).
[Crossref]

J. M. Lukens, D. E. Leaird, and A. M. Weiner, “A temporal cloak at telecommunication data rate,” Nature 498, 205–208 (2013).
[Crossref]

T. Ideguchi, S. Holzner, B. Bernhardt, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Coherent Raman spectro-imaging with laser frequency combs,” Nature 502, 355–358 (2013).
[Crossref]

2012 (13)

K. Hammani, B. Kibler, J. Fatome, S. Boscolo, G. Genty, J. M. Dudley, G. Millot, and C. Finot, “Nonlinear spectral shaping and optical rogue events in fiber-based systems,” Opt. Fiber Technol. 18, 248–256 (2012), Special Issue on Fiber Supercontinuum Sources and Their Applications.
[Crossref]

B. Kibler, J. Fatome, C. Finot, G. Millot, G. Genty, B. Wetzel, N. Akhmediev, F. Dias, and J. M. Dudley, “Observation of Kuznetsov-Ma soliton dynamics in optical fibre,” Sci. Rep. 2, 463 (2012).
[Crossref]

V. Torres-Company, A. J. Metcalf, D. E. Leaird, and A. M. Weiner, “Multichannel radio-frequency arbitrary waveform generation based on multiwavelength comb switching and 2-D line-by-line pulse shaping,” IEEE Photon. Technol. Lett. 24, 891–893 (2012).
[Crossref]

V. R. Supradeepa and A. M. Weiner, “Bandwidth scaling and spectral flatness enhancement of optical frequency combs from phase-modulated continuous-wave lasers using cascaded four-wave mixing,” Opt. Lett. 37, 3066–3068 (2012).
[Crossref]

V. R. Supradeepa, C. M. Long, R. Wu, F. Ferdous, E. Hamidi, D. E. Leaird, and A. M. Weiner, “Comb-based radiofrequency photonic filters with rapid tunability and high selectivity,” Nat. Photonics 6, 186–194 (2012).
[Crossref]

Z. Tong, A. O. J. Wiberg, E. Myslivets, B. P. P. Kuo, N. Alic, and S. Radic, “Spectral linewidth preservation in parametric frequency combs seeded by dual pumps,” Opt. Express 20, 17610–17619 (2012).
[Crossref]

J. Sathian and E. Jaatinen, “Intensity dependent residual amplitude modulation in electro-optic phase modulators,” Appl. Opt. 51, 3684–3691 (2012).
[Crossref]

T. Wilken, G. L. Curto, R. A. Probst, T. Steinmetz, A. Manescau, L. Pasquini, J. I. G. Hernández, R. Rebolo, T. W. Hänsch, T. Udem, and R. Holzwarth, “A spectrograph for exoplanet observations calibrated at the centimetre-per-second level,” Nature 485, 611–614 (2012).
[Crossref]

E. Myslivets, B. P. Kuo, N. Alic, and S. Radic, “Generation of wideband frequency combs by continuous-wave seeding of multistage mixers with synthesized dispersion,” Opt. Express 20, 3331–3344 (2012).
[Crossref]

C. He, S. Pan, R. Guo, Y. Zhao, and M. Pan, “Ultraflat optical frequency comb generated based on cascaded polarization modulators,” Opt. Lett. 37, 3834–3836 (2012).
[Crossref]

X. Zou, W. Pan, B. Luo, and L. Yan, “Generation of repetition-rate-quadrupled optical pulse trains using a PolM or a pair of PolMs,” IEEE J. Quantum Electron. 48, 3–7 (2012).
[Crossref]

N. Dupuis, C. R. Doerr, L. Zhang, L. Chen, N. J. Sauer, P. Dong, L. L. Buhl, and D. Ahn, “InP-based comb generator for optical OFDM,” J. Lightwave Technol. 30, 466–472 (2012).
[Crossref]

Y. Dou, H. Zhang, and M. Yao, “Generation of flat optical-frequency comb using cascaded intensity and phase modulators,” IEEE Photon. Technol. Lett. 24, 727–729 (2012).
[Crossref]

2011 (8)

A. Ishizawa, T. Nishikawa, A. Mizutori, H. Takara, H. Nakano, T. Sogawa, A. Takada, and M. Koga, “Generation of 120-fs laser pulses at 1-GHz repetition rate derived from continuous wave laser diode,” Opt. Express 19, 22402–22409 (2011).
[Crossref]

M. Hirano and A. Morimoto, “Generation of flat optical frequency comb by fiber loop modulation,” Opt. Rev. 18, 13–18 (2011).
[Crossref]

J. Zhang, N. Chi, J. Yu, Y. Shao, J. Zhu, B. Huang, and L. Tao, “Generation of coherent and frequency-lock multi-carriers using cascaded phase modulators and recirculating frequency shifter for Tb/s optical communication,” Opt. Express 19, 12891–12902 (2011).
[Crossref]

J. Zhang, J. Yu, Z. Dong, Y. Shao, and N. Chi, “Generation of full C-band coherent and frequency-lock multi-carriers by using recirculating frequency shifter loops based on phase modulator with external injection,” Opt. Express 19, 26370–26381 (2011).
[Crossref]

Y. Dou, H. Zhang, and M. Yao, “Improvement of flatness of optical frequency comb based on nonlinear effect of intensity modulator,” Opt. Lett. 36, 2749–2751 (2011).
[Crossref]

I. El Mansouri, J. Fatome, C. Finot, M. Lintz, and S. Pitois, “All-fibered high-quality stable 20- and 40-GHz picosecond pulse generators for 160-Gb/s OTDM applications,” IEEE Photon. Technol. Lett. 23, 1487–1489 (2011).
[Crossref]

A. M. Weiner, “Ultrafast optical pulse shaping: a tutorial review,” Opt. Commun. 284, 3669–3692 (2011), Special Issue on Optical Pulse Shaping, Arbitrary Waveform Generation, and Pulse Characterization.
[Crossref]

K. Hammani, B. Kibler, C. Finot, P. Morin, J. Fatome, J. M. Dudley, and G. Millot, “Peregrine soliton generation and breakup in standard telecommunications fiber,” Opt. Lett. 36, 112–114 (2011).
[Crossref]

2010 (4)

B. Kibler, J. Fatome, C. Finot, G. Millot, F. Dias, G. Genty, N. Akhmediev, and J. M. Dudley, “The Peregrine soliton in nonlinear fibre optics,” Nat. Phys. 6, 790–795 (2010).
[Crossref]

T. Wilken, C. Lovis, A. Manescau, T. Steinmetz, L. Pasquini, G. Lo Curto, T. Hänsch, R. Holzwarth, and T. Udem, “High-precision calibration of spectrographs,” Mon. Not. R. Astron. Soc. Lett. 405, L16–L20 (2010).
[Crossref]

A. Ishizawa, T. Nishikawa, A. Mizutori, H. Takara, S. Aozasa, A. Mori, H. Nakano, A. Takada, and M. Koga, “Octave-spanning frequency comb generated by 250  fs pulse train emitted from 25  GHz externally phase-modulated laser diode for carrier-envelope-offset-locking,” Electron. Lett. 46, 1343–1344 (2010).
[Crossref]

R. Wu, V. R. Supradeepa, C. M. Long, D. E. Leaird, and A. M. Weiner, “Generation of very flat optical frequency combs from continuous-wave lasers using cascaded intensity and phase modulators driven by tailored radio frequency waveforms,” Opt. Lett. 35, 3234–3236 (2010).
[Crossref]

2009 (5)

2008 (10)

C.-B. Huang, Z. Jiang, D. Leaird, J. Caraquitena, and A. Weiner, “Spectral line-by-line shaping for optical and microwave arbitrary waveform generations,” Laser Photon. Rev. 2, 227–248 (2008).
[Crossref]

C. Finot, B. Kibler, L. Provost, and S. Wabnitz, “Beneficial impact of wave-breaking for coherent continuum formation in normally dispersive nonlinear fibers,” J. Opt. Soc. Am. B 25, 1938–1948 (2008).
[Crossref]

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett. 100, 013902 (2008).
[Crossref]

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations,” Science 321, 1335–1337 (2008).
[Crossref]

I. Morohashi, T. Sakamoto, H. Sotobayashi, T. Kawanishi, I. Hosako, and M. Tsuchiya, “Widely repetition-tunable 200  fs pulse source using a Mach–Zehnder-modulator-based flat comb generator and dispersion-flattened dispersion-decreasing fiber,” Opt. Lett. 33, 1192–1194 (2008).
[Crossref]

S. Xiao, L. Hollberg, N. R. Newbury, and S. A. Diddams, “Toward a low-jitter 10  GHz pulsed source with an optical frequency comb generator,” Opt. Express 16, 8498–8508 (2008).
[Crossref]

V. Torres-Company, J. Lancis, and P. Andrés, “Lossless equalization of frequency combs,” Opt. Lett. 33, 1822–1824 (2008).
[Crossref]

S. Ozharar, F. Quinlan, I. Ozdur, S. Gee, and P. J. Delfyett, “Ultraflat optical comb generation by phase-only modulation of continuous-wave light,” IEEE Photon. Technol. Lett. 20, 36–38 (2008).
[Crossref]

T. Sakamoto, T. Kawanishi, and M. Tsuchiya, “10  GHz, 2.4  ps pulse generation using a single-stage dual-drive Mach–Zehnder modulator,” Opt. Lett. 33, 890–892 (2008).
[Crossref]

C.-B. Huang, S.-G. Park, D. E. Leaird, and A. M. Weiner, “Nonlinearly broadened phase-modulated continuous-wave laser frequency combs characterized using DPSK decoding,” Opt. Express 16, 2520–2527 (2008).
[Crossref]

2007 (10)

T. Healy, F. C. G. Gunning, A. D. Ellis, and J. D. Bull, “Multi-wavelength source using low drive-voltage amplitude modulators for optical communications,” Opt. Express 15, 2981–2986 (2007).
[Crossref]

T. Sakamoto, T. Kawanishi, and M. Izutsu, “Widely wavelength-tunable ultra-flat frequency comb generation using conventional dual-drive Mach-Zehnder modulator,” Electron. Lett. 43, 1039–1040 (2007).
[Crossref]

T. Sakamoto, T. Kawanishi, and M. Izutsu, “Asymptotic formalism for ultraflat optical frequency comb generation using a Mach–Zehnder modulator,” Opt. Lett. 32, 1515–1517 (2007).
[Crossref]

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450, 1214–1217 (2007).
[Crossref]

I. L. Gheorma and G. K. Gopalakrishnan, “Flat frequency comb generation with an integrated dual-parallel modulator,” IEEE Photon. Technol. Lett. 19, 1011–1013 (2007).
[Crossref]

T. Yamamoto, T. Komukai, K. Suzuki, and A. Takada, “Spectrally flattened phase-locked multi-carrier light generator with phase modulators and chirped fibre Bragg grating,” Electron. Lett. 43, 1040–1042 (2007).
[Crossref]

P. Shen, N. J. Gomes, P. A. Davies, P. G. Huggard, and B. N. Ellison, “Analysis and demonstration of a fast tunable fiber-ring-based optical frequency comb generator,” J. Lightwave Technol. 25, 3257–3264 (2007).
[Crossref]

Z. Jiang, C.-B. Huang, D. E. Leaird, and A. M. Weiner, “Optical arbitrary waveform processing of more than 100 spectral comb lines,” Nat. Photonics 1, 463–467 (2007).
[Crossref]

Z. Jiang, D. E. Leaird, C. Huang, H. Miao, M. Kourogi, K. Imai, and A. M. Weiner, “Spectral line-by-line pulse shaping on an optical frequency comb generator,” IEEE J. Quantum Electron. 43, 1163–1174 (2007).
[Crossref]

M. T. Murphy, T. Udem, R. Holzwarth, A. Sizmann, L. Pasquini, C. Araujo, H. Dekker, S. D’Odorico, M. Fischer, T. Hänsch, and A. Manescau, “High-precision wavelength calibration of astronomical spectrographs with laser frequency combs,” Mon. Not. R. Astron. Soc. 380, 839–847 (2007).
[Crossref]

2006 (5)

Z. Jiang, D. E. Leaird, and A. M. Weiner, “Optical processing based on spectral line-by-line pulse shaping on a phase-modulated CW laser,” IEEE J. Quantum Electron. 42, 657–665 (2006).
[Crossref]

S. Yang and X. Bao, “Generating a high-extinction-ratio pulse from a phase-modulated optical signal with a dispersion-imbalanced nonlinear loop mirror,” Opt. Lett. 31, 1032–1034 (2006).
[Crossref]

D. Miyamoto, K. Mandai, T. Kurokawa, S. Takeda, T. Shioda, and H. Tsuda, “Waveform-controllable optical pulse generation using an optical pulse synthesizer,” IEEE Photon. Technol. Lett. 18, 721–723 (2006).
[Crossref]

T. W. Hänsch, “Nobel lecture: passion for precision,” Rev. Mod. Phys. 78, 1297–1309 (2006).
[Crossref]

J. L. Hall, “Nobel lecture: defining and measuring optical frequencies,” Rev. Mod. Phys. 78, 1279–1295 (2006).
[Crossref]

2005 (1)

2003 (4)

2002 (2)

T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416, 233–237 (2002).
[Crossref]

S. Schiller, “Spectrometry with frequency combs,” Opt. Lett. 27, 766–768 (2002).
[Crossref]

2001 (1)

S.-J. Lee, B. Widiyatmoko, M. Kourogi, and M. Ohtsu, “Ultrahigh scanning speed optical coherence tomography using optical frequency comb generators,” Jpn. J. Appl. Phys. 40, L878–L880 (2001).
[Crossref]

2000 (4)

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
[Crossref]

J. Reichert, M. Niering, R. Holzwarth, M. Weitz, T. Udem, and T. W. Hänsch, “Phase coherent vacuum-ultraviolet to radio frequency comparison with a mode-locked laser,” Phys. Rev. Lett. 84, 3232–3235 (2000).
[Crossref]

R. P. Kovacich, U. Sterr, and H. R. Telle, “Short-pulse properties of optical frequency comb generators,” Appl. Opt. 39, 4372–4376 (2000).
[Crossref]

K. R. Tamura, H. Kuhota, and M. Nakazawa, “Fundamentals of stable continuum generation at high repetition rates,” IEEE J. Quantum Electron. 36, 773–779 (2000).
[Crossref]

1999 (1)

J. Reichert, R. Holzwarth, T. Udem, and T. Hänsch, “Measuring the frequency of light with mode-locked lasers,” Opt. Commun. 172, 59–68 (1999).
[Crossref]

1995 (1)

M. Mayor and D. Queloz, “A Jupiter-mass companion to a solar-type star,” Nature 378, 355–359 (1995).
[Crossref]

1993 (2)

M. Kourogi, K. Nakagawa, and M. Ohtsu, “Wide-span optical frequency comb generator for accurate optical frequency difference measurement,” IEEE J. Quantum Electron. 29, 2693–2701 (1993).
[Crossref]

K. Ho and J. M. Kahn, “Optical frequency comb generator using phase modulation in amplified circulating loop,” IEEE Photon. Technol. Lett. 5, 721–725 (1993).
[Crossref]

1992 (2)

V. J. Matsas, T. P. Newson, D. J. Richardson, and D. N. Payne, “Selfstarting passively mode-locked fibre ring soliton laser exploiting nonlinear polarisation rotation,” Electron. Lett. 28, 1391–1393 (1992).
[Crossref]

K. Tamura, H. A. Haus, and E. P. Ippen, “Self-starting additive pulse mode-locked erbium fibre ring laser,” Electron. Lett. 28, 2226–2228 (1992).
[Crossref]

1991 (1)

1990 (1)

1988 (2)

N. J. Doran and D. Wood, “Nonlinear-optical loop mirror,” Opt. Lett. 13, 56–58 (1988).
[Crossref]

T. Kobayashi, H. Yao, K. Amano, Y. Fukushima, A. Morimoto, and T. Sueta, “Optical pulse compression using high-frequency electrooptic phase modulation,” IEEE J. Quantum Electron. 24, 382–387 (1988).
[Crossref]

1985 (2)

1983 (1)

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[Crossref]

1972 (1)

T. Kobayashi, T. Sueta, Y. Cho, and Y. Matsuo, “High-repetition-rate optical pulse generator using a Fabry-Perot electro-optic modulator,” Appl. Phys. Lett. 21, 341–343 (1972).
[Crossref]

1967 (1)

W. Steier, “A push-pull optical amplitude modulator,” IEEE J. Quantum Electron. 3, 664–667 (1967).
[Crossref]

1964 (1)

L. E. Hargrove, R. L. Fork, and M. A. Pollack, “Locking of He-Ne laser modes induced by synchronous intracavity modulation,” Appl. Phys. Lett. 5, 4–5 (1964).
[Crossref]

1960 (1)

T. H. Maiman, “Stimulated optical radiation in ruby,” Nature 187, 493–494 (1960).
[Crossref]

1892 (1)

L. Mach, “Uber einer Interferenzrefractor,” Z. Instrumentenkd. 12, 89–93 (1892).

1891 (1)

L. Zehnder, “Ein neuer Interferenzrefractor,” Z. Instrumentenkd. 11, 275–285 (1891).

1889 (1)

F. Pockels, “Ueber den Einfluss elastischer Deformationen, speciell einseitigen Druckes, auf das optische Verhalten krystallinischer Körper,” Ann. Phys. 273, 144–172 (1889).
[Crossref]

1883 (2)

A. Kundt, “Ueber das optische Verhalten des Quarzes im electrischen Felde,” Ann. Phys. 254, 228–233 (1883).
[Crossref]

W. Röntgen, “Ueber die durch elektrische Kräfte erzeugte Aenderung der Doppelbrechung des Quarzes,” Ber. Oberhess. Ges. Nat. Heilkd. Giessen Naturwiss. Abt. 22, 49–64 (1883).

1875 (1)

J. Kerr, “Xl. A new relation between electricity and light: dielectrified media birefringent,” London Edinburgh Dublin Philos. Mag. J. Sci. 50, 337–348 (1875).
[Crossref]

Abe, K.

Abel, S.

F. Eltes, C. Mai, D. Caimi, M. Kroh, Y. Popoff, G. Winzer, D. Petousi, S. Lischke, J. E. Ortmann, L. Czornomaz, L. Zimmermann, J. Fompeyrine, and S. Abel, “A BaTiO3-based electro-optic Pockels modulator monolithically integrated on an advanced silicon photonics platform,” J. Lightwave Technol. 37, 1456–1462 (2019).
[Crossref]

S. Abel, F. Eltes, J. E. Ortmann, A. Messner, P. Castera, T. Wagner, D. Urbonas, A. Rosa, A. M. Gutierrez, D. Tulli, P. Ma, B. Baeuerle, A. Josten, W. Heni, D. Caimi, L. Czornomaz, A. A. Demkov, J. Leuthold, P. Sanchis, and J. Fompeyrine, “Large Pockels effect in micro- and nanostructured barium titanate integrated on silicon,” Nat. Mater. 18, 42–47 (2018).
[Crossref]

Abgrall, M.

A. Matveev, C. G. Parthey, K. Predehl, J. Alnis, A. Beyer, R. Holzwarth, T. Udem, T. Wilken, N. Kolachevsky, M. Abgrall, D. Rovera, C. Salomon, P. Laurent, G. Grosche, O. Terra, T. Legero, H. Schnatz, S. Weyers, B. Altschul, and T. W. Hänsch, “Precision measurement of the hydrogen 1S–2S frequency via a 920-km fiber link,” Phys. Rev. Lett. 110, 230801 (2013).
[Crossref]

Acedo, P.

B. Jerez, F. Walla, A. Betancur, P. Martín-Mateos, C. de Dios, and P. Acedo, “Electro-optic THz dual-comb architecture for high-resolution, absolute spectroscopy,” Opt. Lett. 44, 415–418 (2019).
[Crossref]

B. Jerez, P. Martín-Mateos, F. Walla, C. de Dios, and P. Acedo, “Flexible electro-optic, single-crystal difference frequency generation architecture for ultrafast mid-infrared dual-comb spectroscopy,” ACS Photon. 5, 2348–2353 (2018).
[Crossref]

P. Martin-Mateos, B. Jerez, P. Largo-Izquierdo, and P. Acedo, “Frequency accurate coherent electro-optic dual-comb spectroscopy in real-time,” Opt. Express 26, 9700–9713 (2018).
[Crossref]

J. E. Posada-Roman, H. Angelina, B. Jerez, M. Ruiz-Llata, and P. Acedo, “Laser range finder approach based on a fieldable electro-optic dual optical frequency comb: a proof of concept,” Appl. Opt. 56, 6087–6093 (2017).
[Crossref]

O. E. Bonilla-Manrique, P. Martín-Mateos, B. Jerez, M. Ruiz-Llata, and P. Acedo, “High-resolution optical thickness measurement based on electro-optic dual-optical frequency comb sources,” IEEE J. Sel. Top. Quantum Electron. 23, 140–146 (2017).
[Crossref]

J. Posada-Roman, J. Garcia-Souto, D. Poiana, and P. Acedo, “Fast interrogation of fiber Bragg gratings with electro-optical dual optical frequency combs,” Sensors 16, 2007 (2016).
[Crossref]

P. Martin-Mateos, M. Ruiz-Llata, J. Posada-Roman, and P. Acedo, “Dual-comb architecture for fast spectroscopic measurements and spectral characterization,” IEEE Photon. Technol. Lett. 27, 1309–1312 (2015).
[Crossref]

P. Martin-Mateos, B. Jerez, and P. Acedo, “Dual electro-optic optical frequency combs for multiheterodyne molecular dispersion spectroscopy,” Opt. Express 23, 21149–21158 (2015).
[Crossref]

Adhikari, R. X.

Agrawal, G.

G. Agrawal, Nonlinear Fiber Optics, Optics and Photonics Series, 6th ed. (Academic, 2019).

Agrawal, G. P.

Ahn, D.

Ahn, S.-W.

Akhmediev, N.

B. Kibler, A. Chabchoub, A. Gelash, N. Akhmediev, and V. E. Zakharov, “Superregular breathers in optics and hydrodynamics: omnipresent modulation instability beyond simple periodicity,” Phys. Rev. X 5, 041026 (2015).
[Crossref]

B. Kibler, J. Fatome, C. Finot, G. Millot, G. Genty, B. Wetzel, N. Akhmediev, F. Dias, and J. M. Dudley, “Observation of Kuznetsov-Ma soliton dynamics in optical fibre,” Sci. Rep. 2, 463 (2012).
[Crossref]

B. Kibler, J. Fatome, C. Finot, G. Millot, F. Dias, G. Genty, N. Akhmediev, and J. M. Dudley, “The Peregrine soliton in nonlinear fibre optics,” Nat. Phys. 6, 790–795 (2010).
[Crossref]

Alem, M.

M. A. Soto, M. Alem, M. A. Shoaie, A. Vedadi, C.-S. Brès, L. Thévenaz, and T. Schneider, “Optical sinc-shaped Nyquist pulses of exceptional quality,” Nat. Commun. 4, 2898 (2013).
[Crossref]

Alic, N.

Alloatti, L.

A. Melikyan, L. Alloatti, A. Muslija, D. Hillerkuss, P. C. Schindler, J. Li, R. Palmer, D. Korn, S. Muehlbrandt, D. V. Thourhout, B. Chen, R. Dinu, M. Sommer, C. Koos, M. Kohl, W. Freude, and J. Leuthold, “High-speed plasmonic phase modulators,” Nat. Photonics 8, 229–233 (2014).
[Crossref]

L. Alloatti, R. Palmer, S. Diebold, K. P. Pahl, B. Chen, R. Dinu, M. Fournier, J.-M. Fedeli, T. Zwick, W. Freude, C. Koos, and J. Leuthold, “100  GHz silicon-organic hybrid modulator,” Light Sci. Appl. 3, e173 (2014).
[Crossref]

Alnis, J.

A. Matveev, C. G. Parthey, K. Predehl, J. Alnis, A. Beyer, R. Holzwarth, T. Udem, T. Wilken, N. Kolachevsky, M. Abgrall, D. Rovera, C. Salomon, P. Laurent, G. Grosche, O. Terra, T. Legero, H. Schnatz, S. Weyers, B. Altschul, and T. W. Hänsch, “Precision measurement of the hydrogen 1S–2S frequency via a 920-km fiber link,” Phys. Rev. Lett. 110, 230801 (2013).
[Crossref]

Al-Rubaye, H.

Altschul, B.

A. Matveev, C. G. Parthey, K. Predehl, J. Alnis, A. Beyer, R. Holzwarth, T. Udem, T. Wilken, N. Kolachevsky, M. Abgrall, D. Rovera, C. Salomon, P. Laurent, G. Grosche, O. Terra, T. Legero, H. Schnatz, S. Weyers, B. Altschul, and T. W. Hänsch, “Precision measurement of the hydrogen 1S–2S frequency via a 920-km fiber link,” Phys. Rev. Lett. 110, 230801 (2013).
[Crossref]

Amano, K.

T. Kobayashi, H. Yao, K. Amano, Y. Fukushima, A. Morimoto, and T. Sueta, “Optical pulse compression using high-frequency electrooptic phase modulation,” IEEE J. Quantum Electron. 24, 382–387 (1988).
[Crossref]

Anderson, T.

Andrekson, P.

L. Lundberg, M. Karlsson, A. Lorences-Riesgo, M. Mazur, V. Torres-Company, J. Schröder, and P. Andrekson, “Frequency comb-based WDM transmission systems enabling joint signal processing,” Appl. Sci. 8, 718 (2018).
[Crossref]

Andrekson, P. A.

V. Durán, P. A. Andrekson, and V. Torres-Company, “Electro-optic dual-comb interferometry over 40  nm bandwidth,” Opt. Lett. 41, 4190–4193 (2016).
[Crossref]

L. Lundberg, M. Mazur, A. Fülöp, V. Torres-Company, M. Karlsson, and P. A. Andrekson, “Phase correlation between lines of electro-optical frequency combs,” in Conference on Lasers and Electro-Optics (CLEO) (Optical Society of America, 2018), paper JW2A.149.

Andrés, P.

Angelina, H.

Anstie, J. D.

N. B. Hébert, V. Michaud-Belleau, C. Perrella, G.-W. Truong, J. D. Anstie, T. M. Stace, J. Genest, and A. N. Luiten, “Real-time dynamic atomic spectroscopy using electro-optic frequency combs,” Phys. Rev. Appl. 6, 044012 (2016).
[Crossref]

N. B. Hébert, V. Michaud-Belleau, J. D. Anstie, J.-D. Deschênes, A. N. Luiten, and J. Genest, “Self-heterodyne interference spectroscopy using a comb generated by pseudo-random modulation,” Opt. Express 23, 27806–27818 (2015).
[Crossref]

Antikainen, A.

Aozasa, S.

A. Ishizawa, T. Nishikawa, A. Mizutori, H. Takara, S. Aozasa, A. Mori, H. Nakano, A. Takada, and M. Koga, “Octave-spanning frequency comb generated by 250  fs pulse train emitted from 25  GHz externally phase-modulated laser diode for carrier-envelope-offset-locking,” Electron. Lett. 46, 1343–1344 (2010).
[Crossref]

Arai, K.

Araujo, C.

M. T. Murphy, T. Udem, R. Holzwarth, A. Sizmann, L. Pasquini, C. Araujo, H. Dekker, S. D’Odorico, M. Fischer, T. Hänsch, and A. Manescau, “High-precision wavelength calibration of astronomical spectrographs with laser frequency combs,” Mon. Not. R. Astron. Soc. 380, 839–847 (2007).
[Crossref]

Araujo-Hauck, C.

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations,” Science 321, 1335–1337 (2008).
[Crossref]

Arcizet, O.

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450, 1214–1217 (2007).
[Crossref]

Arfken, G. B.

G. B. Arfken, H. J. Weber, and F. E. Harris, Mathematical Methods for Physicists, 7th ed. (Academic, 2013).

Aspelmeyer, M.

Ataie, V.

Aubourg, A.

Audo, F.

Ayata, M.

M. Ayata, Y. Fedoryshyn, W. Heni, B. Baeuerle, A. Josten, M. Zahner, U. Koch, Y. Salamin, C. Hoessbacher, C. Haffner, D. L. Elder, L. R. Dalton, and J. Leuthold, “High-speed plasmonic modulator in a single metal layer,” Science 358, 630–632 (2017).
[Crossref]

Azaña, J.

Baeuerle, B.

B. Baeuerle, W. Heni, C. Hoessbacher, Y. Fedoryshyn, U. Koch, A. Josten, T. Watanabe, C. Uhl, H. Hettrich, D. L. Elder, L. R. Dalton, M. Möller, and J. Leuthold, “120  GBd plasmonic Mach-Zehnder modulator with a novel differential electrode design operated at a peak-to-peak drive voltage of 178  mV,” Opt. Express 27, 16823–16832 (2019).
[Crossref]

S. Abel, F. Eltes, J. E. Ortmann, A. Messner, P. Castera, T. Wagner, D. Urbonas, A. Rosa, A. M. Gutierrez, D. Tulli, P. Ma, B. Baeuerle, A. Josten, W. Heni, D. Caimi, L. Czornomaz, A. A. Demkov, J. Leuthold, P. Sanchis, and J. Fompeyrine, “Large Pockels effect in micro- and nanostructured barium titanate integrated on silicon,” Nat. Mater. 18, 42–47 (2018).
[Crossref]

M. Ayata, Y. Fedoryshyn, W. Heni, B. Baeuerle, A. Josten, M. Zahner, U. Koch, Y. Salamin, C. Hoessbacher, C. Haffner, D. L. Elder, L. R. Dalton, and J. Leuthold, “High-speed plasmonic modulator in a single metal layer,” Science 358, 630–632 (2017).
[Crossref]

C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold, “All-plasmonic Mach–Zehnder modulator enabling optical high-speed communication at the microscale,” Nat. Photonics 9, 525–528 (2015).
[Crossref]

Bagnell, K.

M. E. Plascak, R. Bustos Ramirez, K. Bagnell, and P. J. Delfyett, “Tunable broadband electro-optic comb generation using an optically filtered optoelectronic oscillator,” IEEE Photon. Technol. Lett. 30, 335–338 (2018).
[Crossref]

Bai, M.

R. Wei, J. Yan, Y. Peng, X. Yao, M. Bai, and Z. Zheng, “Optical frequency comb generation based on electro-optical modulation with high-order harmonic of a sine RF signal,” Opt. Commun. 291, 269–273 (2013).
[Crossref]

Bao, F.

S. Yu, F. Bao, and H. Hu, “Broadband optical frequency comb generation with flexible frequency spacing and center wavelength,” IEEE Photon. J. 10, 7202107 (2018).
[Crossref]

Bao, X.

Bao, Y.

Y. Bao, X. Yi, Z. Li, Q. Chen, J. Li, X. Fan, and X. Zhang, “A digitally generated ultrafine optical frequency comb for spectral measurements with 0.01-pm resolution and 0.7-µs response time,” Light Sci. Appl. 4, e300 (2015).
[Crossref]

Barman, A. D.

Baronio, F.

F. Baronio, B. Frisquet, S. Chen, G. Millot, S. Wabnitz, and B. Kibler, “Observation of a group of dark rogue waves in a telecommunication optical fiber,” Phys. Rev. A 97, 013852 (2018).
[Crossref]

Barry, L. P.

R. T. Watts, S. G. Murdoch, and L. P. Barry, “Phase noise reduction of an optical frequency comb using a feed-forward heterodyne detection scheme,” IEEE Photon. J. 8, 1–7 (2016).
[Crossref]

Barty, C. P. J.

Baumgartner, T.

Beha, K.

Beha, K. M.

D. C. Cole, K. M. Beha, S. A. Diddams, and S. B. Papp, “Octave-spanning supercontinuum generation via microwave frequency multiplication,” J. Phys. Conf. Ser. 723, 012035 (2016).
[Crossref]

Beichman, C.

X. Yi, K. Vahala, J. Li, S. Diddams, G. Ycas, P. Plavchan, S. Leifer, J. Sandhu, G. Vasisht, P. Chen, P. Gao, J. Gagne, E. Furlan, M. Bottom, E. C. Martin, M. P. Fitzgerald, G. Doppmann, and C. Beichman, “Demonstration of a near-IR line-referenced electro-optical laser frequency comb for precision radial velocity measurements in astronomy,” Nat. Commun. 7, 10436 (2016).
[Crossref]

Bendahmane, A.

A. Parriaux, M. Conforti, A. Bendahmane, J. Fatome, C. Finot, S. Trillo, N. Picqué, and G. Millot, “Spectral broadening of picosecond pulses forming dispersive shock waves in optical fibers,” Opt. Lett. 42, 3044–3047 (2017).
[Crossref]

G. Millot, S. Pitois, M. Yan, T. Hovhannisyan, A. Bendahmane, T. W. Hänsch, and N. Picqué, “Frequency-agile dual-comb spectroscopy,” Nat. Photonics 10, 27–30 (2016).
[Crossref]

Bender, C. F.

Benko, C.

Bernhardt, B.

T. Ideguchi, S. Holzner, B. Bernhardt, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Coherent Raman spectro-imaging with laser frequency combs,” Nature 502, 355–358 (2013).
[Crossref]

Bertaux, J.-L.

X. Bonfils, X. Delfosse, S. Udry, T. Forveille, M. Mayor, C. Perrier, F. Bouchy, M. Gillon, C. Lovis, F. Pepe, D. Queloz, N. C. Santos, D. Ségransan, and J.-L. Bertaux, “The HARPS search for southern extra-solar planets - XXXI. The M-dwarf sample,” Astron. Astrophys. 549, A109 (2013).
[Crossref]

Bertrand, M.

C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Lončar, “Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages,” Nature 562, 101–104 (2018).
[Crossref]

Betancur, A.

Beyer, A.

A. Matveev, C. G. Parthey, K. Predehl, J. Alnis, A. Beyer, R. Holzwarth, T. Udem, T. Wilken, N. Kolachevsky, M. Abgrall, D. Rovera, C. Salomon, P. Laurent, G. Grosche, O. Terra, T. Legero, H. Schnatz, S. Weyers, B. Altschul, and T. W. Hänsch, “Precision measurement of the hydrogen 1S–2S frequency via a 920-km fiber link,” Phys. Rev. Lett. 110, 230801 (2013).
[Crossref]

Bi, J.

Bielska, K.

Bjorklund, G. C.

Blakeslee, S.

Blanchet, J.-L.

Bonfils, X.

X. Bonfils, X. Delfosse, S. Udry, T. Forveille, M. Mayor, C. Perrier, F. Bouchy, M. Gillon, C. Lovis, F. Pepe, D. Queloz, N. C. Santos, D. Ségransan, and J.-L. Bertaux, “The HARPS search for southern extra-solar planets - XXXI. The M-dwarf sample,” Astron. Astrophys. 549, A109 (2013).
[Crossref]

Bonilla-Manrique, O. E.

O. E. Bonilla-Manrique, P. Martín-Mateos, B. Jerez, M. Ruiz-Llata, and P. Acedo, “High-resolution optical thickness measurement based on electro-optic dual-optical frequency comb sources,” IEEE J. Sel. Top. Quantum Electron. 23, 140–146 (2017).
[Crossref]

Boscolo, S.

K. Hammani, B. Kibler, J. Fatome, S. Boscolo, G. Genty, J. M. Dudley, G. Millot, and C. Finot, “Nonlinear spectral shaping and optical rogue events in fiber-based systems,” Opt. Fiber Technol. 18, 248–256 (2012), Special Issue on Fiber Supercontinuum Sources and Their Applications.
[Crossref]

Bosse, H.

Bottom, M.

X. Yi, K. Vahala, J. Li, S. Diddams, G. Ycas, P. Plavchan, S. Leifer, J. Sandhu, G. Vasisht, P. Chen, P. Gao, J. Gagne, E. Furlan, M. Bottom, E. C. Martin, M. P. Fitzgerald, G. Doppmann, and C. Beichman, “Demonstration of a near-IR line-referenced electro-optical laser frequency comb for precision radial velocity measurements in astronomy,” Nat. Commun. 7, 10436 (2016).
[Crossref]

Bottrill, K. R. H.

Bouchy, F.

E. Obrzud, M. Rainer, A. Harutyunyan, B. Chazelas, M. Cecconi, A. Ghedina, E. Molinari, S. Kundermann, S. Lecomte, F. Pepe, F. Wildi, F. Bouchy, and T. Herr, “Broadband near-infrared astronomical spectrometer calibration and on-sky validation with an electro-optic laser frequency comb,” Opt. Express 26, 34830–34841 (2018).
[Crossref]

X. Bonfils, X. Delfosse, S. Udry, T. Forveille, M. Mayor, C. Perrier, F. Bouchy, M. Gillon, C. Lovis, F. Pepe, D. Queloz, N. C. Santos, D. Ségransan, and J.-L. Bertaux, “The HARPS search for southern extra-solar planets - XXXI. The M-dwarf sample,” Astron. Astrophys. 549, A109 (2013).
[Crossref]

E. Obrzud, V. Brasch, S. Lecomte, F. Wildi, F. Bouchy, F. Pepe, and T. Herr, “All-fiber electro-optic frequency comb for near-infrared astronomical spectrograph calibration,” in Conference on Lasers and Electro-Optics (CLEO) (Optical Society of America, 2019), paper AF2K.2.

Boudreau, S.

Boyd, R. W.

R. W. Boyd, Nonlinear Optics, 3rd ed. (Academic, 2008).

Brand, W.

Brasch, V.

E. Obrzud, V. Brasch, T. Voumard, A. Stroganov, M. Geiselmann, F. Wildi, F. Pepe, S. Lecomte, and T. Herr, “Visible blue-to-red 10  GHz frequency comb via on-chip triple-sum-frequency generation,” Opt. Lett. 44, 5290–5293 (2019).
[Crossref]

E. Obrzud, V. Brasch, S. Lecomte, F. Wildi, F. Bouchy, F. Pepe, and T. Herr, “All-fiber electro-optic frequency comb for near-infrared astronomical spectrograph calibration,” in Conference on Lasers and Electro-Optics (CLEO) (Optical Society of America, 2019), paper AF2K.2.

Brès, C.-S.

S. Cordette, A. Vedadi, M. A. Shoaie, and C.-S. Brès, “Bandwidth and repetition rate programmable Nyquist sinc-shaped pulse train source based on intensity modulators and four-wave mixing,” Opt. Lett. 39, 6668–6671 (2014).
[Crossref]

M. A. Soto, M. Alem, M. A. Shoaie, A. Vedadi, C.-S. Brès, L. Thévenaz, and T. Schneider, “Optical sinc-shaped Nyquist pulses of exceptional quality,” Nat. Commun. 4, 2898 (2013).
[Crossref]

Buhl, L. L.

Bull, J. D.

Burger, J. P.

Buscaino, B.

M. Zhang, B. Buscaino, C. Wang, A. Shams-Ansari, C. Reimer, R. Zhu, J. M. Kahn, and M. Loncar, “Broadband electro-optic frequency comb generation in a lithium niobate microring resonator,” Nature 568, 373–377 (2019).
[Crossref]

Bustos Ramirez, R.

M. E. Plascak, R. Bustos Ramirez, K. Bagnell, and P. J. Delfyett, “Tunable broadband electro-optic comb generation using an optically filtered optoelectronic oscillator,” IEEE Photon. Technol. Lett. 30, 335–338 (2018).
[Crossref]

Cai, X.

M. He, M. Xu, Y. Ren, J. Jian, Z. Ruan, Y. Xu, S. Gao, S. Sun, X. Wen, L. Zhou, L. Liu, C. Guo, H. Chen, S. Yu, L. Liu, and X. Cai, “High-performance hybrid silicon and lithium niobate Mach–Zehnder modulators for 100  Gbit/s−1 and beyond,” Nat. Photonics 13, 359–364 (2019).
[Crossref]

Caimi, D.

F. Eltes, C. Mai, D. Caimi, M. Kroh, Y. Popoff, G. Winzer, D. Petousi, S. Lischke, J. E. Ortmann, L. Czornomaz, L. Zimmermann, J. Fompeyrine, and S. Abel, “A BaTiO3-based electro-optic Pockels modulator monolithically integrated on an advanced silicon photonics platform,” J. Lightwave Technol. 37, 1456–1462 (2019).
[Crossref]

S. Abel, F. Eltes, J. E. Ortmann, A. Messner, P. Castera, T. Wagner, D. Urbonas, A. Rosa, A. M. Gutierrez, D. Tulli, P. Ma, B. Baeuerle, A. Josten, W. Heni, D. Caimi, L. Czornomaz, A. A. Demkov, J. Leuthold, P. Sanchis, and J. Fompeyrine, “Large Pockels effect in micro- and nanostructured barium titanate integrated on silicon,” Nat. Mater. 18, 42–47 (2018).
[Crossref]

Caraquitena, J.

C.-B. Huang, Z. Jiang, D. Leaird, J. Caraquitena, and A. Weiner, “Spectral line-by-line shaping for optical and microwave arbitrary waveform generations,” Laser Photon. Rev. 2, 227–248 (2008).
[Crossref]

Carlson, D.

D. Carlson, D. Hickstein, S. A. Diddams, and S. B. Papp, “An ultrafast electro-optic dual comb for linear and nonlinear spectroscopy,” in Light, Energy and the Environment 2018 (E2, FTS, HISE, SOLAR, SSL) (Optical Society of America, 2018), paper FT4B.2.

Carlson, D. R.

Carpintero, G.

Castera, P.

S. Abel, F. Eltes, J. E. Ortmann, A. Messner, P. Castera, T. Wagner, D. Urbonas, A. Rosa, A. M. Gutierrez, D. Tulli, P. Ma, B. Baeuerle, A. Josten, W. Heni, D. Caimi, L. Czornomaz, A. A. Demkov, J. Leuthold, P. Sanchis, and J. Fompeyrine, “Large Pockels effect in micro- and nanostructured barium titanate integrated on silicon,” Nat. Mater. 18, 42–47 (2018).
[Crossref]

Cecconi, M.

Chabchoub, A.

G. Xu, K. Hammani, A. Chabchoub, J. M. Dudley, B. Kibler, and C. Finot, “Phase evolution of Peregrine-like breathers in optics and hydrodynamics,” Phys. Rev. E 99, 012207 (2019).
[Crossref]

G. Xu, A. Gelash, A. Chabchoub, V. Zakharov, and B. Kibler, “Breather wave molecules,” Phys. Rev. Lett. 122, 084101 (2019).
[Crossref]

B. Kibler, A. Chabchoub, A. Gelash, N. Akhmediev, and V. E. Zakharov, “Superregular breathers in optics and hydrodynamics: omnipresent modulation instability beyond simple periodicity,” Phys. Rev. X 5, 041026 (2015).
[Crossref]

B. Frisquet, A. Chabchoub, J. Fatome, C. Finot, B. Kibler, and G. Millot, “Two-stage linear-nonlinear shaping of an optical frequency comb as rogue nonlinear-Schrödinger-equation-solution generator,” Phys. Rev. A 89, 023821 (2014).
[Crossref]

Chandrasekhar, S.

C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Lončar, “Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages,” Nature 562, 101–104 (2018).
[Crossref]

Chang, Y.

Charsley, J. M.

Chaudhuri, R. B.

Chauvet, M.

G. Xu, V. Pêcheur, J. Fatome, M. Chauvet, and B. Kibler, “Optical cavity-less 40-GHz picosecond pulse generator in the visible wavelength range,” in Conference on Lasers and Electro-Optics Europe and European Quantum Electronics Conference (Optical Society of America, 2019), paper cd_12_5.

Chazelas, B.

Chembo, Y. K.

A. Pasquazi, M. Peccianti, L. Razzari, D. J. Moss, S. Coen, M. Erkintalo, Y. K. Chembo, T. Hansson, S. Wabnitz, P. Del’Haye, X. Xue, A. M. Weiner, and R. Morandotti, “Micro-combs: a novel generation of optical sources,” Phys. Rep. 729, 1–81 (2018).
[Crossref]

G. Lin, A. Coillet, and Y. K. Chembo, “Nonlinear photonics with high-Q whispering-gallery-mode resonators,” Adv. Opt. Photon. 9, 828–890 (2017).
[Crossref]

Chen, B.

L. Alloatti, R. Palmer, S. Diebold, K. P. Pahl, B. Chen, R. Dinu, M. Fournier, J.-M. Fedeli, T. Zwick, W. Freude, C. Koos, and J. Leuthold, “100  GHz silicon-organic hybrid modulator,” Light Sci. Appl. 3, e173 (2014).
[Crossref]

A. Melikyan, L. Alloatti, A. Muslija, D. Hillerkuss, P. C. Schindler, J. Li, R. Palmer, D. Korn, S. Muehlbrandt, D. V. Thourhout, B. Chen, R. Dinu, M. Sommer, C. Koos, M. Kohl, W. Freude, and J. Leuthold, “High-speed plasmonic phase modulators,” Nat. Photonics 8, 229–233 (2014).
[Crossref]

Chen, C.

C. Chen, C. He, D. Zhu, R. Guo, F. Zhang, and S. Pan, “Generation of a flat optical frequency comb based on a cascaded polarization modulator and phase modulator,” Opt. Lett. 38, 3137–3139 (2013).
[Crossref]

C. Chen, F. Zhang, and S. Pan, “Generation of seven-line optical frequency comb based on a single polarization modulator,” IEEE Photon. Technol. Lett. 25, 2164–2166 (2013).
[Crossref]

Chen, H.

M. He, M. Xu, Y. Ren, J. Jian, Z. Ruan, Y. Xu, S. Gao, S. Sun, X. Wen, L. Zhou, L. Liu, C. Guo, H. Chen, S. Yu, L. Liu, and X. Cai, “High-performance hybrid silicon and lithium niobate Mach–Zehnder modulators for 100  Gbit/s−1 and beyond,” Nat. Photonics 13, 359–364 (2019).
[Crossref]

B. Dai, Z. Gao, X. Wang, H. Chen, N. Kataoka, and N. Wada, “Generation of versatile waveforms from CW light using a dual-drive Mach-Zehnder modulator and employing chromatic dispersion,” J. Lightwave Technol. 31, 145–151 (2013).
[Crossref]

Chen, J.

L. Shang, Y. Li, L. Ma, and J. Chen, “A flexible and ultra-flat optical frequency comb generator using a parallel Mach–Zehnder modulator with a single DC bias,” Opt. Commun. 356, 70–73 (2015).
[Crossref]

Chen, L.

Chen, P.

X. Yi, K. Vahala, J. Li, S. Diddams, G. Ycas, P. Plavchan, S. Leifer, J. Sandhu, G. Vasisht, P. Chen, P. Gao, J. Gagne, E. Furlan, M. Bottom, E. C. Martin, M. P. Fitzgerald, G. Doppmann, and C. Beichman, “Demonstration of a near-IR line-referenced electro-optical laser frequency comb for precision radial velocity measurements in astronomy,” Nat. Commun. 7, 10436 (2016).
[Crossref]

Chen, Q.

Y. Bao, X. Yi, Z. Li, Q. Chen, J. Li, X. Fan, and X. Zhang, “A digitally generated ultrafine optical frequency comb for spectral measurements with 0.01-pm resolution and 0.7-µs response time,” Light Sci. Appl. 4, e300 (2015).
[Crossref]

Chen, S.

F. Baronio, B. Frisquet, S. Chen, G. Millot, S. Wabnitz, and B. Kibler, “Observation of a group of dark rogue waves in a telecommunication optical fiber,” Phys. Rev. A 97, 013852 (2018).
[Crossref]

Chen, T.

Chen, X.

C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Lončar, “Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages,” Nature 562, 101–104 (2018).
[Crossref]

Chen, Y.

B. Xue, Z. Wang, H. Zhang, K. Zhang, Y. Chen, M. He, B. Lin, and H. Wu, “Absolute distance measurement by self-heterodyne EO comb interferometry,” IEEE Photon. Technol. Lett. 30, 861–864 (2018).
[Crossref]

Chen, Z.

A. Shams-Ansari, M. Yu, Z. Chen, C. Reimer, M. Zhang, N. Picqué, and M. Loncar, “Microring electro-optic frequency comb sources for dual-comb spectroscopy,” in Conference on Lasers and Electro-Optics(CLEO) (Optical Society of America, 2019), paper JTh5B.8.

Chi, N.

Chiba, A.

Chiles, J.

Cho, Y.

T. Kobayashi, T. Sueta, Y. Cho, and Y. Matsuo, “High-repetition-rate optical pulse generator using a Fabry-Perot electro-optic modulator,” Appl. Phys. Lett. 21, 341–343 (1972).
[Crossref]

Cochran, W. D.

Coddington, I.

I. Coddington, N. Newbury, and W. Swann, “Dual-comb spectroscopy,” Optica 3, 414–426 (2016).
[Crossref]

S. Droste, G. Ycas, B. R. Washburn, I. Coddington, and N. R. Newbury, “Optical frequency comb generation based on erbium fiber lasers,” Nanophotonics 5, 196–213 (2016).
[Crossref]

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett. 100, 013902 (2008).
[Crossref]

Coen, S.

A. Pasquazi, M. Peccianti, L. Razzari, D. J. Moss, S. Coen, M. Erkintalo, Y. K. Chembo, T. Hansson, S. Wabnitz, P. Del’Haye, X. Xue, A. M. Weiner, and R. Morandotti, “Micro-combs: a novel generation of optical sources,” Phys. Rep. 729, 1–81 (2018).
[Crossref]

Coillet, A.

Cole, D. C.

Cole, G. D.

Company, V. T.

Conforti, M.

Cordette, S.

Cormier, E.

Corral, V.

Cortés, L. R.

Cundiff, S.

J. Ye and S. Cundiff, Femtosecond Optical Frequency Comb: Principle, Operation and Applications (Springer, 2006).

Cundiff, S. T.

S. T. Cundiff and J. Ye, “Colloquium: femtosecond optical frequency combs,” Rev. Mod. Phys. 75, 325–342 (2003).
[Crossref]

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
[Crossref]

Curto, G. L.

T. Wilken, G. L. Curto, R. A. Probst, T. Steinmetz, A. Manescau, L. Pasquini, J. I. G. Hernández, R. Rebolo, T. W. Hänsch, T. Udem, and R. Holzwarth, “A spectrograph for exoplanet observations calibrated at the centimetre-per-second level,” Nature 485, 611–614 (2012).
[Crossref]

Czornomaz, L.

F. Eltes, C. Mai, D. Caimi, M. Kroh, Y. Popoff, G. Winzer, D. Petousi, S. Lischke, J. E. Ortmann, L. Czornomaz, L. Zimmermann, J. Fompeyrine, and S. Abel, “A BaTiO3-based electro-optic Pockels modulator monolithically integrated on an advanced silicon photonics platform,” J. Lightwave Technol. 37, 1456–1462 (2019).
[Crossref]

S. Abel, F. Eltes, J. E. Ortmann, A. Messner, P. Castera, T. Wagner, D. Urbonas, A. Rosa, A. M. Gutierrez, D. Tulli, P. Ma, B. Baeuerle, A. Josten, W. Heni, D. Caimi, L. Czornomaz, A. A. Demkov, J. Leuthold, P. Sanchis, and J. Fompeyrine, “Large Pockels effect in micro- and nanostructured barium titanate integrated on silicon,” Nat. Mater. 18, 42–47 (2018).
[Crossref]

D’Odorico, S.

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations,” Science 321, 1335–1337 (2008).
[Crossref]

M. T. Murphy, T. Udem, R. Holzwarth, A. Sizmann, L. Pasquini, C. Araujo, H. Dekker, S. D’Odorico, M. Fischer, T. Hänsch, and A. Manescau, “High-precision wavelength calibration of astronomical spectrographs with laser frequency combs,” Mon. Not. R. Astron. Soc. 380, 839–847 (2007).
[Crossref]

Dai, B.

Dai, S.

Dai, Z.

L. Liu, X. Zhang, T. Xu, Z. Dai, S. Dai, and T. Liu, “Simple and seamless broadband optical frequency comb generation using an InAs/InP quantum dot laser,” Opt. Lett. 42, 1173–1176 (2017).
[Crossref]

L. Liu, X. Zhang, T. Xu, Z. Dai, and T. Liu, “Simple optical frequency comb generation using a passively mode-locked quantum dot laser,” Opt. Commun. 396, 105–109 (2017).
[Crossref]

Dallo, C.

Dalton, L. R.

B. Baeuerle, W. Heni, C. Hoessbacher, Y. Fedoryshyn, U. Koch, A. Josten, T. Watanabe, C. Uhl, H. Hettrich, D. L. Elder, L. R. Dalton, M. Möller, and J. Leuthold, “120  GBd plasmonic Mach-Zehnder modulator with a novel differential electrode design operated at a peak-to-peak drive voltage of 178  mV,” Opt. Express 27, 16823–16832 (2019).
[Crossref]

M. Ayata, Y. Fedoryshyn, W. Heni, B. Baeuerle, A. Josten, M. Zahner, U. Koch, Y. Salamin, C. Hoessbacher, C. Haffner, D. L. Elder, L. R. Dalton, and J. Leuthold, “High-speed plasmonic modulator in a single metal layer,” Science 358, 630–632 (2017).
[Crossref]

C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold, “All-plasmonic Mach–Zehnder modulator enabling optical high-speed communication at the microscale,” Nat. Photonics 9, 525–528 (2015).
[Crossref]

Davies, P. A.

Dawson, J. W.

de Chatellus, H. G.

de Dios, C.

B. Jerez, F. Walla, A. Betancur, P. Martín-Mateos, C. de Dios, and P. Acedo, “Electro-optic THz dual-comb architecture for high-resolution, absolute spectroscopy,” Opt. Lett. 44, 415–418 (2019).
[Crossref]

B. Jerez, P. Martín-Mateos, F. Walla, C. de Dios, and P. Acedo, “Flexible electro-optic, single-crystal difference frequency generation architecture for ultrafast mid-infrared dual-comb spectroscopy,” ACS Photon. 5, 2348–2353 (2018).
[Crossref]

Dekker, H.

M. T. Murphy, T. Udem, R. Holzwarth, A. Sizmann, L. Pasquini, C. Araujo, H. Dekker, S. D’Odorico, M. Fischer, T. Hänsch, and A. Manescau, “High-precision wavelength calibration of astronomical spectrographs with laser frequency combs,” Mon. Not. R. Astron. Soc. 380, 839–847 (2007).
[Crossref]

Del’Haye, P.

A. Pasquazi, M. Peccianti, L. Razzari, D. J. Moss, S. Coen, M. Erkintalo, Y. K. Chembo, T. Hansson, S. Wabnitz, P. Del’Haye, X. Xue, A. M. Weiner, and R. Morandotti, “Micro-combs: a novel generation of optical sources,” Phys. Rep. 729, 1–81 (2018).
[Crossref]

K. Beha, D. C. Cole, P. Del’Haye, A. Coillet, S. A. Diddams, and S. B. Papp, “Electronic synthesis of light,” Optica 4, 406–411 (2017).
[Crossref]

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450, 1214–1217 (2007).
[Crossref]

Delfosse, X.

X. Bonfils, X. Delfosse, S. Udry, T. Forveille, M. Mayor, C. Perrier, F. Bouchy, M. Gillon, C. Lovis, F. Pepe, D. Queloz, N. C. Santos, D. Ségransan, and J.-L. Bertaux, “The HARPS search for southern extra-solar planets - XXXI. The M-dwarf sample,” Astron. Astrophys. 549, A109 (2013).
[Crossref]

Delfyett, P. J.

M. E. Plascak, R. Bustos Ramirez, K. Bagnell, and P. J. Delfyett, “Tunable broadband electro-optic comb generation using an optically filtered optoelectronic oscillator,” IEEE Photon. Technol. Lett. 30, 335–338 (2018).
[Crossref]

S. Ozharar, F. Quinlan, I. Ozdur, S. Gee, and P. J. Delfyett, “Ultraflat optical comb generation by phase-only modulation of continuous-wave light,” IEEE Photon. Technol. Lett. 20, 36–38 (2008).
[Crossref]

Demirtzioglou, I.

Demkov, A. A.

S. Abel, F. Eltes, J. E. Ortmann, A. Messner, P. Castera, T. Wagner, D. Urbonas, A. Rosa, A. M. Gutierrez, D. Tulli, P. Ma, B. Baeuerle, A. Josten, W. Heni, D. Caimi, L. Czornomaz, A. A. Demkov, J. Leuthold, P. Sanchis, and J. Fompeyrine, “Large Pockels effect in micro- and nanostructured barium titanate integrated on silicon,” Nat. Mater. 18, 42–47 (2018).
[Crossref]

DeRose, C. T.

Deschênes, J.-D.

Dias, F.

B. Kibler, J. Fatome, C. Finot, G. Millot, G. Genty, B. Wetzel, N. Akhmediev, F. Dias, and J. M. Dudley, “Observation of Kuznetsov-Ma soliton dynamics in optical fibre,” Sci. Rep. 2, 463 (2012).
[Crossref]

B. Kibler, J. Fatome, C. Finot, G. Millot, F. Dias, G. Genty, N. Akhmediev, and J. M. Dudley, “The Peregrine soliton in nonlinear fibre optics,” Nat. Phys. 6, 790–795 (2010).
[Crossref]

Diddams, S.

X. Yi, K. Vahala, J. Li, S. Diddams, G. Ycas, P. Plavchan, S. Leifer, J. Sandhu, G. Vasisht, P. Chen, P. Gao, J. Gagne, E. Furlan, M. Bottom, E. C. Martin, M. P. Fitzgerald, G. Doppmann, and C. Beichman, “Demonstration of a near-IR line-referenced electro-optical laser frequency comb for precision radial velocity measurements in astronomy,” Nat. Commun. 7, 10436 (2016).
[Crossref]

Diddams, S. A.

A. J. Metcalf, C. D. Fredrick, R. C. Terrien, S. B. Papp, and S. A. Diddams, “30  GHz electro-optic frequency comb spanning 300  THz in the near infrared and visible,” Opt. Lett. 44, 2673–2676 (2019).
[Crossref]

A. J. Metcalf, T. Anderson, C. F. Bender, S. Blakeslee, W. Brand, D. R. Carlson, W. D. Cochran, S. A. Diddams, M. Endl, C. Fredrick, S. Halverson, D. D. Hickstein, F. Hearty, J. Jennings, S. Kanodia, K. F. Kaplan, E. Levi, E. Lubar, S. Mahadevan, A. Monson, J. P. Ninan, C. Nitroy, S. Osterman, S. B. Papp, F. Quinlan, L. Ramsey, P. Robertson, A. Roy, C. Schwab, S. Sigurdsson, K. Srinivasan, G. Stefansson, D. A. Sterner, R. Terrien, A. Wolszczan, J. T. Wright, and G. Ycas, “Stellar spectroscopy in the near-infrared with a laser frequency comb,” Optica 6, 233–239 (2019).
[Crossref]

D. R. Carlson, D. D. Hickstein, D. C. Cole, S. A. Diddams, and S. B. Papp, “Dual-comb interferometry via repetition rate switching of a single frequency comb,” Opt. Lett. 43, 3614–3617 (2018).
[Crossref]

D. R. Carlson, D. D. Hickstein, W. Zhang, A. J. Metcalf, F. Quinlan, S. A. Diddams, and S. B. Papp, “Ultrafast electro-optic light with subcycle control,” Science 361, 1358–1363 (2018).
[Crossref]

K. Beha, D. C. Cole, P. Del’Haye, A. Coillet, S. A. Diddams, and S. B. Papp, “Electronic synthesis of light,” Optica 4, 406–411 (2017).
[Crossref]

D. C. Cole, K. M. Beha, S. A. Diddams, and S. B. Papp, “Octave-spanning supercontinuum generation via microwave frequency multiplication,” J. Phys. Conf. Ser. 723, 012035 (2016).
[Crossref]

A. J. Metcalf, F. Quinlan, T. M. Fortier, S. A. Diddams, and A. M. Weiner, “Broadly tunable, low timing jitter, high repetition rate optoelectronic comb generator,” Electron. Lett. 51, 1596–1598 (2015).
[Crossref]

S. Xiao, L. Hollberg, N. R. Newbury, and S. A. Diddams, “Toward a low-jitter 10  GHz pulsed source with an optical frequency comb generator,” Opt. Express 16, 8498–8508 (2008).
[Crossref]

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
[Crossref]

D. Carlson, D. Hickstein, S. A. Diddams, and S. B. Papp, “An ultrafast electro-optic dual comb for linear and nonlinear spectroscopy,” in Light, Energy and the Environment 2018 (E2, FTS, HISE, SOLAR, SSL) (Optical Society of America, 2018), paper FT4B.2.

D. R. Carlson, D. D. Hickstein, S. A. Diddams, and S. B. Papp, “High-speed ultra-broadband dual-comb spectroscopy using electro-optics,” in Conference on Lasers and Electro-Optics (CLEO) (Optical Society of America, 2018), paper SW4L.2.

Diebold, S.

L. Alloatti, R. Palmer, S. Diebold, K. P. Pahl, B. Chen, R. Dinu, M. Fournier, J.-M. Fedeli, T. Zwick, W. Freude, C. Koos, and J. Leuthold, “100  GHz silicon-organic hybrid modulator,” Light Sci. Appl. 3, e173 (2014).
[Crossref]

Dinu, R.

L. Alloatti, R. Palmer, S. Diebold, K. P. Pahl, B. Chen, R. Dinu, M. Fournier, J.-M. Fedeli, T. Zwick, W. Freude, C. Koos, and J. Leuthold, “100  GHz silicon-organic hybrid modulator,” Light Sci. Appl. 3, e173 (2014).
[Crossref]

A. Melikyan, L. Alloatti, A. Muslija, D. Hillerkuss, P. C. Schindler, J. Li, R. Palmer, D. Korn, S. Muehlbrandt, D. V. Thourhout, B. Chen, R. Dinu, M. Sommer, C. Koos, M. Kohl, W. Freude, and J. Leuthold, “High-speed plasmonic phase modulators,” Nat. Photonics 8, 229–233 (2014).
[Crossref]

Doerr, C. R.

Dong, J.

F. Zhou, J. Dong, S. Yan, and T. Yang, “Temporal cloak with large fractional hiding window at telecommunication data rate,” Opt. Commun. 388, 77–83 (2017).
[Crossref]

T. Yang, J. Dong, S. Liao, D. Huang, and X. Zhang, “Comparison analysis of optical frequency comb generation with nonlinear effects in highly nonlinear fibers,” Opt. Express 21, 8508–8520 (2013).
[Crossref]

Dong, P.

Dong, Z.

Doppmann, G.

X. Yi, K. Vahala, J. Li, S. Diddams, G. Ycas, P. Plavchan, S. Leifer, J. Sandhu, G. Vasisht, P. Chen, P. Gao, J. Gagne, E. Furlan, M. Bottom, E. C. Martin, M. P. Fitzgerald, G. Doppmann, and C. Beichman, “Demonstration of a near-IR line-referenced electro-optical laser frequency comb for precision radial velocity measurements in astronomy,” Nat. Commun. 7, 10436 (2016).
[Crossref]

Doran, N. J.

Dou, Y.

Y. Dou, H. Zhang, and M. Yao, “Generation of flat optical-frequency comb using cascaded intensity and phase modulators,” IEEE Photon. Technol. Lett. 24, 727–729 (2012).
[Crossref]

Y. Dou, H. Zhang, and M. Yao, “Improvement of flatness of optical frequency comb based on nonlinear effect of intensity modulator,” Opt. Lett. 36, 2749–2751 (2011).
[Crossref]

Douglass, K. O.

Drever, R. W. P.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[Crossref]

Droste, S.

S. Droste, G. Ycas, B. R. Washburn, I. Coddington, and N. R. Newbury, “Optical frequency comb generation based on erbium fiber lasers,” Nanophotonics 5, 196–213 (2016).
[Crossref]

Du, J.

Dubovitsky, S.

Ducry, F.

C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold, “All-plasmonic Mach–Zehnder modulator enabling optical high-speed communication at the microscale,” Nat. Photonics 9, 525–528 (2015).
[Crossref]

Dudley, J. M.

G. Xu, K. Hammani, A. Chabchoub, J. M. Dudley, B. Kibler, and C. Finot, “Phase evolution of Peregrine-like breathers in optics and hydrodynamics,” Phys. Rev. E 99, 012207 (2019).
[Crossref]

B. Kibler, J. Fatome, C. Finot, G. Millot, G. Genty, B. Wetzel, N. Akhmediev, F. Dias, and J. M. Dudley, “Observation of Kuznetsov-Ma soliton dynamics in optical fibre,” Sci. Rep. 2, 463 (2012).
[Crossref]

K. Hammani, B. Kibler, J. Fatome, S. Boscolo, G. Genty, J. M. Dudley, G. Millot, and C. Finot, “Nonlinear spectral shaping and optical rogue events in fiber-based systems,” Opt. Fiber Technol. 18, 248–256 (2012), Special Issue on Fiber Supercontinuum Sources and Their Applications.
[Crossref]

K. Hammani, B. Kibler, C. Finot, P. Morin, J. Fatome, J. M. Dudley, and G. Millot, “Peregrine soliton generation and breakup in standard telecommunications fiber,” Opt. Lett. 36, 112–114 (2011).
[Crossref]

B. Kibler, J. Fatome, C. Finot, G. Millot, F. Dias, G. Genty, N. Akhmediev, and J. M. Dudley, “The Peregrine soliton in nonlinear fibre optics,” Nat. Phys. 6, 790–795 (2010).
[Crossref]

Dupuis, N.

Durán, V.

El Mansouri, I.

I. El Mansouri, J. Fatome, C. Finot, M. Lintz, and S. Pitois, “All-fibered high-quality stable 20- and 40-GHz picosecond pulse generators for 160-Gb/s OTDM applications,” IEEE Photon. Technol. Lett. 23, 1487–1489 (2011).
[Crossref]

Elder, D. L.

B. Baeuerle, W. Heni, C. Hoessbacher, Y. Fedoryshyn, U. Koch, A. Josten, T. Watanabe, C. Uhl, H. Hettrich, D. L. Elder, L. R. Dalton, M. Möller, and J. Leuthold, “120  GBd plasmonic Mach-Zehnder modulator with a novel differential electrode design operated at a peak-to-peak drive voltage of 178  mV,” Opt. Express 27, 16823–16832 (2019).
[Crossref]

M. Ayata, Y. Fedoryshyn, W. Heni, B. Baeuerle, A. Josten, M. Zahner, U. Koch, Y. Salamin, C. Hoessbacher, C. Haffner, D. L. Elder, L. R. Dalton, and J. Leuthold, “High-speed plasmonic modulator in a single metal layer,” Science 358, 630–632 (2017).
[Crossref]

C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold, “All-plasmonic Mach–Zehnder modulator enabling optical high-speed communication at the microscale,” Nat. Photonics 9, 525–528 (2015).
[Crossref]

Ell, R.

F. X. Kärtner, U. Morgner, T. Schibli, R. Ell, H. A. Haus, J. G. Fujimoto, and E. P. Ippen, Few-Cycle Pulses Directly from a Laser (Springer, 2004), pp. 73–136.

Ellis, A. D.

Ellison, B. N.

El-Mansouri, I.

Eltes, F.

F. Eltes, C. Mai, D. Caimi, M. Kroh, Y. Popoff, G. Winzer, D. Petousi, S. Lischke, J. E. Ortmann, L. Czornomaz, L. Zimmermann, J. Fompeyrine, and S. Abel, “A BaTiO3-based electro-optic Pockels modulator monolithically integrated on an advanced silicon photonics platform,” J. Lightwave Technol. 37, 1456–1462 (2019).
[Crossref]

S. Abel, F. Eltes, J. E. Ortmann, A. Messner, P. Castera, T. Wagner, D. Urbonas, A. Rosa, A. M. Gutierrez, D. Tulli, P. Ma, B. Baeuerle, A. Josten, W. Heni, D. Caimi, L. Czornomaz, A. A. Demkov, J. Leuthold, P. Sanchis, and J. Fompeyrine, “Large Pockels effect in micro- and nanostructured barium titanate integrated on silicon,” Nat. Mater. 18, 42–47 (2018).
[Crossref]

Emboras, A.

C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold, “All-plasmonic Mach–Zehnder modulator enabling optical high-speed communication at the microscale,” Nat. Photonics 9, 525–528 (2015).
[Crossref]

Endl, M.

Erkintalo, M.

A. Pasquazi, M. Peccianti, L. Razzari, D. J. Moss, S. Coen, M. Erkintalo, Y. K. Chembo, T. Hansson, S. Wabnitz, P. Del’Haye, X. Xue, A. M. Weiner, and R. Morandotti, “Micro-combs: a novel generation of optical sources,” Phys. Rep. 729, 1–81 (2018).
[Crossref]

Fan, L.

Fan, X.

Fang, K.

Fang, Y.

Y. Fang, J. Yu, J. Zhang, X. Li, N. Chi, and J. Xiao, “Frequency comb selection enabled flexible all optical Nyquist pulse generation,” Opt. Commun. 349, 60–64 (2015).
[Crossref]

Fathpour, S.

Fatome, J.

F. Audo, B. Kibler, J. Fatome, and C. Finot, “Experimental observation of the emergence of Peregrine-like events in focusing dam break flows,” Opt. Lett. 43, 2864–2867 (2018).
[Crossref]

A. Parriaux, M. Conforti, A. Bendahmane, J. Fatome, C. Finot, S. Trillo, N. Picqué, and G. Millot, “Spectral broadening of picosecond pulses forming dispersive shock waves in optical fibers,” Opt. Lett. 42, 3044–3047 (2017).
[Crossref]

J. Fatome, K. Hammani, B. Kibler, and C. Finot, “80 GHz waveform generated by the optical Fourier synthesis of four spectral sidebands,” Laser Phys. Lett. 13, 015102 (2016).
[Crossref]

B. Frisquet, A. Chabchoub, J. Fatome, C. Finot, B. Kibler, and G. Millot, “Two-stage linear-nonlinear shaping of an optical frequency comb as rogue nonlinear-Schrödinger-equation-solution generator,” Phys. Rev. A 89, 023821 (2014).
[Crossref]

J. Fatome, I. El-Mansouri, J.-L. Blanchet, S. Pitois, G. Millot, S. Trillo, and S. Wabnitz, “Even harmonic pulse train generation by cross-polarization-modulation seeded instability in optical fibers,” J. Opt. Soc. Am. B 30, 99–106 (2013).
[Crossref]

B. Kibler, J. Fatome, C. Finot, G. Millot, G. Genty, B. Wetzel, N. Akhmediev, F. Dias, and J. M. Dudley, “Observation of Kuznetsov-Ma soliton dynamics in optical fibre,” Sci. Rep. 2, 463 (2012).
[Crossref]

K. Hammani, B. Kibler, J. Fatome, S. Boscolo, G. Genty, J. M. Dudley, G. Millot, and C. Finot, “Nonlinear spectral shaping and optical rogue events in fiber-based systems,” Opt. Fiber Technol. 18, 248–256 (2012), Special Issue on Fiber Supercontinuum Sources and Their Applications.
[Crossref]

K. Hammani, B. Kibler, C. Finot, P. Morin, J. Fatome, J. M. Dudley, and G. Millot, “Peregrine soliton generation and breakup in standard telecommunications fiber,” Opt. Lett. 36, 112–114 (2011).
[Crossref]

I. El Mansouri, J. Fatome, C. Finot, M. Lintz, and S. Pitois, “All-fibered high-quality stable 20- and 40-GHz picosecond pulse generators for 160-Gb/s OTDM applications,” IEEE Photon. Technol. Lett. 23, 1487–1489 (2011).
[Crossref]

B. Kibler, J. Fatome, C. Finot, G. Millot, F. Dias, G. Genty, N. Akhmediev, and J. M. Dudley, “The Peregrine soliton in nonlinear fibre optics,” Nat. Phys. 6, 790–795 (2010).
[Crossref]

G. Xu, V. Pêcheur, J. Fatome, M. Chauvet, and B. Kibler, “Optical cavity-less 40-GHz picosecond pulse generator in the visible wavelength range,” in Conference on Lasers and Electro-Optics Europe and European Quantum Electronics Conference (Optical Society of America, 2019), paper cd_12_5.

Fdil, K.

Fedeli, J.-M.

L. Alloatti, R. Palmer, S. Diebold, K. P. Pahl, B. Chen, R. Dinu, M. Fournier, J.-M. Fedeli, T. Zwick, W. Freude, C. Koos, and J. Leuthold, “100  GHz silicon-organic hybrid modulator,” Light Sci. Appl. 3, e173 (2014).
[Crossref]

Fedoryshyn, Y.

B. Baeuerle, W. Heni, C. Hoessbacher, Y. Fedoryshyn, U. Koch, A. Josten, T. Watanabe, C. Uhl, H. Hettrich, D. L. Elder, L. R. Dalton, M. Möller, and J. Leuthold, “120  GBd plasmonic Mach-Zehnder modulator with a novel differential electrode design operated at a peak-to-peak drive voltage of 178  mV,” Opt. Express 27, 16823–16832 (2019).
[Crossref]

M. Ayata, Y. Fedoryshyn, W. Heni, B. Baeuerle, A. Josten, M. Zahner, U. Koch, Y. Salamin, C. Hoessbacher, C. Haffner, D. L. Elder, L. R. Dalton, and J. Leuthold, “High-speed plasmonic modulator in a single metal layer,” Science 358, 630–632 (2017).
[Crossref]

C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold, “All-plasmonic Mach–Zehnder modulator enabling optical high-speed communication at the microscale,” Nat. Photonics 9, 525–528 (2015).
[Crossref]

Feng, P.

Ferdous, F.

V. R. Supradeepa, C. M. Long, R. Wu, F. Ferdous, E. Hamidi, D. E. Leaird, and A. M. Weiner, “Comb-based radiofrequency photonic filters with rapid tunability and high selectivity,” Nat. Photonics 6, 186–194 (2012).
[Crossref]

F. Ferdous, D. E. Leaird, C.-B. Huang, and A. M. Weiner, “Dual-comb electric-field cross-correlation technique for optical arbitrary waveform characterization,” Opt. Lett. 34, 3875–3877 (2009).
[Crossref]

Fermann, M. E.

Fetterman, H. R.

Fice, M.

Finot, C.

G. Xu, K. Hammani, A. Chabchoub, J. M. Dudley, B. Kibler, and C. Finot, “Phase evolution of Peregrine-like breathers in optics and hydrodynamics,” Phys. Rev. E 99, 012207 (2019).
[Crossref]

F. Audo, B. Kibler, J. Fatome, and C. Finot, “Experimental observation of the emergence of Peregrine-like events in focusing dam break flows,” Opt. Lett. 43, 2864–2867 (2018).
[Crossref]

A. Parriaux, M. Conforti, A. Bendahmane, J. Fatome, C. Finot, S. Trillo, N. Picqué, and G. Millot, “Spectral broadening of picosecond pulses forming dispersive shock waves in optical fibers,” Opt. Lett. 42, 3044–3047 (2017).
[Crossref]

J. Fatome, K. Hammani, B. Kibler, and C. Finot, “80 GHz waveform generated by the optical Fourier synthesis of four spectral sidebands,” Laser Phys. Lett. 13, 015102 (2016).
[Crossref]

C. Finot, “40-GHz photonic waveform generator by linear shaping of four spectral sidebands,” Opt. Lett. 40, 1422–1425 (2015).
[Crossref]

B. Frisquet, A. Chabchoub, J. Fatome, C. Finot, B. Kibler, and G. Millot, “Two-stage linear-nonlinear shaping of an optical frequency comb as rogue nonlinear-Schrödinger-equation-solution generator,” Phys. Rev. A 89, 023821 (2014).
[Crossref]

B. Kibler, J. Fatome, C. Finot, G. Millot, G. Genty, B. Wetzel, N. Akhmediev, F. Dias, and J. M. Dudley, “Observation of Kuznetsov-Ma soliton dynamics in optical fibre,” Sci. Rep. 2, 463 (2012).
[Crossref]

K. Hammani, B. Kibler, J. Fatome, S. Boscolo, G. Genty, J. M. Dudley, G. Millot, and C. Finot, “Nonlinear spectral shaping and optical rogue events in fiber-based systems,” Opt. Fiber Technol. 18, 248–256 (2012), Special Issue on Fiber Supercontinuum Sources and Their Applications.
[Crossref]

K. Hammani, B. Kibler, C. Finot, P. Morin, J. Fatome, J. M. Dudley, and G. Millot, “Peregrine soliton generation and breakup in standard telecommunications fiber,” Opt. Lett. 36, 112–114 (2011).
[Crossref]

I. El Mansouri, J. Fatome, C. Finot, M. Lintz, and S. Pitois, “All-fibered high-quality stable 20- and 40-GHz picosecond pulse generators for 160-Gb/s OTDM applications,” IEEE Photon. Technol. Lett. 23, 1487–1489 (2011).
[Crossref]

B. Kibler, J. Fatome, C. Finot, G. Millot, F. Dias, G. Genty, N. Akhmediev, and J. M. Dudley, “The Peregrine soliton in nonlinear fibre optics,” Nat. Phys. 6, 790–795 (2010).
[Crossref]

C. Finot, B. Kibler, L. Provost, and S. Wabnitz, “Beneficial impact of wave-breaking for coherent continuum formation in normally dispersive nonlinear fibers,” J. Opt. Soc. Am. B 25, 1938–1948 (2008).
[Crossref]

Fischer, M.

M. T. Murphy, T. Udem, R. Holzwarth, A. Sizmann, L. Pasquini, C. Araujo, H. Dekker, S. D’Odorico, M. Fischer, T. Hänsch, and A. Manescau, “High-precision wavelength calibration of astronomical spectrographs with laser frequency combs,” Mon. Not. R. Astron. Soc. 380, 839–847 (2007).
[Crossref]

Fitzgerald, M. P.

X. Yi, K. Vahala, J. Li, S. Diddams, G. Ycas, P. Plavchan, S. Leifer, J. Sandhu, G. Vasisht, P. Chen, P. Gao, J. Gagne, E. Furlan, M. Bottom, E. C. Martin, M. P. Fitzgerald, G. Doppmann, and C. Beichman, “Demonstration of a near-IR line-referenced electro-optical laser frequency comb for precision radial velocity measurements in astronomy,” Nat. Commun. 7, 10436 (2016).
[Crossref]

Fleisher, A. J.

Fompeyrine, J.

F. Eltes, C. Mai, D. Caimi, M. Kroh, Y. Popoff, G. Winzer, D. Petousi, S. Lischke, J. E. Ortmann, L. Czornomaz, L. Zimmermann, J. Fompeyrine, and S. Abel, “A BaTiO3-based electro-optic Pockels modulator monolithically integrated on an advanced silicon photonics platform,” J. Lightwave Technol. 37, 1456–1462 (2019).
[Crossref]

S. Abel, F. Eltes, J. E. Ortmann, A. Messner, P. Castera, T. Wagner, D. Urbonas, A. Rosa, A. M. Gutierrez, D. Tulli, P. Ma, B. Baeuerle, A. Josten, W. Heni, D. Caimi, L. Czornomaz, A. A. Demkov, J. Leuthold, P. Sanchis, and J. Fompeyrine, “Large Pockels effect in micro- and nanostructured barium titanate integrated on silicon,” Nat. Mater. 18, 42–47 (2018).
[Crossref]

Ford, G. M.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[Crossref]

Fork, R. L.

L. E. Hargrove, R. L. Fork, and M. A. Pollack, “Locking of He-Ne laser modes induced by synchronous intracavity modulation,” Appl. Phys. Lett. 5, 4–5 (1964).
[Crossref]

Fortier, T. M.

A. J. Metcalf, F. Quinlan, T. M. Fortier, S. A. Diddams, and A. M. Weiner, “Broadly tunable, low timing jitter, high repetition rate optoelectronic comb generator,” Electron. Lett. 51, 1596–1598 (2015).
[Crossref]

Forveille, T.

X. Bonfils, X. Delfosse, S. Udry, T. Forveille, M. Mayor, C. Perrier, F. Bouchy, M. Gillon, C. Lovis, F. Pepe, D. Queloz, N. C. Santos, D. Ségransan, and J.-L. Bertaux, “The HARPS search for southern extra-solar planets - XXXI. The M-dwarf sample,” Astron. Astrophys. 549, A109 (2013).
[Crossref]

Fournier, M.

L. Alloatti, R. Palmer, S. Diebold, K. P. Pahl, B. Chen, R. Dinu, M. Fournier, J.-M. Fedeli, T. Zwick, W. Freude, C. Koos, and J. Leuthold, “100  GHz silicon-organic hybrid modulator,” Light Sci. Appl. 3, e173 (2014).
[Crossref]

Fredrick, C.

Fredrick, C. D.

Freude, W.

C. Weimann, A. Messner, T. Baumgartner, S. Wolf, F. Hoeller, W. Freude, and C. Koos, “Fast high-precision distance metrology using a pair of modulator-generated dual-color frequency combs,” Opt. Express 26, 34305–34335 (2018).
[Crossref]

L. Alloatti, R. Palmer, S. Diebold, K. P. Pahl, B. Chen, R. Dinu, M. Fournier, J.-M. Fedeli, T. Zwick, W. Freude, C. Koos, and J. Leuthold, “100  GHz silicon-organic hybrid modulator,” Light Sci. Appl. 3, e173 (2014).
[Crossref]

A. Melikyan, L. Alloatti, A. Muslija, D. Hillerkuss, P. C. Schindler, J. Li, R. Palmer, D. Korn, S. Muehlbrandt, D. V. Thourhout, B. Chen, R. Dinu, M. Sommer, C. Koos, M. Kohl, W. Freude, and J. Leuthold, “High-speed plasmonic phase modulators,” Nat. Photonics 8, 229–233 (2014).
[Crossref]

A. K. Mishra, R. Schmogrow, I. Tomkos, D. Hillerkuss, C. Koos, W. Freude, and J. Leuthold, “Flexible RF-based comb generator,” IEEE Photon. Technol. Lett. 25, 701–704 (2013).
[Crossref]

Frisquet, B.

F. Baronio, B. Frisquet, S. Chen, G. Millot, S. Wabnitz, and B. Kibler, “Observation of a group of dark rogue waves in a telecommunication optical fiber,” Phys. Rev. A 97, 013852 (2018).
[Crossref]

B. Frisquet, A. Chabchoub, J. Fatome, C. Finot, B. Kibler, and G. Millot, “Two-stage linear-nonlinear shaping of an optical frequency comb as rogue nonlinear-Schrödinger-equation-solution generator,” Phys. Rev. A 89, 023821 (2014).
[Crossref]

B. Frisquet, B. Kibler, and G. Millot, “Collision of Akhmediev breathers in nonlinear fiber optics,” Phys. Rev. X 3, 041032 (2013).
[Crossref]

Fujimoto, J. G.

F. X. Kärtner, U. Morgner, T. Schibli, R. Ell, H. A. Haus, J. G. Fujimoto, and E. P. Ippen, Few-Cycle Pulses Directly from a Laser (Springer, 2004), pp. 73–136.

Fujiwara, M.

Fukushima, Y.

T. Kobayashi, H. Yao, K. Amano, Y. Fukushima, A. Morimoto, and T. Sueta, “Optical pulse compression using high-frequency electrooptic phase modulation,” IEEE J. Quantum Electron. 24, 382–387 (1988).
[Crossref]

Fülöp, A.

L. Lundberg, M. Mazur, A. Fülöp, V. Torres-Company, M. Karlsson, and P. A. Andrekson, “Phase correlation between lines of electro-optical frequency combs,” in Conference on Lasers and Electro-Optics (CLEO) (Optical Society of America, 2018), paper JW2A.149.

Furlan, E.

X. Yi, K. Vahala, J. Li, S. Diddams, G. Ycas, P. Plavchan, S. Leifer, J. Sandhu, G. Vasisht, P. Chen, P. Gao, J. Gagne, E. Furlan, M. Bottom, E. C. Martin, M. P. Fitzgerald, G. Doppmann, and C. Beichman, “Demonstration of a near-IR line-referenced electro-optical laser frequency comb for precision radial velocity measurements in astronomy,” Nat. Commun. 7, 10436 (2016).
[Crossref]

Gaeta, A. L.

T. J. Kippenberg, A. L. Gaeta, M. Lipson, and M. L. Gorodetsky, “Dissipative Kerr solitons in optical microresonators,” Science 361, eaan8083 (2018).
[Crossref]

Gagne, J.

X. Yi, K. Vahala, J. Li, S. Diddams, G. Ycas, P. Plavchan, S. Leifer, J. Sandhu, G. Vasisht, P. Chen, P. Gao, J. Gagne, E. Furlan, M. Bottom, E. C. Martin, M. P. Fitzgerald, G. Doppmann, and C. Beichman, “Demonstration of a near-IR line-referenced electro-optical laser frequency comb for precision radial velocity measurements in astronomy,” Nat. Commun. 7, 10436 (2016).
[Crossref]

Gao, P.

X. Yi, K. Vahala, J. Li, S. Diddams, G. Ycas, P. Plavchan, S. Leifer, J. Sandhu, G. Vasisht, P. Chen, P. Gao, J. Gagne, E. Furlan, M. Bottom, E. C. Martin, M. P. Fitzgerald, G. Doppmann, and C. Beichman, “Demonstration of a near-IR line-referenced electro-optical laser frequency comb for precision radial velocity measurements in astronomy,” Nat. Commun. 7, 10436 (2016).
[Crossref]

Gao, S.

M. He, M. Xu, Y. Ren, J. Jian, Z. Ruan, Y. Xu, S. Gao, S. Sun, X. Wen, L. Zhou, L. Liu, C. Guo, H. Chen, S. Yu, L. Liu, and X. Cai, “High-performance hybrid silicon and lithium niobate Mach–Zehnder modulators for 100  Gbit/s−1 and beyond,” Nat. Photonics 13, 359–364 (2019).
[Crossref]

Gao, Z.

Garcia-Souto, J.

J. Posada-Roman, J. Garcia-Souto, D. Poiana, and P. Acedo, “Fast interrogation of fiber Bragg gratings with electro-optical dual optical frequency combs,” Sensors 16, 2007 (2016).
[Crossref]

Ge, X.

F. Zhang, X. Ge, and S. Pan, “A two-stage optical frequency comb generator based on polarization modulators and a Mach–Zehnder interferometer,” Opt. Commun. 354, 94–102 (2015).
[Crossref]

Gee, S.

S. Ozharar, F. Quinlan, I. Ozdur, S. Gee, and P. J. Delfyett, “Ultraflat optical comb generation by phase-only modulation of continuous-wave light,” IEEE Photon. Technol. Lett. 20, 36–38 (2008).
[Crossref]

Gehrtz, M.

Geiselmann, M.

Gelash, A.

G. Xu, A. Gelash, A. Chabchoub, V. Zakharov, and B. Kibler, “Breather wave molecules,” Phys. Rev. Lett. 122, 084101 (2019).
[Crossref]

B. Kibler, A. Chabchoub, A. Gelash, N. Akhmediev, and V. E. Zakharov, “Superregular breathers in optics and hydrodynamics: omnipresent modulation instability beyond simple periodicity,” Phys. Rev. X 5, 041026 (2015).
[Crossref]

Genest, J.

Genty, G.

B. Kibler, J. Fatome, C. Finot, G. Millot, G. Genty, B. Wetzel, N. Akhmediev, F. Dias, and J. M. Dudley, “Observation of Kuznetsov-Ma soliton dynamics in optical fibre,” Sci. Rep. 2, 463 (2012).
[Crossref]

K. Hammani, B. Kibler, J. Fatome, S. Boscolo, G. Genty, J. M. Dudley, G. Millot, and C. Finot, “Nonlinear spectral shaping and optical rogue events in fiber-based systems,” Opt. Fiber Technol. 18, 248–256 (2012), Special Issue on Fiber Supercontinuum Sources and Their Applications.
[Crossref]

B. Kibler, J. Fatome, C. Finot, G. Millot, F. Dias, G. Genty, N. Akhmediev, and J. M. Dudley, “The Peregrine soliton in nonlinear fibre optics,” Nat. Phys. 6, 790–795 (2010).
[Crossref]

Geskus, D.

Ghedina, A.

Gheorma, I. L.

I. L. Gheorma and G. K. Gopalakrishnan, “Flat frequency comb generation with an integrated dual-parallel modulator,” IEEE Photon. Technol. Lett. 19, 1011–1013 (2007).
[Crossref]

Gibson, D. J.

Gillon, M.

X. Bonfils, X. Delfosse, S. Udry, T. Forveille, M. Mayor, C. Perrier, F. Bouchy, M. Gillon, C. Lovis, F. Pepe, D. Queloz, N. C. Santos, D. Ségransan, and J.-L. Bertaux, “The HARPS search for southern extra-solar planets - XXXI. The M-dwarf sample,” Astron. Astrophys. 549, A109 (2013).
[Crossref]

Gomes, N. J.

Gopalakrishnan, G. K.

I. L. Gheorma and G. K. Gopalakrishnan, “Flat frequency comb generation with an integrated dual-parallel modulator,” IEEE Photon. Technol. Lett. 19, 1011–1013 (2007).
[Crossref]

Gordón, C.

Gorodetsky, M. L.

T. J. Kippenberg, A. L. Gaeta, M. Lipson, and M. L. Gorodetsky, “Dissipative Kerr solitons in optical microresonators,” Science 361, eaan8083 (2018).
[Crossref]

Goto, T.

A. Ishizawa, T. Nishikawa, T. Goto, K. Hitachi, T. Sogawa, and H. Gotoh, “Ultralow-phase-noise millimetre-wave signal generator assisted with an electro-optics-modulator-based optical frequency comb,” Sci. Rep. 6, 24621 (2016).
[Crossref]

Gotoh, H.

A. Ishizawa, T. Nishikawa, T. Goto, K. Hitachi, T. Sogawa, and H. Gotoh, “Ultralow-phase-noise millimetre-wave signal generator assisted with an electro-optics-modulator-based optical frequency comb,” Sci. Rep. 6, 24621 (2016).
[Crossref]

A. Ishizawa, T. Nishikawa, M. Yan, G. Millot, H. Gotoh, T. W. Hänsch, and N. Picqué, “Optical frequency combs of multi-GHz line-spacing for real-time multi-heterodyne spectroscopy,” in Conference on Lasers and Electro-Optics (CLEO) (2015), pp. 1–2.

T. Nishikawa, A. Ishizawa, M. Yan, H. Gotoh, T. Hänsch, and N. Picqué, “Broadband dual-comb spectroscopy with cascaded-electro-optic-modulator-based frequency combs,” in Conference on Lasers and Electro-Optics (CLEO) (Optical Society of America, 2015), paper SW3G.2.

Graham, R. L.

R. L. Graham, D. E. Knuth, and O. Patashnik, Concrete Mathematics: a Foundation for Computer Science, 2nd ed. (Addison-Wesley, 1994).

Grassi, R.

R. Peng, K. Khaliji, N. Youngblood, R. Grassi, T. Low, and M. Li, “Midinfrared electro-optic modulation in few-layer black phosphorus,” Nano Lett. 17, 6315–6320 (2017).
[Crossref]

Grosche, G.

A. Matveev, C. G. Parthey, K. Predehl, J. Alnis, A. Beyer, R. Holzwarth, T. Udem, T. Wilken, N. Kolachevsky, M. Abgrall, D. Rovera, C. Salomon, P. Laurent, G. Grosche, O. Terra, T. Legero, H. Schnatz, S. Weyers, B. Altschul, and T. W. Hänsch, “Precision measurement of the hydrogen 1S–2S frequency via a 920-km fiber link,” Phys. Rev. Lett. 110, 230801 (2013).
[Crossref]

Guan, Y.-C.

P.-L. Luo, E.-C. Horng, and Y.-C. Guan, “Fast molecular fingerprinting with coherent, rapidly tunable dual-comb spectrometer near 3  µm,” Phys. Chem. Chem. Phys. 21, 18400–18405 (2019).
[Crossref]

Guay, P.

Guelachvili, G.

T. Ideguchi, A. Poisson, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Adaptive real-time dual-comb spectroscopy,” Nat. Commun. 5, 3375 (2014).
[Crossref]

T. Ideguchi, S. Holzner, B. Bernhardt, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Coherent Raman spectro-imaging with laser frequency combs,” Nature 502, 355–358 (2013).
[Crossref]

Gunning, F. C. G.

Guo, C.

M. He, M. Xu, Y. Ren, J. Jian, Z. Ruan, Y. Xu, S. Gao, S. Sun, X. Wen, L. Zhou, L. Liu, C. Guo, H. Chen, S. Yu, L. Liu, and X. Cai, “High-performance hybrid silicon and lithium niobate Mach–Zehnder modulators for 100  Gbit/s−1 and beyond,” Nat. Photonics 13, 359–364 (2019).
[Crossref]

Guo, R.

Gutierrez, A. M.

S. Abel, F. Eltes, J. E. Ortmann, A. Messner, P. Castera, T. Wagner, D. Urbonas, A. Rosa, A. M. Gutierrez, D. Tulli, P. Ma, B. Baeuerle, A. Josten, W. Heni, D. Caimi, L. Czornomaz, A. A. Demkov, J. Leuthold, P. Sanchis, and J. Fompeyrine, “Large Pockels effect in micro- and nanostructured barium titanate integrated on silicon,” Nat. Mater. 18, 42–47 (2018).
[Crossref]

Guzmán, R.

Haberl, F.

Haffner, C.

M. Ayata, Y. Fedoryshyn, W. Heni, B. Baeuerle, A. Josten, M. Zahner, U. Koch, Y. Salamin, C. Hoessbacher, C. Haffner, D. L. Elder, L. R. Dalton, and J. Leuthold, “High-speed plasmonic modulator in a single metal layer,” Science 358, 630–632 (2017).
[Crossref]

C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold, “All-plasmonic Mach–Zehnder modulator enabling optical high-speed communication at the microscale,” Nat. Photonics 9, 525–528 (2015).
[Crossref]

Hafner, C.

C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold, “All-plasmonic Mach–Zehnder modulator enabling optical high-speed communication at the microscale,” Nat. Photonics 9, 525–528 (2015).
[Crossref]

Hagemann, C.

Hall, J. L.

W. Zhang, M. J. Martin, C. Benko, J. L. Hall, J. Ye, C. Hagemann, T. Legero, U. Sterr, F. Riehle, G. D. Cole, and M. Aspelmeyer, “Reduction of residual amplitude modulation to for frequency modulation and laser stabilization,” Opt. Lett. 39, 1980–1983 (2014).
[Crossref]

J. L. Hall, “Nobel lecture: defining and measuring optical frequencies,” Rev. Mod. Phys. 78, 1279–1295 (2006).
[Crossref]

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
[Crossref]

N. C. Wong and J. L. Hall, “Servo control of amplitude modulation in frequency-modulation spectroscopy: demonstration of shot-noise-limited detection,” J. Opt. Soc. Am. B 2, 1527–1533 (1985).
[Crossref]

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[Crossref]

Halverson, S.

Hamidi, E.

V. R. Supradeepa, C. M. Long, R. Wu, F. Ferdous, E. Hamidi, D. E. Leaird, and A. M. Weiner, “Comb-based radiofrequency photonic filters with rapid tunability and high selectivity,” Nat. Photonics 6, 186–194 (2012).
[Crossref]

Hammani, K.

G. Xu, K. Hammani, A. Chabchoub, J. M. Dudley, B. Kibler, and C. Finot, “Phase evolution of Peregrine-like breathers in optics and hydrodynamics,” Phys. Rev. E 99, 012207 (2019).
[Crossref]

A. Parriaux, K. Hammani, and G. Millot, “Electro-optic dual-comb spectrometer in the thulium amplification band for gas sensing applications,” Opt. Lett. 44, 4335–4338 (2019).
[Crossref]

A. Parriaux, K. Hammani, and G. Millot, “Two-micron all-fibered dual-comb spectrometer based on electro-optic modulators and wavelength conversion,” Commun. Phys. 1, 17 (2018).
[Crossref]

J. Fatome, K. Hammani, B. Kibler, and C. Finot, “80 GHz waveform generated by the optical Fourier synthesis of four spectral sidebands,” Laser Phys. Lett. 13, 015102 (2016).
[Crossref]

K. Hammani, B. Kibler, J. Fatome, S. Boscolo, G. Genty, J. M. Dudley, G. Millot, and C. Finot, “Nonlinear spectral shaping and optical rogue events in fiber-based systems,” Opt. Fiber Technol. 18, 248–256 (2012), Special Issue on Fiber Supercontinuum Sources and Their Applications.
[Crossref]

K. Hammani, B. Kibler, C. Finot, P. Morin, J. Fatome, J. M. Dudley, and G. Millot, “Peregrine soliton generation and breakup in standard telecommunications fiber,” Opt. Lett. 36, 112–114 (2011).
[Crossref]

Hänsch, T.

T. Wilken, C. Lovis, A. Manescau, T. Steinmetz, L. Pasquini, G. Lo Curto, T. Hänsch, R. Holzwarth, and T. Udem, “High-precision calibration of spectrographs,” Mon. Not. R. Astron. Soc. Lett. 405, L16–L20 (2010).
[Crossref]

T. Udem, R. Holzwarth, and T. Hänsch, “Femtosecond optical frequency combs,” Eur. Phys. J. Spec. Top. 172, 69–79 (2009).
[Crossref]

M. T. Murphy, T. Udem, R. Holzwarth, A. Sizmann, L. Pasquini, C. Araujo, H. Dekker, S. D’Odorico, M. Fischer, T. Hänsch, and A. Manescau, “High-precision wavelength calibration of astronomical spectrographs with laser frequency combs,” Mon. Not. R. Astron. Soc. 380, 839–847 (2007).
[Crossref]

J. Reichert, R. Holzwarth, T. Udem, and T. Hänsch, “Measuring the frequency of light with mode-locked lasers,” Opt. Commun. 172, 59–68 (1999).
[Crossref]

T. Nishikawa, A. Ishizawa, M. Yan, H. Gotoh, T. Hänsch, and N. Picqué, “Broadband dual-comb spectroscopy with cascaded-electro-optic-modulator-based frequency combs,” in Conference on Lasers and Electro-Optics (CLEO) (Optical Society of America, 2015), paper SW3G.2.

T. Nishikawa, A. Oohara, S. Uda, A. Ishizawa, K. Hitachi, N. Picqué, and T. Hänsch, “Automatic interpolation of 25  GHz mode spacing in dual EOM comb spectroscopy,” in Conference on Lasers and Electro-Optics (CLEO) (Optical Society of America, 2019), paper SF1I.3.

Hänsch, T. W.

M. Yan, P.-L. Luo, K. Iwakuni, G. Millot, T. W. Hänsch, and N. Picqué, “Mid-infrared dual-comb spectroscopy with electro-optic modulators,” Light Sci. Appl. 6, e17076 (2017).
[Crossref]

G. Millot, S. Pitois, M. Yan, T. Hovhannisyan, A. Bendahmane, T. W. Hänsch, and N. Picqué, “Frequency-agile dual-comb spectroscopy,” Nat. Photonics 10, 27–30 (2016).
[Crossref]

T. Ideguchi, A. Poisson, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Adaptive real-time dual-comb spectroscopy,” Nat. Commun. 5, 3375 (2014).
[Crossref]

T. Ideguchi, S. Holzner, B. Bernhardt, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Coherent Raman spectro-imaging with laser frequency combs,” Nature 502, 355–358 (2013).
[Crossref]

A. Matveev, C. G. Parthey, K. Predehl, J. Alnis, A. Beyer, R. Holzwarth, T. Udem, T. Wilken, N. Kolachevsky, M. Abgrall, D. Rovera, C. Salomon, P. Laurent, G. Grosche, O. Terra, T. Legero, H. Schnatz, S. Weyers, B. Altschul, and T. W. Hänsch, “Precision measurement of the hydrogen 1S–2S frequency via a 920-km fiber link,” Phys. Rev. Lett. 110, 230801 (2013).
[Crossref]

T. Wilken, G. L. Curto, R. A. Probst, T. Steinmetz, A. Manescau, L. Pasquini, J. I. G. Hernández, R. Rebolo, T. W. Hänsch, T. Udem, and R. Holzwarth, “A spectrograph for exoplanet observations calibrated at the centimetre-per-second level,” Nature 485, 611–614 (2012).
[Crossref]

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations,” Science 321, 1335–1337 (2008).
[Crossref]

T. W. Hänsch, “Nobel lecture: passion for precision,” Rev. Mod. Phys. 78, 1297–1309 (2006).
[Crossref]

T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416, 233–237 (2002).
[Crossref]

J. Reichert, M. Niering, R. Holzwarth, M. Weitz, T. Udem, and T. W. Hänsch, “Phase coherent vacuum-ultraviolet to radio frequency comparison with a mode-locked laser,” Phys. Rev. Lett. 84, 3232–3235 (2000).
[Crossref]

A. Ishizawa, T. Nishikawa, M. Yan, G. Millot, H. Gotoh, T. W. Hänsch, and N. Picqué, “Optical frequency combs of multi-GHz line-spacing for real-time multi-heterodyne spectroscopy,” in Conference on Lasers and Electro-Optics (CLEO) (2015), pp. 1–2.

Hansson, T.

A. Pasquazi, M. Peccianti, L. Razzari, D. J. Moss, S. Coen, M. Erkintalo, Y. K. Chembo, T. Hansson, S. Wabnitz, P. Del’Haye, X. Xue, A. M. Weiner, and R. Morandotti, “Micro-combs: a novel generation of optical sources,” Phys. Rep. 729, 1–81 (2018).
[Crossref]

Hargrove, L. E.

L. E. Hargrove, R. L. Fork, and M. A. Pollack, “Locking of He-Ne laser modes induced by synchronous intracavity modulation,” Appl. Phys. Lett. 5, 4–5 (1964).
[Crossref]

Harris, F. E.

G. B. Arfken, H. J. Weber, and F. E. Harris, Mathematical Methods for Physicists, 7th ed. (Academic, 2013).

Harutyunyan, A.

Haus, H. A.

K. Tamura, H. A. Haus, and E. P. Ippen, “Self-starting additive pulse mode-locked erbium fibre ring laser,” Electron. Lett. 28, 2226–2228 (1992).
[Crossref]

F. X. Kärtner, U. Morgner, T. Schibli, R. Ell, H. A. Haus, J. G. Fujimoto, and E. P. Ippen, Few-Cycle Pulses Directly from a Laser (Springer, 2004), pp. 73–136.

He, C.

He, M.

M. He, M. Xu, Y. Ren, J. Jian, Z. Ruan, Y. Xu, S. Gao, S. Sun, X. Wen, L. Zhou, L. Liu, C. Guo, H. Chen, S. Yu, L. Liu, and X. Cai, “High-performance hybrid silicon and lithium niobate Mach–Zehnder modulators for 100  Gbit/s−1 and beyond,” Nat. Photonics 13, 359–364 (2019).
[Crossref]

B. Xue, Z. Wang, H. Zhang, K. Zhang, Y. Chen, M. He, B. Lin, and H. Wu, “Absolute distance measurement by self-heterodyne EO comb interferometry,” IEEE Photon. Technol. Lett. 30, 861–864 (2018).
[Crossref]

H. Wu, T. Zhao, Z. Wang, K. Zhang, B. Xue, J. Li, M. He, and X. Qu, “Long distance measurement up to 1.2  km by electro-optic dual-comb interferometry,” Appl. Phys. Lett. 111, 251901 (2017).
[Crossref]

He, Z.

Healy, T.

Hearty, F.

Hébert, N. B.

K. Fdil, V. Michaud-Belleau, N. B. Hébert, P. Guay, A. J. Fleisher, J.-D. Deschênes, and J. Genest, “Dual electro-optic frequency comb spectroscopy using pseudo-random modulation,” Opt. Lett. 44, 4415–4418 (2019).
[Crossref]

N. Wilson, N. B. Hébert, C. Perrella, P. Light, J. Genest, S. Pustelny, and A. Luiten, “Simultaneous observation of nonlinear magneto-optical rotation in the temporal and spectral domains with an electro-optic frequency comb,” Phys. Rev. Appl. 10, 034012 (2018).
[Crossref]

N. B. Hébert, V. Michaud-Belleau, C. Perrella, G.-W. Truong, J. D. Anstie, T. M. Stace, J. Genest, and A. N. Luiten, “Real-time dynamic atomic spectroscopy using electro-optic frequency combs,” Phys. Rev. Appl. 6, 044012 (2016).
[Crossref]

N. B. Hébert, V. Michaud-Belleau, J. D. Anstie, J.-D. Deschênes, A. N. Luiten, and J. Genest, “Self-heterodyne interference spectroscopy using a comb generated by pseudo-random modulation,” Opt. Express 23, 27806–27818 (2015).
[Crossref]

N. B. Hébert, S. Boudreau, J. Genest, and J.-D. Deschênes, “Coherent dual-comb interferometry with quasi-integer-ratio repetition rates,” Opt. Express 22, 29152–29160 (2014).
[Crossref]

Heni, W.

B. Baeuerle, W. Heni, C. Hoessbacher, Y. Fedoryshyn, U. Koch, A. Josten, T. Watanabe, C. Uhl, H. Hettrich, D. L. Elder, L. R. Dalton, M. Möller, and J. Leuthold, “120  GBd plasmonic Mach-Zehnder modulator with a novel differential electrode design operated at a peak-to-peak drive voltage of 178  mV,” Opt. Express 27, 16823–16832 (2019).
[Crossref]

S. Abel, F. Eltes, J. E. Ortmann, A. Messner, P. Castera, T. Wagner, D. Urbonas, A. Rosa, A. M. Gutierrez, D. Tulli, P. Ma, B. Baeuerle, A. Josten, W. Heni, D. Caimi, L. Czornomaz, A. A. Demkov, J. Leuthold, P. Sanchis, and J. Fompeyrine, “Large Pockels effect in micro- and nanostructured barium titanate integrated on silicon,” Nat. Mater. 18, 42–47 (2018).
[Crossref]

M. Ayata, Y. Fedoryshyn, W. Heni, B. Baeuerle, A. Josten, M. Zahner, U. Koch, Y. Salamin, C. Hoessbacher, C. Haffner, D. L. Elder, L. R. Dalton, and J. Leuthold, “High-speed plasmonic modulator in a single metal layer,” Science 358, 630–632 (2017).
[Crossref]

C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold, “All-plasmonic Mach–Zehnder modulator enabling optical high-speed communication at the microscale,” Nat. Photonics 9, 525–528 (2015).
[Crossref]

Hernández, J. I. G.

T. Wilken, G. L. Curto, R. A. Probst, T. Steinmetz, A. Manescau, L. Pasquini, J. I. G. Hernández, R. Rebolo, T. W. Hänsch, T. Udem, and R. Holzwarth, “A spectrograph for exoplanet observations calibrated at the centimetre-per-second level,” Nature 485, 611–614 (2012).
[Crossref]

Herr, T.

Hettrich, H.

Hickstein, D.

D. Carlson, D. Hickstein, S. A. Diddams, and S. B. Papp, “An ultrafast electro-optic dual comb for linear and nonlinear spectroscopy,” in Light, Energy and the Environment 2018 (E2, FTS, HISE, SOLAR, SSL) (Optical Society of America, 2018), paper FT4B.2.

Hickstein, D. D.

Hillerkuss, D.

C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold, “All-plasmonic Mach–Zehnder modulator enabling optical high-speed communication at the microscale,” Nat. Photonics 9, 525–528 (2015).
[Crossref]

A. Melikyan, L. Alloatti, A. Muslija, D. Hillerkuss, P. C. Schindler, J. Li, R. Palmer, D. Korn, S. Muehlbrandt, D. V. Thourhout, B. Chen, R. Dinu, M. Sommer, C. Koos, M. Kohl, W. Freude, and J. Leuthold, “High-speed plasmonic phase modulators,” Nat. Photonics 8, 229–233 (2014).
[Crossref]

A. K. Mishra, R. Schmogrow, I. Tomkos, D. Hillerkuss, C. Koos, W. Freude, and J. Leuthold, “Flexible RF-based comb generator,” IEEE Photon. Technol. Lett. 25, 701–704 (2013).
[Crossref]

Hirano, M.

Hitachi, K.

A. Ishizawa, T. Nishikawa, T. Goto, K. Hitachi, T. Sogawa, and H. Gotoh, “Ultralow-phase-noise millimetre-wave signal generator assisted with an electro-optics-modulator-based optical frequency comb,” Sci. Rep. 6, 24621 (2016).
[Crossref]

T. Nishikawa, A. Oohara, S. Uda, A. Ishizawa, K. Hitachi, N. Picqué, and T. Hänsch, “Automatic interpolation of 25  GHz mode spacing in dual EOM comb spectroscopy,” in Conference on Lasers and Electro-Optics (CLEO) (Optical Society of America, 2019), paper SF1I.3.

Ho, K.

K. Ho and J. M. Kahn, “Optical frequency comb generator using phase modulation in amplified circulating loop,” IEEE Photon. Technol. Lett. 5, 721–725 (1993).
[Crossref]

Hochreiter, H.

Hocquet, S.

Hodges, J. T.

Hoefler, G. E.

Hoeller, F.

Hoessbacher, C.

B. Baeuerle, W. Heni, C. Hoessbacher, Y. Fedoryshyn, U. Koch, A. Josten, T. Watanabe, C. Uhl, H. Hettrich, D. L. Elder, L. R. Dalton, M. Möller, and J. Leuthold, “120  GBd plasmonic Mach-Zehnder modulator with a novel differential electrode design operated at a peak-to-peak drive voltage of 178  mV,” Opt. Express 27, 16823–16832 (2019).
[Crossref]

M. Ayata, Y. Fedoryshyn, W. Heni, B. Baeuerle, A. Josten, M. Zahner, U. Koch, Y. Salamin, C. Hoessbacher, C. Haffner, D. L. Elder, L. R. Dalton, and J. Leuthold, “High-speed plasmonic modulator in a single metal layer,” Science 358, 630–632 (2017).
[Crossref]

C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold, “All-plasmonic Mach–Zehnder modulator enabling optical high-speed communication at the microscale,” Nat. Photonics 9, 525–528 (2015).
[Crossref]

Hofer, M.

Hollberg, L.

Holzner, S.

T. Ideguchi, S. Holzner, B. Bernhardt, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Coherent Raman spectro-imaging with laser frequency combs,” Nature 502, 355–358 (2013).
[Crossref]

Holzwarth, R.

A. Matveev, C. G. Parthey, K. Predehl, J. Alnis, A. Beyer, R. Holzwarth, T. Udem, T. Wilken, N. Kolachevsky, M. Abgrall, D. Rovera, C. Salomon, P. Laurent, G. Grosche, O. Terra, T. Legero, H. Schnatz, S. Weyers, B. Altschul, and T. W. Hänsch, “Precision measurement of the hydrogen 1S–2S frequency via a 920-km fiber link,” Phys. Rev. Lett. 110, 230801 (2013).
[Crossref]

T. Wilken, G. L. Curto, R. A. Probst, T. Steinmetz, A. Manescau, L. Pasquini, J. I. G. Hernández, R. Rebolo, T. W. Hänsch, T. Udem, and R. Holzwarth, “A spectrograph for exoplanet observations calibrated at the centimetre-per-second level,” Nature 485, 611–614 (2012).
[Crossref]

T. Wilken, C. Lovis, A. Manescau, T. Steinmetz, L. Pasquini, G. Lo Curto, T. Hänsch, R. Holzwarth, and T. Udem, “High-precision calibration of spectrographs,” Mon. Not. R. Astron. Soc. Lett. 405, L16–L20 (2010).
[Crossref]

T. Udem, R. Holzwarth, and T. Hänsch, “Femtosecond optical frequency combs,” Eur. Phys. J. Spec. Top. 172, 69–79 (2009).
[Crossref]

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations,” Science 321, 1335–1337 (2008).
[Crossref]

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450, 1214–1217 (2007).
[Crossref]

M. T. Murphy, T. Udem, R. Holzwarth, A. Sizmann, L. Pasquini, C. Araujo, H. Dekker, S. D’Odorico, M. Fischer, T. Hänsch, and A. Manescau, “High-precision wavelength calibration of astronomical spectrographs with laser frequency combs,” Mon. Not. R. Astron. Soc. 380, 839–847 (2007).
[Crossref]

T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416, 233–237 (2002).
[Crossref]

J. Reichert, M. Niering, R. Holzwarth, M. Weitz, T. Udem, and T. W. Hänsch, “Phase coherent vacuum-ultraviolet to radio frequency comparison with a mode-locked laser,” Phys. Rev. Lett. 84, 3232–3235 (2000).
[Crossref]

J. Reichert, R. Holzwarth, T. Udem, and T. Hänsch, “Measuring the frequency of light with mode-locked lasers,” Opt. Commun. 172, 59–68 (1999).
[Crossref]

Hood, D.

Horng, E.-C.

P.-L. Luo, E.-C. Horng, and Y.-C. Guan, “Fast molecular fingerprinting with coherent, rapidly tunable dual-comb spectrometer near 3  µm,” Phys. Chem. Chem. Phys. 21, 18400–18405 (2019).
[Crossref]

Hosako, I.

Hosseini, A.

Hough, J.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[Crossref]

Hovhannisyan, T.

G. Millot, S. Pitois, M. Yan, T. Hovhannisyan, A. Bendahmane, T. W. Hänsch, and N. Picqué, “Frequency-agile dual-comb spectroscopy,” Nat. Photonics 10, 27–30 (2016).
[Crossref]

Hu, H.

S. Yu, F. Bao, and H. Hu, “Broadband optical frequency comb generation with flexible frequency spacing and center wavelength,” IEEE Photon. J. 10, 7202107 (2018).
[Crossref]

Huang, B.

Huang, C.

Z. Jiang, D. E. Leaird, C. Huang, H. Miao, M. Kourogi, K. Imai, and A. M. Weiner, “Spectral line-by-line pulse shaping on an optical frequency comb generator,” IEEE J. Quantum Electron. 43, 1163–1174 (2007).
[Crossref]

Huang, C.-B.

F. Ferdous, D. E. Leaird, C.-B. Huang, and A. M. Weiner, “Dual-comb electric-field cross-correlation technique for optical arbitrary waveform characterization,” Opt. Lett. 34, 3875–3877 (2009).
[Crossref]

C.-B. Huang, S.-G. Park, D. E. Leaird, and A. M. Weiner, “Nonlinearly broadened phase-modulated continuous-wave laser frequency combs characterized using DPSK decoding,” Opt. Express 16, 2520–2527 (2008).
[Crossref]

C.-B. Huang, Z. Jiang, D. Leaird, J. Caraquitena, and A. Weiner, “Spectral line-by-line shaping for optical and microwave arbitrary waveform generations,” Laser Photon. Rev. 2, 227–248 (2008).
[Crossref]

Z. Jiang, C.-B. Huang, D. E. Leaird, and A. M. Weiner, “Optical arbitrary waveform processing of more than 100 spectral comb lines,” Nat. Photonics 1, 463–467 (2007).
[Crossref]

Huang, D.

Huggard, P. G.

Huo, L.

Ideguchi, T.

T. Ideguchi, A. Poisson, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Adaptive real-time dual-comb spectroscopy,” Nat. Commun. 5, 3375 (2014).
[Crossref]

T. Ideguchi, S. Holzner, B. Bernhardt, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Coherent Raman spectro-imaging with laser frequency combs,” Nature 502, 355–358 (2013).
[Crossref]

Igarashi, R.

Ilchenko, V. S.

Imai, K.

Z. Jiang, D. E. Leaird, C. Huang, H. Miao, M. Kourogi, K. Imai, and A. M. Weiner, “Spectral line-by-line pulse shaping on an optical frequency comb generator,” IEEE J. Quantum Electron. 43, 1163–1174 (2007).
[Crossref]

Inaba, H.

K. Kashiwagi, S. Okubo, and H. Inaba, “High repetition rate visible frequency comb generation from electro-optic modulation in the 1550  nm region,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2019), paper JW2A.97.

Ippen, E. P.

K. Tamura, H. A. Haus, and E. P. Ippen, “Self-starting additive pulse mode-locked erbium fibre ring laser,” Electron. Lett. 28, 2226–2228 (1992).
[Crossref]

F. X. Kärtner, U. Morgner, T. Schibli, R. Ell, H. A. Haus, J. G. Fujimoto, and E. P. Ippen, Few-Cycle Pulses Directly from a Laser (Springer, 2004), pp. 73–136.

Irimajiri, Y.

Ishizawa, A.

A. Ishizawa, T. Nishikawa, T. Goto, K. Hitachi, T. Sogawa, and H. Gotoh, “Ultralow-phase-noise millimetre-wave signal generator assisted with an electro-optics-modulator-based optical frequency comb,” Sci. Rep. 6, 24621 (2016).
[Crossref]

A. Ishizawa, T. Nishikawa, A. Mizutori, H. Takara, A. Takada, T. Sogawa, and M. Koga, “Phase-noise characteristics of a 25-GHz-spaced optical frequency comb based on a phase- and intensity-modulated laser,” Opt. Express 21, 29186–29194 (2013).
[Crossref]

A. Ishizawa, T. Nishikawa, A. Mizutori, H. Takara, H. Nakano, T. Sogawa, A. Takada, and M. Koga, “Generation of 120-fs laser pulses at 1-GHz repetition rate derived from continuous wave laser diode,” Opt. Express 19, 22402–22409 (2011).
[Crossref]

A. Ishizawa, T. Nishikawa, A. Mizutori, H. Takara, S. Aozasa, A. Mori, H. Nakano, A. Takada, and M. Koga, “Octave-spanning frequency comb generated by 250  fs pulse train emitted from 25  GHz externally phase-modulated laser diode for carrier-envelope-offset-locking,” Electron. Lett. 46, 1343–1344 (2010).
[Crossref]

A. Ishizawa, T. Nishikawa, M. Yan, G. Millot, H. Gotoh, T. W. Hänsch, and N. Picqué, “Optical frequency combs of multi-GHz line-spacing for real-time multi-heterodyne spectroscopy,” in Conference on Lasers and Electro-Optics (CLEO) (2015), pp. 1–2.

T. Nishikawa, A. Ishizawa, M. Yan, H. Gotoh, T. Hänsch, and N. Picqué, “Broadband dual-comb spectroscopy with cascaded-electro-optic-modulator-based frequency combs,” in Conference on Lasers and Electro-Optics (CLEO) (Optical Society of America, 2015), paper SW3G.2.

T. Nishikawa, A. Oohara, S. Uda, A. Ishizawa, K. Hitachi, N. Picqué, and T. Hänsch, “Automatic interpolation of 25  GHz mode spacing in dual EOM comb spectroscopy,” in Conference on Lasers and Electro-Optics (CLEO) (Optical Society of America, 2019), paper SF1I.3.

Ismail, N.

Ito, M.

T. Kurokawa, T. Shioda, M. Koriba, M. Ito, K. Kashiwagi, T. Serizawa, and Y. Tanaka, “Generation of broadband frequency-variable laser comb allowing full-frequency sweep in the near-infrared region,” Opt. Commun. 438, 13–17 (2019).
[Crossref]

Iverson, K. E.

K. E. Iverson, A Programming Language (Wiley, 1962).

Iwakuni, K.

M. Yan, P.-L. Luo, K. Iwakuni, G. Millot, T. W. Hänsch, and N. Picqué, “Mid-infrared dual-comb spectroscopy with electro-optic modulators,” Light Sci. Appl. 6, e17076 (2017).
[Crossref]

Iwatsuki, K.

Izumi, K.

Izutsu, M.

T. Sakamoto, T. Kawanishi, and M. Izutsu, “Asymptotic formalism for ultraflat optical frequency comb generation using a Mach–Zehnder modulator,” Opt. Lett. 32, 1515–1517 (2007).
[Crossref]

T. Sakamoto, T. Kawanishi, and M. Izutsu, “Widely wavelength-tunable ultra-flat frequency comb generation using conventional dual-drive Mach-Zehnder modulator,” Electron. Lett. 43, 1039–1040 (2007).
[Crossref]

Jaatinen, E.

Jaramillo-Villegas, J. A.

Jennings, J.

Jerez, B.

Jian, J.

M. He, M. Xu, Y. Ren, J. Jian, Z. Ruan, Y. Xu, S. Gao, S. Sun, X. Wen, L. Zhou, L. Liu, C. Guo, H. Chen, S. Yu, L. Liu, and X. Cai, “High-performance hybrid silicon and lithium niobate Mach–Zehnder modulators for 100  Gbit/s−1 and beyond,” Nat. Photonics 13, 359–364 (2019).
[Crossref]

Jiang, Z.

C.-B. Huang, Z. Jiang, D. Leaird, J. Caraquitena, and A. Weiner, “Spectral line-by-line shaping for optical and microwave arbitrary waveform generations,” Laser Photon. Rev. 2, 227–248 (2008).
[Crossref]

Z. Jiang, D. E. Leaird, C. Huang, H. Miao, M. Kourogi, K. Imai, and A. M. Weiner, “Spectral line-by-line pulse shaping on an optical frequency comb generator,” IEEE J. Quantum Electron. 43, 1163–1174 (2007).
[Crossref]

Z. Jiang, C.-B. Huang, D. E. Leaird, and A. M. Weiner, “Optical arbitrary waveform processing of more than 100 spectral comb lines,” Nat. Photonics 1, 463–467 (2007).
[Crossref]

Z. Jiang, D. E. Leaird, and A. M. Weiner, “Optical processing based on spectral line-by-line pulse shaping on a phase-modulated CW laser,” IEEE J. Quantum Electron. 42, 657–665 (2006).
[Crossref]

Z. Jiang, D. S. Seo, D. E. Leaird, and A. M. Weiner, “Spectral line-by-line pulse shaping,” Opt. Lett. 30, 1557–1559 (2005).
[Crossref]

Jones, D. J.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
[Crossref]

Josten, A.

B. Baeuerle, W. Heni, C. Hoessbacher, Y. Fedoryshyn, U. Koch, A. Josten, T. Watanabe, C. Uhl, H. Hettrich, D. L. Elder, L. R. Dalton, M. Möller, and J. Leuthold, “120  GBd plasmonic Mach-Zehnder modulator with a novel differential electrode design operated at a peak-to-peak drive voltage of 178  mV,” Opt. Express 27, 16823–16832 (2019).
[Crossref]

S. Abel, F. Eltes, J. E. Ortmann, A. Messner, P. Castera, T. Wagner, D. Urbonas, A. Rosa, A. M. Gutierrez, D. Tulli, P. Ma, B. Baeuerle, A. Josten, W. Heni, D. Caimi, L. Czornomaz, A. A. Demkov, J. Leuthold, P. Sanchis, and J. Fompeyrine, “Large Pockels effect in micro- and nanostructured barium titanate integrated on silicon,” Nat. Mater. 18, 42–47 (2018).
[Crossref]

M. Ayata, Y. Fedoryshyn, W. Heni, B. Baeuerle, A. Josten, M. Zahner, U. Koch, Y. Salamin, C. Hoessbacher, C. Haffner, D. L. Elder, L. R. Dalton, and J. Leuthold, “High-speed plasmonic modulator in a single metal layer,” Science 358, 630–632 (2017).
[Crossref]

C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold, “All-plasmonic Mach–Zehnder modulator enabling optical high-speed communication at the microscale,” Nat. Photonics 9, 525–528 (2015).
[Crossref]

Juchli, L.

C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold, “All-plasmonic Mach–Zehnder modulator enabling optical high-speed communication at the microscale,” Nat. Photonics 9, 525–528 (2015).
[Crossref]

Kahn, J. M.

M. Zhang, B. Buscaino, C. Wang, A. Shams-Ansari, C. Reimer, R. Zhu, J. M. Kahn, and M. Loncar, “Broadband electro-optic frequency comb generation in a lithium niobate microring resonator,” Nature 568, 373–377 (2019).
[Crossref]

K. Ho and J. M. Kahn, “Optical frequency comb generator using phase modulation in amplified circulating loop,” IEEE Photon. Technol. Lett. 5, 721–725 (1993).
[Crossref]

Kang, J.

Kani, J.

Kanodia, S.

Kaplan, K. F.

Karlsson, M.

L. Lundberg, M. Karlsson, A. Lorences-Riesgo, M. Mazur, V. Torres-Company, J. Schröder, and P. Andrekson, “Frequency comb-based WDM transmission systems enabling joint signal processing,” Appl. Sci. 8, 718 (2018).
[Crossref]

L. Lundberg, M. Mazur, A. Fülöp, V. Torres-Company, M. Karlsson, and P. A. Andrekson, “Phase correlation between lines of electro-optical frequency combs,” in Conference on Lasers and Electro-Optics (CLEO) (Optical Society of America, 2018), paper JW2A.149.

Kärtner, F. X.

F. X. Kärtner, U. Morgner, T. Schibli, R. Ell, H. A. Haus, J. G. Fujimoto, and E. P. Ippen, Few-Cycle Pulses Directly from a Laser (Springer, 2004), pp. 73–136.

Kasamatsu, A.

I. Morohashi, T. Sakamoto, N. Sekine, A. Kasamatsu, and I. Hosako, “Ultrashort optical pulse source using Mach-Zehnder-modulator-based flat comb generator,” Nano Commun. Network 10, 79–84 (2016), Special Issue on Terahertz Communications.
[Crossref]

Kashiwagi, K.

T. Kurokawa, T. Shioda, M. Koriba, M. Ito, K. Kashiwagi, T. Serizawa, and Y. Tanaka, “Generation of broadband frequency-variable laser comb allowing full-frequency sweep in the near-infrared region,” Opt. Commun. 438, 13–17 (2019).
[Crossref]

K. Kashiwagi, T. Kurokawa, Y. Okuyama, T. Mori, Y. Tanaka, Y. Yamamoto, and M. Hirano, “Direct generation of 12.5-GHz-spaced optical frequency comb with ultrabroad coverage in near-infrared region by cascaded fiber configuration,” Opt. Express 24, 8120–8131 (2016).
[Crossref]

K. Kashiwagi, S. Okubo, and H. Inaba, “High repetition rate visible frequency comb generation from electro-optic modulation in the 1550  nm region,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2019), paper JW2A.97.

Kataoka, N.

Katayama, I.

Kawanishi, T.

Kayes, M. I.

Kean, P. N.

Kentischer, T.

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations,” Science 321, 1335–1337 (2008).
[Crossref]

Kerr, J.

J. Kerr, “Xl. A new relation between electricity and light: dielectrified media birefringent,” London Edinburgh Dublin Philos. Mag. J. Sci. 50, 337–348 (1875).
[Crossref]

Khaliji, K.

R. Peng, K. Khaliji, N. Youngblood, R. Grassi, T. Low, and M. Li, “Midinfrared electro-optic modulation in few-layer black phosphorus,” Nano Lett. 17, 6315–6320 (2017).
[Crossref]

Kibler, B.

G. Xu, K. Hammani, A. Chabchoub, J. M. Dudley, B. Kibler, and C. Finot, “Phase evolution of Peregrine-like breathers in optics and hydrodynamics,” Phys. Rev. E 99, 012207 (2019).
[Crossref]

G. Xu, A. Gelash, A. Chabchoub, V. Zakharov, and B. Kibler, “Breather wave molecules,” Phys. Rev. Lett. 122, 084101 (2019).
[Crossref]

F. Baronio, B. Frisquet, S. Chen, G. Millot, S. Wabnitz, and B. Kibler, “Observation of a group of dark rogue waves in a telecommunication optical fiber,” Phys. Rev. A 97, 013852 (2018).
[Crossref]

F. Audo, B. Kibler, J. Fatome, and C. Finot, “Experimental observation of the emergence of Peregrine-like events in focusing dam break flows,” Opt. Lett. 43, 2864–2867 (2018).
[Crossref]

J. Fatome, K. Hammani, B. Kibler, and C. Finot, “80 GHz waveform generated by the optical Fourier synthesis of four spectral sidebands,” Laser Phys. Lett. 13, 015102 (2016).
[Crossref]

B. Kibler, A. Chabchoub, A. Gelash, N. Akhmediev, and V. E. Zakharov, “Superregular breathers in optics and hydrodynamics: omnipresent modulation instability beyond simple periodicity,” Phys. Rev. X 5, 041026 (2015).
[Crossref]

B. Frisquet, A. Chabchoub, J. Fatome, C. Finot, B. Kibler, and G. Millot, “Two-stage linear-nonlinear shaping of an optical frequency comb as rogue nonlinear-Schrödinger-equation-solution generator,” Phys. Rev. A 89, 023821 (2014).
[Crossref]

B. Frisquet, B. Kibler, and G. Millot, “Collision of Akhmediev breathers in nonlinear fiber optics,” Phys. Rev. X 3, 041032 (2013).
[Crossref]

K. Hammani, B. Kibler, J. Fatome, S. Boscolo, G. Genty, J. M. Dudley, G. Millot, and C. Finot, “Nonlinear spectral shaping and optical rogue events in fiber-based systems,” Opt. Fiber Technol. 18, 248–256 (2012), Special Issue on Fiber Supercontinuum Sources and Their Applications.
[Crossref]

B. Kibler, J. Fatome, C. Finot, G. Millot, G. Genty, B. Wetzel, N. Akhmediev, F. Dias, and J. M. Dudley, “Observation of Kuznetsov-Ma soliton dynamics in optical fibre,” Sci. Rep. 2, 463 (2012).
[Crossref]

K. Hammani, B. Kibler, C. Finot, P. Morin, J. Fatome, J. M. Dudley, and G. Millot, “Peregrine soliton generation and breakup in standard telecommunications fiber,” Opt. Lett. 36, 112–114 (2011).
[Crossref]

B. Kibler, J. Fatome, C. Finot, G. Millot, F. Dias, G. Genty, N. Akhmediev, and J. M. Dudley, “The Peregrine soliton in nonlinear fibre optics,” Nat. Phys. 6, 790–795 (2010).
[Crossref]

C. Finot, B. Kibler, L. Provost, and S. Wabnitz, “Beneficial impact of wave-breaking for coherent continuum formation in normally dispersive nonlinear fibers,” J. Opt. Soc. Am. B 25, 1938–1948 (2008).
[Crossref]

G. Xu, V. Pêcheur, J. Fatome, M. Chauvet, and B. Kibler, “Optical cavity-less 40-GHz picosecond pulse generator in the visible wavelength range,” in Conference on Lasers and Electro-Optics Europe and European Quantum Electronics Conference (Optical Society of America, 2019), paper cd_12_5.

Kim, H.-J.

Kim, J.

Kippenberg, T. J.

T. J. Kippenberg, A. L. Gaeta, M. Lipson, and M. L. Gorodetsky, “Dissipative Kerr solitons in optical microresonators,” Science 361, eaan8083 (2018).
[Crossref]

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450, 1214–1217 (2007).
[Crossref]

Kirigaya, M.

Kish, F.

Knuth, D. E.

R. L. Graham, D. E. Knuth, and O. Patashnik, Concrete Mathematics: a Foundation for Computer Science, 2nd ed. (Addison-Wesley, 1994).

Kobayashi, T.

T. Kobayashi, H. Yao, K. Amano, Y. Fukushima, A. Morimoto, and T. Sueta, “Optical pulse compression using high-frequency electrooptic phase modulation,” IEEE J. Quantum Electron. 24, 382–387 (1988).
[Crossref]

T. Kobayashi, T. Sueta, Y. Cho, and Y. Matsuo, “High-repetition-rate optical pulse generator using a Fabry-Perot electro-optic modulator,” Appl. Phys. Lett. 21, 341–343 (1972).
[Crossref]

Koch, U.

B. Baeuerle, W. Heni, C. Hoessbacher, Y. Fedoryshyn, U. Koch, A. Josten, T. Watanabe, C. Uhl, H. Hettrich, D. L. Elder, L. R. Dalton, M. Möller, and J. Leuthold, “120  GBd plasmonic Mach-Zehnder modulator with a novel differential electrode design operated at a peak-to-peak drive voltage of 178  mV,” Opt. Express 27, 16823–16832 (2019).
[Crossref]

M. Ayata, Y. Fedoryshyn, W. Heni, B. Baeuerle, A. Josten, M. Zahner, U. Koch, Y. Salamin, C. Hoessbacher, C. Haffner, D. L. Elder, L. R. Dalton, and J. Leuthold, “High-speed plasmonic modulator in a single metal layer,” Science 358, 630–632 (2017).
[Crossref]

C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold, “All-plasmonic Mach–Zehnder modulator enabling optical high-speed communication at the microscale,” Nat. Photonics 9, 525–528 (2015).
[Crossref]

Koga, M.

Kohl, M.

C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold, “All-plasmonic Mach–Zehnder modulator enabling optical high-speed communication at the microscale,” Nat. Photonics 9, 525–528 (2015).
[Crossref]

A. Melikyan, L. Alloatti, A. Muslija, D. Hillerkuss, P. C. Schindler, J. Li, R. Palmer, D. Korn, S. Muehlbrandt, D. V. Thourhout, B. Chen, R. Dinu, M. Sommer, C. Koos, M. Kohl, W. Freude, and J. Leuthold, “High-speed plasmonic phase modulators,” Nat. Photonics 8, 229–233 (2014).
[Crossref]

Kokeyama, K.

Kolachevsky, N.

A. Matveev, C. G. Parthey, K. Predehl, J. Alnis, A. Beyer, R. Holzwarth, T. Udem, T. Wilken, N. Kolachevsky, M. Abgrall, D. Rovera, C. Salomon, P. Laurent, G. Grosche, O. Terra, T. Legero, H. Schnatz, S. Weyers, B. Altschul, and T. W. Hänsch, “Precision measurement of the hydrogen 1S–2S frequency via a 920-km fiber link,” Phys. Rev. Lett. 110, 230801 (2013).
[Crossref]

Komukai, T.

T. Yamamoto, T. Komukai, K. Suzuki, and A. Takada, “Multicarrier light source with flattened spectrum using phase modulators and dispersion medium,” J. Lightwave Technol. 27, 4297–4305 (2009).
[Crossref]

T. Yamamoto, T. Komukai, K. Suzuki, and A. Takada, “Spectrally flattened phase-locked multi-carrier light generator with phase modulators and chirped fibre Bragg grating,” Electron. Lett. 43, 1040–1042 (2007).
[Crossref]

Kong, D.

Kong, W.

Koos, C.

C. Weimann, A. Messner, T. Baumgartner, S. Wolf, F. Hoeller, W. Freude, and C. Koos, “Fast high-precision distance metrology using a pair of modulator-generated dual-color frequency combs,” Opt. Express 26, 34305–34335 (2018).
[Crossref]

L. Alloatti, R. Palmer, S. Diebold, K. P. Pahl, B. Chen, R. Dinu, M. Fournier, J.-M. Fedeli, T. Zwick, W. Freude, C. Koos, and J. Leuthold, “100  GHz silicon-organic hybrid modulator,” Light Sci. Appl. 3, e173 (2014).
[Crossref]

A. Melikyan, L. Alloatti, A. Muslija, D. Hillerkuss, P. C. Schindler, J. Li, R. Palmer, D. Korn, S. Muehlbrandt, D. V. Thourhout, B. Chen, R. Dinu, M. Sommer, C. Koos, M. Kohl, W. Freude, and J. Leuthold, “High-speed plasmonic phase modulators,” Nat. Photonics 8, 229–233 (2014).
[Crossref]

A. K. Mishra, R. Schmogrow, I. Tomkos, D. Hillerkuss, C. Koos, W. Freude, and J. Leuthold, “Flexible RF-based comb generator,” IEEE Photon. Technol. Lett. 25, 701–704 (2013).
[Crossref]

Kores, C. C.

Koriba, M.

T. Kurokawa, T. Shioda, M. Koriba, M. Ito, K. Kashiwagi, T. Serizawa, and Y. Tanaka, “Generation of broadband frequency-variable laser comb allowing full-frequency sweep in the near-infrared region,” Opt. Commun. 438, 13–17 (2019).
[Crossref]

Korn, D.

A. Melikyan, L. Alloatti, A. Muslija, D. Hillerkuss, P. C. Schindler, J. Li, R. Palmer, D. Korn, S. Muehlbrandt, D. V. Thourhout, B. Chen, R. Dinu, M. Sommer, C. Koos, M. Kohl, W. Freude, and J. Leuthold, “High-speed plasmonic phase modulators,” Nat. Photonics 8, 229–233 (2014).
[Crossref]

Korth, W. Z.

Kourogi, M.

Z. Jiang, D. E. Leaird, C. Huang, H. Miao, M. Kourogi, K. Imai, and A. M. Weiner, “Spectral line-by-line pulse shaping on an optical frequency comb generator,” IEEE J. Quantum Electron. 43, 1163–1174 (2007).
[Crossref]

S.-J. Lee, B. Widiyatmoko, M. Kourogi, and M. Ohtsu, “Ultrahigh scanning speed optical coherence tomography using optical frequency comb generators,” Jpn. J. Appl. Phys. 40, L878–L880 (2001).
[Crossref]

M. Kourogi, K. Nakagawa, and M. Ohtsu, “Wide-span optical frequency comb generator for accurate optical frequency difference measurement,” IEEE J. Quantum Electron. 29, 2693–2701 (1993).
[Crossref]

Kovacich, R. P.

Kowalski, F. V.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[Crossref]

Kroh, M.

Kuhota, H.

K. R. Tamura, H. Kuhota, and M. Nakazawa, “Fundamentals of stable continuum generation at high repetition rates,” IEEE J. Quantum Electron. 36, 773–779 (2000).
[Crossref]

Kumari, M.

A. Rueda, F. Sedlmeir, M. Kumari, G. Leuchs, and H. G. L. Schwefel, “Resonant electro-optic frequency comb,” Nature 568, 378–381 (2019).
[Crossref]

Kundermann, S.

Kundt, A.

A. Kundt, “Ueber das optische Verhalten des Quarzes im electrischen Felde,” Ann. Phys. 254, 228–233 (1883).
[Crossref]

Kuo, B. P.

Kuo, B. P. P.

Kurokawa, T.

T. Kurokawa, T. Shioda, M. Koriba, M. Ito, K. Kashiwagi, T. Serizawa, and Y. Tanaka, “Generation of broadband frequency-variable laser comb allowing full-frequency sweep in the near-infrared region,” Opt. Commun. 438, 13–17 (2019).
[Crossref]

K. Kashiwagi, T. Kurokawa, Y. Okuyama, T. Mori, Y. Tanaka, Y. Yamamoto, and M. Hirano, “Direct generation of 12.5-GHz-spaced optical frequency comb with ultrabroad coverage in near-infrared region by cascaded fiber configuration,” Opt. Express 24, 8120–8131 (2016).
[Crossref]

D. Miyamoto, K. Mandai, T. Kurokawa, S. Takeda, T. Shioda, and H. Tsuda, “Waveform-controllable optical pulse generation using an optical pulse synthesizer,” IEEE Photon. Technol. Lett. 18, 721–723 (2006).
[Crossref]

Kuse, N.

Lacava, C.

Lal, V.

Lam, E. Y.

Lancis, J.

Largo-Izquierdo, P.

Laurent, P.

A. Matveev, C. G. Parthey, K. Predehl, J. Alnis, A. Beyer, R. Holzwarth, T. Udem, T. Wilken, N. Kolachevsky, M. Abgrall, D. Rovera, C. Salomon, P. Laurent, G. Grosche, O. Terra, T. Legero, H. Schnatz, S. Weyers, B. Altschul, and T. W. Hänsch, “Precision measurement of the hydrogen 1S–2S frequency via a 920-km fiber link,” Phys. Rev. Lett. 110, 230801 (2013).
[Crossref]

Lay, O. P.

Leaird, D.

C.-B. Huang, Z. Jiang, D. Leaird, J. Caraquitena, and A. Weiner, “Spectral line-by-line shaping for optical and microwave arbitrary waveform generations,” Laser Photon. Rev. 2, 227–248 (2008).
[Crossref]

Leaird, D. E.

A. J. Metcalf, H.-J. Kim, D. E. Leaird, J. A. Jaramillo-Villegas, K. A. McKinzie, V. Lal, A. Hosseini, G. E. Hoefler, F. Kish, and A. M. Weiner, “Integrated line-by-line optical pulse shaper for high-fidelity and rapidly reconfigurable RF-filtering,” Opt. Express 24, 23925–23940 (2016).
[Crossref]

J. M. Lukens, A. J. Metcalf, D. E. Leaird, and A. M. Weiner, “Temporal cloaking for data suppression and retrieval,” Optica 1, 372–375 (2014).
[Crossref]

A. J. Metcalf, V. Torres-Company, D. E. Leaird, and A. M. Weiner, “High-power broadly tunable electrooptic frequency comb generator,” IEEE J. Sel. Top. Quantum Electron. 19, 231–236 (2013).
[Crossref]

R. Wu, V. Torres-Company, D. E. Leaird, and A. M. Weiner, “Supercontinuum-based 10-GHz flat-topped optical frequency comb generation,” Opt. Express 21, 6045–6052 (2013).
[Crossref]

J. M. Lukens, D. E. Leaird, and A. M. Weiner, “A temporal cloak at telecommunication data rate,” Nature 498, 205–208 (2013).
[Crossref]

V. R. Supradeepa, C. M. Long, R. Wu, F. Ferdous, E. Hamidi, D. E. Leaird, and A. M. Weiner, “Comb-based radiofrequency photonic filters with rapid tunability and high selectivity,” Nat. Photonics 6, 186–194 (2012).
[Crossref]

V. Torres-Company, A. J. Metcalf, D. E. Leaird, and A. M. Weiner, “Multichannel radio-frequency arbitrary waveform generation based on multiwavelength comb switching and 2-D line-by-line pulse shaping,” IEEE Photon. Technol. Lett. 24, 891–893 (2012).
[Crossref]

R. Wu, V. R. Supradeepa, C. M. Long, D. E. Leaird, and A. M. Weiner, “Generation of very flat optical frequency combs from continuous-wave lasers using cascaded intensity and phase modulators driven by tailored radio frequency waveforms,” Opt. Lett. 35, 3234–3236 (2010).
[Crossref]

F. Ferdous, D. E. Leaird, C.-B. Huang, and A. M. Weiner, “Dual-comb electric-field cross-correlation technique for optical arbitrary waveform characterization,” Opt. Lett. 34, 3875–3877 (2009).
[Crossref]

C.-B. Huang, S.-G. Park, D. E. Leaird, and A. M. Weiner, “Nonlinearly broadened phase-modulated continuous-wave laser frequency combs characterized using DPSK decoding,” Opt. Express 16, 2520–2527 (2008).
[Crossref]

Z. Jiang, C.-B. Huang, D. E. Leaird, and A. M. Weiner, “Optical arbitrary waveform processing of more than 100 spectral comb lines,” Nat. Photonics 1, 463–467 (2007).
[Crossref]

Z. Jiang, D. E. Leaird, C. Huang, H. Miao, M. Kourogi, K. Imai, and A. M. Weiner, “Spectral line-by-line pulse shaping on an optical frequency comb generator,” IEEE J. Quantum Electron. 43, 1163–1174 (2007).
[Crossref]

Z. Jiang, D. E. Leaird, and A. M. Weiner, “Optical processing based on spectral line-by-line pulse shaping on a phase-modulated CW laser,” IEEE J. Quantum Electron. 42, 657–665 (2006).
[Crossref]

Z. Jiang, D. S. Seo, D. E. Leaird, and A. M. Weiner, “Spectral line-by-line pulse shaping,” Opt. Lett. 30, 1557–1559 (2005).
[Crossref]

Lecomte, S.

Lee, S.-J.

S.-J. Lee, B. Widiyatmoko, M. Kourogi, and M. Ohtsu, “Ultrahigh scanning speed optical coherence tomography using optical frequency comb generators,” Jpn. J. Appl. Phys. 40, L878–L880 (2001).
[Crossref]

Legero, T.

W. Zhang, M. J. Martin, C. Benko, J. L. Hall, J. Ye, C. Hagemann, T. Legero, U. Sterr, F. Riehle, G. D. Cole, and M. Aspelmeyer, “Reduction of residual amplitude modulation to for frequency modulation and laser stabilization,” Opt. Lett. 39, 1980–1983 (2014).
[Crossref]

A. Matveev, C. G. Parthey, K. Predehl, J. Alnis, A. Beyer, R. Holzwarth, T. Udem, T. Wilken, N. Kolachevsky, M. Abgrall, D. Rovera, C. Salomon, P. Laurent, G. Grosche, O. Terra, T. Legero, H. Schnatz, S. Weyers, B. Altschul, and T. W. Hänsch, “Precision measurement of the hydrogen 1S–2S frequency via a 920-km fiber link,” Phys. Rev. Lett. 110, 230801 (2013).
[Crossref]

Leifer, S.

X. Yi, K. Vahala, J. Li, S. Diddams, G. Ycas, P. Plavchan, S. Leifer, J. Sandhu, G. Vasisht, P. Chen, P. Gao, J. Gagne, E. Furlan, M. Bottom, E. C. Martin, M. P. Fitzgerald, G. Doppmann, and C. Beichman, “Demonstration of a near-IR line-referenced electro-optical laser frequency comb for precision radial velocity measurements in astronomy,” Nat. Commun. 7, 10436 (2016).
[Crossref]

Leijtens, X. J. M.

Lentine, A. L.

Leuchs, G.

A. Rueda, F. Sedlmeir, M. Kumari, G. Leuchs, and H. G. L. Schwefel, “Resonant electro-optic frequency comb,” Nature 568, 378–381 (2019).
[Crossref]

Leuthold, J.

B. Baeuerle, W. Heni, C. Hoessbacher, Y. Fedoryshyn, U. Koch, A. Josten, T. Watanabe, C. Uhl, H. Hettrich, D. L. Elder, L. R. Dalton, M. Möller, and J. Leuthold, “120  GBd plasmonic Mach-Zehnder modulator with a novel differential electrode design operated at a peak-to-peak drive voltage of 178  mV,” Opt. Express 27, 16823–16832 (2019).
[Crossref]

S. Abel, F. Eltes, J. E. Ortmann, A. Messner, P. Castera, T. Wagner, D. Urbonas, A. Rosa, A. M. Gutierrez, D. Tulli, P. Ma, B. Baeuerle, A. Josten, W. Heni, D. Caimi, L. Czornomaz, A. A. Demkov, J. Leuthold, P. Sanchis, and J. Fompeyrine, “Large Pockels effect in micro- and nanostructured barium titanate integrated on silicon,” Nat. Mater. 18, 42–47 (2018).
[Crossref]

M. Ayata, Y. Fedoryshyn, W. Heni, B. Baeuerle, A. Josten, M. Zahner, U. Koch, Y. Salamin, C. Hoessbacher, C. Haffner, D. L. Elder, L. R. Dalton, and J. Leuthold, “High-speed plasmonic modulator in a single metal layer,” Science 358, 630–632 (2017).
[Crossref]

C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold, “All-plasmonic Mach–Zehnder modulator enabling optical high-speed communication at the microscale,” Nat. Photonics 9, 525–528 (2015).
[Crossref]

A. Melikyan, L. Alloatti, A. Muslija, D. Hillerkuss, P. C. Schindler, J. Li, R. Palmer, D. Korn, S. Muehlbrandt, D. V. Thourhout, B. Chen, R. Dinu, M. Sommer, C. Koos, M. Kohl, W. Freude, and J. Leuthold, “High-speed plasmonic phase modulators,” Nat. Photonics 8, 229–233 (2014).
[Crossref]

L. Alloatti, R. Palmer, S. Diebold, K. P. Pahl, B. Chen, R. Dinu, M. Fournier, J.-M. Fedeli, T. Zwick, W. Freude, C. Koos, and J. Leuthold, “100  GHz silicon-organic hybrid modulator,” Light Sci. Appl. 3, e173 (2014).
[Crossref]

A. K. Mishra, R. Schmogrow, I. Tomkos, D. Hillerkuss, C. Koos, W. Freude, and J. Leuthold, “Flexible RF-based comb generator,” IEEE Photon. Technol. Lett. 25, 701–704 (2013).
[Crossref]

Levi, E.

Lhermite, J.

Li, B.

Li, J.

H. Wu, T. Zhao, Z. Wang, K. Zhang, B. Xue, J. Li, M. He, and X. Qu, “Long distance measurement up to 1.2  km by electro-optic dual-comb interferometry,” Appl. Phys. Lett. 111, 251901 (2017).
[Crossref]

J. Li, H. Ma, Z. Li, and X. Zhang, “Optical frequency comb generation based on dual-polarization IQ modulator shared by two polarization-orthogonal recirculating frequency shifting loops,” IEEE Photon. J. 9, 2745558 (2017).
[Crossref]

X. Yi, K. Vahala, J. Li, S. Diddams, G. Ycas, P. Plavchan, S. Leifer, J. Sandhu, G. Vasisht, P. Chen, P. Gao, J. Gagne, E. Furlan, M. Bottom, E. C. Martin, M. P. Fitzgerald, G. Doppmann, and C. Beichman, “Demonstration of a near-IR line-referenced electro-optical laser frequency comb for precision radial velocity measurements in astronomy,” Nat. Commun. 7, 10436 (2016).
[Crossref]

Y. Bao, X. Yi, Z. Li, Q. Chen, J. Li, X. Fan, and X. Zhang, “A digitally generated ultrafine optical frequency comb for spectral measurements with 0.01-pm resolution and 0.7-µs response time,” Light Sci. Appl. 4, e300 (2015).
[Crossref]

A. Melikyan, L. Alloatti, A. Muslija, D. Hillerkuss, P. C. Schindler, J. Li, R. Palmer, D. Korn, S. Muehlbrandt, D. V. Thourhout, B. Chen, R. Dinu, M. Sommer, C. Koos, M. Kohl, W. Freude, and J. Leuthold, “High-speed plasmonic phase modulators,” Nat. Photonics 8, 229–233 (2014).
[Crossref]

Li, L.

Li, M.

M. Li, L. Wang, X. Li, X. Xiao, and S. Yu, “Silicon intensity Mach–Zehnder modulator for single lane 100  Gb/s applications,” Photon. Res. 6, 109–116 (2018).
[Crossref]

R. Peng, K. Khaliji, N. Youngblood, R. Grassi, T. Low, and M. Li, “Midinfrared electro-optic modulation in few-layer black phosphorus,” Nano Lett. 17, 6315–6320 (2017).
[Crossref]

Li, X.

M. Li, L. Wang, X. Li, X. Xiao, and S. Yu, “Silicon intensity Mach–Zehnder modulator for single lane 100  Gb/s applications,” Photon. Res. 6, 109–116 (2018).
[Crossref]

K. Qu, S. Zhao, X. Li, Z. Zhu, D. Liang, and D. Liang, “Ultra-flat and broadband optical frequency comb generator via a single Mach–Zehnder modulator,” IEEE Photon. Technol. Lett. 29, 255–258 (2017).
[Crossref]

T. Lin, S. Zhao, Z. Zhu, X. Li, and K. Qu, “Generation of flat optical frequency comb based on a DP-QPSK modulator,” IEEE Photon. Technol. Lett. 29, 146–149 (2017).
[Crossref]

Y. Fang, J. Yu, J. Zhang, X. Li, N. Chi, and J. Xiao, “Frequency comb selection enabled flexible all optical Nyquist pulse generation,” Opt. Commun. 349, 60–64 (2015).
[Crossref]

J. Zhang, J. Yu, N. Chi, Z. Dong, X. Li, Y. Shao, J. Yu, and L. Tao, “Flattened comb generation using only phase modulators driven by fundamental frequency sinusoidal sources with small frequency offset,” Opt. Lett. 38, 552–554 (2013).
[Crossref]

Li, Y.

L. Shang, Y. Li, L. Ma, and J. Chen, “A flexible and ultra-flat optical frequency comb generator using a parallel Mach–Zehnder modulator with a single DC bias,” Opt. Commun. 356, 70–73 (2015).
[Crossref]

J. Wu, J. Zang, Y. Li, D. Kong, J. Qiu, S. Zhou, J. Shi, and J. Lin, “Investigation on Nyquist pulse generation using a single dual-parallel Mach-Zehnder modulator,” Opt. Express 22, 20463–20472 (2014).
[Crossref]

Li, Z.

J. Li, H. Ma, Z. Li, and X. Zhang, “Optical frequency comb generation based on dual-polarization IQ modulator shared by two polarization-orthogonal recirculating frequency shifting loops,” IEEE Photon. J. 9, 2745558 (2017).
[Crossref]

Y. Bao, X. Yi, Z. Li, Q. Chen, J. Li, X. Fan, and X. Zhang, “A digitally generated ultrafine optical frequency comb for spectral measurements with 0.01-pm resolution and 0.7-µs response time,” Light Sci. Appl. 4, e300 (2015).
[Crossref]

Liang, D.

K. Qu, S. Zhao, X. Li, Z. Zhu, D. Liang, and D. Liang, “Ultra-flat and broadband optical frequency comb generator via a single Mach–Zehnder modulator,” IEEE Photon. Technol. Lett. 29, 255–258 (2017).
[Crossref]

K. Qu, S. Zhao, X. Li, Z. Zhu, D. Liang, and D. Liang, “Ultra-flat and broadband optical frequency comb generator via a single Mach–Zehnder modulator,” IEEE Photon. Technol. Lett. 29, 255–258 (2017).
[Crossref]

Liao, S.

Light, P.

N. Wilson, N. B. Hébert, C. Perrella, P. Light, J. Genest, S. Pustelny, and A. Luiten, “Simultaneous observation of nonlinear magneto-optical rotation in the temporal and spectral domains with an electro-optic frequency comb,” Phys. Rev. Appl. 10, 034012 (2018).
[Crossref]

Lin, B.

B. Xue, Z. Wang, H. Zhang, K. Zhang, Y. Chen, M. He, B. Lin, and H. Wu, “Absolute distance measurement by self-heterodyne EO comb interferometry,” IEEE Photon. Technol. Lett. 30, 861–864 (2018).
[Crossref]

Lin, G.

Lin, J.

Lin, T.

T. Lin, S. Zhao, Z. Zhu, X. Li, and K. Qu, “Generation of flat optical frequency comb based on a DP-QPSK modulator,” IEEE Photon. Technol. Lett. 29, 146–149 (2017).
[Crossref]

Lintz, M.

I. El Mansouri, J. Fatome, C. Finot, M. Lintz, and S. Pitois, “All-fibered high-quality stable 20- and 40-GHz picosecond pulse generators for 160-Gb/s OTDM applications,” IEEE Photon. Technol. Lett. 23, 1487–1489 (2011).
[Crossref]

Lipson, M.

T. J. Kippenberg, A. L. Gaeta, M. Lipson, and M. L. Gorodetsky, “Dissipative Kerr solitons in optical microresonators,” Science 361, eaan8083 (2018).
[Crossref]

Lischke, S.

Liu, H.

Liu, L.

M. He, M. Xu, Y. Ren, J. Jian, Z. Ruan, Y. Xu, S. Gao, S. Sun, X. Wen, L. Zhou, L. Liu, C. Guo, H. Chen, S. Yu, L. Liu, and X. Cai, “High-performance hybrid silicon and lithium niobate Mach–Zehnder modulators for 100  Gbit/s−1 and beyond,” Nat. Photonics 13, 359–364 (2019).
[Crossref]

M. He, M. Xu, Y. Ren, J. Jian, Z. Ruan, Y. Xu, S. Gao, S. Sun, X. Wen, L. Zhou, L. Liu, C. Guo, H. Chen, S. Yu, L. Liu, and X. Cai, “High-performance hybrid silicon and lithium niobate Mach–Zehnder modulators for 100  Gbit/s−1 and beyond,” Nat. Photonics 13, 359–364 (2019).
[Crossref]

L. Liu, X. Zhang, T. Xu, Z. Dai, S. Dai, and T. Liu, “Simple and seamless broadband optical frequency comb generation using an InAs/InP quantum dot laser,” Opt. Lett. 42, 1173–1176 (2017).
[Crossref]

L. Liu, X. Zhang, T. Xu, Z. Dai, and T. Liu, “Simple optical frequency comb generation using a passively mode-locked quantum dot laser,” Opt. Commun. 396, 105–109 (2017).
[Crossref]

V. Ataie, E. Temprana, L. Liu, E. Myslivets, B. P. Kuo, N. Alic, and S. Radic, “Ultrahigh count coherent WDM channels transmission using optical parametric comb-based frequency synthesizer,” J. Lightwave Technol. 33, 694–699 (2015).
[Crossref]

Liu, T.

L. Liu, X. Zhang, T. Xu, Z. Dai, and T. Liu, “Simple optical frequency comb generation using a passively mode-locked quantum dot laser,” Opt. Commun. 396, 105–109 (2017).
[Crossref]

L. Liu, X. Zhang, T. Xu, Z. Dai, S. Dai, and T. Liu, “Simple and seamless broadband optical frequency comb generation using an InAs/InP quantum dot laser,” Opt. Lett. 42, 1173–1176 (2017).
[Crossref]

Liu, W.

Y. Yang, J. Ma, X. Xin, Q. Zhang, Y. Zhang, X. Yin, R. Zhang, and W. Liu, “Optical frequency comb generation using two cascaded polarization modulators,” Photon. Netw. Commun. 32, 126–132 (2016).
[Crossref]

Liu, Y.

Lo Curto, G.

T. Wilken, C. Lovis, A. Manescau, T. Steinmetz, L. Pasquini, G. Lo Curto, T. Hänsch, R. Holzwarth, and T. Udem, “High-precision calibration of spectrographs,” Mon. Not. R. Astron. Soc. Lett. 405, L16–L20 (2010).
[Crossref]

Loncar, M.

M. Zhang, B. Buscaino, C. Wang, A. Shams-Ansari, C. Reimer, R. Zhu, J. M. Kahn, and M. Loncar, “Broadband electro-optic frequency comb generation in a lithium niobate microring resonator,” Nature 568, 373–377 (2019).
[Crossref]

C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Lončar, “Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages,” Nature 562, 101–104 (2018).
[Crossref]

A. Shams-Ansari, M. Yu, Z. Chen, C. Reimer, M. Zhang, N. Picqué, and M. Loncar, “Microring electro-optic frequency comb sources for dual-comb spectroscopy,” in Conference on Lasers and Electro-Optics(CLEO) (Optical Society of America, 2019), paper JTh5B.8.

Long, C. M.

V. R. Supradeepa, C. M. Long, R. Wu, F. Ferdous, E. Hamidi, D. E. Leaird, and A. M. Weiner, “Comb-based radiofrequency photonic filters with rapid tunability and high selectivity,” Nat. Photonics 6, 186–194 (2012).
[Crossref]

R. Wu, V. R. Supradeepa, C. M. Long, D. E. Leaird, and A. M. Weiner, “Generation of very flat optical frequency combs from continuous-wave lasers using cascaded intensity and phase modulators driven by tailored radio frequency waveforms,” Opt. Lett. 35, 3234–3236 (2010).
[Crossref]

Long, D. A.

Lorences-Riesgo, A.

L. Lundberg, M. Karlsson, A. Lorences-Riesgo, M. Mazur, V. Torres-Company, J. Schröder, and P. Andrekson, “Frequency comb-based WDM transmission systems enabling joint signal processing,” Appl. Sci. 8, 718 (2018).
[Crossref]

Lou, C.

Lovis, C.

X. Bonfils, X. Delfosse, S. Udry, T. Forveille, M. Mayor, C. Perrier, F. Bouchy, M. Gillon, C. Lovis, F. Pepe, D. Queloz, N. C. Santos, D. Ségransan, and J.-L. Bertaux, “The HARPS search for southern extra-solar planets - XXXI. The M-dwarf sample,” Astron. Astrophys. 549, A109 (2013).
[Crossref]

T. Wilken, C. Lovis, A. Manescau, T. Steinmetz, L. Pasquini, G. Lo Curto, T. Hänsch, R. Holzwarth, and T. Udem, “High-precision calibration of spectrographs,” Mon. Not. R. Astron. Soc. Lett. 405, L16–L20 (2010).
[Crossref]

Low, T.

R. Peng, K. Khaliji, N. Youngblood, R. Grassi, T. Low, and M. Li, “Midinfrared electro-optic modulation in few-layer black phosphorus,” Nano Lett. 17, 6315–6320 (2017).
[Crossref]

Lu, B.

X. Zou, B. Lu, W. Pan, L. Yan, A. Stöhr, and J. Yao, “Photonics for microwave measurements,” Laser Photon. Rev. 10, 711–734 (2016).
[Crossref]

Lubar, E.

Luiten, A.

N. Wilson, N. B. Hébert, C. Perrella, P. Light, J. Genest, S. Pustelny, and A. Luiten, “Simultaneous observation of nonlinear magneto-optical rotation in the temporal and spectral domains with an electro-optic frequency comb,” Phys. Rev. Appl. 10, 034012 (2018).
[Crossref]

Luiten, A. N.

N. B. Hébert, V. Michaud-Belleau, C. Perrella, G.-W. Truong, J. D. Anstie, T. M. Stace, J. Genest, and A. N. Luiten, “Real-time dynamic atomic spectroscopy using electro-optic frequency combs,” Phys. Rev. Appl. 6, 044012 (2016).
[Crossref]

N. B. Hébert, V. Michaud-Belleau, J. D. Anstie, J.-D. Deschênes, A. N. Luiten, and J. Genest, “Self-heterodyne interference spectroscopy using a comb generated by pseudo-random modulation,” Opt. Express 23, 27806–27818 (2015).
[Crossref]

Lukens, J. M.

J. M. Lukens, A. J. Metcalf, D. E. Leaird, and A. M. Weiner, “Temporal cloaking for data suppression and retrieval,” Optica 1, 372–375 (2014).
[Crossref]

J. M. Lukens, D. E. Leaird, and A. M. Weiner, “A temporal cloak at telecommunication data rate,” Nature 498, 205–208 (2013).
[Crossref]

Lundberg, L.

L. Lundberg, M. Karlsson, A. Lorences-Riesgo, M. Mazur, V. Torres-Company, J. Schröder, and P. Andrekson, “Frequency comb-based WDM transmission systems enabling joint signal processing,” Appl. Sci. 8, 718 (2018).
[Crossref]

L. Lundberg, M. Mazur, A. Fülöp, V. Torres-Company, M. Karlsson, and P. A. Andrekson, “Phase correlation between lines of electro-optical frequency combs,” in Conference on Lasers and Electro-Optics (CLEO) (Optical Society of America, 2018), paper JW2A.149.

Luo, B.

X. Zou, W. Pan, B. Luo, and L. Yan, “Generation of repetition-rate-quadrupled optical pulse trains using a PolM or a pair of PolMs,” IEEE J. Quantum Electron. 48, 3–7 (2012).
[Crossref]

Luo, P.-L.

P.-L. Luo, E.-C. Horng, and Y.-C. Guan, “Fast molecular fingerprinting with coherent, rapidly tunable dual-comb spectrometer near 3  µm,” Phys. Chem. Chem. Phys. 21, 18400–18405 (2019).
[Crossref]

M. Yan, P.-L. Luo, K. Iwakuni, G. Millot, T. W. Hänsch, and N. Picqué, “Mid-infrared dual-comb spectroscopy with electro-optic modulators,” Light Sci. Appl. 6, e17076 (2017).
[Crossref]

Ma, H.

J. Li, H. Ma, Z. Li, and X. Zhang, “Optical frequency comb generation based on dual-polarization IQ modulator shared by two polarization-orthogonal recirculating frequency shifting loops,” IEEE Photon. J. 9, 2745558 (2017).
[Crossref]

Ma, J.

Y. Yang, J. Ma, X. Xin, Q. Zhang, Y. Zhang, X. Yin, R. Zhang, and W. Liu, “Optical frequency comb generation using two cascaded polarization modulators,” Photon. Netw. Commun. 32, 126–132 (2016).
[Crossref]

Ma, L.

L. Shang, Y. Li, L. Ma, and J. Chen, “A flexible and ultra-flat optical frequency comb generator using a parallel Mach–Zehnder modulator with a single DC bias,” Opt. Commun. 356, 70–73 (2015).
[Crossref]

Ma, P.

S. Abel, F. Eltes, J. E. Ortmann, A. Messner, P. Castera, T. Wagner, D. Urbonas, A. Rosa, A. M. Gutierrez, D. Tulli, P. Ma, B. Baeuerle, A. Josten, W. Heni, D. Caimi, L. Czornomaz, A. A. Demkov, J. Leuthold, P. Sanchis, and J. Fompeyrine, “Large Pockels effect in micro- and nanostructured barium titanate integrated on silicon,” Nat. Mater. 18, 42–47 (2018).
[Crossref]

Mach, L.

L. Mach, “Uber einer Interferenzrefractor,” Z. Instrumentenkd. 12, 89–93 (1892).

Mahadevan, S.

Mai, C.

Maiman, T. H.

T. H. Maiman, “Stimulated optical radiation in ruby,” Nature 187, 493–494 (1960).
[Crossref]

Maleki, L.

Mandai, K.

D. Miyamoto, K. Mandai, T. Kurokawa, S. Takeda, T. Shioda, and H. Tsuda, “Waveform-controllable optical pulse generation using an optical pulse synthesizer,” IEEE Photon. Technol. Lett. 18, 721–723 (2006).
[Crossref]

Manescau, A.

T. Wilken, G. L. Curto, R. A. Probst, T. Steinmetz, A. Manescau, L. Pasquini, J. I. G. Hernández, R. Rebolo, T. W. Hänsch, T. Udem, and R. Holzwarth, “A spectrograph for exoplanet observations calibrated at the centimetre-per-second level,” Nature 485, 611–614 (2012).
[Crossref]

T. Wilken, C. Lovis, A. Manescau, T. Steinmetz, L. Pasquini, G. Lo Curto, T. Hänsch, R. Holzwarth, and T. Udem, “High-precision calibration of spectrographs,” Mon. Not. R. Astron. Soc. Lett. 405, L16–L20 (2010).
[Crossref]

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations,” Science 321, 1335–1337 (2008).
[Crossref]

M. T. Murphy, T. Udem, R. Holzwarth, A. Sizmann, L. Pasquini, C. Araujo, H. Dekker, S. D’Odorico, M. Fischer, T. Hänsch, and A. Manescau, “High-precision wavelength calibration of astronomical spectrographs with laser frequency combs,” Mon. Not. R. Astron. Soc. 380, 839–847 (2007).
[Crossref]

Maram, R.

Martin, E. C.

X. Yi, K. Vahala, J. Li, S. Diddams, G. Ycas, P. Plavchan, S. Leifer, J. Sandhu, G. Vasisht, P. Chen, P. Gao, J. Gagne, E. Furlan, M. Bottom, E. C. Martin, M. P. Fitzgerald, G. Doppmann, and C. Beichman, “Demonstration of a near-IR line-referenced electro-optical laser frequency comb for precision radial velocity measurements in astronomy,” Nat. Commun. 7, 10436 (2016).
[Crossref]

Martin, M. J.

Martin-Mateos, P.

Martín-Mateos, P.

B. Jerez, F. Walla, A. Betancur, P. Martín-Mateos, C. de Dios, and P. Acedo, “Electro-optic THz dual-comb architecture for high-resolution, absolute spectroscopy,” Opt. Lett. 44, 415–418 (2019).
[Crossref]

B. Jerez, P. Martín-Mateos, F. Walla, C. de Dios, and P. Acedo, “Flexible electro-optic, single-crystal difference frequency generation architecture for ultrafast mid-infrared dual-comb spectroscopy,” ACS Photon. 5, 2348–2353 (2018).
[Crossref]

O. E. Bonilla-Manrique, P. Martín-Mateos, B. Jerez, M. Ruiz-Llata, and P. Acedo, “High-resolution optical thickness measurement based on electro-optic dual-optical frequency comb sources,” IEEE J. Sel. Top. Quantum Electron. 23, 140–146 (2017).
[Crossref]

Matsas, V. J.

V. J. Matsas, T. P. Newson, D. J. Richardson, and D. N. Payne, “Selfstarting passively mode-locked fibre ring soliton laser exploiting nonlinear polarisation rotation,” Electron. Lett. 28, 1391–1393 (1992).
[Crossref]

Matsko, A. B.

Matsuo, Y.

T. Kobayashi, T. Sueta, Y. Cho, and Y. Matsuo, “High-repetition-rate optical pulse generator using a Fabry-Perot electro-optic modulator,” Appl. Phys. Lett. 21, 341–343 (1972).
[Crossref]

Matveev, A.

A. Matveev, C. G. Parthey, K. Predehl, J. Alnis, A. Beyer, R. Holzwarth, T. Udem, T. Wilken, N. Kolachevsky, M. Abgrall, D. Rovera, C. Salomon, P. Laurent, G. Grosche, O. Terra, T. Legero, H. Schnatz, S. Weyers, B. Altschul, and T. W. Hänsch, “Precision measurement of the hydrogen 1S–2S frequency via a 920-km fiber link,” Phys. Rev. Lett. 110, 230801 (2013).
[Crossref]

Maxwell, S. E.

Mayor, M.

X. Bonfils, X. Delfosse, S. Udry, T. Forveille, M. Mayor, C. Perrier, F. Bouchy, M. Gillon, C. Lovis, F. Pepe, D. Queloz, N. C. Santos, D. Ségransan, and J.-L. Bertaux, “The HARPS search for southern extra-solar planets - XXXI. The M-dwarf sample,” Astron. Astrophys. 549, A109 (2013).
[Crossref]

M. Mayor and D. Queloz, “A Jupiter-mass companion to a solar-type star,” Nature 378, 355–359 (1995).
[Crossref]

Mazur, M.

L. Lundberg, M. Karlsson, A. Lorences-Riesgo, M. Mazur, V. Torres-Company, J. Schröder, and P. Andrekson, “Frequency comb-based WDM transmission systems enabling joint signal processing,” Appl. Sci. 8, 718 (2018).
[Crossref]

L. Lundberg, M. Mazur, A. Fülöp, V. Torres-Company, M. Karlsson, and P. A. Andrekson, “Phase correlation between lines of electro-optical frequency combs,” in Conference on Lasers and Electro-Optics (CLEO) (Optical Society of America, 2018), paper JW2A.149.

McCracken, R. A.

McKinzie, K. A.

Meiners-Hagen, K.

Melikyan, A.

C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold, “All-plasmonic Mach–Zehnder modulator enabling optical high-speed communication at the microscale,” Nat. Photonics 9, 525–528 (2015).
[Crossref]

A. Melikyan, L. Alloatti, A. Muslija, D. Hillerkuss, P. C. Schindler, J. Li, R. Palmer, D. Korn, S. Muehlbrandt, D. V. Thourhout, B. Chen, R. Dinu, M. Sommer, C. Koos, M. Kohl, W. Freude, and J. Leuthold, “High-speed plasmonic phase modulators,” Nat. Photonics 8, 229–233 (2014).
[Crossref]

Mercante, A. J.

Messerly, M. J.

Messner, A.

C. Weimann, A. Messner, T. Baumgartner, S. Wolf, F. Hoeller, W. Freude, and C. Koos, “Fast high-precision distance metrology using a pair of modulator-generated dual-color frequency combs,” Opt. Express 26, 34305–34335 (2018).
[Crossref]

S. Abel, F. Eltes, J. E. Ortmann, A. Messner, P. Castera, T. Wagner, D. Urbonas, A. Rosa, A. M. Gutierrez, D. Tulli, P. Ma, B. Baeuerle, A. Josten, W. Heni, D. Caimi, L. Czornomaz, A. A. Demkov, J. Leuthold, P. Sanchis, and J. Fompeyrine, “Large Pockels effect in micro- and nanostructured barium titanate integrated on silicon,” Nat. Mater. 18, 42–47 (2018).
[Crossref]

Metcalf, A. J.

A. J. Metcalf, C. D. Fredrick, R. C. Terrien, S. B. Papp, and S. A. Diddams, “30  GHz electro-optic frequency comb spanning 300  THz in the near infrared and visible,” Opt. Lett. 44, 2673–2676 (2019).
[Crossref]

A. J. Metcalf, T. Anderson, C. F. Bender, S. Blakeslee, W. Brand, D. R. Carlson, W. D. Cochran, S. A. Diddams, M. Endl, C. Fredrick, S. Halverson, D. D. Hickstein, F. Hearty, J. Jennings, S. Kanodia, K. F. Kaplan, E. Levi, E. Lubar, S. Mahadevan, A. Monson, J. P. Ninan, C. Nitroy, S. Osterman, S. B. Papp, F. Quinlan, L. Ramsey, P. Robertson, A. Roy, C. Schwab, S. Sigurdsson, K. Srinivasan, G. Stefansson, D. A. Sterner, R. Terrien, A. Wolszczan, J. T. Wright, and G. Ycas, “Stellar spectroscopy in the near-infrared with a laser frequency comb,” Optica 6, 233–239 (2019).
[Crossref]

D. R. Carlson, D. D. Hickstein, W. Zhang, A. J. Metcalf, F. Quinlan, S. A. Diddams, and S. B. Papp, “Ultrafast electro-optic light with subcycle control,” Science 361, 1358–1363 (2018).
[Crossref]

A. J. Metcalf, H.-J. Kim, D. E. Leaird, J. A. Jaramillo-Villegas, K. A. McKinzie, V. Lal, A. Hosseini, G. E. Hoefler, F. Kish, and A. M. Weiner, “Integrated line-by-line optical pulse shaper for high-fidelity and rapidly reconfigurable RF-filtering,” Opt. Express 24, 23925–23940 (2016).
[Crossref]

A. J. Metcalf, F. Quinlan, T. M. Fortier, S. A. Diddams, and A. M. Weiner, “Broadly tunable, low timing jitter, high repetition rate optoelectronic comb generator,” Electron. Lett. 51, 1596–1598 (2015).
[Crossref]

Y. Liu, A. J. Metcalf, V. T. Company, R. Wu, L. Fan, L. T. Varghese, M. Qi, and A. M. Weiner, “Bandwidth scaling of a phase-modulated continuous-wave comb through four-wave mixing in a silicon nano-waveguide,” Opt. Lett. 39, 6478–6481 (2014).
[Crossref]

J. M. Lukens, A. J. Metcalf, D. E. Leaird, and A. M. Weiner, “Temporal cloaking for data suppression and retrieval,” Optica 1, 372–375 (2014).
[Crossref]

A. J. Metcalf, V. Torres-Company, D. E. Leaird, and A. M. Weiner, “High-power broadly tunable electrooptic frequency comb generator,” IEEE J. Sel. Top. Quantum Electron. 19, 231–236 (2013).
[Crossref]

V. Torres-Company, A. J. Metcalf, D. E. Leaird, and A. M. Weiner, “Multichannel radio-frequency arbitrary waveform generation based on multiwavelength comb switching and 2-D line-by-line pulse shaping,” IEEE Photon. Technol. Lett. 24, 891–893 (2012).
[Crossref]

Miao, H.

Z. Jiang, D. E. Leaird, C. Huang, H. Miao, M. Kourogi, K. Imai, and A. M. Weiner, “Spectral line-by-line pulse shaping on an optical frequency comb generator,” IEEE J. Quantum Electron. 43, 1163–1174 (2007).
[Crossref]

Michaud-Belleau, V.

Mieda, S.

Millot, G.

A. Parriaux, K. Hammani, and G. Millot, “Electro-optic dual-comb spectrometer in the thulium amplification band for gas sensing applications,” Opt. Lett. 44, 4335–4338 (2019).
[Crossref]

F. Baronio, B. Frisquet, S. Chen, G. Millot, S. Wabnitz, and B. Kibler, “Observation of a group of dark rogue waves in a telecommunication optical fiber,” Phys. Rev. A 97, 013852 (2018).
[Crossref]

A. Parriaux, K. Hammani, and G. Millot, “Two-micron all-fibered dual-comb spectrometer based on electro-optic modulators and wavelength conversion,” Commun. Phys. 1, 17 (2018).
[Crossref]

A. Parriaux, M. Conforti, A. Bendahmane, J. Fatome, C. Finot, S. Trillo, N. Picqué, and G. Millot, “Spectral broadening of picosecond pulses forming dispersive shock waves in optical fibers,” Opt. Lett. 42, 3044–3047 (2017).
[Crossref]

M. Yan, P.-L. Luo, K. Iwakuni, G. Millot, T. W. Hänsch, and N. Picqué, “Mid-infrared dual-comb spectroscopy with electro-optic modulators,” Light Sci. Appl. 6, e17076 (2017).
[Crossref]

G. Millot, S. Pitois, M. Yan, T. Hovhannisyan, A. Bendahmane, T. W. Hänsch, and N. Picqué, “Frequency-agile dual-comb spectroscopy,” Nat. Photonics 10, 27–30 (2016).
[Crossref]

B. Frisquet, A. Chabchoub, J. Fatome, C. Finot, B. Kibler, and G. Millot, “Two-stage linear-nonlinear shaping of an optical frequency comb as rogue nonlinear-Schrödinger-equation-solution generator,” Phys. Rev. A 89, 023821 (2014).
[Crossref]

B. Frisquet, B. Kibler, and G. Millot, “Collision of Akhmediev breathers in nonlinear fiber optics,” Phys. Rev. X 3, 041032 (2013).
[Crossref]

J. Fatome, I. El-Mansouri, J.-L. Blanchet, S. Pitois, G. Millot, S. Trillo, and S. Wabnitz, “Even harmonic pulse train generation by cross-polarization-modulation seeded instability in optical fibers,” J. Opt. Soc. Am. B 30, 99–106 (2013).
[Crossref]

B. Kibler, J. Fatome, C. Finot, G. Millot, G. Genty, B. Wetzel, N. Akhmediev, F. Dias, and J. M. Dudley, “Observation of Kuznetsov-Ma soliton dynamics in optical fibre,” Sci. Rep. 2, 463 (2012).
[Crossref]

K. Hammani, B. Kibler, J. Fatome, S. Boscolo, G. Genty, J. M. Dudley, G. Millot, and C. Finot, “Nonlinear spectral shaping and optical rogue events in fiber-based systems,” Opt. Fiber Technol. 18, 248–256 (2012), Special Issue on Fiber Supercontinuum Sources and Their Applications.
[Crossref]

K. Hammani, B. Kibler, C. Finot, P. Morin, J. Fatome, J. M. Dudley, and G. Millot, “Peregrine soliton generation and breakup in standard telecommunications fiber,” Opt. Lett. 36, 112–114 (2011).
[Crossref]

B. Kibler, J. Fatome, C. Finot, G. Millot, F. Dias, G. Genty, N. Akhmediev, and J. M. Dudley, “The Peregrine soliton in nonlinear fibre optics,” Nat. Phys. 6, 790–795 (2010).
[Crossref]

A. Ishizawa, T. Nishikawa, M. Yan, G. Millot, H. Gotoh, T. W. Hänsch, and N. Picqué, “Optical frequency combs of multi-GHz line-spacing for real-time multi-heterodyne spectroscopy,” in Conference on Lasers and Electro-Optics (CLEO) (2015), pp. 1–2.

Mishra, A. K.

A. K. Mishra, R. Schmogrow, I. Tomkos, D. Hillerkuss, C. Koos, W. Freude, and J. Leuthold, “Flexible RF-based comb generator,” IEEE Photon. Technol. Lett. 25, 701–704 (2013).
[Crossref]

Miyamoto, D.

D. Miyamoto, K. Mandai, T. Kurokawa, S. Takeda, T. Shioda, and H. Tsuda, “Waveform-controllable optical pulse generation using an optical pulse synthesizer,” IEEE Photon. Technol. Lett. 18, 721–723 (2006).
[Crossref]

Mizutori, A.

Molinari, E.

Möller, M.

Monson, A.

Mookherjea, S.

Morandotti, R.

A. Pasquazi, M. Peccianti, L. Razzari, D. J. Moss, S. Coen, M. Erkintalo, Y. K. Chembo, T. Hansson, S. Wabnitz, P. Del’Haye, X. Xue, A. M. Weiner, and R. Morandotti, “Micro-combs: a novel generation of optical sources,” Phys. Rep. 729, 1–81 (2018).
[Crossref]

Morgner, U.

F. X. Kärtner, U. Morgner, T. Schibli, R. Ell, H. A. Haus, J. G. Fujimoto, and E. P. Ippen, Few-Cycle Pulses Directly from a Laser (Springer, 2004), pp. 73–136.

Mori, A.

A. Ishizawa, T. Nishikawa, A. Mizutori, H. Takara, S. Aozasa, A. Mori, H. Nakano, A. Takada, and M. Koga, “Octave-spanning frequency comb generated by 250  fs pulse train emitted from 25  GHz externally phase-modulated laser diode for carrier-envelope-offset-locking,” Electron. Lett. 46, 1343–1344 (2010).
[Crossref]

Mori, T.

Morimoto, A.

M. Hirano and A. Morimoto, “Generation of flat optical frequency comb by fiber loop modulation,” Opt. Rev. 18, 13–18 (2011).
[Crossref]

T. Kobayashi, H. Yao, K. Amano, Y. Fukushima, A. Morimoto, and T. Sueta, “Optical pulse compression using high-frequency electrooptic phase modulation,” IEEE J. Quantum Electron. 24, 382–387 (1988).
[Crossref]

Morin, P.

Morohashi, I.

Moss, D. J.

A. Pasquazi, M. Peccianti, L. Razzari, D. J. Moss, S. Coen, M. Erkintalo, Y. K. Chembo, T. Hansson, S. Wabnitz, P. Del’Haye, X. Xue, A. M. Weiner, and R. Morandotti, “Micro-combs: a novel generation of optical sources,” Phys. Rep. 729, 1–81 (2018).
[Crossref]

Mudrick, J.

Muehlbrandt, S.

A. Melikyan, L. Alloatti, A. Muslija, D. Hillerkuss, P. C. Schindler, J. Li, R. Palmer, D. Korn, S. Muehlbrandt, D. V. Thourhout, B. Chen, R. Dinu, M. Sommer, C. Koos, M. Kohl, W. Freude, and J. Leuthold, “High-speed plasmonic phase modulators,” Nat. Photonics 8, 229–233 (2014).
[Crossref]

Munley, A. J.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[Crossref]

Murdoch, S. G.

R. T. Watts, S. G. Murdoch, and L. P. Barry, “Phase noise reduction of an optical frequency comb using a feed-forward heterodyne detection scheme,” IEEE Photon. J. 8, 1–7 (2016).
[Crossref]

Murphy, M. T.

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations,” Science 321, 1335–1337 (2008).
[Crossref]

M. T. Murphy, T. Udem, R. Holzwarth, A. Sizmann, L. Pasquini, C. Araujo, H. Dekker, S. D’Odorico, M. Fischer, T. Hänsch, and A. Manescau, “High-precision wavelength calibration of astronomical spectrographs with laser frequency combs,” Mon. Not. R. Astron. Soc. 380, 839–847 (2007).
[Crossref]

Muslija, A.

A. Melikyan, L. Alloatti, A. Muslija, D. Hillerkuss, P. C. Schindler, J. Li, R. Palmer, D. Korn, S. Muehlbrandt, D. V. Thourhout, B. Chen, R. Dinu, M. Sommer, C. Koos, M. Kohl, W. Freude, and J. Leuthold, “High-speed plasmonic phase modulators,” Nat. Photonics 8, 229–233 (2014).
[Crossref]

Myslivets, E.

Nakagawa, K.

M. Kourogi, K. Nakagawa, and M. Ohtsu, “Wide-span optical frequency comb generator for accurate optical frequency difference measurement,” IEEE J. Quantum Electron. 29, 2693–2701 (1993).
[Crossref]

Nakano, H.

A. Ishizawa, T. Nishikawa, A. Mizutori, H. Takara, H. Nakano, T. Sogawa, A. Takada, and M. Koga, “Generation of 120-fs laser pulses at 1-GHz repetition rate derived from continuous wave laser diode,” Opt. Express 19, 22402–22409 (2011).
[Crossref]

A. Ishizawa, T. Nishikawa, A. Mizutori, H. Takara, S. Aozasa, A. Mori, H. Nakano, A. Takada, and M. Koga, “Octave-spanning frequency comb generated by 250  fs pulse train emitted from 25  GHz externally phase-modulated laser diode for carrier-envelope-offset-locking,” Electron. Lett. 46, 1343–1344 (2010).
[Crossref]

Nakazawa, M.

K. R. Tamura, H. Kuhota, and M. Nakazawa, “Fundamentals of stable continuum generation at high repetition rates,” IEEE J. Quantum Electron. 36, 773–779 (2000).
[Crossref]

Newbury, N.

Newbury, N. R.

S. Droste, G. Ycas, B. R. Washburn, I. Coddington, and N. R. Newbury, “Optical frequency comb generation based on erbium fiber lasers,” Nanophotonics 5, 196–213 (2016).
[Crossref]

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett. 100, 013902 (2008).
[Crossref]

S. Xiao, L. Hollberg, N. R. Newbury, and S. A. Diddams, “Toward a low-jitter 10  GHz pulsed source with an optical frequency comb generator,” Opt. Express 16, 8498–8508 (2008).
[Crossref]

Newson, T. P.

V. J. Matsas, T. P. Newson, D. J. Richardson, and D. N. Payne, “Selfstarting passively mode-locked fibre ring soliton laser exploiting nonlinear polarisation rotation,” Electron. Lett. 28, 1391–1393 (1992).
[Crossref]

Niegemann, J.

C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold, “All-plasmonic Mach–Zehnder modulator enabling optical high-speed communication at the microscale,” Nat. Photonics 9, 525–528 (2015).
[Crossref]

Niering, M.

J. Reichert, M. Niering, R. Holzwarth, M. Weitz, T. Udem, and T. W. Hänsch, “Phase coherent vacuum-ultraviolet to radio frequency comparison with a mode-locked laser,” Phys. Rev. Lett. 84, 3232–3235 (2000).
[Crossref]

Ninan, J. P.

Nishikawa, T.

A. Ishizawa, T. Nishikawa, T. Goto, K. Hitachi, T. Sogawa, and H. Gotoh, “Ultralow-phase-noise millimetre-wave signal generator assisted with an electro-optics-modulator-based optical frequency comb,” Sci. Rep. 6, 24621 (2016).
[Crossref]

A. Ishizawa, T. Nishikawa, A. Mizutori, H. Takara, A. Takada, T. Sogawa, and M. Koga, “Phase-noise characteristics of a 25-GHz-spaced optical frequency comb based on a phase- and intensity-modulated laser,” Opt. Express 21, 29186–29194 (2013).
[Crossref]

A. Ishizawa, T. Nishikawa, A. Mizutori, H. Takara, H. Nakano, T. Sogawa, A. Takada, and M. Koga, “Generation of 120-fs laser pulses at 1-GHz repetition rate derived from continuous wave laser diode,” Opt. Express 19, 22402–22409 (2011).
[Crossref]

A. Ishizawa, T. Nishikawa, A. Mizutori, H. Takara, S. Aozasa, A. Mori, H. Nakano, A. Takada, and M. Koga, “Octave-spanning frequency comb generated by 250  fs pulse train emitted from 25  GHz externally phase-modulated laser diode for carrier-envelope-offset-locking,” Electron. Lett. 46, 1343–1344 (2010).
[Crossref]

A. Ishizawa, T. Nishikawa, M. Yan, G. Millot, H. Gotoh, T. W. Hänsch, and N. Picqué, “Optical frequency combs of multi-GHz line-spacing for real-time multi-heterodyne spectroscopy,” in Conference on Lasers and Electro-Optics (CLEO) (2015), pp. 1–2.

T. Nishikawa, A. Ishizawa, M. Yan, H. Gotoh, T. Hänsch, and N. Picqué, “Broadband dual-comb spectroscopy with cascaded-electro-optic-modulator-based frequency combs,” in Conference on Lasers and Electro-Optics (CLEO) (Optical Society of America, 2015), paper SW3G.2.

T. Nishikawa, A. Oohara, S. Uda, A. Ishizawa, K. Hitachi, N. Picqué, and T. Hänsch, “Automatic interpolation of 25  GHz mode spacing in dual EOM comb spectroscopy,” in Conference on Lasers and Electro-Optics (CLEO) (Optical Society of America, 2019), paper SF1I.3.

Nitroy, C.

Obrzud, E.

Ohtsu, M.

S.-J. Lee, B. Widiyatmoko, M. Kourogi, and M. Ohtsu, “Ultrahigh scanning speed optical coherence tomography using optical frequency comb generators,” Jpn. J. Appl. Phys. 40, L878–L880 (2001).
[Crossref]

M. Kourogi, K. Nakagawa, and M. Ohtsu, “Wide-span optical frequency comb generator for accurate optical frequency difference measurement,” IEEE J. Quantum Electron. 29, 2693–2701 (1993).
[Crossref]

Okubo, S.

K. Kashiwagi, S. Okubo, and H. Inaba, “High repetition rate visible frequency comb generation from electro-optic modulation in the 1550  nm region,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2019), paper JW2A.97.

Okuyama, Y.

Oohara, A.

T. Nishikawa, A. Oohara, S. Uda, A. Ishizawa, K. Hitachi, N. Picqué, and T. Hänsch, “Automatic interpolation of 25  GHz mode spacing in dual EOM comb spectroscopy,” in Conference on Lasers and Electro-Optics (CLEO) (Optical Society of America, 2019), paper SF1I.3.

Ortmann, J. E.

F. Eltes, C. Mai, D. Caimi, M. Kroh, Y. Popoff, G. Winzer, D. Petousi, S. Lischke, J. E. Ortmann, L. Czornomaz, L. Zimmermann, J. Fompeyrine, and S. Abel, “A BaTiO3-based electro-optic Pockels modulator monolithically integrated on an advanced silicon photonics platform,” J. Lightwave Technol. 37, 1456–1462 (2019).
[Crossref]

S. Abel, F. Eltes, J. E. Ortmann, A. Messner, P. Castera, T. Wagner, D. Urbonas, A. Rosa, A. M. Gutierrez, D. Tulli, P. Ma, B. Baeuerle, A. Josten, W. Heni, D. Caimi, L. Czornomaz, A. A. Demkov, J. Leuthold, P. Sanchis, and J. Fompeyrine, “Large Pockels effect in micro- and nanostructured barium titanate integrated on silicon,” Nat. Mater. 18, 42–47 (2018).
[Crossref]

Osterman, S.

Ozdur, I.

S. Ozharar, F. Quinlan, I. Ozdur, S. Gee, and P. J. Delfyett, “Ultraflat optical comb generation by phase-only modulation of continuous-wave light,” IEEE Photon. Technol. Lett. 20, 36–38 (2008).
[Crossref]

Ozharar, S.

S. Ozharar, F. Quinlan, I. Ozdur, S. Gee, and P. J. Delfyett, “Ultraflat optical comb generation by phase-only modulation of continuous-wave light,” IEEE Photon. Technol. Lett. 20, 36–38 (2008).
[Crossref]

Pahl, K. P.

L. Alloatti, R. Palmer, S. Diebold, K. P. Pahl, B. Chen, R. Dinu, M. Fournier, J.-M. Fedeli, T. Zwick, W. Freude, C. Koos, and J. Leuthold, “100  GHz silicon-organic hybrid modulator,” Light Sci. Appl. 3, e173 (2014).
[Crossref]

Palmer, R.

L. Alloatti, R. Palmer, S. Diebold, K. P. Pahl, B. Chen, R. Dinu, M. Fournier, J.-M. Fedeli, T. Zwick, W. Freude, C. Koos, and J. Leuthold, “100  GHz silicon-organic hybrid modulator,” Light Sci. Appl. 3, e173 (2014).
[Crossref]

A. Melikyan, L. Alloatti, A. Muslija, D. Hillerkuss, P. C. Schindler, J. Li, R. Palmer, D. Korn, S. Muehlbrandt, D. V. Thourhout, B. Chen, R. Dinu, M. Sommer, C. Koos, M. Kohl, W. Freude, and J. Leuthold, “High-speed plasmonic phase modulators,” Nat. Photonics 8, 229–233 (2014).
[Crossref]

Pan, M.

Pan, S.

Pan, W.

X. Yan, X. Zou, W. Pan, L. Yan, and J. Azaña, “Fully digital programmable optical frequency comb generation and application,” Opt. Lett. 43, 283–286 (2018).
[Crossref]

X. Zou, B. Lu, W. Pan, L. Yan, A. Stöhr, and J. Yao, “Photonics for microwave measurements,” Laser Photon. Rev. 10, 711–734 (2016).
[Crossref]

X. Zou, W. Pan, B. Luo, and L. Yan, “Generation of repetition-rate-quadrupled optical pulse trains using a PolM or a pair of PolMs,” IEEE J. Quantum Electron. 48, 3–7 (2012).
[Crossref]

Papp, S. B.

A. J. Metcalf, C. D. Fredrick, R. C. Terrien, S. B. Papp, and S. A. Diddams, “30  GHz electro-optic frequency comb spanning 300  THz in the near infrared and visible,” Opt. Lett. 44, 2673–2676 (2019).
[Crossref]

A. J. Metcalf, T. Anderson, C. F. Bender, S. Blakeslee, W. Brand, D. R. Carlson, W. D. Cochran, S. A. Diddams, M. Endl, C. Fredrick, S. Halverson, D. D. Hickstein, F. Hearty, J. Jennings, S. Kanodia, K. F. Kaplan, E. Levi, E. Lubar, S. Mahadevan, A. Monson, J. P. Ninan, C. Nitroy, S. Osterman, S. B. Papp, F. Quinlan, L. Ramsey, P. Robertson, A. Roy, C. Schwab, S. Sigurdsson, K. Srinivasan, G. Stefansson, D. A. Sterner, R. Terrien, A. Wolszczan, J. T. Wright, and G. Ycas, “Stellar spectroscopy in the near-infrared with a laser frequency comb,” Optica 6, 233–239 (2019).
[Crossref]

D. R. Carlson, D. D. Hickstein, D. C. Cole, S. A. Diddams, and S. B. Papp, “Dual-comb interferometry via repetition rate switching of a single frequency comb,” Opt. Lett. 43, 3614–3617 (2018).
[Crossref]

D. R. Carlson, D. D. Hickstein, W. Zhang, A. J. Metcalf, F. Quinlan, S. A. Diddams, and S. B. Papp, “Ultrafast electro-optic light with subcycle control,” Science 361, 1358–1363 (2018).
[Crossref]

K. Beha, D. C. Cole, P. Del’Haye, A. Coillet, S. A. Diddams, and S. B. Papp, “Electronic synthesis of light,” Optica 4, 406–411 (2017).
[Crossref]

D. C. Cole, K. M. Beha, S. A. Diddams, and S. B. Papp, “Octave-spanning supercontinuum generation via microwave frequency multiplication,” J. Phys. Conf. Ser. 723, 012035 (2016).
[Crossref]

D. Carlson, D. Hickstein, S. A. Diddams, and S. B. Papp, “An ultrafast electro-optic dual comb for linear and nonlinear spectroscopy,” in Light, Energy and the Environment 2018 (E2, FTS, HISE, SOLAR, SSL) (Optical Society of America, 2018), paper FT4B.2.

D. R. Carlson, D. D. Hickstein, S. A. Diddams, and S. B. Papp, “High-speed ultra-broadband dual-comb spectroscopy using electro-optics,” in Conference on Lasers and Electro-Optics (CLEO) (Optical Society of America, 2018), paper SW4L.2.

Park, S.-G.

Parriaux, A.

Parthey, C. G.

A. Matveev, C. G. Parthey, K. Predehl, J. Alnis, A. Beyer, R. Holzwarth, T. Udem, T. Wilken, N. Kolachevsky, M. Abgrall, D. Rovera, C. Salomon, P. Laurent, G. Grosche, O. Terra, T. Legero, H. Schnatz, S. Weyers, B. Altschul, and T. W. Hänsch, “Precision measurement of the hydrogen 1S–2S frequency via a 920-km fiber link,” Phys. Rev. Lett. 110, 230801 (2013).
[Crossref]

Pasquazi, A.

A. Pasquazi, M. Peccianti, L. Razzari, D. J. Moss, S. Coen, M. Erkintalo, Y. K. Chembo, T. Hansson, S. Wabnitz, P. Del’Haye, X. Xue, A. M. Weiner, and R. Morandotti, “Micro-combs: a novel generation of optical sources,” Phys. Rep. 729, 1–81 (2018).
[Crossref]

Pasquini, L.

T. Wilken, G. L. Curto, R. A. Probst, T. Steinmetz, A. Manescau, L. Pasquini, J. I. G. Hernández, R. Rebolo, T. W. Hänsch, T. Udem, and R. Holzwarth, “A spectrograph for exoplanet observations calibrated at the centimetre-per-second level,” Nature 485, 611–614 (2012).
[Crossref]

T. Wilken, C. Lovis, A. Manescau, T. Steinmetz, L. Pasquini, G. Lo Curto, T. Hänsch, R. Holzwarth, and T. Udem, “High-precision calibration of spectrographs,” Mon. Not. R. Astron. Soc. Lett. 405, L16–L20 (2010).
[Crossref]

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations,” Science 321, 1335–1337 (2008).
[Crossref]

M. T. Murphy, T. Udem, R. Holzwarth, A. Sizmann, L. Pasquini, C. Araujo, H. Dekker, S. D’Odorico, M. Fischer, T. Hänsch, and A. Manescau, “High-precision wavelength calibration of astronomical spectrographs with laser frequency combs,” Mon. Not. R. Astron. Soc. 380, 839–847 (2007).
[Crossref]

Patashnik, O.

R. L. Graham, D. E. Knuth, and O. Patashnik, Concrete Mathematics: a Foundation for Computer Science, 2nd ed. (Addison-Wesley, 1994).

Payne, D. N.

V. J. Matsas, T. P. Newson, D. J. Richardson, and D. N. Payne, “Selfstarting passively mode-locked fibre ring soliton laser exploiting nonlinear polarisation rotation,” Electron. Lett. 28, 1391–1393 (1992).
[Crossref]

Peccianti, M.

A. Pasquazi, M. Peccianti, L. Razzari, D. J. Moss, S. Coen, M. Erkintalo, Y. K. Chembo, T. Hansson, S. Wabnitz, P. Del’Haye, X. Xue, A. M. Weiner, and R. Morandotti, “Micro-combs: a novel generation of optical sources,” Phys. Rep. 729, 1–81 (2018).
[Crossref]

Pêcheur, V.

G. Xu, V. Pêcheur, J. Fatome, M. Chauvet, and B. Kibler, “Optical cavity-less 40-GHz picosecond pulse generator in the visible wavelength range,” in Conference on Lasers and Electro-Optics Europe and European Quantum Electronics Conference (Optical Society of America, 2019), paper cd_12_5.

Peng, R.

R. Peng, K. Khaliji, N. Youngblood, R. Grassi, T. Low, and M. Li, “Midinfrared electro-optic modulation in few-layer black phosphorus,” Nano Lett. 17, 6315–6320 (2017).
[Crossref]

Peng, Y.

R. Wei, J. Yan, Y. Peng, X. Yao, M. Bai, and Z. Zheng, “Optical frequency comb generation based on electro-optical modulation with high-order harmonic of a sine RF signal,” Opt. Commun. 291, 269–273 (2013).
[Crossref]

Pepe, F.

E. Obrzud, V. Brasch, T. Voumard, A. Stroganov, M. Geiselmann, F. Wildi, F. Pepe, S. Lecomte, and T. Herr, “Visible blue-to-red 10  GHz frequency comb via on-chip triple-sum-frequency generation,” Opt. Lett. 44, 5290–5293 (2019).
[Crossref]

E. Obrzud, M. Rainer, A. Harutyunyan, B. Chazelas, M. Cecconi, A. Ghedina, E. Molinari, S. Kundermann, S. Lecomte, F. Pepe, F. Wildi, F. Bouchy, and T. Herr, “Broadband near-infrared astronomical spectrometer calibration and on-sky validation with an electro-optic laser frequency comb,” Opt. Express 26, 34830–34841 (2018).
[Crossref]

X. Bonfils, X. Delfosse, S. Udry, T. Forveille, M. Mayor, C. Perrier, F. Bouchy, M. Gillon, C. Lovis, F. Pepe, D. Queloz, N. C. Santos, D. Ségransan, and J.-L. Bertaux, “The HARPS search for southern extra-solar planets - XXXI. The M-dwarf sample,” Astron. Astrophys. 549, A109 (2013).
[Crossref]

E. Obrzud, V. Brasch, S. Lecomte, F. Wildi, F. Bouchy, F. Pepe, and T. Herr, “All-fiber electro-optic frequency comb for near-infrared astronomical spectrograph calibration,” in Conference on Lasers and Electro-Optics (CLEO) (Optical Society of America, 2019), paper AF2K.2.

Perrella, C.

N. Wilson, N. B. Hébert, C. Perrella, P. Light, J. Genest, S. Pustelny, and A. Luiten, “Simultaneous observation of nonlinear magneto-optical rotation in the temporal and spectral domains with an electro-optic frequency comb,” Phys. Rev. Appl. 10, 034012 (2018).
[Crossref]

N. B. Hébert, V. Michaud-Belleau, C. Perrella, G.-W. Truong, J. D. Anstie, T. M. Stace, J. Genest, and A. N. Luiten, “Real-time dynamic atomic spectroscopy using electro-optic frequency combs,” Phys. Rev. Appl. 6, 044012 (2016).
[Crossref]

Perrier, C.

X. Bonfils, X. Delfosse, S. Udry, T. Forveille, M. Mayor, C. Perrier, F. Bouchy, M. Gillon, C. Lovis, F. Pepe, D. Queloz, N. C. Santos, D. Ségransan, and J.-L. Bertaux, “The HARPS search for southern extra-solar planets - XXXI. The M-dwarf sample,” Astron. Astrophys. 549, A109 (2013).
[Crossref]

Peters, R. D.

Petousi, D.

Petropoulos, P.

Picqué, N.

M. Yan, P.-L. Luo, K. Iwakuni, G. Millot, T. W. Hänsch, and N. Picqué, “Mid-infrared dual-comb spectroscopy with electro-optic modulators,” Light Sci. Appl. 6, e17076 (2017).
[Crossref]

A. Parriaux, M. Conforti, A. Bendahmane, J. Fatome, C. Finot, S. Trillo, N. Picqué, and G. Millot, “Spectral broadening of picosecond pulses forming dispersive shock waves in optical fibers,” Opt. Lett. 42, 3044–3047 (2017).
[Crossref]

G. Millot, S. Pitois, M. Yan, T. Hovhannisyan, A. Bendahmane, T. W. Hänsch, and N. Picqué, “Frequency-agile dual-comb spectroscopy,” Nat. Photonics 10, 27–30 (2016).
[Crossref]

T. Ideguchi, A. Poisson, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Adaptive real-time dual-comb spectroscopy,” Nat. Commun. 5, 3375 (2014).
[Crossref]

T. Ideguchi, S. Holzner, B. Bernhardt, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Coherent Raman spectro-imaging with laser frequency combs,” Nature 502, 355–358 (2013).
[Crossref]

T. Nishikawa, A. Oohara, S. Uda, A. Ishizawa, K. Hitachi, N. Picqué, and T. Hänsch, “Automatic interpolation of 25  GHz mode spacing in dual EOM comb spectroscopy,” in Conference on Lasers and Electro-Optics (CLEO) (Optical Society of America, 2019), paper SF1I.3.

A. Shams-Ansari, M. Yu, Z. Chen, C. Reimer, M. Zhang, N. Picqué, and M. Loncar, “Microring electro-optic frequency comb sources for dual-comb spectroscopy,” in Conference on Lasers and Electro-Optics(CLEO) (Optical Society of America, 2019), paper JTh5B.8.

A. Ishizawa, T. Nishikawa, M. Yan, G. Millot, H. Gotoh, T. W. Hänsch, and N. Picqué, “Optical frequency combs of multi-GHz line-spacing for real-time multi-heterodyne spectroscopy,” in Conference on Lasers and Electro-Optics (CLEO) (2015), pp. 1–2.

T. Nishikawa, A. Ishizawa, M. Yan, H. Gotoh, T. Hänsch, and N. Picqué, “Broadband dual-comb spectroscopy with cascaded-electro-optic-modulator-based frequency combs,” in Conference on Lasers and Electro-Optics (CLEO) (Optical Society of America, 2015), paper SW3G.2.

Pitois, S.

G. Millot, S. Pitois, M. Yan, T. Hovhannisyan, A. Bendahmane, T. W. Hänsch, and N. Picqué, “Frequency-agile dual-comb spectroscopy,” Nat. Photonics 10, 27–30 (2016).
[Crossref]

J. Fatome, I. El-Mansouri, J.-L. Blanchet, S. Pitois, G. Millot, S. Trillo, and S. Wabnitz, “Even harmonic pulse train generation by cross-polarization-modulation seeded instability in optical fibers,” J. Opt. Soc. Am. B 30, 99–106 (2013).
[Crossref]

I. El Mansouri, J. Fatome, C. Finot, M. Lintz, and S. Pitois, “All-fibered high-quality stable 20- and 40-GHz picosecond pulse generators for 160-Gb/s OTDM applications,” IEEE Photon. Technol. Lett. 23, 1487–1489 (2011).
[Crossref]

Plascak, M. E.

M. E. Plascak, R. Bustos Ramirez, K. Bagnell, and P. J. Delfyett, “Tunable broadband electro-optic comb generation using an optically filtered optoelectronic oscillator,” IEEE Photon. Technol. Lett. 30, 335–338 (2018).
[Crossref]

Plavchan, P.

X. Yi, K. Vahala, J. Li, S. Diddams, G. Ycas, P. Plavchan, S. Leifer, J. Sandhu, G. Vasisht, P. Chen, P. Gao, J. Gagne, E. Furlan, M. Bottom, E. C. Martin, M. P. Fitzgerald, G. Doppmann, and C. Beichman, “Demonstration of a near-IR line-referenced electro-optical laser frequency comb for precision radial velocity measurements in astronomy,” Nat. Commun. 7, 10436 (2016).
[Crossref]

Plusquellic, D. F.

Pockels, F.

F. Pockels, “Ueber den Einfluss elastischer Deformationen, speciell einseitigen Druckes, auf das optische Verhalten krystallinischer Körper,” Ann. Phys. 273, 144–172 (1889).
[Crossref]

Poiana, D.

J. Posada-Roman, J. Garcia-Souto, D. Poiana, and P. Acedo, “Fast interrogation of fiber Bragg gratings with electro-optical dual optical frequency combs,” Sensors 16, 2007 (2016).
[Crossref]

Poisson, A.

T. Ideguchi, A. Poisson, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Adaptive real-time dual-comb spectroscopy,” Nat. Commun. 5, 3375 (2014).
[Crossref]

Pollack, M. A.

L. E. Hargrove, R. L. Fork, and M. A. Pollack, “Locking of He-Ne laser modes induced by synchronous intracavity modulation,” Appl. Phys. Lett. 5, 4–5 (1964).
[Crossref]

Pollinger, F.

Pollnau, M.

Pomerene, A. T.

Ponnampalam, L.

Popoff, Y.

Posada-Roman, J.

J. Posada-Roman, J. Garcia-Souto, D. Poiana, and P. Acedo, “Fast interrogation of fiber Bragg gratings with electro-optical dual optical frequency combs,” Sensors 16, 2007 (2016).
[Crossref]

P. Martin-Mateos, M. Ruiz-Llata, J. Posada-Roman, and P. Acedo, “Dual-comb architecture for fast spectroscopic measurements and spectral characterization,” IEEE Photon. Technol. Lett. 27, 1309–1312 (2015).
[Crossref]

Posada-Roman, J. E.

Prantil, M. A.

Prather, D. W.

Predehl, K.

A. Matveev, C. G. Parthey, K. Predehl, J. Alnis, A. Beyer, R. Holzwarth, T. Udem, T. Wilken, N. Kolachevsky, M. Abgrall, D. Rovera, C. Salomon, P. Laurent, G. Grosche, O. Terra, T. Legero, H. Schnatz, S. Weyers, B. Altschul, and T. W. Hänsch, “Precision measurement of the hydrogen 1S–2S frequency via a 920-km fiber link,” Phys. Rev. Lett. 110, 230801 (2013).
[Crossref]

Preußler, S.

S. Preußler, N. Wenzel, and T. Schneider, “Flexible Nyquist pulse sequence generation with variable bandwidth and repetition rate,” IEEE Photon. J. 6, 7901608 (2014).
[Crossref]

Probst, R. A.

T. Wilken, G. L. Curto, R. A. Probst, T. Steinmetz, A. Manescau, L. Pasquini, J. I. G. Hernández, R. Rebolo, T. W. Hänsch, T. Udem, and R. Holzwarth, “A spectrograph for exoplanet observations calibrated at the centimetre-per-second level,” Nature 485, 611–614 (2012).
[Crossref]

Provost, L.

Pustelny, S.

N. Wilson, N. B. Hébert, C. Perrella, P. Light, J. Genest, S. Pustelny, and A. Luiten, “Simultaneous observation of nonlinear magneto-optical rotation in the temporal and spectral domains with an electro-optic frequency comb,” Phys. Rev. Appl. 10, 034012 (2018).
[Crossref]

Qi, M.

Qiu, J.

Qu, K.

K. Qu, S. Zhao, X. Li, Z. Zhu, D. Liang, and D. Liang, “Ultra-flat and broadband optical frequency comb generator via a single Mach–Zehnder modulator,” IEEE Photon. Technol. Lett. 29, 255–258 (2017).
[Crossref]

T. Lin, S. Zhao, Z. Zhu, X. Li, and K. Qu, “Generation of flat optical frequency comb based on a DP-QPSK modulator,” IEEE Photon. Technol. Lett. 29, 146–149 (2017).
[Crossref]

Qu, X.

X. Zhao, X. Qu, F. Zhang, Y. Zhao, and G. Tang, “Absolute distance measurement by multi-heterodyne interferometry using an electro-optic triple comb,” Opt. Lett. 43, 807–810 (2018).
[Crossref]

H. Wu, T. Zhao, Z. Wang, K. Zhang, B. Xue, J. Li, M. He, and X. Qu, “Long distance measurement up to 1.2  km by electro-optic dual-comb interferometry,” Appl. Phys. Lett. 111, 251901 (2017).
[Crossref]

Queloz, D.

X. Bonfils, X. Delfosse, S. Udry, T. Forveille, M. Mayor, C. Perrier, F. Bouchy, M. Gillon, C. Lovis, F. Pepe, D. Queloz, N. C. Santos, D. Ségransan, and J.-L. Bertaux, “The HARPS search for southern extra-solar planets - XXXI. The M-dwarf sample,” Astron. Astrophys. 549, A109 (2013).
[Crossref]

M. Mayor and D. Queloz, “A Jupiter-mass companion to a solar-type star,” Nature 378, 355–359 (1995).
[Crossref]

Quinlan, F.

A. J. Metcalf, T. Anderson, C. F. Bender, S. Blakeslee, W. Brand, D. R. Carlson, W. D. Cochran, S. A. Diddams, M. Endl, C. Fredrick, S. Halverson, D. D. Hickstein, F. Hearty, J. Jennings, S. Kanodia, K. F. Kaplan, E. Levi, E. Lubar, S. Mahadevan, A. Monson, J. P. Ninan, C. Nitroy, S. Osterman, S. B. Papp, F. Quinlan, L. Ramsey, P. Robertson, A. Roy, C. Schwab, S. Sigurdsson, K. Srinivasan, G. Stefansson, D. A. Sterner, R. Terrien, A. Wolszczan, J. T. Wright, and G. Ycas, “Stellar spectroscopy in the near-infrared with a laser frequency comb,” Optica 6, 233–239 (2019).
[Crossref]

D. R. Carlson, D. D. Hickstein, W. Zhang, A. J. Metcalf, F. Quinlan, S. A. Diddams, and S. B. Papp, “Ultrafast electro-optic light with subcycle control,” Science 361, 1358–1363 (2018).
[Crossref]

A. J. Metcalf, F. Quinlan, T. M. Fortier, S. A. Diddams, and A. M. Weiner, “Broadly tunable, low timing jitter, high repetition rate optoelectronic comb generator,” Electron. Lett. 51, 1596–1598 (2015).
[Crossref]

S. Ozharar, F. Quinlan, I. Ozdur, S. Gee, and P. J. Delfyett, “Ultraflat optical comb generation by phase-only modulation of continuous-wave light,” IEEE Photon. Technol. Lett. 20, 36–38 (2008).
[Crossref]

Radic, S.

Rainer, M.

Ramsey, L.

Ranka, J. K.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
[Crossref]

Razzari, L.

A. Pasquazi, M. Peccianti, L. Razzari, D. J. Moss, S. Coen, M. Erkintalo, Y. K. Chembo, T. Hansson, S. Wabnitz, P. Del’Haye, X. Xue, A. M. Weiner, and R. Morandotti, “Micro-combs: a novel generation of optical sources,” Phys. Rep. 729, 1–81 (2018).
[Crossref]

Rebeiz, G.

Rebolo, R.

T. Wilken, G. L. Curto, R. A. Probst, T. Steinmetz, A. Manescau, L. Pasquini, J. I. G. Hernández, R. Rebolo, T. W. Hänsch, T. Udem, and R. Holzwarth, “A spectrograph for exoplanet observations calibrated at the centimetre-per-second level,” Nature 485, 611–614 (2012).
[Crossref]

Reed, G. T.

Reed, Z. D.

Reichert, J.

J. Reichert, M. Niering, R. Holzwarth, M. Weitz, T. Udem, and T. W. Hänsch, “Phase coherent vacuum-ultraviolet to radio frequency comparison with a mode-locked laser,” Phys. Rev. Lett. 84, 3232–3235 (2000).
[Crossref]

J. Reichert, R. Holzwarth, T. Udem, and T. Hänsch, “Measuring the frequency of light with mode-locked lasers,” Opt. Commun. 172, 59–68 (1999).
[Crossref]

Reid, D. T.

Reimer, C.

M. Zhang, B. Buscaino, C. Wang, A. Shams-Ansari, C. Reimer, R. Zhu, J. M. Kahn, and M. Loncar, “Broadband electro-optic frequency comb generation in a lithium niobate microring resonator,” Nature 568, 373–377 (2019).
[Crossref]

A. Shams-Ansari, M. Yu, Z. Chen, C. Reimer, M. Zhang, N. Picqué, and M. Loncar, “Microring electro-optic frequency comb sources for dual-comb spectroscopy,” in Conference on Lasers and Electro-Optics(CLEO) (Optical Society of America, 2019), paper JTh5B.8.

Ren, Y.

M. He, M. Xu, Y. Ren, J. Jian, Z. Ruan, Y. Xu, S. Gao, S. Sun, X. Wen, L. Zhou, L. Liu, C. Guo, H. Chen, S. Yu, L. Liu, and X. Cai, “High-performance hybrid silicon and lithium niobate Mach–Zehnder modulators for 100  Gbit/s−1 and beyond,” Nat. Photonics 13, 359–364 (2019).
[Crossref]

Ren, Y.-X.

Renaud, C.

Richardson, D. J.

Riehle, F.

Robertson, P.

Rochette, M.

Röntgen, W.

W. Röntgen, “Ueber die durch elektrische Kräfte erzeugte Aenderung der Doppelbrechung des Quarzes,” Ber. Oberhess. Ges. Nat. Heilkd. Giessen Naturwiss. Abt. 22, 49–64 (1883).

Rosa, A.

S. Abel, F. Eltes, J. E. Ortmann, A. Messner, P. Castera, T. Wagner, D. Urbonas, A. Rosa, A. M. Gutierrez, D. Tulli, P. Ma, B. Baeuerle, A. Josten, W. Heni, D. Caimi, L. Czornomaz, A. A. Demkov, J. Leuthold, P. Sanchis, and J. Fompeyrine, “Large Pockels effect in micro- and nanostructured barium titanate integrated on silicon,” Nat. Mater. 18, 42–47 (2018).
[Crossref]

Rovera, D.

A. Matveev, C. G. Parthey, K. Predehl, J. Alnis, A. Beyer, R. Holzwarth, T. Udem, T. Wilken, N. Kolachevsky, M. Abgrall, D. Rovera, C. Salomon, P. Laurent, G. Grosche, O. Terra, T. Legero, H. Schnatz, S. Weyers, B. Altschul, and T. W. Hänsch, “Precision measurement of the hydrogen 1S–2S frequency via a 920-km fiber link,” Phys. Rev. Lett. 110, 230801 (2013).
[Crossref]

Roy, A.

Ruan, Z.

M. He, M. Xu, Y. Ren, J. Jian, Z. Ruan, Y. Xu, S. Gao, S. Sun, X. Wen, L. Zhou, L. Liu, C. Guo, H. Chen, S. Yu, L. Liu, and X. Cai, “High-performance hybrid silicon and lithium niobate Mach–Zehnder modulators for 100  Gbit/s−1 and beyond,” Nat. Photonics 13, 359–364 (2019).
[Crossref]

Rueda, A.

A. Rueda, F. Sedlmeir, M. Kumari, G. Leuchs, and H. G. L. Schwefel, “Resonant electro-optic frequency comb,” Nature 568, 378–381 (2019).
[Crossref]

Ruiz-Llata, M.

J. E. Posada-Roman, H. Angelina, B. Jerez, M. Ruiz-Llata, and P. Acedo, “Laser range finder approach based on a fieldable electro-optic dual optical frequency comb: a proof of concept,” Appl. Opt. 56, 6087–6093 (2017).
[Crossref]

O. E. Bonilla-Manrique, P. Martín-Mateos, B. Jerez, M. Ruiz-Llata, and P. Acedo, “High-resolution optical thickness measurement based on electro-optic dual-optical frequency comb sources,” IEEE J. Sel. Top. Quantum Electron. 23, 140–146 (2017).
[Crossref]

P. Martin-Mateos, M. Ruiz-Llata, J. Posada-Roman, and P. Acedo, “Dual-comb architecture for fast spectroscopic measurements and spectral characterization,” IEEE Photon. Technol. Lett. 27, 1309–1312 (2015).
[Crossref]

Rusch, L. A.

Sakamoto, T.

T. Sakamoto and A. Chiba, “Multiple-frequency-spaced flat optical comb generation using a multiple-parallel phase modulator,” Opt. Lett. 42, 4462–4465 (2017).
[Crossref]

I. Morohashi, T. Sakamoto, N. Sekine, A. Kasamatsu, and I. Hosako, “Ultrashort optical pulse source using Mach-Zehnder-modulator-based flat comb generator,” Nano Commun. Network 10, 79–84 (2016), Special Issue on Terahertz Communications.
[Crossref]

I. Morohashi, T. Sakamoto, H. Sotobayashi, T. Kawanishi, and I. Hosako, “Broadband wavelength-tunable ultrashort pulse source using a Mach–Zehnder modulator and dispersion-flattened dispersion-decreasing fiber,” Opt. Lett. 34, 2297–2299 (2009).
[Crossref]

T. Sakamoto, T. Kawanishi, and M. Tsuchiya, “10  GHz, 2.4  ps pulse generation using a single-stage dual-drive Mach–Zehnder modulator,” Opt. Lett. 33, 890–892 (2008).
[Crossref]

I. Morohashi, T. Sakamoto, H. Sotobayashi, T. Kawanishi, I. Hosako, and M. Tsuchiya, “Widely repetition-tunable 200  fs pulse source using a Mach–Zehnder-modulator-based flat comb generator and dispersion-flattened dispersion-decreasing fiber,” Opt. Lett. 33, 1192–1194 (2008).
[Crossref]

T. Sakamoto, T. Kawanishi, and M. Izutsu, “Widely wavelength-tunable ultra-flat frequency comb generation using conventional dual-drive Mach-Zehnder modulator,” Electron. Lett. 43, 1039–1040 (2007).
[Crossref]

T. Sakamoto, T. Kawanishi, and M. Izutsu, “Asymptotic formalism for ultraflat optical frequency comb generation using a Mach–Zehnder modulator,” Opt. Lett. 32, 1515–1517 (2007).
[Crossref]

Salamin, Y.

M. Ayata, Y. Fedoryshyn, W. Heni, B. Baeuerle, A. Josten, M. Zahner, U. Koch, Y. Salamin, C. Hoessbacher, C. Haffner, D. L. Elder, L. R. Dalton, and J. Leuthold, “High-speed plasmonic modulator in a single metal layer,” Science 358, 630–632 (2017).
[Crossref]

C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold, “All-plasmonic Mach–Zehnder modulator enabling optical high-speed communication at the microscale,” Nat. Photonics 9, 525–528 (2015).
[Crossref]

Salomon, C.

A. Matveev, C. G. Parthey, K. Predehl, J. Alnis, A. Beyer, R. Holzwarth, T. Udem, T. Wilken, N. Kolachevsky, M. Abgrall, D. Rovera, C. Salomon, P. Laurent, G. Grosche, O. Terra, T. Legero, H. Schnatz, S. Weyers, B. Altschul, and T. W. Hänsch, “Precision measurement of the hydrogen 1S–2S frequency via a 920-km fiber link,” Phys. Rev. Lett. 110, 230801 (2013).
[Crossref]

Sanchis, P.

S. Abel, F. Eltes, J. E. Ortmann, A. Messner, P. Castera, T. Wagner, D. Urbonas, A. Rosa, A. M. Gutierrez, D. Tulli, P. Ma, B. Baeuerle, A. Josten, W. Heni, D. Caimi, L. Czornomaz, A. A. Demkov, J. Leuthold, P. Sanchis, and J. Fompeyrine, “Large Pockels effect in micro- and nanostructured barium titanate integrated on silicon,” Nat. Mater. 18, 42–47 (2018).
[Crossref]

Sandhu, J.

X. Yi, K. Vahala, J. Li, S. Diddams, G. Ycas, P. Plavchan, S. Leifer, J. Sandhu, G. Vasisht, P. Chen, P. Gao, J. Gagne, E. Furlan, M. Bottom, E. C. Martin, M. P. Fitzgerald, G. Doppmann, and C. Beichman, “Demonstration of a near-IR line-referenced electro-optical laser frequency comb for precision radial velocity measurements in astronomy,” Nat. Commun. 7, 10436 (2016).
[Crossref]

Santarelli, G.

Santos, N. C.

X. Bonfils, X. Delfosse, S. Udry, T. Forveille, M. Mayor, C. Perrier, F. Bouchy, M. Gillon, C. Lovis, F. Pepe, D. Queloz, N. C. Santos, D. Ségransan, and J.-L. Bertaux, “The HARPS search for southern extra-solar planets - XXXI. The M-dwarf sample,” Astron. Astrophys. 549, A109 (2013).
[Crossref]

Sathian, J.

Sauer, N. J.

Savchenkov, A. A.

Schibli, T.

F. X. Kärtner, U. Morgner, T. Schibli, R. Ell, H. A. Haus, J. G. Fujimoto, and E. P. Ippen, Few-Cycle Pulses Directly from a Laser (Springer, 2004), pp. 73–136.

Schibli, T. R.

Schiller, S.

Schindler, P. C.

A. Melikyan, L. Alloatti, A. Muslija, D. Hillerkuss, P. C. Schindler, J. Li, R. Palmer, D. Korn, S. Muehlbrandt, D. V. Thourhout, B. Chen, R. Dinu, M. Sommer, C. Koos, M. Kohl, W. Freude, and J. Leuthold, “High-speed plasmonic phase modulators,” Nat. Photonics 8, 229–233 (2014).
[Crossref]

Schliesser, A.

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450, 1214–1217 (2007).
[Crossref]

Schmidt, W.

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations,” Science 321, 1335–1337 (2008).
[Crossref]

Schmogrow, R.

A. K. Mishra, R. Schmogrow, I. Tomkos, D. Hillerkuss, C. Koos, W. Freude, and J. Leuthold, “Flexible RF-based comb generator,” IEEE Photon. Technol. Lett. 25, 701–704 (2013).
[Crossref]

Schnatz, H.

A. Matveev, C. G. Parthey, K. Predehl, J. Alnis, A. Beyer, R. Holzwarth, T. Udem, T. Wilken, N. Kolachevsky, M. Abgrall, D. Rovera, C. Salomon, P. Laurent, G. Grosche, O. Terra, T. Legero, H. Schnatz, S. Weyers, B. Altschul, and T. W. Hänsch, “Precision measurement of the hydrogen 1S–2S frequency via a 920-km fiber link,” Phys. Rev. Lett. 110, 230801 (2013).
[Crossref]

Schnébelin, C.

Schneider, T.

S. Preußler, N. Wenzel, and T. Schneider, “Flexible Nyquist pulse sequence generation with variable bandwidth and repetition rate,” IEEE Photon. J. 6, 7901608 (2014).
[Crossref]

M. A. Soto, M. Alem, M. A. Shoaie, A. Vedadi, C.-S. Brès, L. Thévenaz, and T. Schneider, “Optical sinc-shaped Nyquist pulses of exceptional quality,” Nat. Commun. 4, 2898 (2013).
[Crossref]

Schröder, J.

L. Lundberg, M. Karlsson, A. Lorences-Riesgo, M. Mazur, V. Torres-Company, J. Schröder, and P. Andrekson, “Frequency comb-based WDM transmission systems enabling joint signal processing,” Appl. Sci. 8, 718 (2018).
[Crossref]

Schwab, C.

Schwefel, H. G. L.

A. Rueda, F. Sedlmeir, M. Kumari, G. Leuchs, and H. G. L. Schwefel, “Resonant electro-optic frequency comb,” Nature 568, 378–381 (2019).
[Crossref]

Sedlmeir, F.

A. Rueda, F. Sedlmeir, M. Kumari, G. Leuchs, and H. G. L. Schwefel, “Resonant electro-optic frequency comb,” Nature 568, 378–381 (2019).
[Crossref]

Seeds, A.

Seghilani, M.

Ségransan, D.

X. Bonfils, X. Delfosse, S. Udry, T. Forveille, M. Mayor, C. Perrier, F. Bouchy, M. Gillon, C. Lovis, F. Pepe, D. Queloz, N. C. Santos, D. Ségransan, and J.-L. Bertaux, “The HARPS search for southern extra-solar planets - XXXI. The M-dwarf sample,” Astron. Astrophys. 549, A109 (2013).
[Crossref]

Sekine, N.

I. Morohashi, I. Katayama, M. Kirigaya, Y. Irimajiri, N. Sekine, and I. Hosako, “High precision frequency measurement of terahertz waves using optical combs from a Mach–Zehnder-modulator-based flat comb generator,” Opt. Lett. 44, 487–490 (2019).
[Crossref]

I. Morohashi, T. Sakamoto, N. Sekine, A. Kasamatsu, and I. Hosako, “Ultrashort optical pulse source using Mach-Zehnder-modulator-based flat comb generator,” Nano Commun. Network 10, 79–84 (2016), Special Issue on Terahertz Communications.
[Crossref]

Seo, D. S.

Sepehrian, H.

Serizawa, T.

T. Kurokawa, T. Shioda, M. Koriba, M. Ito, K. Kashiwagi, T. Serizawa, and Y. Tanaka, “Generation of broadband frequency-variable laser comb allowing full-frequency sweep in the near-infrared region,” Opt. Commun. 438, 13–17 (2019).
[Crossref]

Shams, H.

Shams-Ansari, A.

M. Zhang, B. Buscaino, C. Wang, A. Shams-Ansari, C. Reimer, R. Zhu, J. M. Kahn, and M. Loncar, “Broadband electro-optic frequency comb generation in a lithium niobate microring resonator,” Nature 568, 373–377 (2019).
[Crossref]

C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Lončar, “Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages,” Nature 562, 101–104 (2018).
[Crossref]

A. Shams-Ansari, M. Yu, Z. Chen, C. Reimer, M. Zhang, N. Picqué, and M. Loncar, “Microring electro-optic frequency comb sources for dual-comb spectroscopy,” in Conference on Lasers and Electro-Optics(CLEO) (Optical Society of America, 2019), paper JTh5B.8.

Shang, L.

L. Shang, Y. Li, L. Ma, and J. Chen, “A flexible and ultra-flat optical frequency comb generator using a parallel Mach–Zehnder modulator with a single DC bias,” Opt. Commun. 356, 70–73 (2015).
[Crossref]

Shao, Y.

Shen, P.

Shi, J.

Shi, S.

Shi, W.

Shioda, T.

T. Kurokawa, T. Shioda, M. Koriba, M. Ito, K. Kashiwagi, T. Serizawa, and Y. Tanaka, “Generation of broadband frequency-variable laser comb allowing full-frequency sweep in the near-infrared region,” Opt. Commun. 438, 13–17 (2019).
[Crossref]

D. Miyamoto, K. Mandai, T. Kurokawa, S. Takeda, T. Shioda, and H. Tsuda, “Waveform-controllable optical pulse generation using an optical pulse synthesizer,” IEEE Photon. Technol. Lett. 18, 721–723 (2006).
[Crossref]

Shoaie, M. A.

S. Cordette, A. Vedadi, M. A. Shoaie, and C.-S. Brès, “Bandwidth and repetition rate programmable Nyquist sinc-shaped pulse train source based on intensity modulators and four-wave mixing,” Opt. Lett. 39, 6668–6671 (2014).
[Crossref]

M. A. Soto, M. Alem, M. A. Shoaie, A. Vedadi, C.-S. Brès, L. Thévenaz, and T. Schneider, “Optical sinc-shaped Nyquist pulses of exceptional quality,” Nat. Commun. 4, 2898 (2013).
[Crossref]

Shu, C.

Shu, R.

Sibbett, W.

Sigurdsson, S.

Sizmann, A.

M. T. Murphy, T. Udem, R. Holzwarth, A. Sizmann, L. Pasquini, C. Araujo, H. Dekker, S. D’Odorico, M. Fischer, T. Hänsch, and A. Manescau, “High-precision wavelength calibration of astronomical spectrographs with laser frequency combs,” Mon. Not. R. Astron. Soc. 380, 839–847 (2007).
[Crossref]

Slavík, R.

Smith-Lefebvre, N.

Sogawa, T.

Sommer, M.

A. Melikyan, L. Alloatti, A. Muslija, D. Hillerkuss, P. C. Schindler, J. Li, R. Palmer, D. Korn, S. Muehlbrandt, D. V. Thourhout, B. Chen, R. Dinu, M. Sommer, C. Koos, M. Kohl, W. Freude, and J. Leuthold, “High-speed plasmonic phase modulators,” Nat. Photonics 8, 229–233 (2014).
[Crossref]

Song, Y.

Soto, M. A.

M. A. Soto, M. Alem, M. A. Shoaie, A. Vedadi, C.-S. Brès, L. Thévenaz, and T. Schneider, “Optical sinc-shaped Nyquist pulses of exceptional quality,” Nat. Commun. 4, 2898 (2013).
[Crossref]

Sotobayashi, H.

Spence, D. E.

Srinivasan, K.

Stace, T. M.

N. B. Hébert, V. Michaud-Belleau, C. Perrella, G.-W. Truong, J. D. Anstie, T. M. Stace, J. Genest, and A. N. Luiten, “Real-time dynamic atomic spectroscopy using electro-optic frequency combs,” Phys. Rev. Appl. 6, 044012 (2016).
[Crossref]

Starbuck, A. L.

Stefansson, G.

Steier, W.

W. Steier, “A push-pull optical amplitude modulator,” IEEE J. Quantum Electron. 3, 664–667 (1967).
[Crossref]

Steier, W. H.

Steinmetz, T.

T. Wilken, G. L. Curto, R. A. Probst, T. Steinmetz, A. Manescau, L. Pasquini, J. I. G. Hernández, R. Rebolo, T. W. Hänsch, T. Udem, and R. Holzwarth, “A spectrograph for exoplanet observations calibrated at the centimetre-per-second level,” Nature 485, 611–614 (2012).
[Crossref]

T. Wilken, C. Lovis, A. Manescau, T. Steinmetz, L. Pasquini, G. Lo Curto, T. Hänsch, R. Holzwarth, and T. Udem, “High-precision calibration of spectrographs,” Mon. Not. R. Astron. Soc. Lett. 405, L16–L20 (2010).
[Crossref]

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations,” Science 321, 1335–1337 (2008).
[Crossref]

Stentz, A.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
[Crossref]

Sterner, D. A.

Sterr, U.

Stöhr, A.

X. Zou, B. Lu, W. Pan, L. Yan, A. Stöhr, and J. Yao, “Photonics for microwave measurements,” Laser Photon. Rev. 10, 711–734 (2016).
[Crossref]

Stroganov, A.

Sueta, T.

T. Kobayashi, H. Yao, K. Amano, Y. Fukushima, A. Morimoto, and T. Sueta, “Optical pulse compression using high-frequency electrooptic phase modulation,” IEEE J. Quantum Electron. 24, 382–387 (1988).
[Crossref]

T. Kobayashi, T. Sueta, Y. Cho, and Y. Matsuo, “High-repetition-rate optical pulse generator using a Fabry-Perot electro-optic modulator,” Appl. Phys. Lett. 21, 341–343 (1972).
[Crossref]

Sun, S.

M. He, M. Xu, Y. Ren, J. Jian, Z. Ruan, Y. Xu, S. Gao, S. Sun, X. Wen, L. Zhou, L. Liu, C. Guo, H. Chen, S. Yu, L. Liu, and X. Cai, “High-performance hybrid silicon and lithium niobate Mach–Zehnder modulators for 100  Gbit/s−1 and beyond,” Nat. Photonics 13, 359–364 (2019).
[Crossref]

Supradeepa, V. R.

Suzuki, H.

Suzuki, K.

T. Yamamoto, T. Komukai, K. Suzuki, and A. Takada, “Multicarrier light source with flattened spectrum using phase modulators and dispersion medium,” J. Lightwave Technol. 27, 4297–4305 (2009).
[Crossref]

T. Yamamoto, T. Komukai, K. Suzuki, and A. Takada, “Spectrally flattened phase-locked multi-carrier light generator with phase modulators and chirped fibre Bragg grating,” Electron. Lett. 43, 1040–1042 (2007).
[Crossref]

Swann, W.

Swann, W. C.

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett. 100, 013902 (2008).
[Crossref]

Tainta, S.

Takachio, N.

Takada, A.

A. Ishizawa, T. Nishikawa, A. Mizutori, H. Takara, A. Takada, T. Sogawa, and M. Koga, “Phase-noise characteristics of a 25-GHz-spaced optical frequency comb based on a phase- and intensity-modulated laser,” Opt. Express 21, 29186–29194 (2013).
[Crossref]

A. Ishizawa, T. Nishikawa, A. Mizutori, H. Takara, H. Nakano, T. Sogawa, A. Takada, and M. Koga, “Generation of 120-fs laser pulses at 1-GHz repetition rate derived from continuous wave laser diode,” Opt. Express 19, 22402–22409 (2011).
[Crossref]

A. Ishizawa, T. Nishikawa, A. Mizutori, H. Takara, S. Aozasa, A. Mori, H. Nakano, A. Takada, and M. Koga, “Octave-spanning frequency comb generated by 250  fs pulse train emitted from 25  GHz externally phase-modulated laser diode for carrier-envelope-offset-locking,” Electron. Lett. 46, 1343–1344 (2010).
[Crossref]

T. Yamamoto, T. Komukai, K. Suzuki, and A. Takada, “Multicarrier light source with flattened spectrum using phase modulators and dispersion medium,” J. Lightwave Technol. 27, 4297–4305 (2009).
[Crossref]

T. Yamamoto, T. Komukai, K. Suzuki, and A. Takada, “Spectrally flattened phase-locked multi-carrier light generator with phase modulators and chirped fibre Bragg grating,” Electron. Lett. 43, 1040–1042 (2007).
[Crossref]

Takara, H.

Takeda, S.

D. Miyamoto, K. Mandai, T. Kurokawa, S. Takeda, T. Shioda, and H. Tsuda, “Waveform-controllable optical pulse generation using an optical pulse synthesizer,” IEEE Photon. Technol. Lett. 18, 721–723 (2006).
[Crossref]

Tamura, K.

K. Tamura, H. A. Haus, and E. P. Ippen, “Self-starting additive pulse mode-locked erbium fibre ring laser,” Electron. Lett. 28, 2226–2228 (1992).
[Crossref]

Tamura, K. R.

K. R. Tamura, H. Kuhota, and M. Nakazawa, “Fundamentals of stable continuum generation at high repetition rates,” IEEE J. Quantum Electron. 36, 773–779 (2000).
[Crossref]

Tan, J.

Tan, S.

Tanaka, Y.

T. Kurokawa, T. Shioda, M. Koriba, M. Ito, K. Kashiwagi, T. Serizawa, and Y. Tanaka, “Generation of broadband frequency-variable laser comb allowing full-frequency sweep in the near-infrared region,” Opt. Commun. 438, 13–17 (2019).
[Crossref]

K. Kashiwagi, T. Kurokawa, Y. Okuyama, T. Mori, Y. Tanaka, Y. Yamamoto, and M. Hirano, “Direct generation of 12.5-GHz-spaced optical frequency comb with ultrabroad coverage in near-infrared region by cascaded fiber configuration,” Opt. Express 24, 8120–8131 (2016).
[Crossref]

Tang, G.

Tang, H. X.

L. Fan, C.-L. Zou, N. Zhu, and H. X. Tang, “Spectrotemporal shaping of itinerant photons via distributed nanomechanics,” Nat. Photonics 13, 323–327 (2019).
[Crossref]

Tao, L.

Teleanu, E. L.

Telle, H. R.

Temprana, E.

Terra, O.

A. Matveev, C. G. Parthey, K. Predehl, J. Alnis, A. Beyer, R. Holzwarth, T. Udem, T. Wilken, N. Kolachevsky, M. Abgrall, D. Rovera, C. Salomon, P. Laurent, G. Grosche, O. Terra, T. Legero, H. Schnatz, S. Weyers, B. Altschul, and T. W. Hänsch, “Precision measurement of the hydrogen 1S–2S frequency via a 920-km fiber link,” Phys. Rev. Lett. 110, 230801 (2013).
[Crossref]

Terrien, R.

Terrien, R. C.

Teshima, M.

Thévenaz, L.

M. A. Soto, M. Alem, M. A. Shoaie, A. Vedadi, C.-S. Brès, L. Thévenaz, and T. Schneider, “Optical sinc-shaped Nyquist pulses of exceptional quality,” Nat. Commun. 4, 2898 (2013).
[Crossref]

Thomson, D. J.

Thourhout, D. V.

A. Melikyan, L. Alloatti, A. Muslija, D. Hillerkuss, P. C. Schindler, J. Li, R. Palmer, D. Korn, S. Muehlbrandt, D. V. Thourhout, B. Chen, R. Dinu, M. Sommer, C. Koos, M. Kohl, W. Freude, and J. Leuthold, “High-speed plasmonic phase modulators,” Nat. Photonics 8, 229–233 (2014).
[Crossref]

Tomkos, I.

A. K. Mishra, R. Schmogrow, I. Tomkos, D. Hillerkuss, C. Koos, W. Freude, and J. Leuthold, “Flexible RF-based comb generator,” IEEE Photon. Technol. Lett. 25, 701–704 (2013).
[Crossref]

Tong, Z.

Torres-Company, V.

L. Lundberg, M. Karlsson, A. Lorences-Riesgo, M. Mazur, V. Torres-Company, J. Schröder, and P. Andrekson, “Frequency comb-based WDM transmission systems enabling joint signal processing,” Appl. Sci. 8, 718 (2018).
[Crossref]

E. L. Teleanu, V. Durán, and V. Torres-Company, “Electro-optic dual-comb interferometer for high-speed vibrometry,” Opt. Express 25, 16427–16436 (2017).
[Crossref]

V. Durán, P. A. Andrekson, and V. Torres-Company, “Electro-optic dual-comb interferometry over 40  nm bandwidth,” Opt. Lett. 41, 4190–4193 (2016).
[Crossref]

V. Durán, S. Tainta, and V. Torres-Company, “Ultrafast electrooptic dual-comb interferometry,” Opt. Express 23, 30557–30569 (2015).
[Crossref]

V. Torres-Company and A. M. Weiner, “Optical frequency comb technology for ultra-broadband radio-frequency photonics,” Laser Photon. Rev. 8, 368–393 (2014).
[Crossref]

R. Wu, V. Torres-Company, D. E. Leaird, and A. M. Weiner, “Supercontinuum-based 10-GHz flat-topped optical frequency comb generation,” Opt. Express 21, 6045–6052 (2013).
[Crossref]

A. J. Metcalf, V. Torres-Company, D. E. Leaird, and A. M. Weiner, “High-power broadly tunable electrooptic frequency comb generator,” IEEE J. Sel. Top. Quantum Electron. 19, 231–236 (2013).
[Crossref]

V. Torres-Company, A. J. Metcalf, D. E. Leaird, and A. M. Weiner, “Multichannel radio-frequency arbitrary waveform generation based on multiwavelength comb switching and 2-D line-by-line pulse shaping,” IEEE Photon. Technol. Lett. 24, 891–893 (2012).
[Crossref]

V. Torres-Company, J. Lancis, and P. Andrés, “Lossless equalization of frequency combs,” Opt. Lett. 33, 1822–1824 (2008).
[Crossref]

L. Lundberg, M. Mazur, A. Fülöp, V. Torres-Company, M. Karlsson, and P. A. Andrekson, “Phase correlation between lines of electro-optical frequency combs,” in Conference on Lasers and Electro-Optics (CLEO) (Optical Society of America, 2018), paper JW2A.149.

Trillo, S.

Trotter, D.

Truong, G.-W.

N. B. Hébert, V. Michaud-Belleau, C. Perrella, G.-W. Truong, J. D. Anstie, T. M. Stace, J. Genest, and A. N. Luiten, “Real-time dynamic atomic spectroscopy using electro-optic frequency combs,” Phys. Rev. Appl. 6, 044012 (2016).
[Crossref]

Tsia, K. K.

Tsuchiya, M.

Tsuda, H.

D. Miyamoto, K. Mandai, T. Kurokawa, S. Takeda, T. Shioda, and H. Tsuda, “Waveform-controllable optical pulse generation using an optical pulse synthesizer,” IEEE Photon. Technol. Lett. 18, 721–723 (2006).
[Crossref]

Tulli, D.

S. Abel, F. Eltes, J. E. Ortmann, A. Messner, P. Castera, T. Wagner, D. Urbonas, A. Rosa, A. M. Gutierrez, D. Tulli, P. Ma, B. Baeuerle, A. Josten, W. Heni, D. Caimi, L. Czornomaz, A. A. Demkov, J. Leuthold, P. Sanchis, and J. Fompeyrine, “Large Pockels effect in micro- and nanostructured barium titanate integrated on silicon,” Nat. Mater. 18, 42–47 (2018).
[Crossref]

Uda, S.

T. Nishikawa, A. Oohara, S. Uda, A. Ishizawa, K. Hitachi, N. Picqué, and T. Hänsch, “Automatic interpolation of 25  GHz mode spacing in dual EOM comb spectroscopy,” in Conference on Lasers and Electro-Optics (CLEO) (Optical Society of America, 2019), paper SF1I.3.

Udem, T.

A. Matveev, C. G. Parthey, K. Predehl, J. Alnis, A. Beyer, R. Holzwarth, T. Udem, T. Wilken, N. Kolachevsky, M. Abgrall, D. Rovera, C. Salomon, P. Laurent, G. Grosche, O. Terra, T. Legero, H. Schnatz, S. Weyers, B. Altschul, and T. W. Hänsch, “Precision measurement of the hydrogen 1S–2S frequency via a 920-km fiber link,” Phys. Rev. Lett. 110, 230801 (2013).
[Crossref]

T. Wilken, G. L. Curto, R. A. Probst, T. Steinmetz, A. Manescau, L. Pasquini, J. I. G. Hernández, R. Rebolo, T. W. Hänsch, T. Udem, and R. Holzwarth, “A spectrograph for exoplanet observations calibrated at the centimetre-per-second level,” Nature 485, 611–614 (2012).
[Crossref]

T. Wilken, C. Lovis, A. Manescau, T. Steinmetz, L. Pasquini, G. Lo Curto, T. Hänsch, R. Holzwarth, and T. Udem, “High-precision calibration of spectrographs,” Mon. Not. R. Astron. Soc. Lett. 405, L16–L20 (2010).
[Crossref]

T. Udem, R. Holzwarth, and T. Hänsch, “Femtosecond optical frequency combs,” Eur. Phys. J. Spec. Top. 172, 69–79 (2009).
[Crossref]

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations,” Science 321, 1335–1337 (2008).
[Crossref]

M. T. Murphy, T. Udem, R. Holzwarth, A. Sizmann, L. Pasquini, C. Araujo, H. Dekker, S. D’Odorico, M. Fischer, T. Hänsch, and A. Manescau, “High-precision wavelength calibration of astronomical spectrographs with laser frequency combs,” Mon. Not. R. Astron. Soc. 380, 839–847 (2007).
[Crossref]

T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416, 233–237 (2002).
[Crossref]

J. Reichert, M. Niering, R. Holzwarth, M. Weitz, T. Udem, and T. W. Hänsch, “Phase coherent vacuum-ultraviolet to radio frequency comparison with a mode-locked laser,” Phys. Rev. Lett. 84, 3232–3235 (2000).
[Crossref]

J. Reichert, R. Holzwarth, T. Udem, and T. Hänsch, “Measuring the frequency of light with mode-locked lasers,” Opt. Commun. 172, 59–68 (1999).
[Crossref]

Udry, S.

X. Bonfils, X. Delfosse, S. Udry, T. Forveille, M. Mayor, C. Perrier, F. Bouchy, M. Gillon, C. Lovis, F. Pepe, D. Queloz, N. C. Santos, D. Ségransan, and J.-L. Bertaux, “The HARPS search for southern extra-solar planets - XXXI. The M-dwarf sample,” Astron. Astrophys. 549, A109 (2013).
[Crossref]

Uhl, C.

Urbonas, D.

S. Abel, F. Eltes, J. E. Ortmann, A. Messner, P. Castera, T. Wagner, D. Urbonas, A. Rosa, A. M. Gutierrez, D. Tulli, P. Ma, B. Baeuerle, A. Josten, W. Heni, D. Caimi, L. Czornomaz, A. A. Demkov, J. Leuthold, P. Sanchis, and J. Fompeyrine, “Large Pockels effect in micro- and nanostructured barium titanate integrated on silicon,” Nat. Mater. 18, 42–47 (2018).
[Crossref]

Vahala, K.

X. Yi, K. Vahala, J. Li, S. Diddams, G. Ycas, P. Plavchan, S. Leifer, J. Sandhu, G. Vasisht, P. Chen, P. Gao, J. Gagne, E. Furlan, M. Bottom, E. C. Martin, M. P. Fitzgerald, G. Doppmann, and C. Beichman, “Demonstration of a near-IR line-referenced electro-optical laser frequency comb for precision radial velocity measurements in astronomy,” Nat. Commun. 7, 10436 (2016).
[Crossref]

Varghese, L. T.

Vasisht, G.

X. Yi, K. Vahala, J. Li, S. Diddams, G. Ycas, P. Plavchan, S. Leifer, J. Sandhu, G. Vasisht, P. Chen, P. Gao, J. Gagne, E. Furlan, M. Bottom, E. C. Martin, M. P. Fitzgerald, G. Doppmann, and C. Beichman, “Demonstration of a near-IR line-referenced electro-optical laser frequency comb for precision radial velocity measurements in astronomy,” Nat. Commun. 7, 10436 (2016).
[Crossref]

Vedadi, A.

S. Cordette, A. Vedadi, M. A. Shoaie, and C.-S. Brès, “Bandwidth and repetition rate programmable Nyquist sinc-shaped pulse train source based on intensity modulators and four-wave mixing,” Opt. Lett. 39, 6668–6671 (2014).
[Crossref]

M. A. Soto, M. Alem, M. A. Shoaie, A. Vedadi, C.-S. Brès, L. Thévenaz, and T. Schneider, “Optical sinc-shaped Nyquist pulses of exceptional quality,” Nat. Commun. 4, 2898 (2013).
[Crossref]

Voumard, T.

Wabnitz, S.

F. Baronio, B. Frisquet, S. Chen, G. Millot, S. Wabnitz, and B. Kibler, “Observation of a group of dark rogue waves in a telecommunication optical fiber,” Phys. Rev. A 97, 013852 (2018).
[Crossref]

A. Pasquazi, M. Peccianti, L. Razzari, D. J. Moss, S. Coen, M. Erkintalo, Y. K. Chembo, T. Hansson, S. Wabnitz, P. Del’Haye, X. Xue, A. M. Weiner, and R. Morandotti, “Micro-combs: a novel generation of optical sources,” Phys. Rep. 729, 1–81 (2018).
[Crossref]

J. Fatome, I. El-Mansouri, J.-L. Blanchet, S. Pitois, G. Millot, S. Trillo, and S. Wabnitz, “Even harmonic pulse train generation by cross-polarization-modulation seeded instability in optical fibers,” J. Opt. Soc. Am. B 30, 99–106 (2013).
[Crossref]

C. Finot, B. Kibler, L. Provost, and S. Wabnitz, “Beneficial impact of wave-breaking for coherent continuum formation in normally dispersive nonlinear fibers,” J. Opt. Soc. Am. B 25, 1938–1948 (2008).
[Crossref]

Wada, N.

Wagner, T.

S. Abel, F. Eltes, J. E. Ortmann, A. Messner, P. Castera, T. Wagner, D. Urbonas, A. Rosa, A. M. Gutierrez, D. Tulli, P. Ma, B. Baeuerle, A. Josten, W. Heni, D. Caimi, L. Czornomaz, A. A. Demkov, J. Leuthold, P. Sanchis, and J. Fompeyrine, “Large Pockels effect in micro- and nanostructured barium titanate integrated on silicon,” Nat. Mater. 18, 42–47 (2018).
[Crossref]

Walla, F.

B. Jerez, F. Walla, A. Betancur, P. Martín-Mateos, C. de Dios, and P. Acedo, “Electro-optic THz dual-comb architecture for high-resolution, absolute spectroscopy,” Opt. Lett. 44, 415–418 (2019).
[Crossref]

B. Jerez, P. Martín-Mateos, F. Walla, C. de Dios, and P. Acedo, “Flexible electro-optic, single-crystal difference frequency generation architecture for ultrafast mid-infrared dual-comb spectroscopy,” ACS Photon. 5, 2348–2353 (2018).
[Crossref]

Wang, B.

Wang, C.

M. Zhang, B. Buscaino, C. Wang, A. Shams-Ansari, C. Reimer, R. Zhu, J. M. Kahn, and M. Loncar, “Broadband electro-optic frequency comb generation in a lithium niobate microring resonator,” Nature 568, 373–377 (2019).
[Crossref]

C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Lončar, “Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages,” Nature 562, 101–104 (2018).
[Crossref]

Wang, L.

Wang, Q.

Wang, S.

Wang, X.

Wang, Z.

B. Xue, Z. Wang, H. Zhang, K. Zhang, Y. Chen, M. He, B. Lin, and H. Wu, “Absolute distance measurement by self-heterodyne EO comb interferometry,” IEEE Photon. Technol. Lett. 30, 861–864 (2018).
[Crossref]

H. Wu, T. Zhao, Z. Wang, K. Zhang, B. Xue, J. Li, M. He, and X. Qu, “Long distance measurement up to 1.2  km by electro-optic dual-comb interferometry,” Appl. Phys. Lett. 111, 251901 (2017).
[Crossref]

Ward, H.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[Crossref]

Washburn, B. R.

S. Droste, G. Ycas, B. R. Washburn, I. Coddington, and N. R. Newbury, “Optical frequency comb generation based on erbium fiber lasers,” Nanophotonics 5, 196–213 (2016).
[Crossref]

Watanabe, T.

Watts, R. T.

R. T. Watts, S. G. Murdoch, and L. P. Barry, “Phase noise reduction of an optical frequency comb using a feed-forward heterodyne detection scheme,” IEEE Photon. J. 8, 1–7 (2016).
[Crossref]

Weber, H. J.

G. B. Arfken, H. J. Weber, and F. E. Harris, Mathematical Methods for Physicists, 7th ed. (Academic, 2013).

Wei, R.

R. Wei, J. Yan, Y. Peng, X. Yao, M. Bai, and Z. Zheng, “Optical frequency comb generation based on electro-optical modulation with high-order harmonic of a sine RF signal,” Opt. Commun. 291, 269–273 (2013).
[Crossref]

Wei, X.

Weigel, P. O.

Weikle, R. M.

Weimann, C.

Weiner, A.

C.-B. Huang, Z. Jiang, D. Leaird, J. Caraquitena, and A. Weiner, “Spectral line-by-line shaping for optical and microwave arbitrary waveform generations,” Laser Photon. Rev. 2, 227–248 (2008).
[Crossref]

Weiner, A. M.

A. Pasquazi, M. Peccianti, L. Razzari, D. J. Moss, S. Coen, M. Erkintalo, Y. K. Chembo, T. Hansson, S. Wabnitz, P. Del’Haye, X. Xue, A. M. Weiner, and R. Morandotti, “Micro-combs: a novel generation of optical sources,” Phys. Rep. 729, 1–81 (2018).
[Crossref]

A. J. Metcalf, H.-J. Kim, D. E. Leaird, J. A. Jaramillo-Villegas, K. A. McKinzie, V. Lal, A. Hosseini, G. E. Hoefler, F. Kish, and A. M. Weiner, “Integrated line-by-line optical pulse shaper for high-fidelity and rapidly reconfigurable RF-filtering,” Opt. Express 24, 23925–23940 (2016).
[Crossref]

A. J. Metcalf, F. Quinlan, T. M. Fortier, S. A. Diddams, and A. M. Weiner, “Broadly tunable, low timing jitter, high repetition rate optoelectronic comb generator,” Electron. Lett. 51, 1596–1598 (2015).
[Crossref]

Y. Liu, A. J. Metcalf, V. T. Company, R. Wu, L. Fan, L. T. Varghese, M. Qi, and A. M. Weiner, “Bandwidth scaling of a phase-modulated continuous-wave comb through four-wave mixing in a silicon nano-waveguide,” Opt. Lett. 39, 6478–6481 (2014).
[Crossref]

J. M. Lukens, A. J. Metcalf, D. E. Leaird, and A. M. Weiner, “Temporal cloaking for data suppression and retrieval,” Optica 1, 372–375 (2014).
[Crossref]

V. Torres-Company and A. M. Weiner, “Optical frequency comb technology for ultra-broadband radio-frequency photonics,” Laser Photon. Rev. 8, 368–393 (2014).
[Crossref]

J. M. Lukens, D. E. Leaird, and A. M. Weiner, “A temporal cloak at telecommunication data rate,” Nature 498, 205–208 (2013).
[Crossref]

A. J. Metcalf, V. Torres-Company, D. E. Leaird, and A. M. Weiner, “High-power broadly tunable electrooptic frequency comb generator,” IEEE J. Sel. Top. Quantum Electron. 19, 231–236 (2013).
[Crossref]

R. Wu, V. Torres-Company, D. E. Leaird, and A. M. Weiner, “Supercontinuum-based 10-GHz flat-topped optical frequency comb generation,” Opt. Express 21, 6045–6052 (2013).
[Crossref]

V. R. Supradeepa and A. M. Weiner, “Bandwidth scaling and spectral flatness enhancement of optical frequency combs from phase-modulated continuous-wave lasers using cascaded four-wave mixing,” Opt. Lett. 37, 3066–3068 (2012).
[Crossref]

V. R. Supradeepa, C. M. Long, R. Wu, F. Ferdous, E. Hamidi, D. E. Leaird, and A. M. Weiner, “Comb-based radiofrequency photonic filters with rapid tunability and high selectivity,” Nat. Photonics 6, 186–194 (2012).
[Crossref]

V. Torres-Company, A. J. Metcalf, D. E. Leaird, and A. M. Weiner, “Multichannel radio-frequency arbitrary waveform generation based on multiwavelength comb switching and 2-D line-by-line pulse shaping,” IEEE Photon. Technol. Lett. 24, 891–893 (2012).
[Crossref]

A. M. Weiner, “Ultrafast optical pulse shaping: a tutorial review,” Opt. Commun. 284, 3669–3692 (2011), Special Issue on Optical Pulse Shaping, Arbitrary Waveform Generation, and Pulse Characterization.
[Crossref]

R. Wu, V. R. Supradeepa, C. M. Long, D. E. Leaird, and A. M. Weiner, “Generation of very flat optical frequency combs from continuous-wave lasers using cascaded intensity and phase modulators driven by tailored radio frequency waveforms,” Opt. Lett. 35, 3234–3236 (2010).
[Crossref]

F. Ferdous, D. E. Leaird, C.-B. Huang, and A. M. Weiner, “Dual-comb electric-field cross-correlation technique for optical arbitrary waveform characterization,” Opt. Lett. 34, 3875–3877 (2009).
[Crossref]

C.-B. Huang, S.-G. Park, D. E. Leaird, and A. M. Weiner, “Nonlinearly broadened phase-modulated continuous-wave laser frequency combs characterized using DPSK decoding,” Opt. Express 16, 2520–2527 (2008).
[Crossref]

Z. Jiang, C.-B. Huang, D. E. Leaird, and A. M. Weiner, “Optical arbitrary waveform processing of more than 100 spectral comb lines,” Nat. Photonics 1, 463–467 (2007).
[Crossref]

Z. Jiang, D. E. Leaird, C. Huang, H. Miao, M. Kourogi, K. Imai, and A. M. Weiner, “Spectral line-by-line pulse shaping on an optical frequency comb generator,” IEEE J. Quantum Electron. 43, 1163–1174 (2007).
[Crossref]

Z. Jiang, D. E. Leaird, and A. M. Weiner, “Optical processing based on spectral line-by-line pulse shaping on a phase-modulated CW laser,” IEEE J. Quantum Electron. 42, 657–665 (2006).
[Crossref]

Z. Jiang, D. S. Seo, D. E. Leaird, and A. M. Weiner, “Spectral line-by-line pulse shaping,” Opt. Lett. 30, 1557–1559 (2005).
[Crossref]

Weitz, M.

J. Reichert, M. Niering, R. Holzwarth, M. Weitz, T. Udem, and T. W. Hänsch, “Phase coherent vacuum-ultraviolet to radio frequency comparison with a mode-locked laser,” Phys. Rev. Lett. 84, 3232–3235 (2000).
[Crossref]

Wen, X.

M. He, M. Xu, Y. Ren, J. Jian, Z. Ruan, Y. Xu, S. Gao, S. Sun, X. Wen, L. Zhou, L. Liu, C. Guo, H. Chen, S. Yu, L. Liu, and X. Cai, “High-performance hybrid silicon and lithium niobate Mach–Zehnder modulators for 100  Gbit/s−1 and beyond,” Nat. Photonics 13, 359–364 (2019).
[Crossref]

Wenzel, N.

S. Preußler, N. Wenzel, and T. Schneider, “Flexible Nyquist pulse sequence generation with variable bandwidth and repetition rate,” IEEE Photon. J. 6, 7901608 (2014).
[Crossref]

Wetzel, B.

B. Kibler, J. Fatome, C. Finot, G. Millot, G. Genty, B. Wetzel, N. Akhmediev, F. Dias, and J. M. Dudley, “Observation of Kuznetsov-Ma soliton dynamics in optical fibre,” Sci. Rep. 2, 463 (2012).
[Crossref]

Weyers, S.

A. Matveev, C. G. Parthey, K. Predehl, J. Alnis, A. Beyer, R. Holzwarth, T. Udem, T. Wilken, N. Kolachevsky, M. Abgrall, D. Rovera, C. Salomon, P. Laurent, G. Grosche, O. Terra, T. Legero, H. Schnatz, S. Weyers, B. Altschul, and T. W. Hänsch, “Precision measurement of the hydrogen 1S–2S frequency via a 920-km fiber link,” Phys. Rev. Lett. 110, 230801 (2013).
[Crossref]

Whittaker, E. A.

Wiberg, A. O. J.

Widiyatmoko, B.

S.-J. Lee, B. Widiyatmoko, M. Kourogi, and M. Ohtsu, “Ultrahigh scanning speed optical coherence tomography using optical frequency comb generators,” Jpn. J. Appl. Phys. 40, L878–L880 (2001).
[Crossref]

Wildi, F.

Wilken, T.

A. Matveev, C. G. Parthey, K. Predehl, J. Alnis, A. Beyer, R. Holzwarth, T. Udem, T. Wilken, N. Kolachevsky, M. Abgrall, D. Rovera, C. Salomon, P. Laurent, G. Grosche, O. Terra, T. Legero, H. Schnatz, S. Weyers, B. Altschul, and T. W. Hänsch, “Precision measurement of the hydrogen 1S–2S frequency via a 920-km fiber link,” Phys. Rev. Lett. 110, 230801 (2013).
[Crossref]

T. Wilken, G. L. Curto, R. A. Probst, T. Steinmetz, A. Manescau, L. Pasquini, J. I. G. Hernández, R. Rebolo, T. W. Hänsch, T. Udem, and R. Holzwarth, “A spectrograph for exoplanet observations calibrated at the centimetre-per-second level,” Nature 485, 611–614 (2012).
[Crossref]

T. Wilken, C. Lovis, A. Manescau, T. Steinmetz, L. Pasquini, G. Lo Curto, T. Hänsch, R. Holzwarth, and T. Udem, “High-precision calibration of spectrographs,” Mon. Not. R. Astron. Soc. Lett. 405, L16–L20 (2010).
[Crossref]

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations,” Science 321, 1335–1337 (2008).
[Crossref]

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450, 1214–1217 (2007).
[Crossref]

Wilson, N.

N. Wilson, N. B. Hébert, C. Perrella, P. Light, J. Genest, S. Pustelny, and A. Luiten, “Simultaneous observation of nonlinear magneto-optical rotation in the temporal and spectral domains with an electro-optic frequency comb,” Phys. Rev. Appl. 10, 034012 (2018).
[Crossref]

Windeler, R. S.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
[Crossref]

Winzer, G.

Winzer, P.

C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Lončar, “Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages,” Nature 562, 101–104 (2018).
[Crossref]

Wolf, S.

Wolszczan, A.

Wong, K. K. Y.

Wong, N. C.

Wood, D.

Wright, J. T.

Wu, G.

Z. Zhu and G. Wu, “Dual-comb ranging,” Engineering 4, 772–778 (2018).
[Crossref]

Wu, H.

B. Xue, Z. Wang, H. Zhang, K. Zhang, Y. Chen, M. He, B. Lin, and H. Wu, “Absolute distance measurement by self-heterodyne EO comb interferometry,” IEEE Photon. Technol. Lett. 30, 861–864 (2018).
[Crossref]

H. Wu, T. Zhao, Z. Wang, K. Zhang, B. Xue, J. Li, M. He, and X. Qu, “Long distance measurement up to 1.2  km by electro-optic dual-comb interferometry,” Appl. Phys. Lett. 111, 251901 (2017).
[Crossref]

Wu, J.

Wu, R.

Xiao, J.

Y. Fang, J. Yu, J. Zhang, X. Li, N. Chi, and J. Xiao, “Frequency comb selection enabled flexible all optical Nyquist pulse generation,” Opt. Commun. 349, 60–64 (2015).
[Crossref]

Xiao, S.

Xiao, X.

Xie, L.