Abstract

The experimental realization of a Kerr frequency comb represented the convergence of research in materials, physics, and engineering. This symbiotic relationship continues to underpin efforts in comb innovation today. While the initial focus developing cavity-based frequency combs relied on existing microresonator architectures and classic optical materials, in recent years, this trend has been disrupted. This paper reviews the latest achievements in frequency comb generation using resonant cavities, placing them within the broader historical context of the field. After presenting well-established material systems and device designs, the emerging materials and device architectures are examined. Specifically, the unconventional material systems as well as atypical device designs that have enabled tailored dispersion profiles and improved comb performance are compared to the current state of art. The remaining challenges and outlook for the field of cavity-based frequency combs are evaluated.

© 2020 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Electro-optic frequency combs

Alexandre Parriaux, Kamal Hammani, and Guy Millot
Adv. Opt. Photon. 12(1) 223-287 (2020)

Photonic molecule quantum optics

Kun Liao, Xiaoyong Hu, Tianyi Gan, Qihang Liu, Zhenlin Wu, Chongxiao Fan, Xilin Feng, Cuicui Lu, Yong-chun Liu, and Qihuang Gong
Adv. Opt. Photon. 12(1) 60-134 (2020)

Optical pulling forces and their applications

Hang Li, Yongyin Cao, Lei-Ming Zhou, Xiaohao Xu, Tongtong Zhu, Yuzhi Shi, Cheng-Wei Qiu, and Weiqiang Ding
Adv. Opt. Photon. 12(2) 288-366 (2020)

References

  • View by:
  • |
  • |
  • |

  1. R. Holzwarth, M. Zimmermann, T. Udem, and T. Hansch, “Optical clockworks and the measurement of laser frequencies with a mode-locked frequency comb,” IEEE J. Quantum Electron. 37, 1493–1501 (2001).
    [Crossref]
  2. R. Holzwarth, T. Udem, T. Hansch, J. Knight, W. Wadsworth, and P. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett. 85, 2264–2267 (2000).
    [Crossref]
  3. J. Hall, J. Ye, S. Diddams, L. Ma, S. Cundiff, and D. Jones, “Ultrasensitive spectroscopy, the ultrastable lasers, the ultrafast lasers, and the seriously nonlinear fiber: a new alliance for physics and metrology,” IEEE J. Quantum Electron. 37, 1482–1492 (2001).
    [Crossref]
  4. T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332, 555–559 (2011).
    [Crossref]
  5. D. Jones, S. Diddams, J. Ranka, A. Stentz, R. Windeler, J. Hall, and S. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
    [Crossref]
  6. M.-G. Suh, Q.-F. Yang, K. Y. Yang, X. Yi, and K. J. Vahala, “Microresonator soliton dual-comb spectroscopy,” Science 354, 600–603 (2016).
    [Crossref]
  7. S.-P. Yu, T. C. Briles, G. T. Moille, X. Lu, S. A. Diddams, K. Srinivasan, and S. B. Papp, “Tuning Kerr-soliton frequency combs to atomic resonances,” Phys. Rev. Appl. 11, 044017 (2019).
    [Crossref]
  8. Q.-F. Yang, B. Shen, H. Wang, M. Tran, Z. Zhang, K. Y. Yang, L. Wu, C. Bao, J. Bowers, A. Yariv, and K. Vahala, “Vernier spectrometer using counterpropagating soliton microcombs,” Science 363, 965–968 (2019).
    [Crossref]
  9. W. Weng, E. Lucas, G. Lihachev, V. E. Lobanov, H. Guo, M. L. Gorodetsky, and T. J. Kippenberg, “Spectral purification of microwave signals with disciplined dissipative Kerr solitons,” Phys. Rev. Lett. 122, 013902 (2019).
    [Crossref]
  10. C. Wang, M. Zhang, M. Yu, R. Zhu, H. Hu, and M. Loncar, “Monolithic lithium niobate photonic circuits for Kerr frequency comb generation and modulation,” Nat. Commun. 10, 978 (2019).
    [Crossref]
  11. E. Obrzud, M. Rainer, A. Harutyunyan, M. H. Anderson, J. Liu, M. Geiselmann, B. Chazelas, S. Kundermann, S. Lecomte, M. Cecconi, A. Ghedina, E. Molinari, F. Pepe, F. Wildi, F. Bouchy, T. J. Kippenberg, and T. Herr, “A microphotonic astrocomb,” Nat. Photonics 13, 31–35 (2019).
    [Crossref]
  12. J. Lee, K. Lee, J. Yang, Y.-J. Kim, and S.-W. Kim, “Comb segmentation spectroscopy for rapid detection of molecular absorption lines,” Opt. Express 27, 9088–9096 (2019).
    [Crossref]
  13. M. Kues, C. Reimer, J. M. Lukens, W. J. Munro, A. M. Weiner, D. J. Moss, and R. Morandotti, “Quantum optical microcombs,” Nat. Photonics 13, 170–179 (2019).
    [Crossref]
  14. A. L. Gaeta, M. Lipson, and T. J. Kippenberg, “Photonic-chip-based frequency combs,” Nat. Photonics 13, 158–169 (2019).
    [Crossref]
  15. W. Liang, A. A. Savchenkov, V. S. Ilchenko, D. Eliyahu, A. B. Matsko, and L. Maleki, “Stabilized C-band Kerr frequency comb,” IEEE Photon. J. 9, 5502411 (2017).
    [Crossref]
  16. S. B. Papp, K. Beha, P. Del’Haye, F. Quinlan, H. Lee, K. J. Vahala, and S. A. Diddams, “Microresonator frequency comb optical clock,” Optica 1, 10–14 (2014).
    [Crossref]
  17. W. Liang, D. Eliyahu, V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, D. Seidel, and L. Maleki, “High spectral purity Kerr frequency comb radio frequency photonic oscillator,” Nat. Commun. 6, 7957 (2015).
    [Crossref]
  18. H. Latifi, A. Biswas, R. Armstrong, and R. Pinnick, “Lasing and stimulated Raman-scattering in spherical liquid droplets: time, irradiance, and wavelength dependence,” Appl. Opt. 29, 5387–5392 (1990).
    [Crossref]
  19. T. Lettieri, W. Jenkins, and D. Swyt, “Sizing of individual optically levitated evaporating droplets by measurement of resonances in the polarization-ratio,” Appl. Opt. 20, 2799–2805 (1981).
    [Crossref]
  20. A. Ray, A. Souyri, E. Davis, and T. Allen, “Precision of light-scattering techniques for measuring optical-parameters of microspheres,” Appl. Opt. 30, 3974–3983 (1991).
    [Crossref]
  21. H. Tzeng, K. Wall, M. Long, and R. Chang, “Evaporation and condensation rates of liquid droplets deduced from structure resonances in the fluorescence-spectra,” Opt. Lett. 9, 273–275 (1984).
    [Crossref]
  22. P. Chylek, H. Lin, J. Eversole, and A. Campillo, “Absorption effects on microdroplet resonant emission structure,” Opt. Lett. 16, 1723–1725 (1991).
    [Crossref]
  23. H. Tzeng, K. Wall, M. Long, and R. Chang, “Laser-emission from individual droplets at wavelengths corresponding to morphology-dependent resonances,” Opt. Lett. 9, 499–501 (1984).
    [Crossref]
  24. J. Snow, S. Qian, and R. Chang, “Stimulated Raman-scattering from individual water and ethanol droplets at morphology dependent resonances,” Opt. Lett. 10, 37–39 (1985).
    [Crossref]
  25. V. Braginsky, M. Gorodetsky, and V. Ilchenko, “Quality-factor and nonlinear properties of optical whispering-gallery modes,” Phys. Lett. A 137, 393–397 (1989).
    [Crossref]
  26. G. Chen, R. Chang, S. Hill, and P. Barber, “Frequency splitting of degenerate spherical cavity modes: stimulated Raman-scattering spectrum of deformed droplets,” Opt. Lett. 16, 1269–1271 (1991).
    [Crossref]
  27. K. Fuller, “Optical resonances and 2-sphere systems,” Appl. Opt. 30, 4716–4731 (1991).
    [Crossref]
  28. H. M. Lai, C. C. Lam, P. T. Leung, and K. Young, “Effects of perturbations on the widths of narrow morphology-dependent resonances in MIE scattering,”J. Opt. Soc. Am. B 8, 1962–1973 (1991).
    [Crossref]
  29. A. Ray, B. Devakottai, A. Souyri, and J. Huckaby, “Evaporation characteristics of droplets coated with immisicible layers of nonvolatile liquids,” Langmuir 7, 525–531 (1991).
    [Crossref]
  30. Z. Liu, Y. Chen, L. Zhao, Y. Zhang, Y. Wei, H. Li, Y. Liu, Y. Zhang, E. Zhao, X. Yang, J. Zhang, and L. Yuan, “Single-fiber tweezers applied for dye lasing in a fluid droplet,” Opt. Lett. 41, 2966–2969 (2016).
    [Crossref]
  31. A. Giorgini, S. Avino, P. Malara, P. De Natale, M. Yannai, T. Carmon, and G. Gagliardi, “Stimulated Brillouin cavity optomechanics in liquid droplets,” Phys. Rev. Lett. 120, 073902 (2018).
    [Crossref]
  32. A. Matsko and V. Ilchenko, “Optical resonators with whispering-gallery modes - part I: basics,” IEEE J. Sel. Top. Quantum Electron. 12, 3–14 (2006).
    [Crossref]
  33. B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, “Ultra-compact Si-SiO2 microring resonator optical channel dropping filters,” IEEE Photon. Technol. Lett. 10, 549–551 (1998).
    [Crossref]
  34. J. Poon, L. Zhu, G. DeRose, and A. Yariv, “Transmission and group delay of microring coupled-resonator optical waveguides,” Opt. Lett. 31, 456–458 (2006).
    [Crossref]
  35. F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics 1, 65–71 (2007).
    [Crossref]
  36. M. Gorodetsky, A. Savchenkov, and V. Ilchenko, “Ultimate Q of optical microsphere resonators,” Opt. Lett. 21, 453–455 (1996).
    [Crossref]
  37. M. Borselli, K. Srinivasan, P. E. Barclay, and O. Painter, “Rayleigh scattering, mode coupling, and optical loss in silicon microdisks,” Appl. Phys. Lett. 85, 3693–3695 (2004).
    [Crossref]
  38. X. Zhang, H. S. Choi, and A. M. Armani, “Ultimate quality factor of silica microtoroid resonant cavities,” Appl. Phys. Lett. 96, 153304 (2010).
    [Crossref]
  39. I. S. Grudinin, N. Yu, and L. Maleki, “Generation of optical frequency combs with a CaF2 resonator,” Opt. Lett. 34, 878–880 (2009).
    [Crossref]
  40. I. S. Grudinin, A. B. Matsko, and L. Maleki, “On the fundamental limits of Q factor of crystalline dielectric resonators,” Opt. Express 15, 3390–3395 (2007).
    [Crossref]
  41. J. Knittel, J. D. Swaim, D. L. McAuslan, G. A. Brawley, and W. P. Bowen, “Back-scatter based whispering gallery mode sensing,” Sci. Rep. 3, 2974 (2013).
    [Crossref]
  42. J. Xavier, S. Vincent, F. Meder, and F. Vollmer, “Advances in optoplasmonic sensors—combining optical nano/microcavities and photonic crystals with plasmonic nanostructures and nanoparticles,” Nanophotonics 7, 64 (2017).
    [Crossref]
  43. S. Frustaci and F. Vollmer, “Whispering-gallery mode (WGM) sensors: review of established and WGM-based techniques to study protein conformational dynamics,” Curr. Opin. Chem. Biol. 51, 66–73 (2019).
    [Crossref]
  44. Y. Zhang, T. Zhou, B. Han, A. Zhang, and Y. Zhao, “Optical bio-chemical sensors based on whispering gallery mode resonators,” Nanoscale 10, 13832–13856 (2018).
    [Crossref]
  45. A. K. Mallik, G. Farrell, D. Liu, V. Kavungal, Q. Wu, and Y. Semenova, “Silica gel coated spherical micro resonator for ultra-high sensitivity detection of ammonia gas concentration in air,” Sci. Rep. 8, 1620 (2018).
    [Crossref]
  46. B.-B. Li, J. Bílek, U. B. Hoff, L. S. Madsen, S. Forstner, V. Prakash, C. Schäfermeier, T. Gehring, W. P. Bowen, and U. L. Andersen, “Quantum enhanced optomechanical magnetometry,” Optica 5, 850–856 (2018).
    [Crossref]
  47. A. B. Socorro, S. Soltani, I. Del Villar, J. M. Corres, and A. M. Armani, “Temperature sensor based on a hybrid ITO-silica resonant cavity,” Opt. Express 23, 1930–1937 (2015).
    [Crossref]
  48. J. Nishimura, M. Kobayashi, R. Saito, and T. Tanabe, “NaCl ion detection using a silica toroid microcavity,” Appl. Opt. 54, 6391–6396 (2015).
    [Crossref]
  49. S. Mehrabani, A. Maker, and A. Armani, “Hybrid integrated label-free chemical and biological sensors,” Sensors 14, 5890–5928 (2014).
    [Crossref]
  50. A. J. Maker and A. M. Armani, “Heterodyned toroidal microlaser sensor,” Appl. Phys. Lett. 103, 123302 (2013).
    [Crossref]
  51. H. K. Hunt and A. M. Armani, “Label-free biological and chemical sensors,” Nanoscale 2, 1544–1559 (2010).
    [Crossref]
  52. M. Himmelhaus and A. Francois, “In-vitro sensing of biomechanical forces in live cells by a whispering gallery mode biosensor,” Biosens. Bioelectron. 25, 418–427 (2009).
    [Crossref]
  53. T. Ioppolo, M. Kozhevnikov, V. Stepaniuk, M. V. Ötügen, and V. Sheverev, “Micro-optical force sensor concept based on whispering gallery mode resonators,” Appl. Opt. 47, 3009–3014 (2008).
    [Crossref]
  54. V. Zamora, A. Díez, M. V. Andrés, and B. Gimeno, “Refractometric sensor based on whispering-gallery modes of thin capillaries,” Opt. Express 15, 12011–12016 (2007).
    [Crossref]
  55. A. Schweinsberg, S. Hocdé, N. N. Lepeshkin, R. W. Boyd, C. Chase, and J. E. Fajardo, “An environmental sensor based on an integrated optical whispering gallery mode disk resonator,” Sens. Actuators B Chem. 123, 727–732 (2007).
    [Crossref]
  56. A. B. Matsko, A. A. Savchenkov, V. S. Ilchenko, and L. Maleki, “Optical gyroscope with whispering gallery mode optical cavities,” Opt. Commun. 233, 107–112 (2004).
    [Crossref]
  57. B.-B. Li, Y.-F. Xiao, M.-Y. Yan, W. R. Clements, and Q. Gong, “Low-threshold Raman laser from an on-chip, high-Q, polymer-coated microcavity,” Opt. Lett. 38, 1802–1804 (2013).
    [Crossref]
  58. Z.-F. Bi, A. W. Rodriguez, H. Hashemi, D. Duchesne, M. Loncar, K.-M. Wang, and S. G. Johnson, “High-efficiency second-harmonic generation in doubly-resonant χ(2) microring resonators,” Opt. Express 20, 7526–7543 (2012).
    [Crossref]
  59. G. Bahl, X. Fan, and T. Carmon, “Acoustic whispering-gallery modes in optomechanical shells,” New J. Phys. 14, 115026 (2012).
    [Crossref]
  60. D. Braje, L. Hollberg, and S. Diddams, “Brillouin-enhanced hyperparametric generation of an optical frequency comb in a monolithic highly nonlinear fiber cavity pumped by a cw laser,” Phys. Rev. Lett. 102, 193902 (2009).
    [Crossref]
  61. T. Kippenberg, S. Spillane, and K. Vahala, “Kerr-nonlinearity optical parametric oscillation in an ultrahigh-Q toroid microcavity,” Phys. Rev. Lett. 93, 083904 (2004).
    [Crossref]
  62. S. Janz, Y. Beaulieu, A. Fiore, P. Bravetti, V. Berger, E. Rosencher, and J. Nagle, “Surface emitted second-harmonic generation from a quasi-phase matched waveguide in an AlxGa1-xAs/Al2O3 microcavity,” Opt. Express 2, 462–470 (1998).
    [Crossref]
  63. C. Simonneau, J. P. Debray, J. C. Harmand, P. Vidaković, D. J. Lovering, and J. A. Levenson, “Second-harmonic generation in a doubly resonant semiconductor microcavity,” Opt. Lett. 22, 1775–1777 (1997).
    [Crossref]
  64. V. Berger, “Second-harmonic generation in monolithic cavities,” J. Opt. Soc. Am. B 14, 1351–1360 (1997).
    [Crossref]
  65. M. Mitchell, B. Khanaliloo, D. P. Lake, T. Masuda, J. P. Hadden, and P. E. Barclay, “Single-crystal diamond low-dissipation cavity optomechanics,” Optica 3, 963–970 (2016).
    [Crossref]
  66. K. H. Lee, T. G. McRae, G. I. Harris, J. Knittel, and W. P. Bowen, “Cooling and control of a cavity optoelectromechanical system,” Phys. Rev. Lett. 104, 123604 (2010).
    [Crossref]
  67. Y.-S. Park and H. Wang, “Resolved-sideband and cryogenic cooling of an optomechanical resonator,” Nat. Phys. 5, 489–493 (2009).
    [Crossref]
  68. S. Zhu, B. Xiao, B. Jiang, L. Shi, and X. Zhang, “Tunable Brillouin and Raman microlasers using hybrid microbottle resonators,” Nanophotonics 8, 931–940 (2019).
    [Crossref]
  69. S. Soltani, V. M. Diep, R. Zeto, and A. M. Armani, “Stimulated anti-Stokes Raman emission generated by gold nanorod coated optical resonators,” ACS Photon. 5, 3550–3556 (2018).
    [Crossref]
  70. P. Latawiec, V. Venkataraman, A. Shams-Ansari, M. Markham, and M. Lončar, “Integrated diamond Raman laser pumped in the near-visible,” Opt. Lett. 43, 318–321 (2018).
    [Crossref]
  71. Y. Chen, Z.-H. Zhou, C.-L. Zou, Z. Shen, G.-C. Guo, and C.-H. Dong, “Tunable Raman laser in a hollow bottle-like microresonator,” Opt. Express 25, 16879–16887 (2017).
    [Crossref]
  72. Y. Yang, Y. Ooka, R. M. Thompson, J. M. Ward, and S. N. Chormaic, “Degenerate four-wave mixing in a silica hollow bottle-like microresonator,” Opt. Lett. 41, 575–578 (2016).
    [Crossref]
  73. H. Choi and A. M. Armani, “High efficiency Raman lasers based on Zr-doped silica hybrid microcavities,” ACS Photon. 3, 2383–2388 (2016).
    [Crossref]
  74. C. Milian, A. V. Gorbach, M. Taki, A. V. Yulin, and D. V. Skryabin, “Solitons and frequency combs in silica microring resonators: interplay of the Raman and higher-order dispersion effects,” Phys. Rev. A 92, 033851 (2015).
    [Crossref]
  75. N. Deka, A. J. Maker, and A. M. Armani, “Titanium-enhanced Raman microcavity laser,” Opt. Lett. 39, 1354–1357 (2014).
    [Crossref]
  76. J. A. Haigh, A. Nunnenkamp, A. J. Ramsay, and A. J. Ferguson, “Triple-resonant Brillouin light scattering in magneto-optical cavities,” Phys. Rev. Lett. 117, 133602 (2016).
    [Crossref]
  77. J. Kim, M. C. Kuzyk, K. Han, H. Wang, and G. Bahl, “Non-reciprocal Brillouin scattering induced transparency,” Nat. Phys. 11, 275–280 (2015).
    [Crossref]
  78. C.-H. Dong, Z. Shen, C.-L. Zou, Y.-L. Zhang, W. Fu, and G.-C. Guo, “Brillouin-scattering-induced transparency and non-reciprocal light storage,” Nat. Commun. 6, 6193 (2015).
    [Crossref]
  79. G. Lin, S. Diallo, K. Saleh, R. Martinenghi, J.-C. Beugnot, T. Sylvestre, and Y. K. Chembo, “Cascaded Brillouin lasing in monolithic barium fluoride whispering gallery mode resonators,” Appl. Phys. Lett. 105, 231103 (2014).
    [Crossref]
  80. G. Bahl, M. Tomes, F. Marquardt, and T. Carmon, “Observation of spontaneous Brillouin cooling,” Nat. Phys. 8, 203–207 (2012).
    [Crossref]
  81. I. S. Grudinin, A. B. Matsko, and L. Maleki, “Brillouin lasing with a CaF2 whispering gallery mode resonator,” Phys. Rev. Lett. 102, 043902 (2009).
    [Crossref]
  82. K. A. Knapper, F. Pan, M. T. Rea, E. H. Horak, J. D. Rogers, and R. H. Goldsmith, “Single-particle photothermal imaging via inverted excitation through high-Q all-glass toroidal microresonators,” Opt. Express 26, 25020–25030 (2018).
    [Crossref]
  83. K. A. Knapper, E. H. Horak, C. H. Vollbrecht, K. D. Heylman, and R. H. Goldsmith, “Phase-sensitive photothermal imaging of ultrahigh-Q polyoxide toroidal microresonators,” Appl. Phys. Lett. 113, 231105 (2018).
    [Crossref]
  84. S. Ramelow, A. Farsi, Z. Vernon, S. Clemmen, X. Ji, J. E. Sipe, M. Liscidini, M. Lipson, and A. L. Gaeta, “Strong nonlinear coupling in a Si3N4 ring resonator,” Phys. Rev. Lett. 122, 153906 (2019).
    [Crossref]
  85. D. W. Vogt, A. H. Jones, H. G. L. Schwefel, and R. Leonhardt, “Prism coupling of high-Q terahertz whispering-gallery-modes over two octaves from 0.2  THz to 1.1  THz,” Opt. Express 26, 31190–31198 (2018).
    [Crossref]
  86. M. Gorodetsky and V. Ilchenko, “Optical microsphere resonators: optimal coupling to high-Q whispering-gallery modes,” J. Opt. Soc. Am. B 16, 147–154 (1999).
    [Crossref]
  87. A. Yariv, “Universal relations for coupling of optical power between microresonators and dielectric waveguides,” Electron. Lett. 36, 321–322 (2000).
    [Crossref]
  88. M. Anderson, N. G. Pavlov, J. D. Jost, G. Lihachev, J. Liu, T. Morais, M. Zervas, M. L. Gorodetsky, and T. J. Kippenberg, “Highly efficient coupling of crystalline microresonators to integrated photonic waveguides,” Opt. Lett. 43, 2106–2109 (2018).
    [Crossref]
  89. G. Liu, V. S. Ilchenko, T. Su, Y.-C. Ling, S. Feng, K. Shang, Y. Zhang, W. Liang, A. A. Savchenkov, A. B. Matsko, L. Maleki, and S. J. Ben Yoo, “Low-loss prism-waveguide optical coupling for ultrahigh-Q low-index monolithic resonators,” Optica 5, 219–226 (2018).
    [Crossref]
  90. J. Liu, A. S. Raja, M. H. P. Pfeiffer, C. Herkommer, H. Guo, M. Zervas, M. Geiselmann, and T. J. Kippenberg, “Double inverse nanotapers for efficient light coupling to integrated photonic devices,” Opt. Lett. 43, 3200–3203 (2018).
    [Crossref]
  91. M. H. P. Pfeiffer, J. Liu, M. Geiselmann, and T. J. Kippenberg, “Coupling ideality of integrated planar high-Q microresonators,” Phys. Rev. Appl. 7, 024026 (2017).
    [Crossref]
  92. A. A. Savchenkov, H. Mahalingam, V. S. Ilchenko, S. Takahashi, A. B. Matsko, W. H. Steier, and L. Maleki, “Polymer waveguide couplers for fluorite microresonators,” IEEE Photon. Technol. Lett. 29, 667–670 (2017).
    [Crossref]
  93. G. A. Santamaría-Botello, L. E. G. Muñoz, F. Sedlmeir, S. Preu, D. Segovia-Vargas, K. A. Abdalmalak, S. L. Romano, A. G. Lampérez, S. Malzer, G. H. Döhler, H. G. L. Schwefel, and H. B. Weber, “Maximization of the optical intra-cavity power of whispering-gallery mode resonators via coupling prism,” Opt. Express 24, 26503–26514 (2016).
    [Crossref]
  94. V. S. Ilchenko, X. S. Yao, and L. Maleki, “Microsphere integration in active and passive photonics devices,” Proc. SPIE 3930, 154–162 (2000).
    [Crossref]
  95. S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, “Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics,” Phys. Rev. Lett. 91, 043902 (2003).
    [Crossref]
  96. V. S. Ilchenko and L. Maleki, “Novel whispering-gallery resonators for lasers, modulators, and sensors,” Proc. SPIE 4270, 120–130 (2001).
    [Crossref]
  97. A. A. Savchenkov, A. B. Matsko, D. Strekalov, V. S. Ilchenko, and L. Maleki, “Mode filtering in optical whispering gallery resonators,” Electron. Lett. 41, 495–497 (2005).
    [Crossref]
  98. R. Halir, Y. Okawachi, J. S. Levy, M. A. Foster, M. Lipson, and A. L. Gaeta, “Ultrabroadband supercontinuum generation in a CMOS-compatible platform,” Opt. Lett. 37, 1685–1687 (2012).
    [Crossref]
  99. G. Zhao, Ş. K. Özdemir, T. Wang, L. Xu, E. King, G.-L. Long, and L. Yang, “Raman lasing and Fano lineshapes in a packaged fiber-coupled whispering-gallery-mode microresonator,” Sci. Bull. 62(12), 875–878 (2017).
    [Crossref]
  100. P. E. Barclay, K. Srinivasan, O. Painter, B. Lev, and H. Mabuchi, “Integration of fiber-coupled high-Q SiNx microdisks with atom chips,” Appl. Phys. Lett. 89, 131108 (2006).
    [Crossref]
  101. A. M. Armani, A. Srinivasan, and K. J. Vahala, “Soft lithographic fabrication of high Q polymer microcavity arrays,” Nano Lett. 7, 1823–1826 (2007).
    [Crossref]
  102. M. J. Burek, Y. Chu, M. S. Z. Liddy, P. Patel, J. Rochman, S. Meesala, W. Hong, Q. Quan, M. D. Lukin, and M. Loncar, “High quality-factor optical nanocavities in bulk single-crystal diamond,” Nat. Commun. 5, 5718 (2014).
    [Crossref]
  103. J. Cardenas, C. B. Poitras, J. T. Robinson, K. Preston, L. Chen, and M. Lipson, “Low loss etchless silicon photonic waveguides,” Opt. Express 17, 4752–4757 (2009).
    [Crossref]
  104. D. Chen, A. Kovach, X. Shen, S. Poust, and A. M. Armani, “On-chip ultra-high-Q silicon oxynitride optical resonators,” ACS Photon. 4, 2376–2381 (2017).
    [Crossref]
  105. H. S. Choi, X. Zhang, and A. M. Armani, “Hybrid silica-polymer ultra-high-Q microresonators,” Opt. Lett. 35, 459–461 (2010).
    [Crossref]
  106. A. Gondarenko, J. S. Levy, and M. Lipson, “High confinement micron-scale silicon nitride high Q ring resonator,” Opt. Express 17, 11366–11370 (2009).
    [Crossref]
  107. B. J. M. Hausmann, I. B. Bulu, P. B. Deotare, M. McCutcheon, V. Venkataraman, M. L. Markham, D. J. Twitchen, and M. Loncar, “Integrated high-quality factor optical resonators in diamond,” Nano Lett. 13, 1898–1902 (2013).
    [Crossref]
  108. M. Lebental, J. Lauret, R. Hierle, and J. Zyss, “Highly directional stadium-shaped polymer microlasers,” Appl. Phys. Lett. 88, 031108 (2006).
    [Crossref]
  109. J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4, 37–40 (2010).
    [Crossref]
  110. J. Lin, Y. Xu, Z. Fang, M. Wang, J. Song, N. Wang, L. Qiao, W. Fang, and Y. Cheng, “Fabrication of high-Q lithium niobate microresonators using femtosecond laser micromachining,” Sci. Rep. 5, 8072 (2015).
    [Crossref]
  111. T. Ling, S.-L. Chen, and L. J. Guo, “Fabrication and characterization of high Q polymer micro-ring resonator and its application as a sensitive ultrasonic detector,” Opt. Express 19, 861–869 (2011).
    [Crossref]
  112. Z.-P. Liu, Y. Li, Y.-F. Xiao, B.-B. Li, X.-F. Jiang, Y. Qin, X.-B. Feng, H. Yang, and Q. Gong, “Direct laser writing of whispering gallery microcavities by two-photon polymerization,” Appl. Phys. Lett. 97, 211105 (2010).
    [Crossref]
  113. S. A. Miller, M. Yu, X. Ji, A. G. Griffith, J. Cardenas, A. L. Gaeta, and M. Lipson, “Low-loss silicon platform for broadband mid-infrared photonics,” Optica 4, 707–712 (2017).
    [Crossref]
  114. D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics,” Nat. Photonics 7, 597–607 (2013).
    [Crossref]
  115. J. Poon, Y. Huang, G. Paloczi, and A. Yariv, “Soft lithography replica molding of critically coupled polymer microring resonators,” IEEE Photon. Technol. Lett. 16, 2496–2498 (2004).
    [Crossref]
  116. J. K. S. Poon, J. Scheuer, Y. Xu, and A. Yariv, “Designing coupled-resonator optical waveguide delay lines,” J. Opt. Soc. Am. B 21, 1665–1673 (2004).
    [Crossref]
  117. J. K. S. Poon, L. Zhu, G. A. DeRose, and A. Yariv, “Polymer microring coupled-resonator optical waveguides,” J. Lightwave Technol. 24, 1843–1849 (2006).
    [Crossref]
  118. A. Savchenkov, V. Ilchenko, A. Matsko, and L. Maleki, “Kilohertz optical resonances in dielectric crystal cavities,” Phys. Rev. A 70, 051804 (2004).
    [Crossref]
  119. P. Xing, D. Ma, K. J. A. Ooi, J. W. Choi, A. M. Agarwal, and D. Tan, “CMOS-compatible PECVD silicon carbide platform for linear and nonlinear optics,” ACS Photon. 6, 1162–1167 (2019).
    [Crossref]
  120. K. Y. Yang, D. Y. Oh, S. H. Lee, Q.-F. Yang, X. Yi, B. Shen, H. Wang, and K. Vahala, “Bridging ultrahigh-Q devices and photonic circuits,” Nat. Photonics 12, 297–302 (2018).
    [Crossref]
  121. D. Armani, T. Kippenberg, S. Spillane, and K. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421, 925–928 (2003).
    [Crossref]
  122. I. Aharonovich, A. D. Greentree, and S. Prawer, “Diamond photonics,” Nat. Photonics 5, 397–405 (2011).
    [Crossref]
  123. Y. Zheng, Z. Fang, S. Liu, Y. Cheng, and X. Chen, “High-Q exterior whispering-gallery modes in a double-layer crystalline microdisk resonator,” Phys. Rev. Lett. 122, 253902 (2019).
    [Crossref]
  124. Z. Zhang, N. Yao, J. Pan, L. Zhang, W. Fang, and L. Tong, “A new route for fabricating polymer optical microcavities,” Nanoscale 11, 5203–5208 (2019).
    [Crossref]
  125. M. H. P. Pfeiffer, C. Herkommer, J. Liu, T. Morais, M. Zervas, M. Geiselmann, and T. J. Kippenberg, “Photonic Damascene process for low-loss, high-confinement silicon nitride waveguides,” IEEE J. Sel. Top. Quantum Electron. 24, 6101411 (2018).
    [Crossref]
  126. A. M. Flatae, M. Burresi, H. Zeng, S. Nocentini, S. Wiegele, C. Parmeggiani, H. Kalt, and D. Wiersma, “Optically controlled elastic microcavities,” Light Sci. Appl. 4, e282 (2015).
    [Crossref]
  127. B. R. Sutherland, S. Hoogland, M. M. Adachi, C. T. O. Wong, and E. H. Sargent, “Conformal organohalide perovskites enable lasing on spherical resonators,” ACS Nano 8, 10947–10952 (2014).
    [Crossref]
  128. B. J. M. Hausmann, I. Bulu, V. Venkataraman, P. Deotare, and M. Loncar, “Diamond nonlinear photonics,” Nat. Photonics 8, 369–374 (2014).
    [Crossref]
  129. X. Zhang and A. M. Armani, “Silica microtoroid resonator sensor with monolithically integrated waveguides,” Opt. Express 21, 23592–23602 (2013).
    [Crossref]
  130. K. Luke, A. Dutt, C. B. Poitras, and M. Lipson, “Overcoming Si3N4 film stress limitations for high quality factor ring resonators,” Opt. Express 21, 22829–22833 (2013).
    [Crossref]
  131. T. Beck, S. Schloer, T. Grossmann, T. Mappes, and H. Kalt, “Flexible coupling of high-Q goblet resonators for formation of tunable photonic molecules,” Opt. Express 20, 22012–22017 (2012).
    [Crossref]
  132. G. S. Murugan, M. N. Petrovich, Y. Jung, J. S. Wilkinson, and M. N. Zervas, “Hollow-bottle optical microresonators,” Opt. Express 19, 20773–20784 (2011).
    [Crossref]
  133. T. Grossmann, S. Schleede, M. Hauser, T. Beck, M. Thiel, G. von Freymann, T. Mappes, and H. Kalt, “Direct laser writing for active and passive high-Q polymer microdisks on silicon,” Opt. Express 19, 11451–11456 (2011).
    [Crossref]
  134. M. Larsson, K. N. Dinyari, and H. Wang, “Composite optical microcavity of diamond nanopillar and silica microsphere,” Nano Lett. 9, 1447–1450 (2009).
    [Crossref]
  135. T. Baehr-Jones, M. Hochberg, C. Walker, and A. Scherer, “High-Q ring resonators in thin silicon-on-insulator,” Appl. Phys. Lett. 85, 3346–3347 (2004).
    [Crossref]
  136. G. Li, P. Liu, X. Jiang, C. Yang, J. Ma, H. Wu, and M. Xiao, “High-Q silica microdisk optical resonators with large wedge angles on a silicon chip,” Photon. Res. 3, 279–282 (2015).
    [Crossref]
  137. M. Soltani, S. Yegnanarayanan, and A. Adibi, “Ultra-high Q planar silicon microdisk resonators for chip-scale silicon photonics,” Opt. Express 15, 4694–4704 (2007).
    [Crossref]
  138. T. J. Kippenberg, S. M. Spillane, D. K. Armani, and K. J. Vahala, “Fabrication and coupling to planar high-Q silica disk microcavities,” Appl. Phys. Lett. 83, 797–799 (2003).
    [Crossref]
  139. V. Almeida, C. Barrios, R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431, 1081–1084 (2004).
    [Crossref]
  140. L. He, M. Zhang, A. Shams-Ansari, R. Zhu, C. Wang, and L. Marko, “Low-loss fiber-to-chip interface for lithium niobate photonic integrated circuits,” Opt. Lett. 44, 2314–2317 (2019).
    [Crossref]
  141. D. T. Spencer, T. Drake, T. C. Briles, J. Stone, L. C. Sinclair, C. Fredrick, Q. Li, D. Westly, B. R. Ilic, A. Bluestone, N. Volet, T. Komljenovic, L. Chang, S. H. Lee, D. Y. Oh, M.-G. Suh, K. Y. Yang, M. H. P. Pfeiffer, T. J. Kippenberg, E. Norberg, L. Theogarajan, K. Vahala, N. R. Newbury, K. Srinivasan, J. E. Bowers, S. A. Diddams, and S. B. Papp, “An optical-frequency synthesizer using integrated photonics,” Nature 557, 81–85 (2018).
    [Crossref]
  142. S. Mookherjea and A. Yariv, “Coupled resonator optical waveguides,” IEEE J. Sel. Top. Quantum Electron. 8, 448–456 (2002).
    [Crossref]
  143. M. Bahadori, M. Nikdast, S. Rumley, L. Y. Dai, N. Janosik, T. Van Vaerenbergh, A. Gazman, Q. Cheng, R. Polster, and K. Bergman, “Design space exploration of microring resonators in silicon photonic interconnects: impact of the ring curvature,” J. Lightwave Technol. 36, 2767–2782 (2018).
    [Crossref]
  144. V. Ilchenko and A. Matsko, “Optical resonators with whispering-gallery modes - part II: applications,” IEEE J. Sel. Top. Quantum Electron. 12, 15–32 (2006).
    [Crossref]
  145. Ş. K. Özdemir, S. Rotter, F. Nori, and L. Yang, “Parity-time symmetry and exceptional points in photonics,” Nat. Mater. 18, 783–798 (2019).
    [Crossref]
  146. D. Martyshkin, V. Fedorov, T. Kesterson, S. Vasilyev, H. Gu, J. Liu, W. Weng, K. Vodopyanov, T. J. Kippenberg, and S. Mirov, “Visible-near-middle infrared spanning supercontinuum generation in a silicon nitride (Si3N4) waveguide,” Opt. Mater. Express 9, 2553–2559 (2019).
    [Crossref]
  147. Y. Chen Tao, X. D. Wang, and L. S. Liao, “Active whispering-gallery-mode optical microcavity based on self-assembled organic microspheres,” J. Mater. Chem. C 7, 3443–3446 (2019).
    [Crossref]
  148. I. I. Arkhipov, A. Miranowicz, O. Di Stefano, R. Stassi, S. Savasta, F. Nori, and Ş. K. Özdemir, “Scully-Lamb quantum laser model for parity-time-symmetric whispering-gallery microcavities: gain saturation effects and nonreciprocity,” Phys. Rev. A 99, 053806 (2019).
    [Crossref]
  149. C. Xu, F. Qin, Q. Zhu, J. Lu, Y. Wang, J. Li, Y. Lin, Q. Cui, Z. Shi, and A. G. Manohari, “Plasmon-enhanced ZnO whispering-gallery mode lasing,” Nano Res. 11, 3050–3064 (2018).
    [Crossref]
  150. J. B. Surya, X. Guo, C.-L. Zou, and H. X. Tang, “Efficient third-harmonic generation in composite aluminum nitride/silicon nitride microrings,” Optica 5, 103–108 (2018).
    [Crossref]
  151. T. Siegle, J. Kellerer, M. Bonenberger, S. Krämmer, C. Klusmann, M. Müller, and H. Kalt, “Comparison of various excitation and detection schemes for dye-doped polymeric whispering gallery mode micro-lasers,” Opt. Express 26, 3579–3593 (2018).
    [Crossref]
  152. Z. Chen, G. Lou, H. Zhu, A. Chen, Y. Wu, Y. Ren, J. Li, Z. Qiu, X. Gui, and Z. Tang, “Enhancement of two-photon absorption photoresponse based on whispering gallery modes,” Nanoscale 10, 14047–14054 (2018).
    [Crossref]
  153. C. Zhou and P. Bermel, “High-efficiency cascaded up and down conversion in nonlinear Kerr cavities,” Opt. Express 23, 24390–24406 (2015).
    [Crossref]
  154. C. Guo, K. Che, P. Zhang, J. Wu, Y. Huang, H. Xu, and Z. Cai, “Low-threshold stimulated Brillouin scattering in high-Q whispering gallery mode tellurite microspheres,” Opt. Express 23, 32261–32266 (2015).
    [Crossref]
  155. J. S. Levy, M. A. Foster, A. L. Gaeta, and M. Lipson, “Harmonic generation in silicon nitride ring resonators,” Opt. Express 19, 11415–11421 (2011).
    [Crossref]
  156. A. Faraon, P. E. Barclay, C. Santori, K.-M. C. Fu, and R. G. Beausoleil, “Resonant enhancement of the zero-phonon emission from a colour centre in a diamond cavity,” Nat. Photonics 5, 301–305 (2011).
    [Crossref]
  157. S. Spillane, T. Kippenberg, and K. Vahala, “Ultralow-threshold Raman laser using a spherical dielectric microcavity,” Nature 415, 621–623 (2002).
    [Crossref]
  158. M. Berggren, A. Dodabalapur, Z. Bao, and R. Slusher, “Solid-state droplet laser made from an organic blend with a conjugated polymer emitter,” Adv. Mater. 9, 968–971 (1997).
    [Crossref]
  159. J. Hofer, A. Schliesser, and T. J. Kippenberg, “Cavity optomechanics with ultrahigh-Q crystalline microresonators,” Phys. Rev. A 82, 031804 (2010).
    [Crossref]
  160. M. Ghulinyan, D. Navarro-Urrios, A. Pitanti, A. Lui, G. Pucker, and L. Pavesi, “Whispering-gallery modes and light emission from a Si-nanocrystal-based single microdisk resonator,” Opt. Express 16, 13218–13224 (2008).
    [Crossref]
  161. X. Zhang, Y. F. Cheung, Y. Zhang, and H. W. Choi, “Whispering-gallery mode lasing from optically free-standing InGaN microdisks,” Opt. Lett. 39, 5614–5617 (2014).
    [Crossref]
  162. G. Agrawal, Nonlinear Fiber Optics, 5th ed. (Academic, 2013).
  163. Y. Feng, Y. Zheng, F. Zhang, J. Yang, T. Qin, and W. Wan, “Passive fine-tuning of microcavity whispering gallery mode for nonlinear optics by thermo-optical effect,” Appl. Phys. Lett. 114, 101103 (2019).
    [Crossref]
  164. L. Chen, Q. Xu, M. G. Wood, and R. M. Reano, “Hybrid silicon and lithium niobate electro-optical ring modulator,” Optica 1, 112–118 (2014).
    [Crossref]
  165. L. Koehler, P. Chevalier, E. Shim, B. Desiatov, A. Shams-Ansari, M. Piccardo, Y. Okawachi, M. Yu, M. Loncar, M. Lipson, A. L. Gaeta, and F. Capasso, “Direct thermo-optical tuning of silicon microresonators for the mid-infrared,” Opt. Express 26, 34965–34976 (2018).
    [Crossref]
  166. S. Soltani and A. M. Armani, “Optothermal transport behavior in whispering gallery mode optical cavities,” Appl. Phys. Lett. 105, 051111 (2014).
    [Crossref]
  167. H. S. Choi and A. M. Armani, “Thermal nonlinear effects in hybrid optical microresonators,” Appl. Phys. Lett. 97, 223306 (2010).
    [Crossref]
  168. D. Armani, B. Min, A. Martin, and K. J. Vahala, “Electrical thermo-optic tuning of ultrahigh-Q microtoroid resonators,” Appl. Phys. Lett. 85, 5439–5441 (2004).
    [Crossref]
  169. Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435, 325–327 (2005).
    [Crossref]
  170. T. Wang, M. Wang, Y.-Q. Hu, and G.-L. Long, “Optothermal control of the Raman gain enhanced ringing in microresonators,” Europhys. Lett. 124, 14002 (2018).
    [Crossref]
  171. C. Bekker, C. G. Baker, R. Kalra, H.-H. Cheng, B.-B. Li, V. Prakash, and W. P. Bowen, “Free spectral range electrical tuning of a high quality on-chip microcavity,” Opt. Express 26, 33649–33670 (2018).
    [Crossref]
  172. L. Yu, Y. Yin, Y. Shi, D. Dai, and S. He, “Thermally tunable silicon photonic microdisk resonator with transparent graphene nanoheaters,” Optica 3, 159–166 (2016).
    [Crossref]
  173. B. Yao, S.-W. Huang, Y. Liu, A. K. Vinod, C. Choi, M. Hoff, Y. Li, M. Yu, Z. Feng, D.-L. Kwong, Y. Huang, Y. Rao, X. Duan, and C. W. Wong, “Gate-tunable frequency combs in graphene-nitride microresonators,” Nature 558, 410–414 (2018).
    [Crossref]
  174. W. Yoshiki and T. Tanabe, “All-optical switching using Kerr effect in a silica toroid microcavity,” Opt. Express 22, 24332–24341 (2014).
    [Crossref]
  175. J. M. Shainline, G. Fernandes, Z. Liu, and J. Xu, “Broad tuning of whispering-gallery modes in silicon microdisks,” Opt. Express 18, 14345–14352 (2010).
    [Crossref]
  176. A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, I. Solomatine, D. Seidel, and L. Maleki, “Tunable optical frequency comb with a crystalline whispering gallery mode resonator,” Phys. Rev. Lett. 101, 093902 (2008).
    [Crossref]
  177. P. Dong, S. Liao, D. Feng, H. Liang, D. Zheng, R. Shafiiha, C.-C. Kung, W. Qian, G. Li, X. Zheng, A. V. Krishnamoorthy, and M. Asghari, “Low Vpp, ultralow-energy, compact, high-speed silicon electro-optic modulator,” Opt. Express 17, 22484–22490 (2009).
    [Crossref]
  178. R. Henze, T. Seifert, J. Ward, and O. Benson, “Tuning whispering gallery modes using internal aerostatic pressure,” Opt. Lett. 36, 4536–4538 (2011).
    [Crossref]
  179. T. Ioppolo and M. V. Ötügen, “Pressure tuning of whispering gallery mode resonators,” J. Opt. Soc. Am. B 24, 2721–2726 (2007).
    [Crossref]
  180. V. S. Il’chenko and M. L. Gorodetskii, “Thermal nonlinear effects in optical whispering gallery microresonators,” Laser Phys. 2, 1004–1009 (1992).
  181. V. Almeida and M. Lipson, “Optical bistability on a silicon chip,” Opt. Lett. 29, 2387–2389 (2004).
    [Crossref]
  182. R. Haldar, A. Roy, P. Mondal, V. Mishra, and S. K. Varshney, “Free-carrier-driven Kerr frequency comb in optical microcavities: steady state, bistability, self-pulsation, and modulation instability,” Phys. Rev. A 99, 033848 (2019).
    [Crossref]
  183. C. Joshi, J. K. Jang, K. Luke, X. Ji, S. A. Miller, A. Klenner, Y. Okawachi, M. Lipson, and A. L. Gaeta, “Thermally controlled comb generation and soliton modelocking in microresonators,” Opt. Lett. 41, 2565–2568 (2016).
    [Crossref]
  184. D. Rezzonico, M. Jazbinsek, A. Guarino, O.-P. Kwon, and P. Günter, “Electro-optic charon polymeric microring modulators,” Opt. Express 16, 613–627 (2008).
    [Crossref]
  185. W. D. Sacher and J. K. S. Poon, “Dynamics of microring resonator modulators,” Opt. Express 16, 15741–15753 (2008).
    [Crossref]
  186. Q. Xu, S. Manipatruni, B. Schmidt, J. Shakya, and M. Lipson, “12.5 Gbit/s carrier-injection-based silicon micro-ring silicon modulators,” Opt. Express 15, 430–436 (2007).
    [Crossref]
  187. V. Ilchenko, A. Savchenkov, A. Matsko, and L. Maleki, “Nonlinear optics and crystalline whispering gallery mode cavities,” Phys. Rev. Lett. 92, 043903 (2004).
    [Crossref]
  188. I. Ricciardi, S. Mosca, M. Parisi, P. Maddaloni, L. Santamaria, P. De Natale, and M. De Rosa, “Frequency comb generation in quadratic nonlinear media,” Phys. Rev. A 91, 063839 (2015).
    [Crossref]
  189. F. Leo, T. Hansson, I. Ricciardi, M. De Rosa, S. Coen, S. Wabnitz, and M. Erkintalo, “Walk-off-induced modulation instability, temporal pattern formation, and frequency comb generation in cavity-enhanced second-harmonic generation,” Phys. Rev. Lett. 116, 033901 (2016).
    [Crossref]
  190. F. Leo, T. Hansson, I. Ricciardi, M. De Rosa, S. Coen, S. Wabnitz, and M. Erkintalo, “Frequency-comb formation in doubly resonant second-harmonic generation,” Phys. Rev. A 93, 043831 (2016).
    [Crossref]
  191. T. Hansson, F. Leo, M. Erkintalo, S. Coen, I. Ricciardi, M. De Rosa, and S. Wabnitz, “Singly resonant second-harmonic-generation frequency combs,” Phys. Rev. A 95, 013805 (2017).
    [Crossref]
  192. T. Hansson, F. Leo, M. Erkintalo, J. Anthony, S. Coen, I. Ricciardi, M. D. Rosa, and S. Wabnitz, “Single envelope equation modeling of multi-octave comb arrays in microresonators with quadratic and cubic nonlinearities,” J. Opt. Soc. Am. B 33, 1207–1215 (2016).
    [Crossref]
  193. P. Butcher and D. Cotter, The Elements of Nonlinear Optics (Cambridge University, 1991).
  194. R. W. Boyd, Nonlinear Optics (Academic, 2008).
  195. L. A. Lugiato, F. Prati, M. L. Gorodetsky, and T. J. Kippenberg, “From the Lugiato-Lefever equation to microresonator-based soliton Kerr frequency combs,” Philos. Trans. R. Soc. A 376, 20180113 (2018).
    [Crossref]
  196. L. A. Lugiato and R. Lefever, “Spatial dissipative structures in passive optical systems,” Phys. Rev. Lett. 58, 2209–2211 (1987).
    [Crossref]
  197. K. Ikeda, H. Daido, and O. Akimoto, “Optical turbulence: chaotic behavior of transmitted light from a ring cavity,” Phys. Rev. Lett. 45, 709–712 (1980).
    [Crossref]
  198. K. Ikeda, “Multiple-valued stationary state and its instability of the transmitted light by a ring cavity system,” Opt. Commun. 30, 257–261 (1979).
    [Crossref]
  199. M. Haelterman, S. Trillo, and S. Wabnitz, “Dissipative modulation instability in a nonlinear dispersive ring cavity,” Opt. Commun. 91, 401–407 (1992).
    [Crossref]
  200. V. E. Zakharov and A. B. Shabat, “Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of wave in nonlinear media,” Sov. Phys. JETP 34, 62–69 (1972).
  201. I. Barashenkov, M. Bogdan, and V. Korobov, “Stability diagram of the phase-locked solitons in the parametrically driven, damped nonlinear Schrödinger equation,” Europhys. Lett. 15, 113 (1991).
    [Crossref]
  202. I. Barashenkov and Y. Smirnov, “Existence and stability chart for the ac-driven, damped nonlinear Schrödinger solitons,” Phys. Rev. E 54, 5707–5725 (1996).
    [Crossref]
  203. A. A. Savchenkov, A. B. Matsko, D. Strekalov, M. Mohageg, V. S. Ilchenko, and L. Maleki, “Low threshold optical oscillations in a whispering gallery mode CaF2 resonator,” Phys. Rev. Lett. 93, 243905 (2004).
    [Crossref]
  204. A. Matsko, A. Savchenkov, D. Strekalov, V. Ilchenko, and L. Maleki, “Optical hyperparametric oscillations in a whispering-gallery-mode resonator: threshold and phase diffusion,” Phys. Rev. A 71, 033804 (2005).
    [Crossref]
  205. Y. K. Chembo and N. Yu, “Modal expansion approach to optical-frequency-comb generation with monolithic whispering-gallery-mode resonators,” Phys. Rev. A 82, 033801 (2010).
    [Crossref]
  206. Y. K. Chembo, D. V. Strekalov, and N. Yu, “Spectrum and dynamics of optical frequency combs generated with monolithic whispering gallery mode resonators,” Phys. Rev. Lett. 104, 103902 (2010).
    [Crossref]
  207. A. B. Matsko, A. A. Savchenkov, W. Liang, V. S. Ilchenko, D. Seidel, and L. Maleki, “Whispering gallery mode oscillators and optical comb generators,” in Frequency Standards and Metrology (World Scientific, 2009), pp. 539–558.
  208. A. Matsko, A. Savchenkov, W. Liang, V. Ilchenko, D. Seidel, and L. Maleki, “Mode-locked Kerr frequency combs,” Opt. Lett. 36, 2845–2847 (2011).
    [Crossref]
  209. A. Matsko and L. Maleki, “On timing jitter of mode locked Kerr frequency combs,” Opt. Express 21, 28862–28876 (2013).
    [Crossref]
  210. K. Saha, Y. Okawachi, B. Shim, J. Levy, R. Salem, A. Johnson, M. Foster, M. Lamont, M. Lipson, and A. Gaeta, “Modelocking and femtosecond pulse generation in chip-based frequency combs,” Opt. Express 21, 1335–1343 (2013).
    [Crossref]
  211. T. Herr, V. Brasch, J. D. Jost, C. Y. Wang, N. M. Kondratiev, M. L. Gorodetsky, and T. J. Kippenberg, “Temporal solitons in optical microresonators,” Nat. Photonics 8, 145–152 (2014).
    [Crossref]
  212. Y. K. Chembo and C. R. Menyuk, “Spatiotemporal Lugiato-Lefever formalism for Kerr-comb generation in whispering-gallery-mode resonators,” Phys. Rev. A 87, 053852 (2013).
    [Crossref]
  213. S. Coen, H. Randle, T. Sylvestre, and M. Erkintalo, “Modeling of octave-spanning Kerr frequency combs using a generalized mean-field Lugiato-Lefever model,” Opt. Lett. 38, 37–39 (2013).
    [Crossref]
  214. T. Hansson and S. Wabnitz, “Frequency comb generation beyond the Lugiato-Lefever equation: multi-stability and super cavity solitons,” J. Opt. Soc. Am. B 32, 1259–1266 (2015).
    [Crossref]
  215. A. Pasquazi, M. Peccianti, L. Razzari, D. J. Moss, S. Coen, M. Erkintalo, Y. K. Chembo, T. Hansson, S. Wabnitz, P. Del’Haye, X. Xue, A. M. Weiner, and R. Morandotti, “Micro-combs: a novel generation of optical sources,” Phys. Rep. 729, 1–81 (2018).
    [Crossref]
  216. T. J. Kippenberg, A. L. Gaeta, M. Lipson, and M. L. Gorodetsky, “Dissipative Kerr solitons in optical microresonators,” Science 361, eaan8083 (2018).
    [Crossref]
  217. T. Herr, V. Brasch, J. D. Jost, I. Mirgorodskiy, G. Lihachev, M. L. Gorodetsky, and T. J. Kippenberg, “Mode spectrum and temporal soliton formation in optical microresonators,” Phys. Rev. Lett. 113, 123901 (2014).
    [Crossref]
  218. A. Matsko, W. Liang, A. Savchenkov, D. Eliyahu, and L. Maleki, “Optical Cherenkov radiation in overmoded microresonators,” Opt. Lett. 41, 2907–2910 (2016).
    [Crossref]
  219. Q.-F. Yang, X. Yi, K. Yang, and K. Vahala, “Spatial-mode-interaction-induced dispersive waves and their active tuning in microresonators,” Optica 3, 1132–1135 (2016).
    [Crossref]
  220. V. Brasch, M. Geiselmann, T. Herr, G. Lihachev, M. Pfeiffer, M. Gorodetsky, and T. Kippenberg, “Photonic chip-based optical frequency comb using soliton Cherenkov radiation,” Science 351, 357–360 (2016).
    [Crossref]
  221. C. Bao, H. Taheri, L. Zhang, A. Matsko, Y. Yan, P. Liao, L. Maleki, and A. Willner, “High-order dispersion in Kerr comb oscillators,” J. Opt. Soc. Am. B 34, 715–725 (2017).
    [Crossref]
  222. C. Milian and D. V. Skryabin, “Soliton families and resonant radiation in a micro-ring resonator near zero group-velocity dispersion,” Opt. Express 22, 3732–3739 (2014).
    [Crossref]
  223. H. Taheri and A. B. Matsko, “Quartic dissipative solitons in optical Kerr cavities,” Opt. Lett. 44, 3086–3089 (2019).
    [Crossref]
  224. H. Taheri, A. Eftekhar, K. Wiesenfeld, and A. Adibi, “Soliton formation in whispering-gallery-mode resonators via input phase modulation,” IEEE Photon. J. 7, 2200309 (2015).
    [Crossref]
  225. V. Lobanov, G. Lihachev, and M. Gorodetsky, “Generation of platicons and frequency combs in optical microresonators with normal GVD by modulated pump,” Europhys. Lett. 112, 54008 (2015).
    [Crossref]
  226. V. Lobanov, G. Lihachev, N. Pavlov, A. Cherenkov, T. Kippenberg, and M. Gorodetsky, “Harmonization of chaos into a soliton in Kerr frequency combs,” Opt. Express 24, 27382–27394 (2016).
    [Crossref]
  227. D. Strekalov and N. Yu, “Generation of optical combs in a whispering gallery mode resonator from a bichromatic pump,” Phys. Rev. A 79, 041805 (2009).
    [Crossref]
  228. T. Hansson and S. Wabnitz, “Bichromatically pumped microresonator frequency combs,” Phys. Rev. A 90, 013811 (2014).
    [Crossref]
  229. H. Taheri, A. Matsko, and L. Maleki, “Optical lattice trap for Kerr solitons,” Eur. Phys. J. D 71, 153 (2017).
    [Crossref]
  230. R. J. Weiblen and I. Vurgaftman, “Bichromatic pumping in mid-infrared microresonator frequency combs with higher-order dispersion,” Opt. Express 27, 4238–4260 (2019).
    [Crossref]
  231. H. Taheri and A. B. Matsko, “Dually-pumped Kerr microcombs for spectrally pure radio frequency signal generation and time-keeping,” Proc. SPIE 10904, 109040P (2019).
    [Crossref]
  232. E. Obrzud, S. Lecomte, and T. Herr, “Temporal solitons in microresonators driven by optical pulses,” Nat. Photonics 11, 600–607 (2017).
    [Crossref]
  233. M. Karpov, H. Guo, A. Kordts, V. Brasch, M. H. P. Pfeiffer, M. Zervas, M. Geiselmann, and T. J. Kippenberg, “Raman self-frequency shift of dissipative Kerr solitons in an optical microresonator,” Phys. Rev. Lett. 116, 103902 (2016).
    [Crossref]
  234. X. Yi, Q.-F. Yang, K. Y. Yang, and K. Vahala, “Theory and measurement of the soliton self-frequency shift and efficiency in optical microcavities,” Opt. Lett. 41, 3419–3422 (2016).
    [Crossref]
  235. D. C. Cole, E. S. Lamb, P. Del’Haye, S. A. Diddams, and S. B. Papp, “Soliton crystals in Kerr resonators,” Nat. Photonics 11, 671–676 (2017).
    [Crossref]
  236. T. Kobatake, T. Kato, H. Itobe, Y. Nakagawa, and T. Tanabe, “Thermal effects on Kerr comb generation in a CaF2 whispering-gallery mode microcavity,” IEEE Photon. J. 8, 4501109 (2016).
    [Crossref]
  237. H. Guo, M. Karpov, E. Lucas, A. Kordts, M. H. P. Pfeiffer, V. Brasch, G. Lihachev, V. E. Lobanov, M. L. Gorodetsky, and T. J. Kippenberg, “Universal dynamics and deterministic switching of dissipative Kerr solitons in optical microresonators,” Nat. Phys. 13, 94–102 (2016).
    [Crossref]
  238. H. Bao, A. Cooper, M. Rowley, L. Di Lauro, J. S. T. Gongora, S. T. Chu, B. E. Little, G.-L. Oppo, R. Morandotti, D. J. Moss, B. Wetzel, M. Peccianti, and A. Pasquazi, “Laser cavity-soliton microcombs,” Nat. Photonics 13, 384–389 (2019).
    [Crossref]
  239. N. Akhmediev and M. Karlsson, “Cherenkov radiation emitted by solitons in optical fibers,” Phys. Rev. A 51, 2602–2609 (1995).
    [Crossref]
  240. S. Cundiff, “Phase stabilization of ultrashort optical pulses,” J. Phys. D 35, R43 (2002).
    [Crossref]
  241. A. Oppenheim, A. Willsky, and S. Nawab, Signals and Systems (Prentice-Hall, 2001).
  242. L. Maleki, V. S. Ilchenko, A. A. Savchenkov, W. Liang, D. Seidel, and A. B. Matsko, “High performance, miniature hyper-parametric microwave photonic oscillator,” in IEEE International Frequency Control Symposium (IEEE, 2010), pp. 558–563.
  243. M.-G. Suh and K. Vahala, “Gigahertz-repetition-rate soliton microcombs,” Optica 5, 65–66 (2018).
    [Crossref]
  244. A. Bartels, D. Heinecke, and S. Diddams, “10-GHz self-referenced optical frequency comb,” Science 326, 681 (2009).
    [Crossref]
  245. J. Jost, T. Herr, C. Lecaplain, V. Brasch, M. Pfeiffer, and T. Kippenberg, “Counting the cycles of light using a self-referenced optical microresonator,” Optica 2, 706–711 (2015).
    [Crossref]
  246. H. Haus, “Mode-locking of lasers,” IEEE J. Sel. Top. Quantum Electron. 6, 1173–1185 (2000).
    [Crossref]
  247. M. Dunn and M. Ebrahimzadeh, “Parametric generation of tunable light from continuous-wave to femtosecond pulses,” Science 286, 1513–1517 (1999).
    [Crossref]
  248. H. Taheri, P. Del’Haye, A. Eftekhar, K. Wiesenfeld, and A. Adibi, “Self-synchronization phenomena in the Lugiato-Lefever equation,” Phys. Rev. A 96, 013828 (2016).
    [Crossref]
  249. H. Taheri, A. A. Eftekhar, K. Wiesenfeld, and A. Adibi, “Anatomy of phase locking in hyperparametric oscillations based on Kerr nonlinearity,” IEEE Photon. J. 9, 6100911 (2017).
    [Crossref]
  250. N. DeTal, H. Taheri, and K. Wiesenfeld, “Synchronization behavior in a ternary phase model,” Chaos 29, 063115 (2019).
    [Crossref]
  251. H. A. Haus, Waves and Fields in Optoelectronics (Prentice Hall, 1984).
  252. A. Savchenkov, A. Matsko, and L. Maleki, “On frequency combs in monolithic resonators,” Nanophotonics 5, 363–391 (2016).
    [Crossref]
  253. I. Barashenkov and E. Zemlyanaya, “Travelling solitons in the externally driven nonlinear Schrödinger equation,” J. Phys. A 44, 465211 (2011).
    [Crossref]
  254. W. Renninger and P. Rakich, “Closed-form solutions and scaling laws for Kerr frequency combs,” Sci. Rep. 6, 24742 (2016).
    [Crossref]
  255. C. Godey, I. Balakireva, A. Coillet, and Y. Chembo, “Stability analysis of the spatiotemporal Lugiato-Lefever model for Kerr optical frequency combs in the anomalous and normal dispersion regimes,” Phys. Rev. A 89, 063814 (2014).
    [Crossref]
  256. M. Erkintalo and S. Coen, “Coherence properties of Kerr frequency combs,” Opt. Lett. 39, 283–286 (2014).
    [Crossref]
  257. A. B. Matsko, A. A. Savchenkov, V. S. Ilchenko, D. Seidel, and L. Maleki, “Hard and soft excitation regimes of Kerr frequency combs,” Phys. Rev. A 85, 023830 (2012).
    [Crossref]
  258. H. Guo, E. Lucas, M. H. P. Pfeiffer, M. Karpov, M. Anderson, J. Liu, M. Geiselmann, J. D. Jost, and T. J. Kippenberg, “Intermode breather solitons in optical microresonators,” Phys. Rev. X 7, 041055 (2017).
    [Crossref]
  259. M. Yu, J. K. Jang, Y. Okawachi, A. G. Griffith, K. Luke, S. A. Miller, X. Ji, M. Lipson, and A. L. Gaeta, “Breather soliton dynamics in microresonators,” Nat. Commun. 8, 14569 (2017).
    [Crossref]
  260. C. Bao, J. A. Jaramillo-Villegas, Y. Xuan, D. E. Leaird, M. Qi, and A. M. Weiner, “Observation of fermi-pasta-ulam recurrence induced by breather solitons in an optical microresonator,” Phys. Rev. Lett. 117, 163901 (2016).
    [Crossref]
  261. M. Erkintalo, G. Genty, B. Wetzel, and J. M. Dudley, “Akhmediev breather evolution in optical fiber for realistic initial conditions,” Phys. Lett. A 375, 2029–2034 (2011).
    [Crossref]
  262. A. Coillet and Y. Chembo, “Routes to spatiotemporal chaos in Kerr optical frequency combs,” Chaos 24, 013113 (2014).
    [Crossref]
  263. A. B. Matsko, A. A. Savchenkov, R. J. Letargat, V. S. Ilchenko, and L. Maleki, “On cavity modification of stimulated Raman scattering,” J. Opt. B 5, 272–278 (2003).
    [Crossref]
  264. A. V. Cherenkov, N. M. Kondratiev, V. E. Lobanov, A. E. Shitikov, D. V. Skryabin, and M. L. Gorodetsky, “Raman-Kerr frequency combs in microresonators with normal dispersion,” Opt. Express 25, 31148–31158 (2017).
    [Crossref]
  265. Y. K. Chembo, I. S. Grudinin, and N. Yu, “Spatiotemporal dynamics of Kerr-Raman optical frequency combs,” Phys. Rev. A 92, 043818 (2015).
    [Crossref]
  266. H. Choi and A. M. Armani, “Raman-Kerr frequency combs in Zr-doped silica hybrid microresonators,” Opt. Lett. 43, 2949–2952 (2018).
    [Crossref]
  267. Y. Deng, R. Flores-Flores, R. K. Jain, and M. Hossein-Zadeh, “Thermo-optomechanical oscillations in high-Q ZBLAN microspheres,” Opt. Lett. 38, 4413–4416 (2013).
    [Crossref]
  268. S. Diallo, G. Lin, and Y. K. Chembo, “Giant thermo-optical relaxation oscillations in millimeter-size whispering gallery mode disk resonators,” Opt. Lett. 40, 3834–3837 (2015).
    [Crossref]
  269. X. Xue, F. Leo, Y. Xuan, J. A. Jaramillo-Villegas, P.-H. Wang, D. E. Leaird, M. Erkintalo, M. Qi, and A. M. Weiner, “Second-harmonic-assisted four-wave mixing in chip-based microresonator frequency comb generation,” Light Sci. Appl. 6, e16253 (2017).
    [Crossref]
  270. R. Hardin and F. Tappert, “Applications of the split-step Fourier method to the numerical solution of nonlinear and variable coefficient wave equations,” Siam Rev. 15, 423–429 (1973).
  271. O. V. Sinkin, R. Holzlohner, J. Zweck, and C. R. Menyuk, “Optimization of the split-step Fourier method in modeling optical-fiber communications systems,” J. Lightwave Technol. 21, 61–68 (2003).
    [Crossref]
  272. J. Jang, M. Erkintalo, S. Murdoch, and S. Coen, “Writing and erasing of temporal cavity solitons by direct phase modulation of the cavity driving field,” Opt. Lett. 40, 4755–4758 (2015).
    [Crossref]
  273. T. Hansson, D. Modotto, and S. Wabnitz, “On the numerical simulation of Kerr frequency combs using coupled mode equations,” Opt. Commun. 312, 134–136 (2014).
    [Crossref]
  274. G. Lin and Y. K. Chembo, “On the dispersion management of fluorite whispering-gallery mode resonators for Kerr optical frequency comb generation in the telecom and mid-infrared range,” Opt. Express 23, 1594–1604 (2015).
    [Crossref]
  275. H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, “Chemically etched ultrahigh-Q wedge-resonator on a silicon chip,” Nat. Photonics 6, 369–373 (2012).
    [Crossref]
  276. V. Brasch, M. Geiselmann, S. Lecomte, G. Lihachev, M. H. P. Pfeiffer, M. L. Gorodetsky, and T. J. A. Kippenberg, “Photonic chip based optical frequency comb using soliton induced Cherenkov radiation,” in Conference on Lasers and Electro-Optics (CLEO) (2015), pp. 1–2.
  277. J. Riemensberger, K. Hartinger, T. Herr, V. Brasch, R. Holzwarth, and T. J. Kippenberg, “Dispersion engineering of thick high-Q silicon nitride ring-resonators via atomic layer deposition,” Opt. Express 20, 27661–27669 (2012).
    [Crossref]
  278. M. Lamont, Y. Okawachi, and A. Gaeta, “Route to stabilized ultrabroadband microresonator-based frequency combs,” Opt. Lett. 38, 3478–3481 (2013).
    [Crossref]
  279. Y. Okawachi, M. Lamont, K. Luke, D. Carvalho, M. Yu, M. Lipson, and A. Gaeta, “Bandwidth shaping of microresonator-based frequency combs via dispersion engineering,” Opt. Lett. 39, 3535–3538 (2014).
    [Crossref]
  280. A. A. Savchenkov, A. B. Matsko, W. Liang, V. S. Ilchenko, D. Seidel, and L. Maleki, “Kerr frequency comb generation in overmoded resonators,” Opt. Express 20, 27290–27298 (2012).
    [Crossref]
  281. I. S. Grudinin and N. Yu, “Dispersion engineering of crystalline resonators via microstructuring,” Optica 2, 221–224 (2015).
    [Crossref]
  282. I. S. Grudinin, L. Baumgartel, and N. Yu, “Frequency comb from a microresonator with engineered spectrum,” Opt. Express 20, 6604–6609 (2012).
    [Crossref]
  283. I. S. Grudinin, L. Baumgartel, and N. Yu, “Impact of cavity spectrum on span in microresonator frequency combs,” Opt. Express 21, 26929–26935 (2013).
    [Crossref]
  284. S. Fujii, S. Tanaka, M. Fuchida, H. Amano, Y. Hayama, R. Suzuki, Y. Kakinuma, and T. Tanabe, “Octave-wide phase-matched four-wave mixing in dispersion-engineered crystalline microresonators,” Opt. Lett. 44, 3146–3149 (2019).
    [Crossref]
  285. D. Chen, A. Kovach, S. Poust, V. Gambin, and A. M. Armani, “Normal dispersion silicon oxynitride microresonator Kerr frequency combs,” Appl. Phys. Lett. 115, 051105 (2019).
    [Crossref]
  286. A. Kordts, M. H. P. Pfeiffer, H. Guo, V. Brasch, and T. J. Kippenberg, “Higher order mode suppression in high-Q anomalous dispersion SiN microresonators for temporal dissipative Kerr soliton formation,” Opt. Lett. 41, 452–455 (2016).
    [Crossref]
  287. M. H. P. Pfeiffer, C. Herkommer, J. Liu, H. Guo, M. Karpov, E. Lucas, M. Zervas, and T. J. Kippenberg, “Octave-spanning dissipative Kerr soliton frequency combs in Si3N4 microresonators,” Optica 4, 684–691 (2017).
    [Crossref]
  288. M. H. P. Pfeiffer, A. Kordts, V. Brasch, M. Zervas, M. Geiselmann, J. D. Jost, and T. J. Kippenberg, “Photonic damascene process for integrated high-Q microresonator based nonlinear photonics,” Optica 3, 20–25 (2016).
    [Crossref]
  289. Q. Li, T. C. Briles, D. A. Westly, T. E. Drake, J. R. Stone, B. R. Ilic, S. A. Diddams, S. B. Papp, and K. Srinivasan, “Stably accessing octave-spanning microresonator frequency combs in the soliton regime,” Optica 4, 193–203 (2017).
    [Crossref]
  290. P. K. A. Wai, C. R. Menyuk, Y. C. Lee, and H. H. Chen, “Nonlinear pulse propagation in the neighborhood of the zero-dispersion wavelength of monomode optical fibers,” Opt. Lett. 11, 464–466 (1986).
    [Crossref]
  291. J. K. Jang, M. Erkintalo, S. G. Murdoch, and S. Coen, “Observation of dispersive wave emission by temporal cavity solitons,” Opt. Lett. 39, 5503–5506 (2014).
    [Crossref]
  292. H. Taheri, “Ultrashort pulses in optical microresonators with Kerr nonlinearity,” Ph.D. thesis (Georgia Institute of Technology, 2017).
  293. A. Matsko and L. Maleki, “Noise conversion in Kerr comb RF photonic oscillators,” J. Opt. Soc. Am. B 32, 232–240 (2015).
    [Crossref]
  294. A. A. Savchenkov, E. Rubiola, A. B. Matsko, V. S. Ilchenko, and L. Maleki, “Phase noise of whispering gallery photonic hyper-parametric microwave oscillators,” Opt. Express 16, 4130–4144 (2008).
    [Crossref]
  295. A. B. Matsko, D. Eliyahu, and L. Maleki, “Theory of coupled optoelectronic microwave oscillator II: phase noise,” J. Opt. Soc. Am. B 30, 3316–3323 (2013).
    [Crossref]
  296. A. Hajimiri and T. H. Lee, “A general theory of phase noise in electrical oscillators,” IEEE J. Solid-State Circuits 33, 179–194 (1998).
    [Crossref]
  297. Y. Wang, F. Leo, J. Fatome, M. Erkintalo, S. G. Murdoch, and S. Coen, “Universal mechanism for the binding of temporal cavity solitons,” Optica 4, 855–863 (2017).
    [Crossref]
  298. X. Yi, Q.-F. Yang, X. Zhang, K. Y. Yang, X. Li, and K. Vahala, “Single-mode dispersive waves and soliton microcomb dynamics,” Nat. Commun. 8, 14869 (2017).
    [Crossref]
  299. A. B. Matsko, A. A. Savchenkov, and L. Maleki, “Normal group-velocity dispersion Kerr frequency comb,” Opt. Lett. 37, 43–45 (2012).
    [Crossref]
  300. W. Liang, A. A. Savchenkov, V. S. Ilchenko, D. Eliyahu, D. Seidel, A. B. Matsko, and L. Maleki, “Generation of a coherent near-infrared Kerr frequency comb in a monolithic microresonator with normal GVD,” Opt. Lett. 39, 2920–2923 (2014).
    [Crossref]
  301. X. Xue, Y. Xuan, P.-H. Wang, Y. Liu, D. Leaird, M. Qi, and A. Weiner, “Normal-dispersion microcombs enabled by controllable mode interactions,” Laser Photon. Rev. 9, L23–L28 (2015).
    [Crossref]
  302. V. Lobanov, G. Lihachev, T. Kippenberg, and M. Gorodetsky, “Frequency combs and platicons in optical microresonators with normal GVD,” Opt. Express 23, 7713–7721 (2015).
    [Crossref]
  303. X. Xue, M. Qi, and A. M. Weiner, “Normal-dispersion microresonator Kerr frequency combs,” Nanophotonics 5, 244–262 (2016).
    [Crossref]
  304. P. Parra-Rivas, E. Knobloch, D. Gomila, and L. Gelens, “Dark solitons in the Lugiato-Lefever equation with normal dispersion,” Phys. Rev. A 93, 063839 (2016).
    [Crossref]
  305. P. Parra-Rivas, D. Gomila, E. Knobloch, S. Coen, and L. Gelens, “Origin and stability of dark pulse Kerr combs in normal dispersion resonators,” Opt. Lett. 41, 2402–2405 (2016).
    [Crossref]
  306. J. H. Talla Mbé, C. Milián, and Y. K. Chembo, “Existence and switching behavior of bright and dark Kerr solitons in whispering-gallery mode resonators with zero group-velocity dispersion,” Eur. Phys. J. D 71, 196 (2017).
    [Crossref]
  307. V. E. Lobanov, A. V. Cherenkov, A. E. Shitikov, I. A. Bilenko, and M. L. Gorodetsky, “Dynamics of platicons due to third-order dispersion,” Eur. Phys. J. D 71, 185 (2017).
    [Crossref]
  308. A. Fülöp, M. Mazur, A. Lorences-Riesgo, Ó. B. Helgason, P.-H. Wang, Y. Xuan, D. E. Leaird, M. Qi, P. A. Andrekson, A. M. Weiner, and V. Torres-Company, “High-order coherent communications using mode-locked dark-pulse Kerr combs from microresonators,” Nat. Commun. 9, 1–8 (2018).
    [Crossref]
  309. S.-W. Huang, H. Zhou, J. Yang, J. McMillan, A. Matsko, M. Yu, D.-L. Kwong, L. Maleki, and C. Wong, “Mode-locked ultrashort pulse generation from on-chip normal dispersion microresonators,” Phys. Rev. Lett. 114, 053901 (2015).
    [Crossref]
  310. X. Xue, P.-H. Wang, Y. Xuan, M. Qi, and A. M. Weiner, “Microresonator Kerr frequency combs with high conversion efficiency,” Laser Photon. Rev. 11, 1600276 (2017).
    [Crossref]
  311. C. Bao, L. Zhang, A. Matsko, Y. Yan, Z. Zhao, G. Xie, A. M. Agarwal, L. C. Kimerling, J. Michel, L. Maleki, and A. E. Willner, “Nonlinear conversion efficiency in Kerr frequency comb generation,” Opt. Lett. 39, 6126–6129 (2014).
    [Crossref]
  312. M. Ghasemkhani, A. Savchenkov, A. Matsko, and H. Taheri, “Dissipative quartic Kerr solitons for WDM applications,” in Frontiers in Optics–Laser Science APS/DLS (Optical Society of America, 2019), paper JTu4A.84.
  313. P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450, 1214–1217 (2007).
    [Crossref]
  314. M. Pöllinger and A. Rauschenbeutel, “All-optical signal processing at ultra-low powers in bottle microresonators using the Kerr effect,” Opt. Express 18, 17764–17775 (2010).
    [Crossref]
  315. P. Del’Haye, T. Herr, E. Gavartin, M. L. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, “Octave spanning tunable frequency comb from a microresonator,” Phys. Rev. Lett. 107, 063901 (2011).
    [Crossref]
  316. W. Liang, A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, D. Seidel, and L. Maleki, “Generation of near-infrared frequency combs from a MgF2 whispering gallery mode resonator,” Opt. Lett. 36, 2290–2292 (2011).
    [Crossref]
  317. M. Li, X. Wu, L. Liu, and L. Xu, “Kerr parametric oscillations and frequency comb generation from dispersion compensated silica micro-bubble resonators,” Opt. Express 21, 16908–16913 (2013).
    [Crossref]
  318. C. Y. Wang, T. Herr, P. Del’Haye, A. Schliesser, J. Hofer, R. Holzwarth, T. W. Haensch, N. Picque, and T. J. Kippenberg, “Mid-infrared optical frequency combs at 2.5  µm based on crystalline microresonators,” Nat. Commun. 4, 1345 (2013).
    [Crossref]
  319. J. Pfeifle, A. Coillet, R. Henriet, K. Saleh, P. Schindler, C. Weimann, W. Freude, I. V. Balakireva, L. Larger, C. Koos, and Y. K. Chembo, “Optimally coherent Kerr combs generated with crystalline whispering gallery mode resonators for ultrahigh capacity fiber communications,” Phys. Rev. Lett. 114, 093902 (2015).
    [Crossref]
  320. X. Yi, Q.-F. Yang, K. Y. Yang, M.-G. Suh, and K. Vahala, “Soliton frequency comb at microwave rates in a high-Q silica microresonator,” Optica 2, 1078–1085 (2015).
    [Crossref]
  321. Y. Nakagawa, Y. Mizumoto, T. Kato, T. Kobatake, H. Itobe, Y. Kakinuma, and T. Tanabe, “Dispersion tailoring of a crystalline whispering gallery mode microcavity for a wide-spanning optical Kerr frequency comb,” J. Opt. Soc. Am. B 33, 1913–1920 (2016).
    [Crossref]
  322. Y. Yang, X. Jiang, S. Kasumie, G. Zhao, L. Xu, J. M. Ward, L. Yang, and S. N. Chormaic, “Four-wave mixing parametric oscillation and frequency comb generation at visible wavelengths in a silica microbubble resonator,” Opt. Lett. 41, 5266–5269 (2016).
    [Crossref]
  323. S. Fujii, T. Kato, R. Suzuki, A. Hori, and T. Tanabe, “Transition between Kerr comb and stimulated Raman comb in a silica whispering gallery mode microcavity,” J. Opt. Soc. Am. B 35, 100–106 (2018).
    [Crossref]
  324. J. Ma, L. Xiao, J. Gu, H. Li, X. Cheng, G. He, X. Jiang, and M. Xiao, “Visible Kerr comb generation in a high-Q silica microdisk resonator with a large wedge angle,” Photon. Res. 7, 573–578 (2019).
    [Crossref]
  325. S. Schiller, I. I. Yu, M. M. Fejer, and R. L. Byer, “Fused-silica monolithic total-internal-reflection resonator,” Opt. Lett. 17, 378–380 (1992).
    [Crossref]
  326. D. Milam, M. Weber, and A. Glass, “Nonlinear refractive-index of fluoride-crystals,” Appl. Phys. Lett. 31, 822–825 (1977).
    [Crossref]
  327. W. Liang, V. S. Ilchenko, D. Eliyahu, A. A. Savchenkov, A. B. Matsko, D. Seidel, and L. Maleki, “Ultralow noise miniature external cavity semiconductor laser,” Nat. Commun. 6, 7371 (2015).
    [Crossref]
  328. K. Saleh, R. Henriet, S. Diallo, G. Lin, R. Martinenghi, I. V. Balakireva, P. Salzenstein, A. Coillet, and Y. K. Chembo, “Phase noise performance comparison between optoelectronic oscillators based on optical delay lines and whispering gallery mode resonators,” Opt. Express 22, 32158–32173 (2014).
    [Crossref]
  329. S. Diallo, G. Lin, R. Martinenghi, L. Furfaro, M. Jacquot, and Y. K. Chembo, “Brillouin lasing in ultra-high-Q lithium fluoride disk resonators,” IEEE Photon. Technol. Lett. 28, 955–958 (2016).
    [Crossref]
  330. P. Del’Haye, S. A. Diddams, and S. B. Papp, “Laser-machined ultra-high-Q microrod resonators for nonlinear optics,” Appl. Phys. Lett. 102, 221119 (2013).
    [Crossref]
  331. G. Lin, S. Diallo, J. M. Dudley, and Y. K. Chembo, “Universal nonlinear scattering in ultra-high Q whispering gallery-mode resonators,” Opt. Express 24, 14880–14894 (2016).
    [Crossref]
  332. R. Henriet, G. Lin, A. Coillet, M. Jacquot, L. Furfaro, L. Larger, and Y. K. Chembo, “Kerr optical frequency comb generation in strontium fluoride whispering-gallery mode resonators with billion quality factor,” Opt. Lett. 40, 1567–1570 (2015).
    [Crossref]
  333. M. Ferrera, L. Razzari, D. Duchesne, R. Morandotti, Z. Yang, M. Liscidini, J. E. Sipe, S. Chu, B. E. Little, and D. J. Moss, “Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures,” Nat. Photonics 2, 737–740 (2008).
    [Crossref]
  334. G. Lihachev, N. Pavlov, S. Koptyaev, I. A. Bilenko, and M. L. Gorodetsky, “Kerr frequency comb and Brillouin lasing in BaF2 whispering gallery mode resonator,” in International Conference Laser Optics (LO) (2016), pp. PD-4.
  335. S. Fujii, M. Fuchida, H. Amano, R. Suzuki, Y. Kakinuma, and T. Tanabe, “Ultrahigh-Q crystalline microresonator fabricated with computer-controlled machining without polishing,” in Conference on Lasers and Electro-Optics (CLEO) (Optical Society of America, 2019), paper STh4J.6.
  336. G. Klemens, C.-H. Chen, and Y. Fainman, “Design of optimized dispersive resonant cavities for nonlinear wave mixing,” Opt. Express 13, 9388–9397 (2005).
    [Crossref]
  337. K. E. Webb, M. Erkintalo, S. Coen, and S. G. Murdoch, “Experimental observation of coherent cavity soliton frequency combs in silica microspheres,” Opt. Lett. 41, 4613–4616 (2016).
    [Crossref]
  338. D. Farnesi, A. Barucci, G. C. Righini, G. N. Conti, and S. Soria, “Generation of hyper-parametric oscillations in silica microbubbles,” Opt. Lett. 40, 4508–4511 (2015).
    [Crossref]
  339. Y. V. Kartashov, M. L. Gorodetsky, A. Kudlinski, and D. V. Skryabin, “Two-dimensional nonlinear modes and frequency combs in bottle microresonators,” Opt. Lett. 43, 2680–2683 (2018).
    [Crossref]
  340. I. Oreshnikov and D. V. Skryabin, “Multiple nonlinear resonances and frequency combs in bottle microresonators,” Opt. Express 25, 10306–10311 (2017).
    [Crossref]
  341. L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. E. Little, and D. J. Moss, “CMOS-compatible integrated optical hyper-parametric oscillator,” Nat. Photonics 4, 41–45 (2010).
    [Crossref]
  342. M. Ferrera, D. Duchesne, L. Razzari, M. Peccianti, R. Morandotti, P. Cheben, S. Janz, D.-X. Xu, B. E. Little, S. Chu, and D. J. Moss, “Low power four wave mixing in an integrated, micro-ring resonator with Q = 1.2 million,” Opt. Express 17, 14098–14103 (2009).
    [Crossref]
  343. A. Pasquazi, Y. Park, J. Azana, F. Legare, R. Morandotti, B. E. Little, S. T. Chu, and D. J. Moss, “Efficient wavelength conversion and net parametric gain via four wave mixing in a high index doped silica waveguide,” Opt. Express 18, 7634–7641 (2010).
    [Crossref]
  344. K. Ikeda, R. E. Saperstein, N. Alic, and Y. Fainman, “Thermal and Kerr nonlinear properties of plasma-deposited silicon nitride/silicon dioxide waveguides,” Opt. Express 16, 12987–12994 (2008).
    [Crossref]
  345. K. Luke, Y. Okawachi, M. R. E. Lamont, A. L. Gaeta, and M. Lipson, “Broadband mid-infrared frequency comb generation in a Si3N4 microresonator,” Opt. Lett. 40, 4823–4826 (2015).
    [Crossref]
  346. Y. Okawachi, K. Saha, J. S. Levy, Y. H. Wen, M. Lipson, and A. L. Gaeta, “Octave-spanning frequency comb generation in a silicon nitride chip,” Opt. Lett. 36, 3398–3400 (2011).
    [Crossref]
  347. J. P. Epping, M. Hoekman, R. Mateman, A. Leinse, R. G. Heideman, A. van Rees, P. J. van der Slot, C. J. Lee, and K.-J. Boller, “High confinement, high yield Si3N4 waveguides for nonlinear optical applications,” Opt. Express 23, 642–648 (2015).
    [Crossref]
  348. S. Kim, K. Han, C. Wang, J. A. Jaramillo-Villegas, X. Xue, C. Bao, Y. Xuan, D. E. Leaird, A. M. Weiner, and M. Qi, “Dispersion engineering and frequency comb generation in thin silicon nitride concentric microresonators,” Nat. Commun. 8, 372 (2017).
    [Crossref]
  349. S. Castelletto, L. Rosa, J. Blackledge, M. Z. Al Abri, and A. Boretti, “Advances in diamond nanofabrication for ultrasensitive devices,” Microsyst. Nanoeng. 3, 17061 (2017).
    [Crossref]
  350. B. Stern, X. Ji, Y. Okawachi, A. L. Gaeta, and M. Lipson, “Battery-operated integrated frequency comb generator,” Nature 562, 401–405 (2018).
    [Crossref]
  351. A. Dutt, C. Joshi, X. Ji, J. Cardenas, Y. Okawachi, K. Luke, A. L. Gaeta, and M. Lipson, “On-chip dual-comb source for spectroscopy,” Sci. Adv. 4, e1701858 (2018).
    [Crossref]
  352. A. Fülöp, M. Mazur, A. Lorences-Riesgo, T. Eriksson, P.-H. Wang, D. Leaird, M. Qi, P. A. Andrekson, A. M. Weiner, and V. Torres-Company, “Long-haul coherent communications using microresonator-based frequency combs,” Opt. Express 25, 26678–26688 (2017).
    [Crossref]
  353. J. S. Levy, K. Saha, Y. Okawachi, M. A. Foster, A. L. Gaeta, and M. Lipson, “High-performance silicon-nitride-based multiple-wavelength source,” IEEE Photon. Technol. Lett. 24, 1375–1377 (2012).
    [Crossref]
  354. P. Marin-Palomo, J. N. Kemal, M. Karpov, A. Kordts, J. Pfeifle, M. H. P. Pfeiffer, P. Trocha, S. Wolf, V. Brasch, M. H. Anderson, R. Rosenberger, K. Vijayan, W. Freude, T. J. Kippenberg, and C. Koos, “Microresonator-based solitons for massively parallel coherent optical communications,” Nature 546, 274–279 (2017).
    [Crossref]
  355. C. Bao, P. Liao, A. Kordts, M. Karpov, M. H. P. Pfeiffer, L. Zhang, Y. Yan, G. Xie, Y. Cao, A. Almaiman, M. Ziyadi, L. Li, Z. Zhao, A. Mohajerin-Ariaei, S. R. Wilkinson, M. Tur, M. M. Fejer, T. J. Kippenberg, and A. E. Willner, “Demonstration of optical multicasting using Kerr frequency comb lines,” Opt. Lett. 41, 3876–3879 (2016).
    [Crossref]
  356. A. N. Willner, P. Liao, K. Zou, Y. Cao, A. Kordts, M. Karpov, M. H. P. Pfeiffer, A. Almaiman, A. Fallahpour, F. Alishahi, K. Manukyan, M. Tur, T. J. Kippenberg, and A. E. Willner, “Scalable and reconfigurable optical tapped-delay-line for multichannel equalization and correlation using nonlinear wave mixing and a Kerr frequency comb,” Opt. Lett. 43, 5563–5566 (2018).
    [Crossref]
  357. M.-G. Suh and K. J. Vahala, “Soliton microcomb range measurement,” Science 359, 884–887 (2018).
    [Crossref]
  358. P. Trocha, M. Karpov, D. Ganin, M. H. P. Pfeiffer, A. Kordts, S. Wolf, J. Krockenberger, P. Marin-Palomo, C. Weimann, S. Randel, W. Freude, T. J. Kippenberg, and C. Koos, “Ultrafast optical ranging using microresonator soliton frequency combs,” Science 359, 887–891 (2018).
    [Crossref]
  359. Z. L. Newman, V. Maurice, T. Drake, J. R. Stone, T. C. Briles, D. T. Spencer, C. Fredrick, Q. Li, D. Westly, B. R. Ilic, B. Shen, M.-G. Suh, K. Y. Yang, C. Johnson, D. M. S. Johnson, L. Hollberg, K. J. Vahala, K. Srinivasan, S. A. Diddams, J. Kitching, S. B. Papp, and M. T. Hummon, “Architecture for the photonic integration of an optical atomic clock,” Optica 6, 680–685 (2019).
    [Crossref]
  360. J. K. Jang, A. Klenner, X. Ji, Y. Okawachi, M. Lipson, and A. L. Gaeta, “Synchronization of coupled optical microresonators,” Nat. Photonics 12, 688–693 (2018).
    [Crossref]
  361. J. Wu, X. Xu, T. G. Nguyen, S. T. Chu, B. E. Little, R. Morandotti, A. Mitchell, and D. J. Moss, “RF photonics: an optical microcombs’ perspective,” IEEE J. Sel. Top. Quantum Electron. 24, 6101020 (2018).
    [Crossref]
  362. F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by-line pulse shaping of on-chip microresonator frequency combs,” Nat. Photonics 5, 770–776 (2011).
    [Crossref]
  363. X. Xu, J. Wu, M. Shoeiby, T. G. Nguyen, S. T. Chu, B. E. Little, R. Morandotti, A. Mitchell, and D. J. Moss, “Reconfigurable broadband microwave photonic intensity differentiator based on an integrated optical frequency comb source,” APL Photon. 2, 096104 (2017).
    [Crossref]
  364. X. Xue, Y. Xuan, H.-J. Kim, J. Wang, D. E. Leaird, M. Qi, and A. M. Weiner, “Programmable single-bandpass photonic RF filter based on Kerr comb from a microring,” J. Lightwave Technol. 32, 3557–3565 (2014).
    [Crossref]
  365. T. G. Nguyen, M. Shoeiby, S. T. Chu, B. E. Little, R. Morandotti, A. Mitchell, and D. J. Moss, “Integrated frequency comb source based Hilbert transformer for wideband microwave photonic phase analysis,” Opt. Express 23, 22087–22097 (2015).
    [Crossref]
  366. Q.-F. Yang, X. Yi, K. Y. Yang, and K. Vahala, “Counter-propagating solitons in microresonators,” Nat. Photonics 11, 560–564 (2017).
    [Crossref]
  367. Q. Xu and M. Lipson, “All-optical logic based on silicon micro-ring resonators,” Opt. Express 15, 924–929 (2007).
    [Crossref]
  368. M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441, 960–963 (2006).
    [Crossref]
  369. E. Dulkeith, F. Xia, L. Schares, W. M. J. Green, and Y. A. Vlasov, “Group index and group velocity dispersion in silicon-on-insulator photonic wires,” Opt. Express 14, 3853–3863 (2006).
    [Crossref]
  370. H. Jung, C. Xiong, K. Y. Fong, X. Zhang, and H. X. Tang, “Optical frequency comb generation from aluminum nitride microring resonator,” Opt. Lett. 38, 2810–2813 (2013).
    [Crossref]
  371. M. Pu, L. Ottaviano, E. Semenova, and K. Yvind, “Efficient frequency comb generation in AlGaAs-on-insulator,” Optica 3, 823–826 (2016).
    [Crossref]
  372. A. D. Logan, M. Gould, E. R. Schmidgall, K. Hestroffer, Z. Lin, W. Jin, A. Majumdar, F. Hatami, A. W. Rodriguez, and K.-M. C. Fu, “400%/W second harmonic conversion efficiency in 14 µm-diameter gallium phosphide-on-oxide resonators,” Opt. Express 26, 33687–33699 (2018).
    [Crossref]
  373. A. G. Griffith, R. K. W. Lau, J. Cardenas, Y. Okawachi, A. Mohanty, R. Fain, Y. H. D. Lee, M. Yu, C. T. Phare, C. B. Poitras, A. L. Gaeta, and M. Lipson, “Silicon-chip mid-infrared frequency comb generation,” Nat. Commun. 6, 6299 (2015).
    [Crossref]
  374. M. Yu, Y. Okawachi, A. G. Griffith, M. Lipson, and A. L. Gaeta, “Mode-locked mid-infrared frequency combs in a silicon microresonator,” Optica 3, 854–860 (2016).
    [Crossref]
  375. A. G. Griffith, M. Yu, Y. Okawachi, J. Cardenas, A. Mohanty, A. L. Gaeta, and M. Lipson, “Coherent mid-infrared frequency combs in silicon-microresonators in the presence of Raman effects,” Opt. Express 24, 13044–13050 (2016).
    [Crossref]
  376. D. J. Wilson, D. J. Wilson, S. Hönl, K. Schneider, M. Anderson, T. J. Kippenberg, and P. Seidler, “Gallium phosphide microresonator frequency combs,” in Conference on Lasers and Electro-Optics (CLEO) (Optical Society of America, 2018), paper SW3A.1.
  377. M. Zhang, B. Buscaino, C. Wang, A. Shams-Ansari, C. Reimer, R. Zhu, J. M. Kahn, and M. Loncar, “Broadband electro-optic frequency comb generation in a lithium niobate microring resonator,” Nature 568, 373–377 (2019).
    [Crossref]
  378. Z. Gong, X. Liu, Y. Xu, M. Xu, J. B. Surya, J. Lu, A. Bruch, C. Zou, and H. X. Tang, “Soliton microcomb generation at 2 µm in z-cut lithium niobate microring resonators,” Opt. Lett. 44, 3182–3185 (2019).
    [Crossref]
  379. H. Jung and H. X. Tang, “Aluminum nitride as nonlinear optical material for on-chip frequency comb generation and frequency conversion,” Nanophotonics 5, 263–271 (2016).
    [Crossref]
  380. X. Li, C. Sun, B. Xiong, L. Wang, J. Wang, Y. Han, Z. Hao, H. Li, Y. Luo, J. Yan, T. Wei, Y. Zhang, and J. Wang, “Generation of multiple near-visible comb lines in an AlN microring via chi((2)) and chi((3)) optical nonlinearities,” Appl. Phys. Lett. 113, 171106 (2018).
    [Crossref]
  381. M. Yu, Y. Okawachi, A. G. Griffith, N. Picqué, M. Lipson, and A. L. Gaeta, “Silicon-chip-based mid-infrared dual-comb spectroscopy,” Nat. Commun. 9, 1–6 (2018).
    [Crossref]
  382. M. Nirmal and L. Brus, “Luminescence photophysics in semiconductor nanocrystals,” Acc. Chem. Res. 32, 407–414 (1999).
    [Crossref]
  383. X. Peng, L. Manna, W. Yang, J. Wickham, E. Scher, A. Kadavanich, and A. Alivisatos, “Shape control of CdSe nanocrystals,” Nature 404, 59–61 (2000).
    [Crossref]
  384. I. Medintz, H. Uyeda, E. Goldman, and H. Mattoussi, “Quantum dot bioconjugates for imaging, labelling and sensing,” Nat. Mater. 4, 435–446 (2005).
    [Crossref]
  385. R. Wang, H.-C. Chien, J. Kumar, N. Kumar, H.-Y. Chiu, and H. Zhao, “Third-harmonic generation in ultrathin films of MoS2,” ACS Appl. Mater. Interfaces 6, 314–318 (2014).
    [Crossref]
  386. B. Chen, H. Zhong, W. Zhang, Z. Tan, Y. Li, C. Yu, T. Zhai, Y. Bando, S. Yang, and B. Zou, “Highly emissive and color-tunable CuInS2-based colloidal semiconductor nanocrystals: off-stoichiometry effects and improved electroluminescence performance,” Adv. Funct. Mater. 22, 2081–2088 (2012).
    [Crossref]
  387. S. Haubold, M. Haase, A. Kornowski, and H. Weller, “Strongly luminescent InP/ZnS core-shell nanoparticles,” Chem. Phys. Chem. 2, 331–334 (2001).
    [Crossref]
  388. C. Shi, S. Soltani, and A. M. Armani, “Gold nanorod plasmonic upconversion microlaser,” Nano Lett. 13, 5827–5831 (2013).
    [Crossref]
  389. R. Castro-Beltrán, V. M. Diep, S. Soltani, E. Gungor, and A. M. Armani, “Plasmonically enhanced Kerr frequency combs,” ACS Photon. 4, 2828–2834 (2017).
    [Crossref]
  390. X. Shen, R. C. Beltran, V. M. Diep, S. Soltani, and A. M. Armani, “Low-threshold parametric oscillation in organically modified microcavities,” Sci. Adv. 4, eaao4507 (2018).
    [Crossref]
  391. X. Shen, H. Choi, D. Chen, W. Zhao, and A. M. Armani, “Raman laser from an optical resonator with a grafted single-molecule monolayer,” Nat. Photonics 14, 95–101 (2020).
  392. S. Mehrabani and A. M. Armani, “Blue upconversion laser based on thulium-doped silica microcavity,” Opt. Lett. 38, 4346–4349 (2013).
    [Crossref]
  393. H. Choi, D. Chen, F. Du, R. Zeto, and A. Armani, “Low threshold anti-Stokes Raman laser on-chip,” Photon. Res. 7, 926–932 (2019).
    [Crossref]
  394. M. M. Naiini, C. Henkel, G. B. Mahn, and M. Ostling, “ALD high-k layer grating couplers for single and double slot on-chip SOI photonics,” Solid-State Electron. 74, 58–63 (2012).
    [Crossref]
  395. A. Autere, L. Karvonen, A. Saynatjoki, M. Roussey, E. Farm, M. Kemell, X. Tu, T. Y. Liow, G. Q. Lo, M. Ritala, M. Leskela, S. Honkanen, H. Lipsanen, and Z. Sun, “Slot waveguide ring resonators coated by an atomic layer deposited organic/inorganic nanolaminate,” Opt. Express 23, 26940–26951 (2015).
    [Crossref]
  396. C. Weimann, P. Schindler, R. Palmer, S. Wolf, D. Bekele, D. Korn, J. Pfeifle, S. Koeber, R. Schmogrow, L. Alloatti, D. Elder, H. Yu, W. Bogaerts, L. Dalton, W. Freude, J. Leuthold, and C. Koos, “Silicon-organic hybrid (SOH) frequency comb sources for terabit/s data transmission,” Opt. Express 22, 3629–3637 (2014).
    [Crossref]
  397. J. L. Dominguez-Juarez, G. Kozyreff, and J. Martorell, “Whispering gallery microresonators for second harmonic light generation from a low number of small molecules,” Nat. Commun. 2, 254 (2011).
    [Crossref]
  398. M.-G. Suh, C. Y. Wang, C. Johnson, and K. J. Vahala, “Directly pumped 10 GHz microcomb modules from low-power diode lasers,” Opt. Lett. 44, 1841–1843 (2019).
    [Crossref]
  399. J. Pfeifle, V. Brasch, M. Lauermann, Y. Yu, D. Wegner, T. Herr, K. Hartinger, P. Schindler, J. Li, D. Hillerkuss, R. Schmogrow, C. Weimann, R. Holzwarth, W. Freude, J. Leuthold, T. J. Kippenberg, and C. Koos, “Coherent terabit communications with microresonator Kerr frequency combs,” Nat. Photonics 8, 375–380 (2014).
    [Crossref]
  400. M.-G. Suh, X. Yi, Y.-H. Lai, S. Leifer, I. S. Grudinin, G. Vasisht, E. C. Martin, M. P. Fitzgerald, G. Doppmann, J. Wang, D. Mawet, S. B. Papp, S. A. Diddams, C. Beichman, and K. Vahala, “Searching for exoplanets using a microresonator astrocomb,” Nat. Photonics 13, 25–30 (2019).
    [Crossref]
  401. L. Maleki, A. Savchenkov, V. Ilchenko, W. Liang, D. Eliyahu, A. Matsko, D. Seidel, N. Wells, J. Camparo, and B. Jaduszliwer, “All-optical integrated rubidium atomic clock,” in Proceedings of the Joint Conference of the IEEE International Frequency Control and the European Frequency and Time Forum (FCS) (IEEE, 2011), pp. 1–5.
  402. T. E. Drake, T. C. Briles, J. R. Stone, D. T. Spencer, D. R. Carlson, D. D. Hickstein, Q. Li, D. Westly, K. Srinivasan, S. A. Diddams, and S. B. Papp, “Terahertz-rate Kerr-microresonator optical clockwork,” Phys. Rev. X 9, 031023 (2019).
    [Crossref]
  403. J. Jaramillo-Villegas, X. Xue, P.-H. Wang, D. Leaird, and A. Weiner, “Deterministic single soliton generation and compression in microring resonators avoiding the chaotic region,” Opt. Express 23, 9618–9626 (2015).
    [Crossref]
  404. D. C. Cole, J. R. Stone, M. Erkintalo, K. Y. Yang, X. Yi, K. J. Vahala, and S. B. Papp, “Kerr-microresonator solitons from a chirped background,” Optica 5, 1304–1310 (2018).
    [Crossref]
  405. W. J. Firth and A. J. Scroggie, “Optical bullet holes: robust controllable localized states of a nonlinear cavity,” Phys. Rev. Lett. 76, 1623–1626 (1996).
    [Crossref]
  406. B. Y. Kim, Y. Okawachi, J. K. Jang, M. Yu, X. Ji, Y. Zhao, C. Joshi, M. Lipson, and A. L. Gaeta, “Turn-key, high-efficiency Kerr comb source,” Opt. Lett. 44, 4475–4478 (2019).
    [Crossref]
  407. S. Zhang, J. M. Silver, L. D. Bino, F. Copie, M. T. M. Woodley, G. N. Ghalanos, A. Ø. Svela, N. Moroney, and P. Del’Haye, “Sub-milliwatt-level microresonator solitons with extended access range using an auxiliary laser,” Optica 6, 206–212 (2019).
    [Crossref]
  408. K. Wu, Y. Wang, C. Qiu, and J. Chen, “Thermo-optic all-optical devices based on two-dimensional materials,” Photon. Res. 6, C22–C28 (2018).
    [Crossref]
  409. N. Kumar, S. Najmaei, Q. Cui, F. Ceballos, P. M. Ajayan, J. Lou, and H. Zhao, “Second harmonic microscopy of monolayer MoS2,” Phys. Rev. B 87, 161403 (2013).
    [Crossref]
  410. K. He, N. Kumar, L. Zhao, Z. Wang, K. F. Mak, H. Zhao, and J. Shan, “Tightly bound excitons in monolayer WSe2,” Phys. Rev. Lett. 113, 026803 (2014).
    [Crossref]

2020 (1)

X. Shen, H. Choi, D. Chen, W. Zhao, and A. M. Armani, “Raman laser from an optical resonator with a grafted single-molecule monolayer,” Nat. Photonics 14, 95–101 (2020).

2019 (38)

H. Choi, D. Chen, F. Du, R. Zeto, and A. Armani, “Low threshold anti-Stokes Raman laser on-chip,” Photon. Res. 7, 926–932 (2019).
[Crossref]

M.-G. Suh, C. Y. Wang, C. Johnson, and K. J. Vahala, “Directly pumped 10 GHz microcomb modules from low-power diode lasers,” Opt. Lett. 44, 1841–1843 (2019).
[Crossref]

M.-G. Suh, X. Yi, Y.-H. Lai, S. Leifer, I. S. Grudinin, G. Vasisht, E. C. Martin, M. P. Fitzgerald, G. Doppmann, J. Wang, D. Mawet, S. B. Papp, S. A. Diddams, C. Beichman, and K. Vahala, “Searching for exoplanets using a microresonator astrocomb,” Nat. Photonics 13, 25–30 (2019).
[Crossref]

T. E. Drake, T. C. Briles, J. R. Stone, D. T. Spencer, D. R. Carlson, D. D. Hickstein, Q. Li, D. Westly, K. Srinivasan, S. A. Diddams, and S. B. Papp, “Terahertz-rate Kerr-microresonator optical clockwork,” Phys. Rev. X 9, 031023 (2019).
[Crossref]

B. Y. Kim, Y. Okawachi, J. K. Jang, M. Yu, X. Ji, Y. Zhao, C. Joshi, M. Lipson, and A. L. Gaeta, “Turn-key, high-efficiency Kerr comb source,” Opt. Lett. 44, 4475–4478 (2019).
[Crossref]

S. Zhang, J. M. Silver, L. D. Bino, F. Copie, M. T. M. Woodley, G. N. Ghalanos, A. Ø. Svela, N. Moroney, and P. Del’Haye, “Sub-milliwatt-level microresonator solitons with extended access range using an auxiliary laser,” Optica 6, 206–212 (2019).
[Crossref]

J. Ma, L. Xiao, J. Gu, H. Li, X. Cheng, G. He, X. Jiang, and M. Xiao, “Visible Kerr comb generation in a high-Q silica microdisk resonator with a large wedge angle,” Photon. Res. 7, 573–578 (2019).
[Crossref]

Z. L. Newman, V. Maurice, T. Drake, J. R. Stone, T. C. Briles, D. T. Spencer, C. Fredrick, Q. Li, D. Westly, B. R. Ilic, B. Shen, M.-G. Suh, K. Y. Yang, C. Johnson, D. M. S. Johnson, L. Hollberg, K. J. Vahala, K. Srinivasan, S. A. Diddams, J. Kitching, S. B. Papp, and M. T. Hummon, “Architecture for the photonic integration of an optical atomic clock,” Optica 6, 680–685 (2019).
[Crossref]

M. Zhang, B. Buscaino, C. Wang, A. Shams-Ansari, C. Reimer, R. Zhu, J. M. Kahn, and M. Loncar, “Broadband electro-optic frequency comb generation in a lithium niobate microring resonator,” Nature 568, 373–377 (2019).
[Crossref]

Z. Gong, X. Liu, Y. Xu, M. Xu, J. B. Surya, J. Lu, A. Bruch, C. Zou, and H. X. Tang, “Soliton microcomb generation at 2 µm in z-cut lithium niobate microring resonators,” Opt. Lett. 44, 3182–3185 (2019).
[Crossref]

S.-P. Yu, T. C. Briles, G. T. Moille, X. Lu, S. A. Diddams, K. Srinivasan, and S. B. Papp, “Tuning Kerr-soliton frequency combs to atomic resonances,” Phys. Rev. Appl. 11, 044017 (2019).
[Crossref]

Q.-F. Yang, B. Shen, H. Wang, M. Tran, Z. Zhang, K. Y. Yang, L. Wu, C. Bao, J. Bowers, A. Yariv, and K. Vahala, “Vernier spectrometer using counterpropagating soliton microcombs,” Science 363, 965–968 (2019).
[Crossref]

W. Weng, E. Lucas, G. Lihachev, V. E. Lobanov, H. Guo, M. L. Gorodetsky, and T. J. Kippenberg, “Spectral purification of microwave signals with disciplined dissipative Kerr solitons,” Phys. Rev. Lett. 122, 013902 (2019).
[Crossref]

C. Wang, M. Zhang, M. Yu, R. Zhu, H. Hu, and M. Loncar, “Monolithic lithium niobate photonic circuits for Kerr frequency comb generation and modulation,” Nat. Commun. 10, 978 (2019).
[Crossref]

E. Obrzud, M. Rainer, A. Harutyunyan, M. H. Anderson, J. Liu, M. Geiselmann, B. Chazelas, S. Kundermann, S. Lecomte, M. Cecconi, A. Ghedina, E. Molinari, F. Pepe, F. Wildi, F. Bouchy, T. J. Kippenberg, and T. Herr, “A microphotonic astrocomb,” Nat. Photonics 13, 31–35 (2019).
[Crossref]

J. Lee, K. Lee, J. Yang, Y.-J. Kim, and S.-W. Kim, “Comb segmentation spectroscopy for rapid detection of molecular absorption lines,” Opt. Express 27, 9088–9096 (2019).
[Crossref]

M. Kues, C. Reimer, J. M. Lukens, W. J. Munro, A. M. Weiner, D. J. Moss, and R. Morandotti, “Quantum optical microcombs,” Nat. Photonics 13, 170–179 (2019).
[Crossref]

A. L. Gaeta, M. Lipson, and T. J. Kippenberg, “Photonic-chip-based frequency combs,” Nat. Photonics 13, 158–169 (2019).
[Crossref]

S. Frustaci and F. Vollmer, “Whispering-gallery mode (WGM) sensors: review of established and WGM-based techniques to study protein conformational dynamics,” Curr. Opin. Chem. Biol. 51, 66–73 (2019).
[Crossref]

S. Zhu, B. Xiao, B. Jiang, L. Shi, and X. Zhang, “Tunable Brillouin and Raman microlasers using hybrid microbottle resonators,” Nanophotonics 8, 931–940 (2019).
[Crossref]

S. Ramelow, A. Farsi, Z. Vernon, S. Clemmen, X. Ji, J. E. Sipe, M. Liscidini, M. Lipson, and A. L. Gaeta, “Strong nonlinear coupling in a Si3N4 ring resonator,” Phys. Rev. Lett. 122, 153906 (2019).
[Crossref]

Y. Zheng, Z. Fang, S. Liu, Y. Cheng, and X. Chen, “High-Q exterior whispering-gallery modes in a double-layer crystalline microdisk resonator,” Phys. Rev. Lett. 122, 253902 (2019).
[Crossref]

Z. Zhang, N. Yao, J. Pan, L. Zhang, W. Fang, and L. Tong, “A new route for fabricating polymer optical microcavities,” Nanoscale 11, 5203–5208 (2019).
[Crossref]

P. Xing, D. Ma, K. J. A. Ooi, J. W. Choi, A. M. Agarwal, and D. Tan, “CMOS-compatible PECVD silicon carbide platform for linear and nonlinear optics,” ACS Photon. 6, 1162–1167 (2019).
[Crossref]

Ş. K. Özdemir, S. Rotter, F. Nori, and L. Yang, “Parity-time symmetry and exceptional points in photonics,” Nat. Mater. 18, 783–798 (2019).
[Crossref]

D. Martyshkin, V. Fedorov, T. Kesterson, S. Vasilyev, H. Gu, J. Liu, W. Weng, K. Vodopyanov, T. J. Kippenberg, and S. Mirov, “Visible-near-middle infrared spanning supercontinuum generation in a silicon nitride (Si3N4) waveguide,” Opt. Mater. Express 9, 2553–2559 (2019).
[Crossref]

Y. Chen Tao, X. D. Wang, and L. S. Liao, “Active whispering-gallery-mode optical microcavity based on self-assembled organic microspheres,” J. Mater. Chem. C 7, 3443–3446 (2019).
[Crossref]

I. I. Arkhipov, A. Miranowicz, O. Di Stefano, R. Stassi, S. Savasta, F. Nori, and Ş. K. Özdemir, “Scully-Lamb quantum laser model for parity-time-symmetric whispering-gallery microcavities: gain saturation effects and nonreciprocity,” Phys. Rev. A 99, 053806 (2019).
[Crossref]

L. He, M. Zhang, A. Shams-Ansari, R. Zhu, C. Wang, and L. Marko, “Low-loss fiber-to-chip interface for lithium niobate photonic integrated circuits,” Opt. Lett. 44, 2314–2317 (2019).
[Crossref]

Y. Feng, Y. Zheng, F. Zhang, J. Yang, T. Qin, and W. Wan, “Passive fine-tuning of microcavity whispering gallery mode for nonlinear optics by thermo-optical effect,” Appl. Phys. Lett. 114, 101103 (2019).
[Crossref]

R. Haldar, A. Roy, P. Mondal, V. Mishra, and S. K. Varshney, “Free-carrier-driven Kerr frequency comb in optical microcavities: steady state, bistability, self-pulsation, and modulation instability,” Phys. Rev. A 99, 033848 (2019).
[Crossref]

H. Taheri and A. B. Matsko, “Quartic dissipative solitons in optical Kerr cavities,” Opt. Lett. 44, 3086–3089 (2019).
[Crossref]

R. J. Weiblen and I. Vurgaftman, “Bichromatic pumping in mid-infrared microresonator frequency combs with higher-order dispersion,” Opt. Express 27, 4238–4260 (2019).
[Crossref]

H. Taheri and A. B. Matsko, “Dually-pumped Kerr microcombs for spectrally pure radio frequency signal generation and time-keeping,” Proc. SPIE 10904, 109040P (2019).
[Crossref]

H. Bao, A. Cooper, M. Rowley, L. Di Lauro, J. S. T. Gongora, S. T. Chu, B. E. Little, G.-L. Oppo, R. Morandotti, D. J. Moss, B. Wetzel, M. Peccianti, and A. Pasquazi, “Laser cavity-soliton microcombs,” Nat. Photonics 13, 384–389 (2019).
[Crossref]

N. DeTal, H. Taheri, and K. Wiesenfeld, “Synchronization behavior in a ternary phase model,” Chaos 29, 063115 (2019).
[Crossref]

S. Fujii, S. Tanaka, M. Fuchida, H. Amano, Y. Hayama, R. Suzuki, Y. Kakinuma, and T. Tanabe, “Octave-wide phase-matched four-wave mixing in dispersion-engineered crystalline microresonators,” Opt. Lett. 44, 3146–3149 (2019).
[Crossref]

D. Chen, A. Kovach, S. Poust, V. Gambin, and A. M. Armani, “Normal dispersion silicon oxynitride microresonator Kerr frequency combs,” Appl. Phys. Lett. 115, 051105 (2019).
[Crossref]

2018 (45)

A. Fülöp, M. Mazur, A. Lorences-Riesgo, Ó. B. Helgason, P.-H. Wang, Y. Xuan, D. E. Leaird, M. Qi, P. A. Andrekson, A. M. Weiner, and V. Torres-Company, “High-order coherent communications using mode-locked dark-pulse Kerr combs from microresonators,” Nat. Commun. 9, 1–8 (2018).
[Crossref]

M.-G. Suh and K. Vahala, “Gigahertz-repetition-rate soliton microcombs,” Optica 5, 65–66 (2018).
[Crossref]

H. Choi and A. M. Armani, “Raman-Kerr frequency combs in Zr-doped silica hybrid microresonators,” Opt. Lett. 43, 2949–2952 (2018).
[Crossref]

A. Pasquazi, M. Peccianti, L. Razzari, D. J. Moss, S. Coen, M. Erkintalo, Y. K. Chembo, T. Hansson, S. Wabnitz, P. Del’Haye, X. Xue, A. M. Weiner, and R. Morandotti, “Micro-combs: a novel generation of optical sources,” Phys. Rep. 729, 1–81 (2018).
[Crossref]

T. J. Kippenberg, A. L. Gaeta, M. Lipson, and M. L. Gorodetsky, “Dissipative Kerr solitons in optical microresonators,” Science 361, eaan8083 (2018).
[Crossref]

L. A. Lugiato, F. Prati, M. L. Gorodetsky, and T. J. Kippenberg, “From the Lugiato-Lefever equation to microresonator-based soliton Kerr frequency combs,” Philos. Trans. R. Soc. A 376, 20180113 (2018).
[Crossref]

L. Koehler, P. Chevalier, E. Shim, B. Desiatov, A. Shams-Ansari, M. Piccardo, Y. Okawachi, M. Yu, M. Loncar, M. Lipson, A. L. Gaeta, and F. Capasso, “Direct thermo-optical tuning of silicon microresonators for the mid-infrared,” Opt. Express 26, 34965–34976 (2018).
[Crossref]

T. Wang, M. Wang, Y.-Q. Hu, and G.-L. Long, “Optothermal control of the Raman gain enhanced ringing in microresonators,” Europhys. Lett. 124, 14002 (2018).
[Crossref]

C. Bekker, C. G. Baker, R. Kalra, H.-H. Cheng, B.-B. Li, V. Prakash, and W. P. Bowen, “Free spectral range electrical tuning of a high quality on-chip microcavity,” Opt. Express 26, 33649–33670 (2018).
[Crossref]

B. Yao, S.-W. Huang, Y. Liu, A. K. Vinod, C. Choi, M. Hoff, Y. Li, M. Yu, Z. Feng, D.-L. Kwong, Y. Huang, Y. Rao, X. Duan, and C. W. Wong, “Gate-tunable frequency combs in graphene-nitride microresonators,” Nature 558, 410–414 (2018).
[Crossref]

D. T. Spencer, T. Drake, T. C. Briles, J. Stone, L. C. Sinclair, C. Fredrick, Q. Li, D. Westly, B. R. Ilic, A. Bluestone, N. Volet, T. Komljenovic, L. Chang, S. H. Lee, D. Y. Oh, M.-G. Suh, K. Y. Yang, M. H. P. Pfeiffer, T. J. Kippenberg, E. Norberg, L. Theogarajan, K. Vahala, N. R. Newbury, K. Srinivasan, J. E. Bowers, S. A. Diddams, and S. B. Papp, “An optical-frequency synthesizer using integrated photonics,” Nature 557, 81–85 (2018).
[Crossref]

M. Bahadori, M. Nikdast, S. Rumley, L. Y. Dai, N. Janosik, T. Van Vaerenbergh, A. Gazman, Q. Cheng, R. Polster, and K. Bergman, “Design space exploration of microring resonators in silicon photonic interconnects: impact of the ring curvature,” J. Lightwave Technol. 36, 2767–2782 (2018).
[Crossref]

C. Xu, F. Qin, Q. Zhu, J. Lu, Y. Wang, J. Li, Y. Lin, Q. Cui, Z. Shi, and A. G. Manohari, “Plasmon-enhanced ZnO whispering-gallery mode lasing,” Nano Res. 11, 3050–3064 (2018).
[Crossref]

J. B. Surya, X. Guo, C.-L. Zou, and H. X. Tang, “Efficient third-harmonic generation in composite aluminum nitride/silicon nitride microrings,” Optica 5, 103–108 (2018).
[Crossref]

T. Siegle, J. Kellerer, M. Bonenberger, S. Krämmer, C. Klusmann, M. Müller, and H. Kalt, “Comparison of various excitation and detection schemes for dye-doped polymeric whispering gallery mode micro-lasers,” Opt. Express 26, 3579–3593 (2018).
[Crossref]

Z. Chen, G. Lou, H. Zhu, A. Chen, Y. Wu, Y. Ren, J. Li, Z. Qiu, X. Gui, and Z. Tang, “Enhancement of two-photon absorption photoresponse based on whispering gallery modes,” Nanoscale 10, 14047–14054 (2018).
[Crossref]

K. Y. Yang, D. Y. Oh, S. H. Lee, Q.-F. Yang, X. Yi, B. Shen, H. Wang, and K. Vahala, “Bridging ultrahigh-Q devices and photonic circuits,” Nat. Photonics 12, 297–302 (2018).
[Crossref]

M. H. P. Pfeiffer, C. Herkommer, J. Liu, T. Morais, M. Zervas, M. Geiselmann, and T. J. Kippenberg, “Photonic Damascene process for low-loss, high-confinement silicon nitride waveguides,” IEEE J. Sel. Top. Quantum Electron. 24, 6101411 (2018).
[Crossref]

D. W. Vogt, A. H. Jones, H. G. L. Schwefel, and R. Leonhardt, “Prism coupling of high-Q terahertz whispering-gallery-modes over two octaves from 0.2  THz to 1.1  THz,” Opt. Express 26, 31190–31198 (2018).
[Crossref]

K. A. Knapper, F. Pan, M. T. Rea, E. H. Horak, J. D. Rogers, and R. H. Goldsmith, “Single-particle photothermal imaging via inverted excitation through high-Q all-glass toroidal microresonators,” Opt. Express 26, 25020–25030 (2018).
[Crossref]

K. A. Knapper, E. H. Horak, C. H. Vollbrecht, K. D. Heylman, and R. H. Goldsmith, “Phase-sensitive photothermal imaging of ultrahigh-Q polyoxide toroidal microresonators,” Appl. Phys. Lett. 113, 231105 (2018).
[Crossref]

M. Anderson, N. G. Pavlov, J. D. Jost, G. Lihachev, J. Liu, T. Morais, M. Zervas, M. L. Gorodetsky, and T. J. Kippenberg, “Highly efficient coupling of crystalline microresonators to integrated photonic waveguides,” Opt. Lett. 43, 2106–2109 (2018).
[Crossref]

G. Liu, V. S. Ilchenko, T. Su, Y.-C. Ling, S. Feng, K. Shang, Y. Zhang, W. Liang, A. A. Savchenkov, A. B. Matsko, L. Maleki, and S. J. Ben Yoo, “Low-loss prism-waveguide optical coupling for ultrahigh-Q low-index monolithic resonators,” Optica 5, 219–226 (2018).
[Crossref]

J. Liu, A. S. Raja, M. H. P. Pfeiffer, C. Herkommer, H. Guo, M. Zervas, M. Geiselmann, and T. J. Kippenberg, “Double inverse nanotapers for efficient light coupling to integrated photonic devices,” Opt. Lett. 43, 3200–3203 (2018).
[Crossref]

S. Soltani, V. M. Diep, R. Zeto, and A. M. Armani, “Stimulated anti-Stokes Raman emission generated by gold nanorod coated optical resonators,” ACS Photon. 5, 3550–3556 (2018).
[Crossref]

P. Latawiec, V. Venkataraman, A. Shams-Ansari, M. Markham, and M. Lončar, “Integrated diamond Raman laser pumped in the near-visible,” Opt. Lett. 43, 318–321 (2018).
[Crossref]

Y. Zhang, T. Zhou, B. Han, A. Zhang, and Y. Zhao, “Optical bio-chemical sensors based on whispering gallery mode resonators,” Nanoscale 10, 13832–13856 (2018).
[Crossref]

A. K. Mallik, G. Farrell, D. Liu, V. Kavungal, Q. Wu, and Y. Semenova, “Silica gel coated spherical micro resonator for ultra-high sensitivity detection of ammonia gas concentration in air,” Sci. Rep. 8, 1620 (2018).
[Crossref]

B.-B. Li, J. Bílek, U. B. Hoff, L. S. Madsen, S. Forstner, V. Prakash, C. Schäfermeier, T. Gehring, W. P. Bowen, and U. L. Andersen, “Quantum enhanced optomechanical magnetometry,” Optica 5, 850–856 (2018).
[Crossref]

A. Giorgini, S. Avino, P. Malara, P. De Natale, M. Yannai, T. Carmon, and G. Gagliardi, “Stimulated Brillouin cavity optomechanics in liquid droplets,” Phys. Rev. Lett. 120, 073902 (2018).
[Crossref]

A. D. Logan, M. Gould, E. R. Schmidgall, K. Hestroffer, Z. Lin, W. Jin, A. Majumdar, F. Hatami, A. W. Rodriguez, and K.-M. C. Fu, “400%/W second harmonic conversion efficiency in 14 µm-diameter gallium phosphide-on-oxide resonators,” Opt. Express 26, 33687–33699 (2018).
[Crossref]

X. Li, C. Sun, B. Xiong, L. Wang, J. Wang, Y. Han, Z. Hao, H. Li, Y. Luo, J. Yan, T. Wei, Y. Zhang, and J. Wang, “Generation of multiple near-visible comb lines in an AlN microring via chi((2)) and chi((3)) optical nonlinearities,” Appl. Phys. Lett. 113, 171106 (2018).
[Crossref]

M. Yu, Y. Okawachi, A. G. Griffith, N. Picqué, M. Lipson, and A. L. Gaeta, “Silicon-chip-based mid-infrared dual-comb spectroscopy,” Nat. Commun. 9, 1–6 (2018).
[Crossref]

J. K. Jang, A. Klenner, X. Ji, Y. Okawachi, M. Lipson, and A. L. Gaeta, “Synchronization of coupled optical microresonators,” Nat. Photonics 12, 688–693 (2018).
[Crossref]

J. Wu, X. Xu, T. G. Nguyen, S. T. Chu, B. E. Little, R. Morandotti, A. Mitchell, and D. J. Moss, “RF photonics: an optical microcombs’ perspective,” IEEE J. Sel. Top. Quantum Electron. 24, 6101020 (2018).
[Crossref]

A. N. Willner, P. Liao, K. Zou, Y. Cao, A. Kordts, M. Karpov, M. H. P. Pfeiffer, A. Almaiman, A. Fallahpour, F. Alishahi, K. Manukyan, M. Tur, T. J. Kippenberg, and A. E. Willner, “Scalable and reconfigurable optical tapped-delay-line for multichannel equalization and correlation using nonlinear wave mixing and a Kerr frequency comb,” Opt. Lett. 43, 5563–5566 (2018).
[Crossref]

M.-G. Suh and K. J. Vahala, “Soliton microcomb range measurement,” Science 359, 884–887 (2018).
[Crossref]

P. Trocha, M. Karpov, D. Ganin, M. H. P. Pfeiffer, A. Kordts, S. Wolf, J. Krockenberger, P. Marin-Palomo, C. Weimann, S. Randel, W. Freude, T. J. Kippenberg, and C. Koos, “Ultrafast optical ranging using microresonator soliton frequency combs,” Science 359, 887–891 (2018).
[Crossref]

S. Fujii, T. Kato, R. Suzuki, A. Hori, and T. Tanabe, “Transition between Kerr comb and stimulated Raman comb in a silica whispering gallery mode microcavity,” J. Opt. Soc. Am. B 35, 100–106 (2018).
[Crossref]

Y. V. Kartashov, M. L. Gorodetsky, A. Kudlinski, and D. V. Skryabin, “Two-dimensional nonlinear modes and frequency combs in bottle microresonators,” Opt. Lett. 43, 2680–2683 (2018).
[Crossref]

B. Stern, X. Ji, Y. Okawachi, A. L. Gaeta, and M. Lipson, “Battery-operated integrated frequency comb generator,” Nature 562, 401–405 (2018).
[Crossref]

A. Dutt, C. Joshi, X. Ji, J. Cardenas, Y. Okawachi, K. Luke, A. L. Gaeta, and M. Lipson, “On-chip dual-comb source for spectroscopy,” Sci. Adv. 4, e1701858 (2018).
[Crossref]

K. Wu, Y. Wang, C. Qiu, and J. Chen, “Thermo-optic all-optical devices based on two-dimensional materials,” Photon. Res. 6, C22–C28 (2018).
[Crossref]

D. C. Cole, J. R. Stone, M. Erkintalo, K. Y. Yang, X. Yi, K. J. Vahala, and S. B. Papp, “Kerr-microresonator solitons from a chirped background,” Optica 5, 1304–1310 (2018).
[Crossref]

X. Shen, R. C. Beltran, V. M. Diep, S. Soltani, and A. M. Armani, “Low-threshold parametric oscillation in organically modified microcavities,” Sci. Adv. 4, eaao4507 (2018).
[Crossref]

2017 (33)

A. Fülöp, M. Mazur, A. Lorences-Riesgo, T. Eriksson, P.-H. Wang, D. Leaird, M. Qi, P. A. Andrekson, A. M. Weiner, and V. Torres-Company, “Long-haul coherent communications using microresonator-based frequency combs,” Opt. Express 25, 26678–26688 (2017).
[Crossref]

S. Kim, K. Han, C. Wang, J. A. Jaramillo-Villegas, X. Xue, C. Bao, Y. Xuan, D. E. Leaird, A. M. Weiner, and M. Qi, “Dispersion engineering and frequency comb generation in thin silicon nitride concentric microresonators,” Nat. Commun. 8, 372 (2017).
[Crossref]

S. Castelletto, L. Rosa, J. Blackledge, M. Z. Al Abri, and A. Boretti, “Advances in diamond nanofabrication for ultrasensitive devices,” Microsyst. Nanoeng. 3, 17061 (2017).
[Crossref]

I. Oreshnikov and D. V. Skryabin, “Multiple nonlinear resonances and frequency combs in bottle microresonators,” Opt. Express 25, 10306–10311 (2017).
[Crossref]

P. Marin-Palomo, J. N. Kemal, M. Karpov, A. Kordts, J. Pfeifle, M. H. P. Pfeiffer, P. Trocha, S. Wolf, V. Brasch, M. H. Anderson, R. Rosenberger, K. Vijayan, W. Freude, T. J. Kippenberg, and C. Koos, “Microresonator-based solitons for massively parallel coherent optical communications,” Nature 546, 274–279 (2017).
[Crossref]

X. Xu, J. Wu, M. Shoeiby, T. G. Nguyen, S. T. Chu, B. E. Little, R. Morandotti, A. Mitchell, and D. J. Moss, “Reconfigurable broadband microwave photonic intensity differentiator based on an integrated optical frequency comb source,” APL Photon. 2, 096104 (2017).
[Crossref]

Q.-F. Yang, X. Yi, K. Y. Yang, and K. Vahala, “Counter-propagating solitons in microresonators,” Nat. Photonics 11, 560–564 (2017).
[Crossref]

R. Castro-Beltrán, V. M. Diep, S. Soltani, E. Gungor, and A. M. Armani, “Plasmonically enhanced Kerr frequency combs,” ACS Photon. 4, 2828–2834 (2017).
[Crossref]

W. Liang, A. A. Savchenkov, V. S. Ilchenko, D. Eliyahu, A. B. Matsko, and L. Maleki, “Stabilized C-band Kerr frequency comb,” IEEE Photon. J. 9, 5502411 (2017).
[Crossref]

Y. Chen, Z.-H. Zhou, C.-L. Zou, Z. Shen, G.-C. Guo, and C.-H. Dong, “Tunable Raman laser in a hollow bottle-like microresonator,” Opt. Express 25, 16879–16887 (2017).
[Crossref]

M. H. P. Pfeiffer, J. Liu, M. Geiselmann, and T. J. Kippenberg, “Coupling ideality of integrated planar high-Q microresonators,” Phys. Rev. Appl. 7, 024026 (2017).
[Crossref]

A. A. Savchenkov, H. Mahalingam, V. S. Ilchenko, S. Takahashi, A. B. Matsko, W. H. Steier, and L. Maleki, “Polymer waveguide couplers for fluorite microresonators,” IEEE Photon. Technol. Lett. 29, 667–670 (2017).
[Crossref]

J. Xavier, S. Vincent, F. Meder, and F. Vollmer, “Advances in optoplasmonic sensors—combining optical nano/microcavities and photonic crystals with plasmonic nanostructures and nanoparticles,” Nanophotonics 7, 64 (2017).
[Crossref]

G. Zhao, Ş. K. Özdemir, T. Wang, L. Xu, E. King, G.-L. Long, and L. Yang, “Raman lasing and Fano lineshapes in a packaged fiber-coupled whispering-gallery-mode microresonator,” Sci. Bull. 62(12), 875–878 (2017).
[Crossref]

D. Chen, A. Kovach, X. Shen, S. Poust, and A. M. Armani, “On-chip ultra-high-Q silicon oxynitride optical resonators,” ACS Photon. 4, 2376–2381 (2017).
[Crossref]

S. A. Miller, M. Yu, X. Ji, A. G. Griffith, J. Cardenas, A. L. Gaeta, and M. Lipson, “Low-loss silicon platform for broadband mid-infrared photonics,” Optica 4, 707–712 (2017).
[Crossref]

T. Hansson, F. Leo, M. Erkintalo, S. Coen, I. Ricciardi, M. De Rosa, and S. Wabnitz, “Singly resonant second-harmonic-generation frequency combs,” Phys. Rev. A 95, 013805 (2017).
[Crossref]

C. Bao, H. Taheri, L. Zhang, A. Matsko, Y. Yan, P. Liao, L. Maleki, and A. Willner, “High-order dispersion in Kerr comb oscillators,” J. Opt. Soc. Am. B 34, 715–725 (2017).
[Crossref]

H. Taheri, A. Matsko, and L. Maleki, “Optical lattice trap for Kerr solitons,” Eur. Phys. J. D 71, 153 (2017).
[Crossref]

D. C. Cole, E. S. Lamb, P. Del’Haye, S. A. Diddams, and S. B. Papp, “Soliton crystals in Kerr resonators,” Nat. Photonics 11, 671–676 (2017).
[Crossref]

E. Obrzud, S. Lecomte, and T. Herr, “Temporal solitons in microresonators driven by optical pulses,” Nat. Photonics 11, 600–607 (2017).
[Crossref]

X. Xue, F. Leo, Y. Xuan, J. A. Jaramillo-Villegas, P.-H. Wang, D. E. Leaird, M. Erkintalo, M. Qi, and A. M. Weiner, “Second-harmonic-assisted four-wave mixing in chip-based microresonator frequency comb generation,” Light Sci. Appl. 6, e16253 (2017).
[Crossref]

A. V. Cherenkov, N. M. Kondratiev, V. E. Lobanov, A. E. Shitikov, D. V. Skryabin, and M. L. Gorodetsky, “Raman-Kerr frequency combs in microresonators with normal dispersion,” Opt. Express 25, 31148–31158 (2017).
[Crossref]

H. Taheri, A. A. Eftekhar, K. Wiesenfeld, and A. Adibi, “Anatomy of phase locking in hyperparametric oscillations based on Kerr nonlinearity,” IEEE Photon. J. 9, 6100911 (2017).
[Crossref]

H. Guo, E. Lucas, M. H. P. Pfeiffer, M. Karpov, M. Anderson, J. Liu, M. Geiselmann, J. D. Jost, and T. J. Kippenberg, “Intermode breather solitons in optical microresonators,” Phys. Rev. X 7, 041055 (2017).
[Crossref]

M. Yu, J. K. Jang, Y. Okawachi, A. G. Griffith, K. Luke, S. A. Miller, X. Ji, M. Lipson, and A. L. Gaeta, “Breather soliton dynamics in microresonators,” Nat. Commun. 8, 14569 (2017).
[Crossref]

X. Xue, P.-H. Wang, Y. Xuan, M. Qi, and A. M. Weiner, “Microresonator Kerr frequency combs with high conversion efficiency,” Laser Photon. Rev. 11, 1600276 (2017).
[Crossref]

J. H. Talla Mbé, C. Milián, and Y. K. Chembo, “Existence and switching behavior of bright and dark Kerr solitons in whispering-gallery mode resonators with zero group-velocity dispersion,” Eur. Phys. J. D 71, 196 (2017).
[Crossref]

V. E. Lobanov, A. V. Cherenkov, A. E. Shitikov, I. A. Bilenko, and M. L. Gorodetsky, “Dynamics of platicons due to third-order dispersion,” Eur. Phys. J. D 71, 185 (2017).
[Crossref]

M. H. P. Pfeiffer, C. Herkommer, J. Liu, H. Guo, M. Karpov, E. Lucas, M. Zervas, and T. J. Kippenberg, “Octave-spanning dissipative Kerr soliton frequency combs in Si3N4 microresonators,” Optica 4, 684–691 (2017).
[Crossref]

Q. Li, T. C. Briles, D. A. Westly, T. E. Drake, J. R. Stone, B. R. Ilic, S. A. Diddams, S. B. Papp, and K. Srinivasan, “Stably accessing octave-spanning microresonator frequency combs in the soliton regime,” Optica 4, 193–203 (2017).
[Crossref]

Y. Wang, F. Leo, J. Fatome, M. Erkintalo, S. G. Murdoch, and S. Coen, “Universal mechanism for the binding of temporal cavity solitons,” Optica 4, 855–863 (2017).
[Crossref]

X. Yi, Q.-F. Yang, X. Zhang, K. Y. Yang, X. Li, and K. Vahala, “Single-mode dispersive waves and soliton microcomb dynamics,” Nat. Commun. 8, 14869 (2017).
[Crossref]

2016 (39)

M. H. P. Pfeiffer, A. Kordts, V. Brasch, M. Zervas, M. Geiselmann, J. D. Jost, and T. J. Kippenberg, “Photonic damascene process for integrated high-Q microresonator based nonlinear photonics,” Optica 3, 20–25 (2016).
[Crossref]

A. Kordts, M. H. P. Pfeiffer, H. Guo, V. Brasch, and T. J. Kippenberg, “Higher order mode suppression in high-Q anomalous dispersion SiN microresonators for temporal dissipative Kerr soliton formation,” Opt. Lett. 41, 452–455 (2016).
[Crossref]

X. Xue, M. Qi, and A. M. Weiner, “Normal-dispersion microresonator Kerr frequency combs,” Nanophotonics 5, 244–262 (2016).
[Crossref]

P. Parra-Rivas, E. Knobloch, D. Gomila, and L. Gelens, “Dark solitons in the Lugiato-Lefever equation with normal dispersion,” Phys. Rev. A 93, 063839 (2016).
[Crossref]

P. Parra-Rivas, D. Gomila, E. Knobloch, S. Coen, and L. Gelens, “Origin and stability of dark pulse Kerr combs in normal dispersion resonators,” Opt. Lett. 41, 2402–2405 (2016).
[Crossref]

C. Bao, J. A. Jaramillo-Villegas, Y. Xuan, D. E. Leaird, M. Qi, and A. M. Weiner, “Observation of fermi-pasta-ulam recurrence induced by breather solitons in an optical microresonator,” Phys. Rev. Lett. 117, 163901 (2016).
[Crossref]

W. Renninger and P. Rakich, “Closed-form solutions and scaling laws for Kerr frequency combs,” Sci. Rep. 6, 24742 (2016).
[Crossref]

H. Taheri, P. Del’Haye, A. Eftekhar, K. Wiesenfeld, and A. Adibi, “Self-synchronization phenomena in the Lugiato-Lefever equation,” Phys. Rev. A 96, 013828 (2016).
[Crossref]

A. Savchenkov, A. Matsko, and L. Maleki, “On frequency combs in monolithic resonators,” Nanophotonics 5, 363–391 (2016).
[Crossref]

M. Karpov, H. Guo, A. Kordts, V. Brasch, M. H. P. Pfeiffer, M. Zervas, M. Geiselmann, and T. J. Kippenberg, “Raman self-frequency shift of dissipative Kerr solitons in an optical microresonator,” Phys. Rev. Lett. 116, 103902 (2016).
[Crossref]

X. Yi, Q.-F. Yang, K. Y. Yang, and K. Vahala, “Theory and measurement of the soliton self-frequency shift and efficiency in optical microcavities,” Opt. Lett. 41, 3419–3422 (2016).
[Crossref]

V. Lobanov, G. Lihachev, N. Pavlov, A. Cherenkov, T. Kippenberg, and M. Gorodetsky, “Harmonization of chaos into a soliton in Kerr frequency combs,” Opt. Express 24, 27382–27394 (2016).
[Crossref]

T. Kobatake, T. Kato, H. Itobe, Y. Nakagawa, and T. Tanabe, “Thermal effects on Kerr comb generation in a CaF2 whispering-gallery mode microcavity,” IEEE Photon. J. 8, 4501109 (2016).
[Crossref]

H. Guo, M. Karpov, E. Lucas, A. Kordts, M. H. P. Pfeiffer, V. Brasch, G. Lihachev, V. E. Lobanov, M. L. Gorodetsky, and T. J. Kippenberg, “Universal dynamics and deterministic switching of dissipative Kerr solitons in optical microresonators,” Nat. Phys. 13, 94–102 (2016).
[Crossref]

A. Matsko, W. Liang, A. Savchenkov, D. Eliyahu, and L. Maleki, “Optical Cherenkov radiation in overmoded microresonators,” Opt. Lett. 41, 2907–2910 (2016).
[Crossref]

Q.-F. Yang, X. Yi, K. Yang, and K. Vahala, “Spatial-mode-interaction-induced dispersive waves and their active tuning in microresonators,” Optica 3, 1132–1135 (2016).
[Crossref]

V. Brasch, M. Geiselmann, T. Herr, G. Lihachev, M. Pfeiffer, M. Gorodetsky, and T. Kippenberg, “Photonic chip-based optical frequency comb using soliton Cherenkov radiation,” Science 351, 357–360 (2016).
[Crossref]

T. Hansson, F. Leo, M. Erkintalo, J. Anthony, S. Coen, I. Ricciardi, M. D. Rosa, and S. Wabnitz, “Single envelope equation modeling of multi-octave comb arrays in microresonators with quadratic and cubic nonlinearities,” J. Opt. Soc. Am. B 33, 1207–1215 (2016).
[Crossref]

F. Leo, T. Hansson, I. Ricciardi, M. De Rosa, S. Coen, S. Wabnitz, and M. Erkintalo, “Walk-off-induced modulation instability, temporal pattern formation, and frequency comb generation in cavity-enhanced second-harmonic generation,” Phys. Rev. Lett. 116, 033901 (2016).
[Crossref]

F. Leo, T. Hansson, I. Ricciardi, M. De Rosa, S. Coen, S. Wabnitz, and M. Erkintalo, “Frequency-comb formation in doubly resonant second-harmonic generation,” Phys. Rev. A 93, 043831 (2016).
[Crossref]

C. Joshi, J. K. Jang, K. Luke, X. Ji, S. A. Miller, A. Klenner, Y. Okawachi, M. Lipson, and A. L. Gaeta, “Thermally controlled comb generation and soliton modelocking in microresonators,” Opt. Lett. 41, 2565–2568 (2016).
[Crossref]

L. Yu, Y. Yin, Y. Shi, D. Dai, and S. He, “Thermally tunable silicon photonic microdisk resonator with transparent graphene nanoheaters,” Optica 3, 159–166 (2016).
[Crossref]

M. Mitchell, B. Khanaliloo, D. P. Lake, T. Masuda, J. P. Hadden, and P. E. Barclay, “Single-crystal diamond low-dissipation cavity optomechanics,” Optica 3, 963–970 (2016).
[Crossref]

G. A. Santamaría-Botello, L. E. G. Muñoz, F. Sedlmeir, S. Preu, D. Segovia-Vargas, K. A. Abdalmalak, S. L. Romano, A. G. Lampérez, S. Malzer, G. H. Döhler, H. G. L. Schwefel, and H. B. Weber, “Maximization of the optical intra-cavity power of whispering-gallery mode resonators via coupling prism,” Opt. Express 24, 26503–26514 (2016).
[Crossref]

Y. Yang, Y. Ooka, R. M. Thompson, J. M. Ward, and S. N. Chormaic, “Degenerate four-wave mixing in a silica hollow bottle-like microresonator,” Opt. Lett. 41, 575–578 (2016).
[Crossref]

H. Choi and A. M. Armani, “High efficiency Raman lasers based on Zr-doped silica hybrid microcavities,” ACS Photon. 3, 2383–2388 (2016).
[Crossref]

J. A. Haigh, A. Nunnenkamp, A. J. Ramsay, and A. J. Ferguson, “Triple-resonant Brillouin light scattering in magneto-optical cavities,” Phys. Rev. Lett. 117, 133602 (2016).
[Crossref]

M.-G. Suh, Q.-F. Yang, K. Y. Yang, X. Yi, and K. J. Vahala, “Microresonator soliton dual-comb spectroscopy,” Science 354, 600–603 (2016).
[Crossref]

Z. Liu, Y. Chen, L. Zhao, Y. Zhang, Y. Wei, H. Li, Y. Liu, Y. Zhang, E. Zhao, X. Yang, J. Zhang, and L. Yuan, “Single-fiber tweezers applied for dye lasing in a fluid droplet,” Opt. Lett. 41, 2966–2969 (2016).
[Crossref]

M. Pu, L. Ottaviano, E. Semenova, and K. Yvind, “Efficient frequency comb generation in AlGaAs-on-insulator,” Optica 3, 823–826 (2016).
[Crossref]

H. Jung and H. X. Tang, “Aluminum nitride as nonlinear optical material for on-chip frequency comb generation and frequency conversion,” Nanophotonics 5, 263–271 (2016).
[Crossref]

M. Yu, Y. Okawachi, A. G. Griffith, M. Lipson, and A. L. Gaeta, “Mode-locked mid-infrared frequency combs in a silicon microresonator,” Optica 3, 854–860 (2016).
[Crossref]

A. G. Griffith, M. Yu, Y. Okawachi, J. Cardenas, A. Mohanty, A. L. Gaeta, and M. Lipson, “Coherent mid-infrared frequency combs in silicon-microresonators in the presence of Raman effects,” Opt. Express 24, 13044–13050 (2016).
[Crossref]

C. Bao, P. Liao, A. Kordts, M. Karpov, M. H. P. Pfeiffer, L. Zhang, Y. Yan, G. Xie, Y. Cao, A. Almaiman, M. Ziyadi, L. Li, Z. Zhao, A. Mohajerin-Ariaei, S. R. Wilkinson, M. Tur, M. M. Fejer, T. J. Kippenberg, and A. E. Willner, “Demonstration of optical multicasting using Kerr frequency comb lines,” Opt. Lett. 41, 3876–3879 (2016).
[Crossref]

K. E. Webb, M. Erkintalo, S. Coen, and S. G. Murdoch, “Experimental observation of coherent cavity soliton frequency combs in silica microspheres,” Opt. Lett. 41, 4613–4616 (2016).
[Crossref]

Y. Nakagawa, Y. Mizumoto, T. Kato, T. Kobatake, H. Itobe, Y. Kakinuma, and T. Tanabe, “Dispersion tailoring of a crystalline whispering gallery mode microcavity for a wide-spanning optical Kerr frequency comb,” J. Opt. Soc. Am. B 33, 1913–1920 (2016).
[Crossref]

Y. Yang, X. Jiang, S. Kasumie, G. Zhao, L. Xu, J. M. Ward, L. Yang, and S. N. Chormaic, “Four-wave mixing parametric oscillation and frequency comb generation at visible wavelengths in a silica microbubble resonator,” Opt. Lett. 41, 5266–5269 (2016).
[Crossref]

S. Diallo, G. Lin, R. Martinenghi, L. Furfaro, M. Jacquot, and Y. K. Chembo, “Brillouin lasing in ultra-high-Q lithium fluoride disk resonators,” IEEE Photon. Technol. Lett. 28, 955–958 (2016).
[Crossref]

G. Lin, S. Diallo, J. M. Dudley, and Y. K. Chembo, “Universal nonlinear scattering in ultra-high Q whispering gallery-mode resonators,” Opt. Express 24, 14880–14894 (2016).
[Crossref]

2015 (36)

R. Henriet, G. Lin, A. Coillet, M. Jacquot, L. Furfaro, L. Larger, and Y. K. Chembo, “Kerr optical frequency comb generation in strontium fluoride whispering-gallery mode resonators with billion quality factor,” Opt. Lett. 40, 1567–1570 (2015).
[Crossref]

W. Liang, V. S. Ilchenko, D. Eliyahu, A. A. Savchenkov, A. B. Matsko, D. Seidel, and L. Maleki, “Ultralow noise miniature external cavity semiconductor laser,” Nat. Commun. 6, 7371 (2015).
[Crossref]

J. Pfeifle, A. Coillet, R. Henriet, K. Saleh, P. Schindler, C. Weimann, W. Freude, I. V. Balakireva, L. Larger, C. Koos, and Y. K. Chembo, “Optimally coherent Kerr combs generated with crystalline whispering gallery mode resonators for ultrahigh capacity fiber communications,” Phys. Rev. Lett. 114, 093902 (2015).
[Crossref]

X. Yi, Q.-F. Yang, K. Y. Yang, M.-G. Suh, and K. Vahala, “Soliton frequency comb at microwave rates in a high-Q silica microresonator,” Optica 2, 1078–1085 (2015).
[Crossref]

D. Farnesi, A. Barucci, G. C. Righini, G. N. Conti, and S. Soria, “Generation of hyper-parametric oscillations in silica microbubbles,” Opt. Lett. 40, 4508–4511 (2015).
[Crossref]

K. Luke, Y. Okawachi, M. R. E. Lamont, A. L. Gaeta, and M. Lipson, “Broadband mid-infrared frequency comb generation in a Si3N4 microresonator,” Opt. Lett. 40, 4823–4826 (2015).
[Crossref]

J. P. Epping, M. Hoekman, R. Mateman, A. Leinse, R. G. Heideman, A. van Rees, P. J. van der Slot, C. J. Lee, and K.-J. Boller, “High confinement, high yield Si3N4 waveguides for nonlinear optical applications,” Opt. Express 23, 642–648 (2015).
[Crossref]

T. G. Nguyen, M. Shoeiby, S. T. Chu, B. E. Little, R. Morandotti, A. Mitchell, and D. J. Moss, “Integrated frequency comb source based Hilbert transformer for wideband microwave photonic phase analysis,” Opt. Express 23, 22087–22097 (2015).
[Crossref]

A. G. Griffith, R. K. W. Lau, J. Cardenas, Y. Okawachi, A. Mohanty, R. Fain, Y. H. D. Lee, M. Yu, C. T. Phare, C. B. Poitras, A. L. Gaeta, and M. Lipson, “Silicon-chip mid-infrared frequency comb generation,” Nat. Commun. 6, 6299 (2015).
[Crossref]

J. Jaramillo-Villegas, X. Xue, P.-H. Wang, D. Leaird, and A. Weiner, “Deterministic single soliton generation and compression in microring resonators avoiding the chaotic region,” Opt. Express 23, 9618–9626 (2015).
[Crossref]

A. Autere, L. Karvonen, A. Saynatjoki, M. Roussey, E. Farm, M. Kemell, X. Tu, T. Y. Liow, G. Q. Lo, M. Ritala, M. Leskela, S. Honkanen, H. Lipsanen, and Z. Sun, “Slot waveguide ring resonators coated by an atomic layer deposited organic/inorganic nanolaminate,” Opt. Express 23, 26940–26951 (2015).
[Crossref]

W. Liang, D. Eliyahu, V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, D. Seidel, and L. Maleki, “High spectral purity Kerr frequency comb radio frequency photonic oscillator,” Nat. Commun. 6, 7957 (2015).
[Crossref]

J. Kim, M. C. Kuzyk, K. Han, H. Wang, and G. Bahl, “Non-reciprocal Brillouin scattering induced transparency,” Nat. Phys. 11, 275–280 (2015).
[Crossref]

C.-H. Dong, Z. Shen, C.-L. Zou, Y.-L. Zhang, W. Fu, and G.-C. Guo, “Brillouin-scattering-induced transparency and non-reciprocal light storage,” Nat. Commun. 6, 6193 (2015).
[Crossref]

C. Milian, A. V. Gorbach, M. Taki, A. V. Yulin, and D. V. Skryabin, “Solitons and frequency combs in silica microring resonators: interplay of the Raman and higher-order dispersion effects,” Phys. Rev. A 92, 033851 (2015).
[Crossref]

A. B. Socorro, S. Soltani, I. Del Villar, J. M. Corres, and A. M. Armani, “Temperature sensor based on a hybrid ITO-silica resonant cavity,” Opt. Express 23, 1930–1937 (2015).
[Crossref]

J. Nishimura, M. Kobayashi, R. Saito, and T. Tanabe, “NaCl ion detection using a silica toroid microcavity,” Appl. Opt. 54, 6391–6396 (2015).
[Crossref]

J. Lin, Y. Xu, Z. Fang, M. Wang, J. Song, N. Wang, L. Qiao, W. Fang, and Y. Cheng, “Fabrication of high-Q lithium niobate microresonators using femtosecond laser micromachining,” Sci. Rep. 5, 8072 (2015).
[Crossref]

A. M. Flatae, M. Burresi, H. Zeng, S. Nocentini, S. Wiegele, C. Parmeggiani, H. Kalt, and D. Wiersma, “Optically controlled elastic microcavities,” Light Sci. Appl. 4, e282 (2015).
[Crossref]

G. Li, P. Liu, X. Jiang, C. Yang, J. Ma, H. Wu, and M. Xiao, “High-Q silica microdisk optical resonators with large wedge angles on a silicon chip,” Photon. Res. 3, 279–282 (2015).
[Crossref]

C. Zhou and P. Bermel, “High-efficiency cascaded up and down conversion in nonlinear Kerr cavities,” Opt. Express 23, 24390–24406 (2015).
[Crossref]

C. Guo, K. Che, P. Zhang, J. Wu, Y. Huang, H. Xu, and Z. Cai, “Low-threshold stimulated Brillouin scattering in high-Q whispering gallery mode tellurite microspheres,” Opt. Express 23, 32261–32266 (2015).
[Crossref]

I. Ricciardi, S. Mosca, M. Parisi, P. Maddaloni, L. Santamaria, P. De Natale, and M. De Rosa, “Frequency comb generation in quadratic nonlinear media,” Phys. Rev. A 91, 063839 (2015).
[Crossref]

T. Hansson and S. Wabnitz, “Frequency comb generation beyond the Lugiato-Lefever equation: multi-stability and super cavity solitons,” J. Opt. Soc. Am. B 32, 1259–1266 (2015).
[Crossref]

H. Taheri, A. Eftekhar, K. Wiesenfeld, and A. Adibi, “Soliton formation in whispering-gallery-mode resonators via input phase modulation,” IEEE Photon. J. 7, 2200309 (2015).
[Crossref]

V. Lobanov, G. Lihachev, and M. Gorodetsky, “Generation of platicons and frequency combs in optical microresonators with normal GVD by modulated pump,” Europhys. Lett. 112, 54008 (2015).
[Crossref]

J. Jost, T. Herr, C. Lecaplain, V. Brasch, M. Pfeiffer, and T. Kippenberg, “Counting the cycles of light using a self-referenced optical microresonator,” Optica 2, 706–711 (2015).
[Crossref]

Y. K. Chembo, I. S. Grudinin, and N. Yu, “Spatiotemporal dynamics of Kerr-Raman optical frequency combs,” Phys. Rev. A 92, 043818 (2015).
[Crossref]

S. Diallo, G. Lin, and Y. K. Chembo, “Giant thermo-optical relaxation oscillations in millimeter-size whispering gallery mode disk resonators,” Opt. Lett. 40, 3834–3837 (2015).
[Crossref]

J. Jang, M. Erkintalo, S. Murdoch, and S. Coen, “Writing and erasing of temporal cavity solitons by direct phase modulation of the cavity driving field,” Opt. Lett. 40, 4755–4758 (2015).
[Crossref]

G. Lin and Y. K. Chembo, “On the dispersion management of fluorite whispering-gallery mode resonators for Kerr optical frequency comb generation in the telecom and mid-infrared range,” Opt. Express 23, 1594–1604 (2015).
[Crossref]

X. Xue, Y. Xuan, P.-H. Wang, Y. Liu, D. Leaird, M. Qi, and A. Weiner, “Normal-dispersion microcombs enabled by controllable mode interactions,” Laser Photon. Rev. 9, L23–L28 (2015).
[Crossref]

V. Lobanov, G. Lihachev, T. Kippenberg, and M. Gorodetsky, “Frequency combs and platicons in optical microresonators with normal GVD,” Opt. Express 23, 7713–7721 (2015).
[Crossref]

S.-W. Huang, H. Zhou, J. Yang, J. McMillan, A. Matsko, M. Yu, D.-L. Kwong, L. Maleki, and C. Wong, “Mode-locked ultrashort pulse generation from on-chip normal dispersion microresonators,” Phys. Rev. Lett. 114, 053901 (2015).
[Crossref]

I. S. Grudinin and N. Yu, “Dispersion engineering of crystalline resonators via microstructuring,” Optica 2, 221–224 (2015).
[Crossref]

A. Matsko and L. Maleki, “Noise conversion in Kerr comb RF photonic oscillators,” J. Opt. Soc. Am. B 32, 232–240 (2015).
[Crossref]

2014 (29)

C. Bao, L. Zhang, A. Matsko, Y. Yan, Z. Zhao, G. Xie, A. M. Agarwal, L. C. Kimerling, J. Michel, L. Maleki, and A. E. Willner, “Nonlinear conversion efficiency in Kerr frequency comb generation,” Opt. Lett. 39, 6126–6129 (2014).
[Crossref]

J. K. Jang, M. Erkintalo, S. G. Murdoch, and S. Coen, “Observation of dispersive wave emission by temporal cavity solitons,” Opt. Lett. 39, 5503–5506 (2014).
[Crossref]

W. Liang, A. A. Savchenkov, V. S. Ilchenko, D. Eliyahu, D. Seidel, A. B. Matsko, and L. Maleki, “Generation of a coherent near-infrared Kerr frequency comb in a monolithic microresonator with normal GVD,” Opt. Lett. 39, 2920–2923 (2014).
[Crossref]

Y. Okawachi, M. Lamont, K. Luke, D. Carvalho, M. Yu, M. Lipson, and A. Gaeta, “Bandwidth shaping of microresonator-based frequency combs via dispersion engineering,” Opt. Lett. 39, 3535–3538 (2014).
[Crossref]

T. Hansson, D. Modotto, and S. Wabnitz, “On the numerical simulation of Kerr frequency combs using coupled mode equations,” Opt. Commun. 312, 134–136 (2014).
[Crossref]

A. Coillet and Y. Chembo, “Routes to spatiotemporal chaos in Kerr optical frequency combs,” Chaos 24, 013113 (2014).
[Crossref]

C. Godey, I. Balakireva, A. Coillet, and Y. Chembo, “Stability analysis of the spatiotemporal Lugiato-Lefever model for Kerr optical frequency combs in the anomalous and normal dispersion regimes,” Phys. Rev. A 89, 063814 (2014).
[Crossref]

M. Erkintalo and S. Coen, “Coherence properties of Kerr frequency combs,” Opt. Lett. 39, 283–286 (2014).
[Crossref]

T. Hansson and S. Wabnitz, “Bichromatically pumped microresonator frequency combs,” Phys. Rev. A 90, 013811 (2014).
[Crossref]

C. Milian and D. V. Skryabin, “Soliton families and resonant radiation in a micro-ring resonator near zero group-velocity dispersion,” Opt. Express 22, 3732–3739 (2014).
[Crossref]

T. Herr, V. Brasch, J. D. Jost, I. Mirgorodskiy, G. Lihachev, M. L. Gorodetsky, and T. J. Kippenberg, “Mode spectrum and temporal soliton formation in optical microresonators,” Phys. Rev. Lett. 113, 123901 (2014).
[Crossref]

T. Herr, V. Brasch, J. D. Jost, C. Y. Wang, N. M. Kondratiev, M. L. Gorodetsky, and T. J. Kippenberg, “Temporal solitons in optical microresonators,” Nat. Photonics 8, 145–152 (2014).
[Crossref]

X. Zhang, Y. F. Cheung, Y. Zhang, and H. W. Choi, “Whispering-gallery mode lasing from optically free-standing InGaN microdisks,” Opt. Lett. 39, 5614–5617 (2014).
[Crossref]

S. Soltani and A. M. Armani, “Optothermal transport behavior in whispering gallery mode optical cavities,” Appl. Phys. Lett. 105, 051111 (2014).
[Crossref]

W. Yoshiki and T. Tanabe, “All-optical switching using Kerr effect in a silica toroid microcavity,” Opt. Express 22, 24332–24341 (2014).
[Crossref]

L. Chen, Q. Xu, M. G. Wood, and R. M. Reano, “Hybrid silicon and lithium niobate electro-optical ring modulator,” Optica 1, 112–118 (2014).
[Crossref]

B. R. Sutherland, S. Hoogland, M. M. Adachi, C. T. O. Wong, and E. H. Sargent, “Conformal organohalide perovskites enable lasing on spherical resonators,” ACS Nano 8, 10947–10952 (2014).
[Crossref]

B. J. M. Hausmann, I. Bulu, V. Venkataraman, P. Deotare, and M. Loncar, “Diamond nonlinear photonics,” Nat. Photonics 8, 369–374 (2014).
[Crossref]

M. J. Burek, Y. Chu, M. S. Z. Liddy, P. Patel, J. Rochman, S. Meesala, W. Hong, Q. Quan, M. D. Lukin, and M. Loncar, “High quality-factor optical nanocavities in bulk single-crystal diamond,” Nat. Commun. 5, 5718 (2014).
[Crossref]

S. Mehrabani, A. Maker, and A. Armani, “Hybrid integrated label-free chemical and biological sensors,” Sensors 14, 5890–5928 (2014).
[Crossref]

N. Deka, A. J. Maker, and A. M. Armani, “Titanium-enhanced Raman microcavity laser,” Opt. Lett. 39, 1354–1357 (2014).
[Crossref]

G. Lin, S. Diallo, K. Saleh, R. Martinenghi, J.-C. Beugnot, T. Sylvestre, and Y. K. Chembo, “Cascaded Brillouin lasing in monolithic barium fluoride whispering gallery mode resonators,” Appl. Phys. Lett. 105, 231103 (2014).
[Crossref]

S. B. Papp, K. Beha, P. Del’Haye, F. Quinlan, H. Lee, K. J. Vahala, and S. A. Diddams, “Microresonator frequency comb optical clock,” Optica 1, 10–14 (2014).
[Crossref]

C. Weimann, P. Schindler, R. Palmer, S. Wolf, D. Bekele, D. Korn, J. Pfeifle, S. Koeber, R. Schmogrow, L. Alloatti, D. Elder, H. Yu, W. Bogaerts, L. Dalton, W. Freude, J. Leuthold, and C. Koos, “Silicon-organic hybrid (SOH) frequency comb sources for terabit/s data transmission,” Opt. Express 22, 3629–3637 (2014).
[Crossref]

J. Pfeifle, V. Brasch, M. Lauermann, Y. Yu, D. Wegner, T. Herr, K. Hartinger, P. Schindler, J. Li, D. Hillerkuss, R. Schmogrow, C. Weimann, R. Holzwarth, W. Freude, J. Leuthold, T. J. Kippenberg, and C. Koos, “Coherent terabit communications with microresonator Kerr frequency combs,” Nat. Photonics 8, 375–380 (2014).
[Crossref]

K. He, N. Kumar, L. Zhao, Z. Wang, K. F. Mak, H. Zhao, and J. Shan, “Tightly bound excitons in monolayer WSe2,” Phys. Rev. Lett. 113, 026803 (2014).
[Crossref]

R. Wang, H.-C. Chien, J. Kumar, N. Kumar, H.-Y. Chiu, and H. Zhao, “Third-harmonic generation in ultrathin films of MoS2,” ACS Appl. Mater. Interfaces 6, 314–318 (2014).
[Crossref]

X. Xue, Y. Xuan, H.-J. Kim, J. Wang, D. E. Leaird, M. Qi, and A. M. Weiner, “Programmable single-bandpass photonic RF filter based on Kerr comb from a microring,” J. Lightwave Technol. 32, 3557–3565 (2014).
[Crossref]

K. Saleh, R. Henriet, S. Diallo, G. Lin, R. Martinenghi, I. V. Balakireva, P. Salzenstein, A. Coillet, and Y. K. Chembo, “Phase noise performance comparison between optoelectronic oscillators based on optical delay lines and whispering gallery mode resonators,” Opt. Express 22, 32158–32173 (2014).
[Crossref]

2013 (22)

P. Del’Haye, S. A. Diddams, and S. B. Papp, “Laser-machined ultra-high-Q microrod resonators for nonlinear optics,” Appl. Phys. Lett. 102, 221119 (2013).
[Crossref]

C. Shi, S. Soltani, and A. M. Armani, “Gold nanorod plasmonic upconversion microlaser,” Nano Lett. 13, 5827–5831 (2013).
[Crossref]

H. Jung, C. Xiong, K. Y. Fong, X. Zhang, and H. X. Tang, “Optical frequency comb generation from aluminum nitride microring resonator,” Opt. Lett. 38, 2810–2813 (2013).
[Crossref]

S. Mehrabani and A. M. Armani, “Blue upconversion laser based on thulium-doped silica microcavity,” Opt. Lett. 38, 4346–4349 (2013).
[Crossref]

N. Kumar, S. Najmaei, Q. Cui, F. Ceballos, P. M. Ajayan, J. Lou, and H. Zhao, “Second harmonic microscopy of monolayer MoS2,” Phys. Rev. B 87, 161403 (2013).
[Crossref]

J. Knittel, J. D. Swaim, D. L. McAuslan, G. A. Brawley, and W. P. Bowen, “Back-scatter based whispering gallery mode sensing,” Sci. Rep. 3, 2974 (2013).
[Crossref]

A. J. Maker and A. M. Armani, “Heterodyned toroidal microlaser sensor,” Appl. Phys. Lett. 103, 123302 (2013).
[Crossref]

B.-B. Li, Y.-F. Xiao, M.-Y. Yan, W. R. Clements, and Q. Gong, “Low-threshold Raman laser from an on-chip, high-Q, polymer-coated microcavity,” Opt. Lett. 38, 1802–1804 (2013).
[Crossref]

B. J. M. Hausmann, I. B. Bulu, P. B. Deotare, M. McCutcheon, V. Venkataraman, M. L. Markham, D. J. Twitchen, and M. Loncar, “Integrated high-quality factor optical resonators in diamond,” Nano Lett. 13, 1898–1902 (2013).
[Crossref]

D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics,” Nat. Photonics 7, 597–607 (2013).
[Crossref]

X. Zhang and A. M. Armani, “Silica microtoroid resonator sensor with monolithically integrated waveguides,” Opt. Express 21, 23592–23602 (2013).
[Crossref]

K. Luke, A. Dutt, C. B. Poitras, and M. Lipson, “Overcoming Si3N4 film stress limitations for high quality factor ring resonators,” Opt. Express 21, 22829–22833 (2013).
[Crossref]

Y. K. Chembo and C. R. Menyuk, “Spatiotemporal Lugiato-Lefever formalism for Kerr-comb generation in whispering-gallery-mode resonators,” Phys. Rev. A 87, 053852 (2013).
[Crossref]

S. Coen, H. Randle, T. Sylvestre, and M. Erkintalo, “Modeling of octave-spanning Kerr frequency combs using a generalized mean-field Lugiato-Lefever model,” Opt. Lett. 38, 37–39 (2013).
[Crossref]

A. Matsko and L. Maleki, “On timing jitter of mode locked Kerr frequency combs,” Opt. Express 21, 28862–28876 (2013).
[Crossref]

K. Saha, Y. Okawachi, B. Shim, J. Levy, R. Salem, A. Johnson, M. Foster, M. Lamont, M. Lipson, and A. Gaeta, “Modelocking and femtosecond pulse generation in chip-based frequency combs,” Opt. Express 21, 1335–1343 (2013).
[Crossref]

Y. Deng, R. Flores-Flores, R. K. Jain, and M. Hossein-Zadeh, “Thermo-optomechanical oscillations in high-Q ZBLAN microspheres,” Opt. Lett. 38, 4413–4416 (2013).
[Crossref]

M. Li, X. Wu, L. Liu, and L. Xu, “Kerr parametric oscillations and frequency comb generation from dispersion compensated silica micro-bubble resonators,” Opt. Express 21, 16908–16913 (2013).
[Crossref]

C. Y. Wang, T. Herr, P. Del’Haye, A. Schliesser, J. Hofer, R. Holzwarth, T. W. Haensch, N. Picque, and T. J. Kippenberg, “Mid-infrared optical frequency combs at 2.5  µm based on crystalline microresonators,” Nat. Commun. 4, 1345 (2013).
[Crossref]

A. B. Matsko, D. Eliyahu, and L. Maleki, “Theory of coupled optoelectronic microwave oscillator II: phase noise,” J. Opt. Soc. Am. B 30, 3316–3323 (2013).
[Crossref]

M. Lamont, Y. Okawachi, and A. Gaeta, “Route to stabilized ultrabroadband microresonator-based frequency combs,” Opt. Lett. 38, 3478–3481 (2013).
[Crossref]

I. S. Grudinin, L. Baumgartel, and N. Yu, “Impact of cavity spectrum on span in microresonator frequency combs,” Opt. Express 21, 26929–26935 (2013).
[Crossref]

2012 (14)

I. S. Grudinin, L. Baumgartel, and N. Yu, “Frequency comb from a microresonator with engineered spectrum,” Opt. Express 20, 6604–6609 (2012).
[Crossref]

A. B. Matsko, A. A. Savchenkov, and L. Maleki, “Normal group-velocity dispersion Kerr frequency comb,” Opt. Lett. 37, 43–45 (2012).
[Crossref]

A. A. Savchenkov, A. B. Matsko, W. Liang, V. S. Ilchenko, D. Seidel, and L. Maleki, “Kerr frequency comb generation in overmoded resonators,” Opt. Express 20, 27290–27298 (2012).
[Crossref]

H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, “Chemically etched ultrahigh-Q wedge-resonator on a silicon chip,” Nat. Photonics 6, 369–373 (2012).
[Crossref]

J. Riemensberger, K. Hartinger, T. Herr, V. Brasch, R. Holzwarth, and T. J. Kippenberg, “Dispersion engineering of thick high-Q silicon nitride ring-resonators via atomic layer deposition,” Opt. Express 20, 27661–27669 (2012).
[Crossref]

A. B. Matsko, A. A. Savchenkov, V. S. Ilchenko, D. Seidel, and L. Maleki, “Hard and soft excitation regimes of Kerr frequency combs,” Phys. Rev. A 85, 023830 (2012).
[Crossref]

T. Beck, S. Schloer, T. Grossmann, T. Mappes, and H. Kalt, “Flexible coupling of high-Q goblet resonators for formation of tunable photonic molecules,” Opt. Express 20, 22012–22017 (2012).
[Crossref]

R. Halir, Y. Okawachi, J. S. Levy, M. A. Foster, M. Lipson, and A. L. Gaeta, “Ultrabroadband supercontinuum generation in a CMOS-compatible platform,” Opt. Lett. 37, 1685–1687 (2012).
[Crossref]

Z.-F. Bi, A. W. Rodriguez, H. Hashemi, D. Duchesne, M. Loncar, K.-M. Wang, and S. G. Johnson, “High-efficiency second-harmonic generation in doubly-resonant χ(2) microring resonators,” Opt. Express 20, 7526–7543 (2012).
[Crossref]

G. Bahl, X. Fan, and T. Carmon, “Acoustic whispering-gallery modes in optomechanical shells,” New J. Phys. 14, 115026 (2012).
[Crossref]

G. Bahl, M. Tomes, F. Marquardt, and T. Carmon, “Observation of spontaneous Brillouin cooling,” Nat. Phys. 8, 203–207 (2012).
[Crossref]

M. M. Naiini, C. Henkel, G. B. Mahn, and M. Ostling, “ALD high-k layer grating couplers for single and double slot on-chip SOI photonics,” Solid-State Electron. 74, 58–63 (2012).
[Crossref]

B. Chen, H. Zhong, W. Zhang, Z. Tan, Y. Li, C. Yu, T. Zhai, Y. Bando, S. Yang, and B. Zou, “Highly emissive and color-tunable CuInS2-based colloidal semiconductor nanocrystals: off-stoichiometry effects and improved electroluminescence performance,” Adv. Funct. Mater. 22, 2081–2088 (2012).
[Crossref]

J. S. Levy, K. Saha, Y. Okawachi, M. A. Foster, A. L. Gaeta, and M. Lipson, “High-performance silicon-nitride-based multiple-wavelength source,” IEEE Photon. Technol. Lett. 24, 1375–1377 (2012).
[Crossref]

2011 (16)

Y. Okawachi, K. Saha, J. S. Levy, Y. H. Wen, M. Lipson, and A. L. Gaeta, “Octave-spanning frequency comb generation in a silicon nitride chip,” Opt. Lett. 36, 3398–3400 (2011).
[Crossref]

F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by-line pulse shaping of on-chip microresonator frequency combs,” Nat. Photonics 5, 770–776 (2011).
[Crossref]

J. L. Dominguez-Juarez, G. Kozyreff, and J. Martorell, “Whispering gallery microresonators for second harmonic light generation from a low number of small molecules,” Nat. Commun. 2, 254 (2011).
[Crossref]

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332, 555–559 (2011).
[Crossref]

T. Ling, S.-L. Chen, and L. J. Guo, “Fabrication and characterization of high Q polymer micro-ring resonator and its application as a sensitive ultrasonic detector,” Opt. Express 19, 861–869 (2011).
[Crossref]

G. S. Murugan, M. N. Petrovich, Y. Jung, J. S. Wilkinson, and M. N. Zervas, “Hollow-bottle optical microresonators,” Opt. Express 19, 20773–20784 (2011).
[Crossref]

T. Grossmann, S. Schleede, M. Hauser, T. Beck, M. Thiel, G. von Freymann, T. Mappes, and H. Kalt, “Direct laser writing for active and passive high-Q polymer microdisks on silicon,” Opt. Express 19, 11451–11456 (2011).
[Crossref]

I. Aharonovich, A. D. Greentree, and S. Prawer, “Diamond photonics,” Nat. Photonics 5, 397–405 (2011).
[Crossref]

J. S. Levy, M. A. Foster, A. L. Gaeta, and M. Lipson, “Harmonic generation in silicon nitride ring resonators,” Opt. Express 19, 11415–11421 (2011).
[Crossref]

A. Faraon, P. E. Barclay, C. Santori, K.-M. C. Fu, and R. G. Beausoleil, “Resonant enhancement of the zero-phonon emission from a colour centre in a diamond cavity,” Nat. Photonics 5, 301–305 (2011).
[Crossref]

M. Erkintalo, G. Genty, B. Wetzel, and J. M. Dudley, “Akhmediev breather evolution in optical fiber for realistic initial conditions,” Phys. Lett. A 375, 2029–2034 (2011).
[Crossref]

I. Barashenkov and E. Zemlyanaya, “Travelling solitons in the externally driven nonlinear Schrödinger equation,” J. Phys. A 44, 465211 (2011).
[Crossref]

P. Del’Haye, T. Herr, E. Gavartin, M. L. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, “Octave spanning tunable frequency comb from a microresonator,” Phys. Rev. Lett. 107, 063901 (2011).
[Crossref]

W. Liang, A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, D. Seidel, and L. Maleki, “Generation of near-infrared frequency combs from a MgF2 whispering gallery mode resonator,” Opt. Lett. 36, 2290–2292 (2011).
[Crossref]

A. Matsko, A. Savchenkov, W. Liang, V. Ilchenko, D. Seidel, and L. Maleki, “Mode-locked Kerr frequency combs,” Opt. Lett. 36, 2845–2847 (2011).
[Crossref]

R. Henze, T. Seifert, J. Ward, and O. Benson, “Tuning whispering gallery modes using internal aerostatic pressure,” Opt. Lett. 36, 4536–4538 (2011).
[Crossref]

2010 (14)

J. M. Shainline, G. Fernandes, Z. Liu, and J. Xu, “Broad tuning of whispering-gallery modes in silicon microdisks,” Opt. Express 18, 14345–14352 (2010).
[Crossref]

H. S. Choi and A. M. Armani, “Thermal nonlinear effects in hybrid optical microresonators,” Appl. Phys. Lett. 97, 223306 (2010).
[Crossref]

Y. K. Chembo and N. Yu, “Modal expansion approach to optical-frequency-comb generation with monolithic whispering-gallery-mode resonators,” Phys. Rev. A 82, 033801 (2010).
[Crossref]

Y. K. Chembo, D. V. Strekalov, and N. Yu, “Spectrum and dynamics of optical frequency combs generated with monolithic whispering gallery mode resonators,” Phys. Rev. Lett. 104, 103902 (2010).
[Crossref]

J. Hofer, A. Schliesser, and T. J. Kippenberg, “Cavity optomechanics with ultrahigh-Q crystalline microresonators,” Phys. Rev. A 82, 031804 (2010).
[Crossref]

Z.-P. Liu, Y. Li, Y.-F. Xiao, B.-B. Li, X.-F. Jiang, Y. Qin, X.-B. Feng, H. Yang, and Q. Gong, “Direct laser writing of whispering gallery microcavities by two-photon polymerization,” Appl. Phys. Lett. 97, 211105 (2010).
[Crossref]

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4, 37–40 (2010).
[Crossref]

H. S. Choi, X. Zhang, and A. M. Armani, “Hybrid silica-polymer ultra-high-Q microresonators,” Opt. Lett. 35, 459–461 (2010).
[Crossref]

K. H. Lee, T. G. McRae, G. I. Harris, J. Knittel, and W. P. Bowen, “Cooling and control of a cavity optoelectromechanical system,” Phys. Rev. Lett. 104, 123604 (2010).
[Crossref]

X. Zhang, H. S. Choi, and A. M. Armani, “Ultimate quality factor of silica microtoroid resonant cavities,” Appl. Phys. Lett. 96, 153304 (2010).
[Crossref]

H. K. Hunt and A. M. Armani, “Label-free biological and chemical sensors,” Nanoscale 2, 1544–1559 (2010).
[Crossref]

A. Pasquazi, Y. Park, J. Azana, F. Legare, R. Morandotti, B. E. Little, S. T. Chu, and D. J. Moss, “Efficient wavelength conversion and net parametric gain via four wave mixing in a high index doped silica waveguide,” Opt. Express 18, 7634–7641 (2010).
[Crossref]

L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. E. Little, and D. J. Moss, “CMOS-compatible integrated optical hyper-parametric oscillator,” Nat. Photonics 4, 41–45 (2010).
[Crossref]

M. Pöllinger and A. Rauschenbeutel, “All-optical signal processing at ultra-low powers in bottle microresonators using the Kerr effect,” Opt. Express 18, 17764–17775 (2010).
[Crossref]

2009 (12)

M. Ferrera, D. Duchesne, L. Razzari, M. Peccianti, R. Morandotti, P. Cheben, S. Janz, D.-X. Xu, B. E. Little, S. Chu, and D. J. Moss, “Low power four wave mixing in an integrated, micro-ring resonator with Q = 1.2 million,” Opt. Express 17, 14098–14103 (2009).
[Crossref]

M. Himmelhaus and A. Francois, “In-vitro sensing of biomechanical forces in live cells by a whispering gallery mode biosensor,” Biosens. Bioelectron. 25, 418–427 (2009).
[Crossref]

D. Braje, L. Hollberg, and S. Diddams, “Brillouin-enhanced hyperparametric generation of an optical frequency comb in a monolithic highly nonlinear fiber cavity pumped by a cw laser,” Phys. Rev. Lett. 102, 193902 (2009).
[Crossref]

I. S. Grudinin, N. Yu, and L. Maleki, “Generation of optical frequency combs with a CaF2 resonator,” Opt. Lett. 34, 878–880 (2009).
[Crossref]

I. S. Grudinin, A. B. Matsko, and L. Maleki, “Brillouin lasing with a CaF2 whispering gallery mode resonator,” Phys. Rev. Lett. 102, 043902 (2009).
[Crossref]

Y.-S. Park and H. Wang, “Resolved-sideband and cryogenic cooling of an optomechanical resonator,” Nat. Phys. 5, 489–493 (2009).
[Crossref]

A. Gondarenko, J. S. Levy, and M. Lipson, “High confinement micron-scale silicon nitride high Q ring resonator,” Opt. Express 17, 11366–11370 (2009).
[Crossref]

J. Cardenas, C. B. Poitras, J. T. Robinson, K. Preston, L. Chen, and M. Lipson, “Low loss etchless silicon photonic waveguides,” Opt. Express 17, 4752–4757 (2009).
[Crossref]

M. Larsson, K. N. Dinyari, and H. Wang, “Composite optical microcavity of diamond nanopillar and silica microsphere,” Nano Lett. 9, 1447–1450 (2009).
[Crossref]

D. Strekalov and N. Yu, “Generation of optical combs in a whispering gallery mode resonator from a bichromatic pump,” Phys. Rev. A 79, 041805 (2009).
[Crossref]

P. Dong, S. Liao, D. Feng, H. Liang, D. Zheng, R. Shafiiha, C.-C. Kung, W. Qian, G. Li, X. Zheng, A. V. Krishnamoorthy, and M. Asghari, “Low Vpp, ultralow-energy, compact, high-speed silicon electro-optic modulator,” Opt. Express 17, 22484–22490 (2009).
[Crossref]

A. Bartels, D. Heinecke, and S. Diddams, “10-GHz self-referenced optical frequency comb,” Science 326, 681 (2009).
[Crossref]

2008 (8)

A. A. Savchenkov, E. Rubiola, A. B. Matsko, V. S. Ilchenko, and L. Maleki, “Phase noise of whispering gallery photonic hyper-parametric microwave oscillators,” Opt. Express 16, 4130–4144 (2008).
[Crossref]

A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, I. Solomatine, D. Seidel, and L. Maleki, “Tunable optical frequency comb with a crystalline whispering gallery mode resonator,” Phys. Rev. Lett. 101, 093902 (2008).
[Crossref]

D. Rezzonico, M. Jazbinsek, A. Guarino, O.-P. Kwon, and P. Günter, “Electro-optic charon polymeric microring modulators,” Opt. Express 16, 613–627 (2008).
[Crossref]

W. D. Sacher and J. K. S. Poon, “Dynamics of microring resonator modulators,” Opt. Express 16, 15741–15753 (2008).
[Crossref]

M. Ghulinyan, D. Navarro-Urrios, A. Pitanti, A. Lui, G. Pucker, and L. Pavesi, “Whispering-gallery modes and light emission from a Si-nanocrystal-based single microdisk resonator,” Opt. Express 16, 13218–13224 (2008).
[Crossref]

T. Ioppolo, M. Kozhevnikov, V. Stepaniuk, M. V. Ötügen, and V. Sheverev, “Micro-optical force sensor concept based on whispering gallery mode resonators,” Appl. Opt. 47, 3009–3014 (2008).
[Crossref]

K. Ikeda, R. E. Saperstein, N. Alic, and Y. Fainman, “Thermal and Kerr nonlinear properties of plasma-deposited silicon nitride/silicon dioxide waveguides,” Opt. Express 16, 12987–12994 (2008).
[Crossref]

M. Ferrera, L. Razzari, D. Duchesne, R. Morandotti, Z. Yang, M. Liscidini, J. E. Sipe, S. Chu, B. E. Little, and D. J. Moss, “Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures,” Nat. Photonics 2, 737–740 (2008).
[Crossref]

2007 (10)

Q. Xu and M. Lipson, “All-optical logic based on silicon micro-ring resonators,” Opt. Express 15, 924–929 (2007).
[Crossref]

V. Zamora, A. Díez, M. V. Andrés, and B. Gimeno, “Refractometric sensor based on whispering-gallery modes of thin capillaries,” Opt. Express 15, 12011–12016 (2007).
[Crossref]

A. Schweinsberg, S. Hocdé, N. N. Lepeshkin, R. W. Boyd, C. Chase, and J. E. Fajardo, “An environmental sensor based on an integrated optical whispering gallery mode disk resonator,” Sens. Actuators B Chem. 123, 727–732 (2007).
[Crossref]

I. S. Grudinin, A. B. Matsko, and L. Maleki, “On the fundamental limits of Q factor of crystalline dielectric resonators,” Opt. Express 15, 3390–3395 (2007).
[Crossref]

F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics 1, 65–71 (2007).
[Crossref]

M. Soltani, S. Yegnanarayanan, and A. Adibi, “Ultra-high Q planar silicon microdisk resonators for chip-scale silicon photonics,” Opt. Express 15, 4694–4704 (2007).
[Crossref]

A. M. Armani, A. Srinivasan, and K. J. Vahala, “Soft lithographic fabrication of high Q polymer microcavity arrays,” Nano Lett. 7, 1823–1826 (2007).
[Crossref]

Q. Xu, S. Manipatruni, B. Schmidt, J. Shakya, and M. Lipson, “12.5 Gbit/s carrier-injection-based silicon micro-ring silicon modulators,” Opt. Express 15, 430–436 (2007).
[Crossref]

T. Ioppolo and M. V. Ötügen, “Pressure tuning of whispering gallery mode resonators,” J. Opt. Soc. Am. B 24, 2721–2726 (2007).
[Crossref]

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450, 1214–1217 (2007).
[Crossref]

2006 (8)

P. E. Barclay, K. Srinivasan, O. Painter, B. Lev, and H. Mabuchi, “Integration of fiber-coupled high-Q SiNx microdisks with atom chips,” Appl. Phys. Lett. 89, 131108 (2006).
[Crossref]

M. Lebental, J. Lauret, R. Hierle, and J. Zyss, “Highly directional stadium-shaped polymer microlasers,” Appl. Phys. Lett. 88, 031108 (2006).
[Crossref]

J. K. S. Poon, L. Zhu, G. A. DeRose, and A. Yariv, “Polymer microring coupled-resonator optical waveguides,” J. Lightwave Technol. 24, 1843–1849 (2006).
[Crossref]

V. Ilchenko and A. Matsko, “Optical resonators with whispering-gallery modes - part II: applications,” IEEE J. Sel. Top. Quantum Electron. 12, 15–32 (2006).
[Crossref]

J. Poon, L. Zhu, G. DeRose, and A. Yariv, “Transmission and group delay of microring coupled-resonator optical waveguides,” Opt. Lett. 31, 456–458 (2006).
[Crossref]

A. Matsko and V. Ilchenko, “Optical resonators with whispering-gallery modes - part I: basics,” IEEE J. Sel. Top. Quantum Electron. 12, 3–14 (2006).
[Crossref]

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441, 960–963 (2006).
[Crossref]

E. Dulkeith, F. Xia, L. Schares, W. M. J. Green, and Y. A. Vlasov, “Group index and group velocity dispersion in silicon-on-insulator photonic wires,” Opt. Express 14, 3853–3863 (2006).
[Crossref]

2005 (5)

I. Medintz, H. Uyeda, E. Goldman, and H. Mattoussi, “Quantum dot bioconjugates for imaging, labelling and sensing,” Nat. Mater. 4, 435–446 (2005).
[Crossref]

G. Klemens, C.-H. Chen, and Y. Fainman, “Design of optimized dispersive resonant cavities for nonlinear wave mixing,” Opt. Express 13, 9388–9397 (2005).
[Crossref]

A. A. Savchenkov, A. B. Matsko, D. Strekalov, V. S. Ilchenko, and L. Maleki, “Mode filtering in optical whispering gallery resonators,” Electron. Lett. 41, 495–497 (2005).
[Crossref]

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435, 325–327 (2005).
[Crossref]

A. Matsko, A. Savchenkov, D. Strekalov, V. Ilchenko, and L. Maleki, “Optical hyperparametric oscillations in a whispering-gallery-mode resonator: threshold and phase diffusion,” Phys. Rev. A 71, 033804 (2005).
[Crossref]

2004 (12)

A. A. Savchenkov, A. B. Matsko, D. Strekalov, M. Mohageg, V. S. Ilchenko, and L. Maleki, “Low threshold optical oscillations in a whispering gallery mode CaF2 resonator,” Phys. Rev. Lett. 93, 243905 (2004).
[Crossref]

D. Armani, B. Min, A. Martin, and K. J. Vahala, “Electrical thermo-optic tuning of ultrahigh-Q microtoroid resonators,” Appl. Phys. Lett. 85, 5439–5441 (2004).
[Crossref]

V. Almeida and M. Lipson, “Optical bistability on a silicon chip,” Opt. Lett. 29, 2387–2389 (2004).
[Crossref]

V. Ilchenko, A. Savchenkov, A. Matsko, and L. Maleki, “Nonlinear optics and crystalline whispering gallery mode cavities,” Phys. Rev. Lett. 92, 043903 (2004).
[Crossref]

J. Poon, Y. Huang, G. Paloczi, and A. Yariv, “Soft lithography replica molding of critically coupled polymer microring resonators,” IEEE Photon. Technol. Lett. 16, 2496–2498 (2004).
[Crossref]

J. K. S. Poon, J. Scheuer, Y. Xu, and A. Yariv, “Designing coupled-resonator optical waveguide delay lines,” J. Opt. Soc. Am. B 21, 1665–1673 (2004).
[Crossref]

A. Savchenkov, V. Ilchenko, A. Matsko, and L. Maleki, “Kilohertz optical resonances in dielectric crystal cavities,” Phys. Rev. A 70, 051804 (2004).
[Crossref]

V. Almeida, C. Barrios, R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431, 1081–1084 (2004).
[Crossref]

T. Baehr-Jones, M. Hochberg, C. Walker, and A. Scherer, “High-Q ring resonators in thin silicon-on-insulator,” Appl. Phys. Lett. 85, 3346–3347 (2004).
[Crossref]

M. Borselli, K. Srinivasan, P. E. Barclay, and O. Painter, “Rayleigh scattering, mode coupling, and optical loss in silicon microdisks,” Appl. Phys. Lett. 85, 3693–3695 (2004).
[Crossref]

A. B. Matsko, A. A. Savchenkov, V. S. Ilchenko, and L. Maleki, “Optical gyroscope with whispering gallery mode optical cavities,” Opt. Commun. 233, 107–112 (2004).
[Crossref]

T. Kippenberg, S. Spillane, and K. Vahala, “Kerr-nonlinearity optical parametric oscillation in an ultrahigh-Q toroid microcavity,” Phys. Rev. Lett. 93, 083904 (2004).
[Crossref]

2003 (5)

T. J. Kippenberg, S. M. Spillane, D. K. Armani, and K. J. Vahala, “Fabrication and coupling to planar high-Q silica disk microcavities,” Appl. Phys. Lett. 83, 797–799 (2003).
[Crossref]

D. Armani, T. Kippenberg, S. Spillane, and K. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421, 925–928 (2003).
[Crossref]

S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, “Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics,” Phys. Rev. Lett. 91, 043902 (2003).
[Crossref]

O. V. Sinkin, R. Holzlohner, J. Zweck, and C. R. Menyuk, “Optimization of the split-step Fourier method in modeling optical-fiber communications systems,” J. Lightwave Technol. 21, 61–68 (2003).
[Crossref]

A. B. Matsko, A. A. Savchenkov, R. J. Letargat, V. S. Ilchenko, and L. Maleki, “On cavity modification of stimulated Raman scattering,” J. Opt. B 5, 272–278 (2003).
[Crossref]

2002 (3)

S. Cundiff, “Phase stabilization of ultrashort optical pulses,” J. Phys. D 35, R43 (2002).
[Crossref]

S. Mookherjea and A. Yariv, “Coupled resonator optical waveguides,” IEEE J. Sel. Top. Quantum Electron. 8, 448–456 (2002).
[Crossref]

S. Spillane, T. Kippenberg, and K. Vahala, “Ultralow-threshold Raman laser using a spherical dielectric microcavity,” Nature 415, 621–623 (2002).
[Crossref]

2001 (4)

V. S. Ilchenko and L. Maleki, “Novel whispering-gallery resonators for lasers, modulators, and sensors,” Proc. SPIE 4270, 120–130 (2001).
[Crossref]

R. Holzwarth, M. Zimmermann, T. Udem, and T. Hansch, “Optical clockworks and the measurement of laser frequencies with a mode-locked frequency comb,” IEEE J. Quantum Electron. 37, 1493–1501 (2001).
[Crossref]

J. Hall, J. Ye, S. Diddams, L. Ma, S. Cundiff, and D. Jones, “Ultrasensitive spectroscopy, the ultrastable lasers, the ultrafast lasers, and the seriously nonlinear fiber: a new alliance for physics and metrology,” IEEE J. Quantum Electron. 37, 1482–1492 (2001).
[Crossref]

S. Haubold, M. Haase, A. Kornowski, and H. Weller, “Strongly luminescent InP/ZnS core-shell nanoparticles,” Chem. Phys. Chem. 2, 331–334 (2001).
[Crossref]

2000 (6)

X. Peng, L. Manna, W. Yang, J. Wickham, E. Scher, A. Kadavanich, and A. Alivisatos, “Shape control of CdSe nanocrystals,” Nature 404, 59–61 (2000).
[Crossref]

R. Holzwarth, T. Udem, T. Hansch, J. Knight, W. Wadsworth, and P. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett. 85, 2264–2267 (2000).
[Crossref]

D. Jones, S. Diddams, J. Ranka, A. Stentz, R. Windeler, J. Hall, and S. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
[Crossref]

V. S. Ilchenko, X. S. Yao, and L. Maleki, “Microsphere integration in active and passive photonics devices,” Proc. SPIE 3930, 154–162 (2000).
[Crossref]

A. Yariv, “Universal relations for coupling of optical power between microresonators and dielectric waveguides,” Electron. Lett. 36, 321–322 (2000).
[Crossref]

H. Haus, “Mode-locking of lasers,” IEEE J. Sel. Top. Quantum Electron. 6, 1173–1185 (2000).
[Crossref]

1999 (3)

M. Dunn and M. Ebrahimzadeh, “Parametric generation of tunable light from continuous-wave to femtosecond pulses,” Science 286, 1513–1517 (1999).
[Crossref]

M. Gorodetsky and V. Ilchenko, “Optical microsphere resonators: optimal coupling to high-Q whispering-gallery modes,” J. Opt. Soc. Am. B 16, 147–154 (1999).
[Crossref]

M. Nirmal and L. Brus, “Luminescence photophysics in semiconductor nanocrystals,” Acc. Chem. Res. 32, 407–414 (1999).
[Crossref]

1998 (3)

B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, “Ultra-compact Si-SiO2 microring resonator optical channel dropping filters,” IEEE Photon. Technol. Lett. 10, 549–551 (1998).
[Crossref]

S. Janz, Y. Beaulieu, A. Fiore, P. Bravetti, V. Berger, E. Rosencher, and J. Nagle, “Surface emitted second-harmonic generation from a quasi-phase matched waveguide in an AlxGa1-xAs/Al2O3 microcavity,” Opt. Express 2, 462–470 (1998).
[Crossref]

A. Hajimiri and T. H. Lee, “A general theory of phase noise in electrical oscillators,” IEEE J. Solid-State Circuits 33, 179–194 (1998).
[Crossref]

1997 (3)

1996 (3)

M. Gorodetsky, A. Savchenkov, and V. Ilchenko, “Ultimate Q of optical microsphere resonators,” Opt. Lett. 21, 453–455 (1996).
[Crossref]

I. Barashenkov and Y. Smirnov, “Existence and stability chart for the ac-driven, damped nonlinear Schrödinger solitons,” Phys. Rev. E 54, 5707–5725 (1996).
[Crossref]

W. J. Firth and A. J. Scroggie, “Optical bullet holes: robust controllable localized states of a nonlinear cavity,” Phys. Rev. Lett. 76, 1623–1626 (1996).
[Crossref]

1995 (1)

N. Akhmediev and M. Karlsson, “Cherenkov radiation emitted by solitons in optical fibers,” Phys. Rev. A 51, 2602–2609 (1995).
[Crossref]

1992 (3)

M. Haelterman, S. Trillo, and S. Wabnitz, “Dissipative modulation instability in a nonlinear dispersive ring cavity,” Opt. Commun. 91, 401–407 (1992).
[Crossref]

V. S. Il’chenko and M. L. Gorodetskii, “Thermal nonlinear effects in optical whispering gallery microresonators,” Laser Phys. 2, 1004–1009 (1992).

S. Schiller, I. I. Yu, M. M. Fejer, and R. L. Byer, “Fused-silica monolithic total-internal-reflection resonator,” Opt. Lett. 17, 378–380 (1992).
[Crossref]

1991 (7)

1990 (1)

1989 (1)

V. Braginsky, M. Gorodetsky, and V. Ilchenko, “Quality-factor and nonlinear properties of optical whispering-gallery modes,” Phys. Lett. A 137, 393–397 (1989).
[Crossref]

1987 (1)

L. A. Lugiato and R. Lefever, “Spatial dissipative structures in passive optical systems,” Phys. Rev. Lett. 58, 2209–2211 (1987).
[Crossref]

1986 (1)

1985 (1)

1984 (2)

1981 (1)

1980 (1)

K. Ikeda, H. Daido, and O. Akimoto, “Optical turbulence: chaotic behavior of transmitted light from a ring cavity,” Phys. Rev. Lett. 45, 709–712 (1980).
[Crossref]

1979 (1)

K. Ikeda, “Multiple-valued stationary state and its instability of the transmitted light by a ring cavity system,” Opt. Commun. 30, 257–261 (1979).
[Crossref]

1977 (1)

D. Milam, M. Weber, and A. Glass, “Nonlinear refractive-index of fluoride-crystals,” Appl. Phys. Lett. 31, 822–825 (1977).
[Crossref]

1973 (1)

R. Hardin and F. Tappert, “Applications of the split-step Fourier method to the numerical solution of nonlinear and variable coefficient wave equations,” Siam Rev. 15, 423–429 (1973).

1972 (1)

V. E. Zakharov and A. B. Shabat, “Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of wave in nonlinear media,” Sov. Phys. JETP 34, 62–69 (1972).

Abdalmalak, K. A.

Adachi, M. M.

B. R. Sutherland, S. Hoogland, M. M. Adachi, C. T. O. Wong, and E. H. Sargent, “Conformal organohalide perovskites enable lasing on spherical resonators,” ACS Nano 8, 10947–10952 (2014).
[Crossref]

Adibi, A.

H. Taheri, A. A. Eftekhar, K. Wiesenfeld, and A. Adibi, “Anatomy of phase locking in hyperparametric oscillations based on Kerr nonlinearity,” IEEE Photon. J. 9, 6100911 (2017).
[Crossref]

H. Taheri, P. Del’Haye, A. Eftekhar, K. Wiesenfeld, and A. Adibi, “Self-synchronization phenomena in the Lugiato-Lefever equation,” Phys. Rev. A 96, 013828 (2016).
[Crossref]

H. Taheri, A. Eftekhar, K. Wiesenfeld, and A. Adibi, “Soliton formation in whispering-gallery-mode resonators via input phase modulation,” IEEE Photon. J. 7, 2200309 (2015).
[Crossref]

M. Soltani, S. Yegnanarayanan, and A. Adibi, “Ultra-high Q planar silicon microdisk resonators for chip-scale silicon photonics,” Opt. Express 15, 4694–4704 (2007).
[Crossref]

Agarwal, A. M.

P. Xing, D. Ma, K. J. A. Ooi, J. W. Choi, A. M. Agarwal, and D. Tan, “CMOS-compatible PECVD silicon carbide platform for linear and nonlinear optics,” ACS Photon. 6, 1162–1167 (2019).
[Crossref]

C. Bao, L. Zhang, A. Matsko, Y. Yan, Z. Zhao, G. Xie, A. M. Agarwal, L. C. Kimerling, J. Michel, L. Maleki, and A. E. Willner, “Nonlinear conversion efficiency in Kerr frequency comb generation,” Opt. Lett. 39, 6126–6129 (2014).
[Crossref]

Agrawal, G.

G. Agrawal, Nonlinear Fiber Optics, 5th ed. (Academic, 2013).

Aharonovich, I.

I. Aharonovich, A. D. Greentree, and S. Prawer, “Diamond photonics,” Nat. Photonics 5, 397–405 (2011).
[Crossref]

Ajayan, P. M.

N. Kumar, S. Najmaei, Q. Cui, F. Ceballos, P. M. Ajayan, J. Lou, and H. Zhao, “Second harmonic microscopy of monolayer MoS2,” Phys. Rev. B 87, 161403 (2013).
[Crossref]

Akhmediev, N.

N. Akhmediev and M. Karlsson, “Cherenkov radiation emitted by solitons in optical fibers,” Phys. Rev. A 51, 2602–2609 (1995).
[Crossref]

Akimoto, O.

K. Ikeda, H. Daido, and O. Akimoto, “Optical turbulence: chaotic behavior of transmitted light from a ring cavity,” Phys. Rev. Lett. 45, 709–712 (1980).
[Crossref]

Al Abri, M. Z.

S. Castelletto, L. Rosa, J. Blackledge, M. Z. Al Abri, and A. Boretti, “Advances in diamond nanofabrication for ultrasensitive devices,” Microsyst. Nanoeng. 3, 17061 (2017).
[Crossref]

Alic, N.

Alishahi, F.

Alivisatos, A.

X. Peng, L. Manna, W. Yang, J. Wickham, E. Scher, A. Kadavanich, and A. Alivisatos, “Shape control of CdSe nanocrystals,” Nature 404, 59–61 (2000).
[Crossref]

Allen, T.

Alloatti, L.

Almaiman, A.

Almeida, V.

V. Almeida, C. Barrios, R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431, 1081–1084 (2004).
[Crossref]

V. Almeida and M. Lipson, “Optical bistability on a silicon chip,” Opt. Lett. 29, 2387–2389 (2004).
[Crossref]

Amano, H.

S. Fujii, S. Tanaka, M. Fuchida, H. Amano, Y. Hayama, R. Suzuki, Y. Kakinuma, and T. Tanabe, “Octave-wide phase-matched four-wave mixing in dispersion-engineered crystalline microresonators,” Opt. Lett. 44, 3146–3149 (2019).
[Crossref]

S. Fujii, M. Fuchida, H. Amano, R. Suzuki, Y. Kakinuma, and T. Tanabe, “Ultrahigh-Q crystalline microresonator fabricated with computer-controlled machining without polishing,” in Conference on Lasers and Electro-Optics (CLEO) (Optical Society of America, 2019), paper STh4J.6.

Andersen, U. L.

Anderson, M.

M. Anderson, N. G. Pavlov, J. D. Jost, G. Lihachev, J. Liu, T. Morais, M. Zervas, M. L. Gorodetsky, and T. J. Kippenberg, “Highly efficient coupling of crystalline microresonators to integrated photonic waveguides,” Opt. Lett. 43, 2106–2109 (2018).
[Crossref]

H. Guo, E. Lucas, M. H. P. Pfeiffer, M. Karpov, M. Anderson, J. Liu, M. Geiselmann, J. D. Jost, and T. J. Kippenberg, “Intermode breather solitons in optical microresonators,” Phys. Rev. X 7, 041055 (2017).
[Crossref]

D. J. Wilson, D. J. Wilson, S. Hönl, K. Schneider, M. Anderson, T. J. Kippenberg, and P. Seidler, “Gallium phosphide microresonator frequency combs,” in Conference on Lasers and Electro-Optics (CLEO) (Optical Society of America, 2018), paper SW3A.1.

Anderson, M. H.

E. Obrzud, M. Rainer, A. Harutyunyan, M. H. Anderson, J. Liu, M. Geiselmann, B. Chazelas, S. Kundermann, S. Lecomte, M. Cecconi, A. Ghedina, E. Molinari, F. Pepe, F. Wildi, F. Bouchy, T. J. Kippenberg, and T. Herr, “A microphotonic astrocomb,” Nat. Photonics 13, 31–35 (2019).
[Crossref]

P. Marin-Palomo, J. N. Kemal, M. Karpov, A. Kordts, J. Pfeifle, M. H. P. Pfeiffer, P. Trocha, S. Wolf, V. Brasch, M. H. Anderson, R. Rosenberger, K. Vijayan, W. Freude, T. J. Kippenberg, and C. Koos, “Microresonator-based solitons for massively parallel coherent optical communications,” Nature 546, 274–279 (2017).
[Crossref]

Andrekson, P. A.

A. Fülöp, M. Mazur, A. Lorences-Riesgo, Ó. B. Helgason, P.-H. Wang, Y. Xuan, D. E. Leaird, M. Qi, P. A. Andrekson, A. M. Weiner, and V. Torres-Company, “High-order coherent communications using mode-locked dark-pulse Kerr combs from microresonators,” Nat. Commun. 9, 1–8 (2018).
[Crossref]

A. Fülöp, M. Mazur, A. Lorences-Riesgo, T. Eriksson, P.-H. Wang, D. Leaird, M. Qi, P. A. Andrekson, A. M. Weiner, and V. Torres-Company, “Long-haul coherent communications using microresonator-based frequency combs,” Opt. Express 25, 26678–26688 (2017).
[Crossref]

Andrés, M. V.

Anthony, J.

Arcizet, O.

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450, 1214–1217 (2007).
[Crossref]

Arkhipov, I. I.

I. I. Arkhipov, A. Miranowicz, O. Di Stefano, R. Stassi, S. Savasta, F. Nori, and Ş. K. Özdemir, “Scully-Lamb quantum laser model for parity-time-symmetric whispering-gallery microcavities: gain saturation effects and nonreciprocity,” Phys. Rev. A 99, 053806 (2019).
[Crossref]

Armani, A.

H. Choi, D. Chen, F. Du, R. Zeto, and A. Armani, “Low threshold anti-Stokes Raman laser on-chip,” Photon. Res. 7, 926–932 (2019).
[Crossref]

S. Mehrabani, A. Maker, and A. Armani, “Hybrid integrated label-free chemical and biological sensors,” Sensors 14, 5890–5928 (2014).
[Crossref]

Armani, A. M.

X. Shen, H. Choi, D. Chen, W. Zhao, and A. M. Armani, “Raman laser from an optical resonator with a grafted single-molecule monolayer,” Nat. Photonics 14, 95–101 (2020).

D. Chen, A. Kovach, S. Poust, V. Gambin, and A. M. Armani, “Normal dispersion silicon oxynitride microresonator Kerr frequency combs,” Appl. Phys. Lett. 115, 051105 (2019).
[Crossref]

S. Soltani, V. M. Diep, R. Zeto, and A. M. Armani, “Stimulated anti-Stokes Raman emission generated by gold nanorod coated optical resonators,” ACS Photon. 5, 3550–3556 (2018).
[Crossref]

X. Shen, R. C. Beltran, V. M. Diep, S. Soltani, and A. M. Armani, “Low-threshold parametric oscillation in organically modified microcavities,” Sci. Adv. 4, eaao4507 (2018).
[Crossref]

H. Choi and A. M. Armani, “Raman-Kerr frequency combs in Zr-doped silica hybrid microresonators,” Opt. Lett. 43, 2949–2952 (2018).
[Crossref]

R. Castro-Beltrán, V. M. Diep, S. Soltani, E. Gungor, and A. M. Armani, “Plasmonically enhanced Kerr frequency combs,” ACS Photon. 4, 2828–2834 (2017).
[Crossref]

D. Chen, A. Kovach, X. Shen, S. Poust, and A. M. Armani, “On-chip ultra-high-Q silicon oxynitride optical resonators,” ACS Photon. 4, 2376–2381 (2017).
[Crossref]

H. Choi and A. M. Armani, “High efficiency Raman lasers based on Zr-doped silica hybrid microcavities,” ACS Photon. 3, 2383–2388 (2016).
[Crossref]

A. B. Socorro, S. Soltani, I. Del Villar, J. M. Corres, and A. M. Armani, “Temperature sensor based on a hybrid ITO-silica resonant cavity,” Opt. Express 23, 1930–1937 (2015).
[Crossref]

S. Soltani and A. M. Armani, “Optothermal transport behavior in whispering gallery mode optical cavities,” Appl. Phys. Lett. 105, 051111 (2014).
[Crossref]

N. Deka, A. J. Maker, and A. M. Armani, “Titanium-enhanced Raman microcavity laser,” Opt. Lett. 39, 1354–1357 (2014).
[Crossref]

C. Shi, S. Soltani, and A. M. Armani, “Gold nanorod plasmonic upconversion microlaser,” Nano Lett. 13, 5827–5831 (2013).
[Crossref]

X. Zhang and A. M. Armani, “Silica microtoroid resonator sensor with monolithically integrated waveguides,” Opt. Express 21, 23592–23602 (2013).
[Crossref]

A. J. Maker and A. M. Armani, “Heterodyned toroidal microlaser sensor,” Appl. Phys. Lett. 103, 123302 (2013).
[Crossref]

S. Mehrabani and A. M. Armani, “Blue upconversion laser based on thulium-doped silica microcavity,” Opt. Lett. 38, 4346–4349 (2013).
[Crossref]

H. S. Choi and A. M. Armani, “Thermal nonlinear effects in hybrid optical microresonators,” Appl. Phys. Lett. 97, 223306 (2010).
[Crossref]

X. Zhang, H. S. Choi, and A. M. Armani, “Ultimate quality factor of silica microtoroid resonant cavities,” Appl. Phys. Lett. 96, 153304 (2010).
[Crossref]

H. S. Choi, X. Zhang, and A. M. Armani, “Hybrid silica-polymer ultra-high-Q microresonators,” Opt. Lett. 35, 459–461 (2010).
[Crossref]

H. K. Hunt and A. M. Armani, “Label-free biological and chemical sensors,” Nanoscale 2, 1544–1559 (2010).
[Crossref]

A. M. Armani, A. Srinivasan, and K. J. Vahala, “Soft lithographic fabrication of high Q polymer microcavity arrays,” Nano Lett. 7, 1823–1826 (2007).
[Crossref]

Armani, D.

D. Armani, B. Min, A. Martin, and K. J. Vahala, “Electrical thermo-optic tuning of ultrahigh-Q microtoroid resonators,” Appl. Phys. Lett. 85, 5439–5441 (2004).
[Crossref]

D. Armani, T. Kippenberg, S. Spillane, and K. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421, 925–928 (2003).
[Crossref]

Armani, D. K.

T. J. Kippenberg, S. M. Spillane, D. K. Armani, and K. J. Vahala, “Fabrication and coupling to planar high-Q silica disk microcavities,” Appl. Phys. Lett. 83, 797–799 (2003).
[Crossref]

Armstrong, R.

Asghari, M.

Autere, A.

Avino, S.

A. Giorgini, S. Avino, P. Malara, P. De Natale, M. Yannai, T. Carmon, and G. Gagliardi, “Stimulated Brillouin cavity optomechanics in liquid droplets,” Phys. Rev. Lett. 120, 073902 (2018).
[Crossref]

Azana, J.

Baehr-Jones, T.

T. Baehr-Jones, M. Hochberg, C. Walker, and A. Scherer, “High-Q ring resonators in thin silicon-on-insulator,” Appl. Phys. Lett. 85, 3346–3347 (2004).
[Crossref]

Bahadori, M.

Bahl, G.

J. Kim, M. C. Kuzyk, K. Han, H. Wang, and G. Bahl, “Non-reciprocal Brillouin scattering induced transparency,” Nat. Phys. 11, 275–280 (2015).
[Crossref]

G. Bahl, M. Tomes, F. Marquardt, and T. Carmon, “Observation of spontaneous Brillouin cooling,” Nat. Phys. 8, 203–207 (2012).
[Crossref]

G. Bahl, X. Fan, and T. Carmon, “Acoustic whispering-gallery modes in optomechanical shells,” New J. Phys. 14, 115026 (2012).
[Crossref]

Baker, C. G.

Balakireva, I.

C. Godey, I. Balakireva, A. Coillet, and Y. Chembo, “Stability analysis of the spatiotemporal Lugiato-Lefever model for Kerr optical frequency combs in the anomalous and normal dispersion regimes,” Phys. Rev. A 89, 063814 (2014).
[Crossref]

Balakireva, I. V.

J. Pfeifle, A. Coillet, R. Henriet, K. Saleh, P. Schindler, C. Weimann, W. Freude, I. V. Balakireva, L. Larger, C. Koos, and Y. K. Chembo, “Optimally coherent Kerr combs generated with crystalline whispering gallery mode resonators for ultrahigh capacity fiber communications,” Phys. Rev. Lett. 114, 093902 (2015).
[Crossref]

K. Saleh, R. Henriet, S. Diallo, G. Lin, R. Martinenghi, I. V. Balakireva, P. Salzenstein, A. Coillet, and Y. K. Chembo, “Phase noise performance comparison between optoelectronic oscillators based on optical delay lines and whispering gallery mode resonators,” Opt. Express 22, 32158–32173 (2014).
[Crossref]

Bando, Y.

B. Chen, H. Zhong, W. Zhang, Z. Tan, Y. Li, C. Yu, T. Zhai, Y. Bando, S. Yang, and B. Zou, “Highly emissive and color-tunable CuInS2-based colloidal semiconductor nanocrystals: off-stoichiometry effects and improved electroluminescence performance,” Adv. Funct. Mater. 22, 2081–2088 (2012).
[Crossref]

Bao, C.

Q.-F. Yang, B. Shen, H. Wang, M. Tran, Z. Zhang, K. Y. Yang, L. Wu, C. Bao, J. Bowers, A. Yariv, and K. Vahala, “Vernier spectrometer using counterpropagating soliton microcombs,” Science 363, 965–968 (2019).
[Crossref]

C. Bao, H. Taheri, L. Zhang, A. Matsko, Y. Yan, P. Liao, L. Maleki, and A. Willner, “High-order dispersion in Kerr comb oscillators,” J. Opt. Soc. Am. B 34, 715–725 (2017).
[Crossref]

S. Kim, K. Han, C. Wang, J. A. Jaramillo-Villegas, X. Xue, C. Bao, Y. Xuan, D. E. Leaird, A. M. Weiner, and M. Qi, “Dispersion engineering and frequency comb generation in thin silicon nitride concentric microresonators,” Nat. Commun. 8, 372 (2017).
[Crossref]

C. Bao, J. A. Jaramillo-Villegas, Y. Xuan, D. E. Leaird, M. Qi, and A. M. Weiner, “Observation of fermi-pasta-ulam recurrence induced by breather solitons in an optical microresonator,” Phys. Rev. Lett. 117, 163901 (2016).
[Crossref]

C. Bao, P. Liao, A. Kordts, M. Karpov, M. H. P. Pfeiffer, L. Zhang, Y. Yan, G. Xie, Y. Cao, A. Almaiman, M. Ziyadi, L. Li, Z. Zhao, A. Mohajerin-Ariaei, S. R. Wilkinson, M. Tur, M. M. Fejer, T. J. Kippenberg, and A. E. Willner, “Demonstration of optical multicasting using Kerr frequency comb lines,” Opt. Lett. 41, 3876–3879 (2016).
[Crossref]

C. Bao, L. Zhang, A. Matsko, Y. Yan, Z. Zhao, G. Xie, A. M. Agarwal, L. C. Kimerling, J. Michel, L. Maleki, and A. E. Willner, “Nonlinear conversion efficiency in Kerr frequency comb generation,” Opt. Lett. 39, 6126–6129 (2014).
[Crossref]

Bao, H.

H. Bao, A. Cooper, M. Rowley, L. Di Lauro, J. S. T. Gongora, S. T. Chu, B. E. Little, G.-L. Oppo, R. Morandotti, D. J. Moss, B. Wetzel, M. Peccianti, and A. Pasquazi, “Laser cavity-soliton microcombs,” Nat. Photonics 13, 384–389 (2019).
[Crossref]

Bao, Z.

M. Berggren, A. Dodabalapur, Z. Bao, and R. Slusher, “Solid-state droplet laser made from an organic blend with a conjugated polymer emitter,” Adv. Mater. 9, 968–971 (1997).
[Crossref]

Barashenkov, I.

I. Barashenkov and E. Zemlyanaya, “Travelling solitons in the externally driven nonlinear Schrödinger equation,” J. Phys. A 44, 465211 (2011).
[Crossref]

I. Barashenkov and Y. Smirnov, “Existence and stability chart for the ac-driven, damped nonlinear Schrödinger solitons,” Phys. Rev. E 54, 5707–5725 (1996).
[Crossref]

I. Barashenkov, M. Bogdan, and V. Korobov, “Stability diagram of the phase-locked solitons in the parametrically driven, damped nonlinear Schrödinger equation,” Europhys. Lett. 15, 113 (1991).
[Crossref]

Barber, P.

Barclay, P. E.

M. Mitchell, B. Khanaliloo, D. P. Lake, T. Masuda, J. P. Hadden, and P. E. Barclay, “Single-crystal diamond low-dissipation cavity optomechanics,” Optica 3, 963–970 (2016).
[Crossref]

A. Faraon, P. E. Barclay, C. Santori, K.-M. C. Fu, and R. G. Beausoleil, “Resonant enhancement of the zero-phonon emission from a colour centre in a diamond cavity,” Nat. Photonics 5, 301–305 (2011).
[Crossref]

P. E. Barclay, K. Srinivasan, O. Painter, B. Lev, and H. Mabuchi, “Integration of fiber-coupled high-Q SiNx microdisks with atom chips,” Appl. Phys. Lett. 89, 131108 (2006).
[Crossref]

M. Borselli, K. Srinivasan, P. E. Barclay, and O. Painter, “Rayleigh scattering, mode coupling, and optical loss in silicon microdisks,” Appl. Phys. Lett. 85, 3693–3695 (2004).
[Crossref]

Barrios, C.

V. Almeida, C. Barrios, R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431, 1081–1084 (2004).
[Crossref]

Bartels, A.

A. Bartels, D. Heinecke, and S. Diddams, “10-GHz self-referenced optical frequency comb,” Science 326, 681 (2009).
[Crossref]

Barucci, A.

Baumgartel, L.

Beaulieu, Y.

Beausoleil, R. G.

A. Faraon, P. E. Barclay, C. Santori, K.-M. C. Fu, and R. G. Beausoleil, “Resonant enhancement of the zero-phonon emission from a colour centre in a diamond cavity,” Nat. Photonics 5, 301–305 (2011).
[Crossref]

Beck, T.

Beha, K.

Beichman, C.

M.-G. Suh, X. Yi, Y.-H. Lai, S. Leifer, I. S. Grudinin, G. Vasisht, E. C. Martin, M. P. Fitzgerald, G. Doppmann, J. Wang, D. Mawet, S. B. Papp, S. A. Diddams, C. Beichman, and K. Vahala, “Searching for exoplanets using a microresonator astrocomb,” Nat. Photonics 13, 25–30 (2019).
[Crossref]

Bekele, D.

Bekker, C.

Beltran, R. C.

X. Shen, R. C. Beltran, V. M. Diep, S. Soltani, and A. M. Armani, “Low-threshold parametric oscillation in organically modified microcavities,” Sci. Adv. 4, eaao4507 (2018).
[Crossref]

Ben Yoo, S. J.

Benson, O.

Berger, V.

Berggren, M.

M. Berggren, A. Dodabalapur, Z. Bao, and R. Slusher, “Solid-state droplet laser made from an organic blend with a conjugated polymer emitter,” Adv. Mater. 9, 968–971 (1997).
[Crossref]

Bergman, K.

Bermel, P.

Beugnot, J.-C.

G. Lin, S. Diallo, K. Saleh, R. Martinenghi, J.-C. Beugnot, T. Sylvestre, and Y. K. Chembo, “Cascaded Brillouin lasing in monolithic barium fluoride whispering gallery mode resonators,” Appl. Phys. Lett. 105, 231103 (2014).
[Crossref]

Bi, Z.-F.

Bílek, J.

Bilenko, I. A.

V. E. Lobanov, A. V. Cherenkov, A. E. Shitikov, I. A. Bilenko, and M. L. Gorodetsky, “Dynamics of platicons due to third-order dispersion,” Eur. Phys. J. D 71, 185 (2017).
[Crossref]

G. Lihachev, N. Pavlov, S. Koptyaev, I. A. Bilenko, and M. L. Gorodetsky, “Kerr frequency comb and Brillouin lasing in BaF2 whispering gallery mode resonator,” in International Conference Laser Optics (LO) (2016), pp. PD-4.

Bino, L. D.

Biswas, A.

Blackledge, J.

S. Castelletto, L. Rosa, J. Blackledge, M. Z. Al Abri, and A. Boretti, “Advances in diamond nanofabrication for ultrasensitive devices,” Microsyst. Nanoeng. 3, 17061 (2017).
[Crossref]

Bluestone, A.

D. T. Spencer, T. Drake, T. C. Briles, J. Stone, L. C. Sinclair, C. Fredrick, Q. Li, D. Westly, B. R. Ilic, A. Bluestone, N. Volet, T. Komljenovic, L. Chang, S. H. Lee, D. Y. Oh, M.-G. Suh, K. Y. Yang, M. H. P. Pfeiffer, T. J. Kippenberg, E. Norberg, L. Theogarajan, K. Vahala, N. R. Newbury, K. Srinivasan, J. E. Bowers, S. A. Diddams, and S. B. Papp, “An optical-frequency synthesizer using integrated photonics,” Nature 557, 81–85 (2018).
[Crossref]

Bogaerts, W.

Bogdan, M.

I. Barashenkov, M. Bogdan, and V. Korobov, “Stability diagram of the phase-locked solitons in the parametrically driven, damped nonlinear Schrödinger equation,” Europhys. Lett. 15, 113 (1991).
[Crossref]

Boller, K.-J.

Bonenberger, M.

Boretti, A.

S. Castelletto, L. Rosa, J. Blackledge, M. Z. Al Abri, and A. Boretti, “Advances in diamond nanofabrication for ultrasensitive devices,” Microsyst. Nanoeng. 3, 17061 (2017).
[Crossref]

Borselli, M.

M. Borselli, K. Srinivasan, P. E. Barclay, and O. Painter, “Rayleigh scattering, mode coupling, and optical loss in silicon microdisks,” Appl. Phys. Lett. 85, 3693–3695 (2004).
[Crossref]

Bouchy, F.

E. Obrzud, M. Rainer, A. Harutyunyan, M. H. Anderson, J. Liu, M. Geiselmann, B. Chazelas, S. Kundermann, S. Lecomte, M. Cecconi, A. Ghedina, E. Molinari, F. Pepe, F. Wildi, F. Bouchy, T. J. Kippenberg, and T. Herr, “A microphotonic astrocomb,” Nat. Photonics 13, 31–35 (2019).
[Crossref]

Bowen, W. P.

C. Bekker, C. G. Baker, R. Kalra, H.-H. Cheng, B.-B. Li, V. Prakash, and W. P. Bowen, “Free spectral range electrical tuning of a high quality on-chip microcavity,” Opt. Express 26, 33649–33670 (2018).
[Crossref]

B.-B. Li, J. Bílek, U. B. Hoff, L. S. Madsen, S. Forstner, V. Prakash, C. Schäfermeier, T. Gehring, W. P. Bowen, and U. L. Andersen, “Quantum enhanced optomechanical magnetometry,” Optica 5, 850–856 (2018).
[Crossref]

J. Knittel, J. D. Swaim, D. L. McAuslan, G. A. Brawley, and W. P. Bowen, “Back-scatter based whispering gallery mode sensing,” Sci. Rep. 3, 2974 (2013).
[Crossref]

K. H. Lee, T. G. McRae, G. I. Harris, J. Knittel, and W. P. Bowen, “Cooling and control of a cavity optoelectromechanical system,” Phys. Rev. Lett. 104, 123604 (2010).
[Crossref]

Bowers, J.

Q.-F. Yang, B. Shen, H. Wang, M. Tran, Z. Zhang, K. Y. Yang, L. Wu, C. Bao, J. Bowers, A. Yariv, and K. Vahala, “Vernier spectrometer using counterpropagating soliton microcombs,” Science 363, 965–968 (2019).
[Crossref]

Bowers, J. E.

D. T. Spencer, T. Drake, T. C. Briles, J. Stone, L. C. Sinclair, C. Fredrick, Q. Li, D. Westly, B. R. Ilic, A. Bluestone, N. Volet, T. Komljenovic, L. Chang, S. H. Lee, D. Y. Oh, M.-G. Suh, K. Y. Yang, M. H. P. Pfeiffer, T. J. Kippenberg, E. Norberg, L. Theogarajan, K. Vahala, N. R. Newbury, K. Srinivasan, J. E. Bowers, S. A. Diddams, and S. B. Papp, “An optical-frequency synthesizer using integrated photonics,” Nature 557, 81–85 (2018).
[Crossref]

Boyd, R. W.

A. Schweinsberg, S. Hocdé, N. N. Lepeshkin, R. W. Boyd, C. Chase, and J. E. Fajardo, “An environmental sensor based on an integrated optical whispering gallery mode disk resonator,” Sens. Actuators B Chem. 123, 727–732 (2007).
[Crossref]

R. W. Boyd, Nonlinear Optics (Academic, 2008).

Braginsky, V.

V. Braginsky, M. Gorodetsky, and V. Ilchenko, “Quality-factor and nonlinear properties of optical whispering-gallery modes,” Phys. Lett. A 137, 393–397 (1989).
[Crossref]

Braje, D.

D. Braje, L. Hollberg, and S. Diddams, “Brillouin-enhanced hyperparametric generation of an optical frequency comb in a monolithic highly nonlinear fiber cavity pumped by a cw laser,” Phys. Rev. Lett. 102, 193902 (2009).
[Crossref]

Brasch, V.

P. Marin-Palomo, J. N. Kemal, M. Karpov, A. Kordts, J. Pfeifle, M. H. P. Pfeiffer, P. Trocha, S. Wolf, V. Brasch, M. H. Anderson, R. Rosenberger, K. Vijayan, W. Freude, T. J. Kippenberg, and C. Koos, “Microresonator-based solitons for massively parallel coherent optical communications,” Nature 546, 274–279 (2017).
[Crossref]

M. Karpov, H. Guo, A. Kordts, V. Brasch, M. H. P. Pfeiffer, M. Zervas, M. Geiselmann, and T. J. Kippenberg, “Raman self-frequency shift of dissipative Kerr solitons in an optical microresonator,” Phys. Rev. Lett. 116, 103902 (2016).
[Crossref]

V. Brasch, M. Geiselmann, T. Herr, G. Lihachev, M. Pfeiffer, M. Gorodetsky, and T. Kippenberg, “Photonic chip-based optical frequency comb using soliton Cherenkov radiation,” Science 351, 357–360 (2016).
[Crossref]

M. H. P. Pfeiffer, A. Kordts, V. Brasch, M. Zervas, M. Geiselmann, J. D. Jost, and T. J. Kippenberg, “Photonic damascene process for integrated high-Q microresonator based nonlinear photonics,” Optica 3, 20–25 (2016).
[Crossref]

H. Guo, M. Karpov, E. Lucas, A. Kordts, M. H. P. Pfeiffer, V. Brasch, G. Lihachev, V. E. Lobanov, M. L. Gorodetsky, and T. J. Kippenberg, “Universal dynamics and deterministic switching of dissipative Kerr solitons in optical microresonators,” Nat. Phys. 13, 94–102 (2016).
[Crossref]

A. Kordts, M. H. P. Pfeiffer, H. Guo, V. Brasch, and T. J. Kippenberg, “Higher order mode suppression in high-Q anomalous dispersion SiN microresonators for temporal dissipative Kerr soliton formation,” Opt. Lett. 41, 452–455 (2016).
[Crossref]

J. Jost, T. Herr, C. Lecaplain, V. Brasch, M. Pfeiffer, and T. Kippenberg, “Counting the cycles of light using a self-referenced optical microresonator,” Optica 2, 706–711 (2015).
[Crossref]

J. Pfeifle, V. Brasch, M. Lauermann, Y. Yu, D. Wegner, T. Herr, K. Hartinger, P. Schindler, J. Li, D. Hillerkuss, R. Schmogrow, C. Weimann, R. Holzwarth, W. Freude, J. Leuthold, T. J. Kippenberg, and C. Koos, “Coherent terabit communications with microresonator Kerr frequency combs,” Nat. Photonics 8, 375–380 (2014).
[Crossref]

T. Herr, V. Brasch, J. D. Jost, C. Y. Wang, N. M. Kondratiev, M. L. Gorodetsky, and T. J. Kippenberg, “Temporal solitons in optical microresonators,” Nat. Photonics 8, 145–152 (2014).
[Crossref]

T. Herr, V. Brasch, J. D. Jost, I. Mirgorodskiy, G. Lihachev, M. L. Gorodetsky, and T. J. Kippenberg, “Mode spectrum and temporal soliton formation in optical microresonators,” Phys. Rev. Lett. 113, 123901 (2014).
[Crossref]

J. Riemensberger, K. Hartinger, T. Herr, V. Brasch, R. Holzwarth, and T. J. Kippenberg, “Dispersion engineering of thick high-Q silicon nitride ring-resonators via atomic layer deposition,” Opt. Express 20, 27661–27669 (2012).
[Crossref]

V. Brasch, M. Geiselmann, S. Lecomte, G. Lihachev, M. H. P. Pfeiffer, M. L. Gorodetsky, and T. J. A. Kippenberg, “Photonic chip based optical frequency comb using soliton induced Cherenkov radiation,” in Conference on Lasers and Electro-Optics (CLEO) (2015), pp. 1–2.

Bravetti, P.

Brawley, G. A.

J. Knittel, J. D. Swaim, D. L. McAuslan, G. A. Brawley, and W. P. Bowen, “Back-scatter based whispering gallery mode sensing,” Sci. Rep. 3, 2974 (2013).
[Crossref]

Briles, T. C.

T. E. Drake, T. C. Briles, J. R. Stone, D. T. Spencer, D. R. Carlson, D. D. Hickstein, Q. Li, D. Westly, K. Srinivasan, S. A. Diddams, and S. B. Papp, “Terahertz-rate Kerr-microresonator optical clockwork,” Phys. Rev. X 9, 031023 (2019).
[Crossref]

S.-P. Yu, T. C. Briles, G. T. Moille, X. Lu, S. A. Diddams, K. Srinivasan, and S. B. Papp, “Tuning Kerr-soliton frequency combs to atomic resonances,” Phys. Rev. Appl. 11, 044017 (2019).
[Crossref]

Z. L. Newman, V. Maurice, T. Drake, J. R. Stone, T. C. Briles, D. T. Spencer, C. Fredrick, Q. Li, D. Westly, B. R. Ilic, B. Shen, M.-G. Suh, K. Y. Yang, C. Johnson, D. M. S. Johnson, L. Hollberg, K. J. Vahala, K. Srinivasan, S. A. Diddams, J. Kitching, S. B. Papp, and M. T. Hummon, “Architecture for the photonic integration of an optical atomic clock,” Optica 6, 680–685 (2019).
[Crossref]

D. T. Spencer, T. Drake, T. C. Briles, J. Stone, L. C. Sinclair, C. Fredrick, Q. Li, D. Westly, B. R. Ilic, A. Bluestone, N. Volet, T. Komljenovic, L. Chang, S. H. Lee, D. Y. Oh, M.-G. Suh, K. Y. Yang, M. H. P. Pfeiffer, T. J. Kippenberg, E. Norberg, L. Theogarajan, K. Vahala, N. R. Newbury, K. Srinivasan, J. E. Bowers, S. A. Diddams, and S. B. Papp, “An optical-frequency synthesizer using integrated photonics,” Nature 557, 81–85 (2018).
[Crossref]

Q. Li, T. C. Briles, D. A. Westly, T. E. Drake, J. R. Stone, B. R. Ilic, S. A. Diddams, S. B. Papp, and K. Srinivasan, “Stably accessing octave-spanning microresonator frequency combs in the soliton regime,” Optica 4, 193–203 (2017).
[Crossref]

Bruch, A.

Brus, L.

M. Nirmal and L. Brus, “Luminescence photophysics in semiconductor nanocrystals,” Acc. Chem. Res. 32, 407–414 (1999).
[Crossref]

Bulu, I.

B. J. M. Hausmann, I. Bulu, V. Venkataraman, P. Deotare, and M. Loncar, “Diamond nonlinear photonics,” Nat. Photonics 8, 369–374 (2014).
[Crossref]

Bulu, I. B.

B. J. M. Hausmann, I. B. Bulu, P. B. Deotare, M. McCutcheon, V. Venkataraman, M. L. Markham, D. J. Twitchen, and M. Loncar, “Integrated high-quality factor optical resonators in diamond,” Nano Lett. 13, 1898–1902 (2013).
[Crossref]

Burek, M. J.

M. J. Burek, Y. Chu, M. S. Z. Liddy, P. Patel, J. Rochman, S. Meesala, W. Hong, Q. Quan, M. D. Lukin, and M. Loncar, “High quality-factor optical nanocavities in bulk single-crystal diamond,” Nat. Commun. 5, 5718 (2014).
[Crossref]

Burresi, M.

A. M. Flatae, M. Burresi, H. Zeng, S. Nocentini, S. Wiegele, C. Parmeggiani, H. Kalt, and D. Wiersma, “Optically controlled elastic microcavities,” Light Sci. Appl. 4, e282 (2015).
[Crossref]

Buscaino, B.

M. Zhang, B. Buscaino, C. Wang, A. Shams-Ansari, C. Reimer, R. Zhu, J. M. Kahn, and M. Loncar, “Broadband electro-optic frequency comb generation in a lithium niobate microring resonator,” Nature 568, 373–377 (2019).
[Crossref]

Butcher, P.

P. Butcher and D. Cotter, The Elements of Nonlinear Optics (Cambridge University, 1991).

Byer, R. L.

Cai, Z.

Camparo, J.

L. Maleki, A. Savchenkov, V. Ilchenko, W. Liang, D. Eliyahu, A. Matsko, D. Seidel, N. Wells, J. Camparo, and B. Jaduszliwer, “All-optical integrated rubidium atomic clock,” in Proceedings of the Joint Conference of the IEEE International Frequency Control and the European Frequency and Time Forum (FCS) (IEEE, 2011), pp. 1–5.

Campillo, A.

Cao, Y.

Capasso, F.

Cardenas, J.

Carlson, D. R.

T. E. Drake, T. C. Briles, J. R. Stone, D. T. Spencer, D. R. Carlson, D. D. Hickstein, Q. Li, D. Westly, K. Srinivasan, S. A. Diddams, and S. B. Papp, “Terahertz-rate Kerr-microresonator optical clockwork,” Phys. Rev. X 9, 031023 (2019).
[Crossref]

Carmon, T.

A. Giorgini, S. Avino, P. Malara, P. De Natale, M. Yannai, T. Carmon, and G. Gagliardi, “Stimulated Brillouin cavity optomechanics in liquid droplets,” Phys. Rev. Lett. 120, 073902 (2018).
[Crossref]

G. Bahl, M. Tomes, F. Marquardt, and T. Carmon, “Observation of spontaneous Brillouin cooling,” Nat. Phys. 8, 203–207 (2012).
[Crossref]

G. Bahl, X. Fan, and T. Carmon, “Acoustic whispering-gallery modes in optomechanical shells,” New J. Phys. 14, 115026 (2012).
[Crossref]

Carvalho, D.

Castelletto, S.

S. Castelletto, L. Rosa, J. Blackledge, M. Z. Al Abri, and A. Boretti, “Advances in diamond nanofabrication for ultrasensitive devices,” Microsyst. Nanoeng. 3, 17061 (2017).
[Crossref]

Castro-Beltrán, R.

R. Castro-Beltrán, V. M. Diep, S. Soltani, E. Gungor, and A. M. Armani, “Plasmonically enhanced Kerr frequency combs,” ACS Photon. 4, 2828–2834 (2017).
[Crossref]

Ceballos, F.

N. Kumar, S. Najmaei, Q. Cui, F. Ceballos, P. M. Ajayan, J. Lou, and H. Zhao, “Second harmonic microscopy of monolayer MoS2,” Phys. Rev. B 87, 161403 (2013).
[Crossref]

Cecconi, M.

E. Obrzud, M. Rainer, A. Harutyunyan, M. H. Anderson, J. Liu, M. Geiselmann, B. Chazelas, S. Kundermann, S. Lecomte, M. Cecconi, A. Ghedina, E. Molinari, F. Pepe, F. Wildi, F. Bouchy, T. J. Kippenberg, and T. Herr, “A microphotonic astrocomb,” Nat. Photonics 13, 31–35 (2019).
[Crossref]

Chang, L.

D. T. Spencer, T. Drake, T. C. Briles, J. Stone, L. C. Sinclair, C. Fredrick, Q. Li, D. Westly, B. R. Ilic, A. Bluestone, N. Volet, T. Komljenovic, L. Chang, S. H. Lee, D. Y. Oh, M.-G. Suh, K. Y. Yang, M. H. P. Pfeiffer, T. J. Kippenberg, E. Norberg, L. Theogarajan, K. Vahala, N. R. Newbury, K. Srinivasan, J. E. Bowers, S. A. Diddams, and S. B. Papp, “An optical-frequency synthesizer using integrated photonics,” Nature 557, 81–85 (2018).
[Crossref]

Chang, R.

Chase, C.

A. Schweinsberg, S. Hocdé, N. N. Lepeshkin, R. W. Boyd, C. Chase, and J. E. Fajardo, “An environmental sensor based on an integrated optical whispering gallery mode disk resonator,” Sens. Actuators B Chem. 123, 727–732 (2007).
[Crossref]

Chazelas, B.

E. Obrzud, M. Rainer, A. Harutyunyan, M. H. Anderson, J. Liu, M. Geiselmann, B. Chazelas, S. Kundermann, S. Lecomte, M. Cecconi, A. Ghedina, E. Molinari, F. Pepe, F. Wildi, F. Bouchy, T. J. Kippenberg, and T. Herr, “A microphotonic astrocomb,” Nat. Photonics 13, 31–35 (2019).
[Crossref]

Che, K.

Cheben, P.

Chembo, Y.

A. Coillet and Y. Chembo, “Routes to spatiotemporal chaos in Kerr optical frequency combs,” Chaos 24, 013113 (2014).
[Crossref]

C. Godey, I. Balakireva, A. Coillet, and Y. Chembo, “Stability analysis of the spatiotemporal Lugiato-Lefever model for Kerr optical frequency combs in the anomalous and normal dispersion regimes,” Phys. Rev. A 89, 063814 (2014).
[Crossref]

Chembo, Y. K.

A. Pasquazi, M. Peccianti, L. Razzari, D. J. Moss, S. Coen, M. Erkintalo, Y. K. Chembo, T. Hansson, S. Wabnitz, P. Del’Haye, X. Xue, A. M. Weiner, and R. Morandotti, “Micro-combs: a novel generation of optical sources,” Phys. Rep. 729, 1–81 (2018).
[Crossref]

J. H. Talla Mbé, C. Milián, and Y. K. Chembo, “Existence and switching behavior of bright and dark Kerr solitons in whispering-gallery mode resonators with zero group-velocity dispersion,” Eur. Phys. J. D 71, 196 (2017).
[Crossref]

S. Diallo, G. Lin, R. Martinenghi, L. Furfaro, M. Jacquot, and Y. K. Chembo, “Brillouin lasing in ultra-high-Q lithium fluoride disk resonators,” IEEE Photon. Technol. Lett. 28, 955–958 (2016).
[Crossref]

G. Lin, S. Diallo, J. M. Dudley, and Y. K. Chembo, “Universal nonlinear scattering in ultra-high Q whispering gallery-mode resonators,” Opt. Express 24, 14880–14894 (2016).
[Crossref]

S. Diallo, G. Lin, and Y. K. Chembo, “Giant thermo-optical relaxation oscillations in millimeter-size whispering gallery mode disk resonators,” Opt. Lett. 40, 3834–3837 (2015).
[Crossref]

R. Henriet, G. Lin, A. Coillet, M. Jacquot, L. Furfaro, L. Larger, and Y. K. Chembo, “Kerr optical frequency comb generation in strontium fluoride whispering-gallery mode resonators with billion quality factor,” Opt. Lett. 40, 1567–1570 (2015).
[Crossref]

Y. K. Chembo, I. S. Grudinin, and N. Yu, “Spatiotemporal dynamics of Kerr-Raman optical frequency combs,” Phys. Rev. A 92, 043818 (2015).
[Crossref]

G. Lin and Y. K. Chembo, “On the dispersion management of fluorite whispering-gallery mode resonators for Kerr optical frequency comb generation in the telecom and mid-infrared range,” Opt. Express 23, 1594–1604 (2015).
[Crossref]

J. Pfeifle, A. Coillet, R. Henriet, K. Saleh, P. Schindler, C. Weimann, W. Freude, I. V. Balakireva, L. Larger, C. Koos, and Y. K. Chembo, “Optimally coherent Kerr combs generated with crystalline whispering gallery mode resonators for ultrahigh capacity fiber communications,” Phys. Rev. Lett. 114, 093902 (2015).
[Crossref]

G. Lin, S. Diallo, K. Saleh, R. Martinenghi, J.-C. Beugnot, T. Sylvestre, and Y. K. Chembo, “Cascaded Brillouin lasing in monolithic barium fluoride whispering gallery mode resonators,” Appl. Phys. Lett. 105, 231103 (2014).
[Crossref]

K. Saleh, R. Henriet, S. Diallo, G. Lin, R. Martinenghi, I. V. Balakireva, P. Salzenstein, A. Coillet, and Y. K. Chembo, “Phase noise performance comparison between optoelectronic oscillators based on optical delay lines and whispering gallery mode resonators,” Opt. Express 22, 32158–32173 (2014).
[Crossref]

Y. K. Chembo and C. R. Menyuk, “Spatiotemporal Lugiato-Lefever formalism for Kerr-comb generation in whispering-gallery-mode resonators,” Phys. Rev. A 87, 053852 (2013).
[Crossref]

Y. K. Chembo, D. V. Strekalov, and N. Yu, “Spectrum and dynamics of optical frequency combs generated with monolithic whispering gallery mode resonators,” Phys. Rev. Lett. 104, 103902 (2010).
[Crossref]

Y. K. Chembo and N. Yu, “Modal expansion approach to optical-frequency-comb generation with monolithic whispering-gallery-mode resonators,” Phys. Rev. A 82, 033801 (2010).
[Crossref]

Chen, A.

Z. Chen, G. Lou, H. Zhu, A. Chen, Y. Wu, Y. Ren, J. Li, Z. Qiu, X. Gui, and Z. Tang, “Enhancement of two-photon absorption photoresponse based on whispering gallery modes,” Nanoscale 10, 14047–14054 (2018).
[Crossref]

Chen, B.

B. Chen, H. Zhong, W. Zhang, Z. Tan, Y. Li, C. Yu, T. Zhai, Y. Bando, S. Yang, and B. Zou, “Highly emissive and color-tunable CuInS2-based colloidal semiconductor nanocrystals: off-stoichiometry effects and improved electroluminescence performance,” Adv. Funct. Mater. 22, 2081–2088 (2012).
[Crossref]

Chen, C.-H.

Chen, D.

X. Shen, H. Choi, D. Chen, W. Zhao, and A. M. Armani, “Raman laser from an optical resonator with a grafted single-molecule monolayer,” Nat. Photonics 14, 95–101 (2020).

D. Chen, A. Kovach, S. Poust, V. Gambin, and A. M. Armani, “Normal dispersion silicon oxynitride microresonator Kerr frequency combs,” Appl. Phys. Lett. 115, 051105 (2019).
[Crossref]

H. Choi, D. Chen, F. Du, R. Zeto, and A. Armani, “Low threshold anti-Stokes Raman laser on-chip,” Photon. Res. 7, 926–932 (2019).
[Crossref]

D. Chen, A. Kovach, X. Shen, S. Poust, and A. M. Armani, “On-chip ultra-high-Q silicon oxynitride optical resonators,” ACS Photon. 4, 2376–2381 (2017).
[Crossref]

Chen, G.

Chen, H. H.

Chen, J.

Chen, L.

Chen, S.-L.

Chen, T.

H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, “Chemically etched ultrahigh-Q wedge-resonator on a silicon chip,” Nat. Photonics 6, 369–373 (2012).
[Crossref]

Chen, X.

Y. Zheng, Z. Fang, S. Liu, Y. Cheng, and X. Chen, “High-Q exterior whispering-gallery modes in a double-layer crystalline microdisk resonator,” Phys. Rev. Lett. 122, 253902 (2019).
[Crossref]

Chen, Y.

Chen, Z.

Z. Chen, G. Lou, H. Zhu, A. Chen, Y. Wu, Y. Ren, J. Li, Z. Qiu, X. Gui, and Z. Tang, “Enhancement of two-photon absorption photoresponse based on whispering gallery modes,” Nanoscale 10, 14047–14054 (2018).
[Crossref]

Chen Tao, Y.

Y. Chen Tao, X. D. Wang, and L. S. Liao, “Active whispering-gallery-mode optical microcavity based on self-assembled organic microspheres,” J. Mater. Chem. C 7, 3443–3446 (2019).
[Crossref]

Cheng, H.-H.

Cheng, Q.

Cheng, X.

Cheng, Y.

Y. Zheng, Z. Fang, S. Liu, Y. Cheng, and X. Chen, “High-Q exterior whispering-gallery modes in a double-layer crystalline microdisk resonator,” Phys. Rev. Lett. 122, 253902 (2019).
[Crossref]

J. Lin, Y. Xu, Z. Fang, M. Wang, J. Song, N. Wang, L. Qiao, W. Fang, and Y. Cheng, “Fabrication of high-Q lithium niobate microresonators using femtosecond laser micromachining,” Sci. Rep. 5, 8072 (2015).
[Crossref]

Cherenkov, A.

Cherenkov, A. V.

V. E. Lobanov, A. V. Cherenkov, A. E. Shitikov, I. A. Bilenko, and M. L. Gorodetsky, “Dynamics of platicons due to third-order dispersion,” Eur. Phys. J. D 71, 185 (2017).
[Crossref]

A. V. Cherenkov, N. M. Kondratiev, V. E. Lobanov, A. E. Shitikov, D. V. Skryabin, and M. L. Gorodetsky, “Raman-Kerr frequency combs in microresonators with normal dispersion,” Opt. Express 25, 31148–31158 (2017).
[Crossref]

Cheung, Y. F.

Chevalier, P.

Chien, H.-C.

R. Wang, H.-C. Chien, J. Kumar, N. Kumar, H.-Y. Chiu, and H. Zhao, “Third-harmonic generation in ultrathin films of MoS2,” ACS Appl. Mater. Interfaces 6, 314–318 (2014).
[Crossref]

Chiu, H.-Y.

R. Wang, H.-C. Chien, J. Kumar, N. Kumar, H.-Y. Chiu, and H. Zhao, “Third-harmonic generation in ultrathin films of MoS2,” ACS Appl. Mater. Interfaces 6, 314–318 (2014).
[Crossref]

Choi, C.

B. Yao, S.-W. Huang, Y. Liu, A. K. Vinod, C. Choi, M. Hoff, Y. Li, M. Yu, Z. Feng, D.-L. Kwong, Y. Huang, Y. Rao, X. Duan, and C. W. Wong, “Gate-tunable frequency combs in graphene-nitride microresonators,” Nature 558, 410–414 (2018).
[Crossref]

Choi, H.

X. Shen, H. Choi, D. Chen, W. Zhao, and A. M. Armani, “Raman laser from an optical resonator with a grafted single-molecule monolayer,” Nat. Photonics 14, 95–101 (2020).

H. Choi, D. Chen, F. Du, R. Zeto, and A. Armani, “Low threshold anti-Stokes Raman laser on-chip,” Photon. Res. 7, 926–932 (2019).
[Crossref]

H. Choi and A. M. Armani, “Raman-Kerr frequency combs in Zr-doped silica hybrid microresonators,” Opt. Lett. 43, 2949–2952 (2018).
[Crossref]

H. Choi and A. M. Armani, “High efficiency Raman lasers based on Zr-doped silica hybrid microcavities,” ACS Photon. 3, 2383–2388 (2016).
[Crossref]

Choi, H. S.

H. S. Choi, X. Zhang, and A. M. Armani, “Hybrid silica-polymer ultra-high-Q microresonators,” Opt. Lett. 35, 459–461 (2010).
[Crossref]

H. S. Choi and A. M. Armani, “Thermal nonlinear effects in hybrid optical microresonators,” Appl. Phys. Lett. 97, 223306 (2010).
[Crossref]

X. Zhang, H. S. Choi, and A. M. Armani, “Ultimate quality factor of silica microtoroid resonant cavities,” Appl. Phys. Lett. 96, 153304 (2010).
[Crossref]

Choi, H. W.

Choi, J. W.

P. Xing, D. Ma, K. J. A. Ooi, J. W. Choi, A. M. Agarwal, and D. Tan, “CMOS-compatible PECVD silicon carbide platform for linear and nonlinear optics,” ACS Photon. 6, 1162–1167 (2019).
[Crossref]

Chormaic, S. N.

Chu, S.

L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. E. Little, and D. J. Moss, “CMOS-compatible integrated optical hyper-parametric oscillator,” Nat. Photonics 4, 41–45 (2010).
[Crossref]

M. Ferrera, D. Duchesne, L. Razzari, M. Peccianti, R. Morandotti, P. Cheben, S. Janz, D.-X. Xu, B. E. Little, S. Chu, and D. J. Moss, “Low power four wave mixing in an integrated, micro-ring resonator with Q = 1.2 million,” Opt. Express 17, 14098–14103 (2009).
[Crossref]

M. Ferrera, L. Razzari, D. Duchesne, R. Morandotti, Z. Yang, M. Liscidini, J. E. Sipe, S. Chu, B. E. Little, and D. J. Moss, “Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures,” Nat. Photonics 2, 737–740 (2008).
[Crossref]

Chu, S. T.

H. Bao, A. Cooper, M. Rowley, L. Di Lauro, J. S. T. Gongora, S. T. Chu, B. E. Little, G.-L. Oppo, R. Morandotti, D. J. Moss, B. Wetzel, M. Peccianti, and A. Pasquazi, “Laser cavity-soliton microcombs,” Nat. Photonics 13, 384–389 (2019).
[Crossref]

J. Wu, X. Xu, T. G. Nguyen, S. T. Chu, B. E. Little, R. Morandotti, A. Mitchell, and D. J. Moss, “RF photonics: an optical microcombs’ perspective,” IEEE J. Sel. Top. Quantum Electron. 24, 6101020 (2018).
[Crossref]

X. Xu, J. Wu, M. Shoeiby, T. G. Nguyen, S. T. Chu, B. E. Little, R. Morandotti, A. Mitchell, and D. J. Moss, “Reconfigurable broadband microwave photonic intensity differentiator based on an integrated optical frequency comb source,” APL Photon. 2, 096104 (2017).
[Crossref]

T. G. Nguyen, M. Shoeiby, S. T. Chu, B. E. Little, R. Morandotti, A. Mitchell, and D. J. Moss, “Integrated frequency comb source based Hilbert transformer for wideband microwave photonic phase analysis,” Opt. Express 23, 22087–22097 (2015).
[Crossref]

A. Pasquazi, Y. Park, J. Azana, F. Legare, R. Morandotti, B. E. Little, S. T. Chu, and D. J. Moss, “Efficient wavelength conversion and net parametric gain via four wave mixing in a high index doped silica waveguide,” Opt. Express 18, 7634–7641 (2010).
[Crossref]

B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, “Ultra-compact Si-SiO2 microring resonator optical channel dropping filters,” IEEE Photon. Technol. Lett. 10, 549–551 (1998).
[Crossref]

Chu, Y.

M. J. Burek, Y. Chu, M. S. Z. Liddy, P. Patel, J. Rochman, S. Meesala, W. Hong, Q. Quan, M. D. Lukin, and M. Loncar, “High quality-factor optical nanocavities in bulk single-crystal diamond,” Nat. Commun. 5, 5718 (2014).
[Crossref]

Chylek, P.

Clements, W. R.

Clemmen, S.

S. Ramelow, A. Farsi, Z. Vernon, S. Clemmen, X. Ji, J. E. Sipe, M. Liscidini, M. Lipson, and A. L. Gaeta, “Strong nonlinear coupling in a Si3N4 ring resonator,” Phys. Rev. Lett. 122, 153906 (2019).
[Crossref]

Coen, S.

A. Pasquazi, M. Peccianti, L. Razzari, D. J. Moss, S. Coen, M. Erkintalo, Y. K. Chembo, T. Hansson, S. Wabnitz, P. Del’Haye, X. Xue, A. M. Weiner, and R. Morandotti, “Micro-combs: a novel generation of optical sources,” Phys. Rep. 729, 1–81 (2018).
[Crossref]

T. Hansson, F. Leo, M. Erkintalo, S. Coen, I. Ricciardi, M. De Rosa, and S. Wabnitz, “Singly resonant second-harmonic-generation frequency combs,” Phys. Rev. A 95, 013805 (2017).
[Crossref]

Y. Wang, F. Leo, J. Fatome, M. Erkintalo, S. G. Murdoch, and S. Coen, “Universal mechanism for the binding of temporal cavity solitons,” Optica 4, 855–863 (2017).
[Crossref]

K. E. Webb, M. Erkintalo, S. Coen, and S. G. Murdoch, “Experimental observation of coherent cavity soliton frequency combs in silica microspheres,” Opt. Lett. 41, 4613–4616 (2016).
[Crossref]

P. Parra-Rivas, D. Gomila, E. Knobloch, S. Coen, and L. Gelens, “Origin and stability of dark pulse Kerr combs in normal dispersion resonators,” Opt. Lett. 41, 2402–2405 (2016).
[Crossref]

T. Hansson, F. Leo, M. Erkintalo, J. Anthony, S. Coen, I. Ricciardi, M. D. Rosa, and S. Wabnitz, “Single envelope equation modeling of multi-octave comb arrays in microresonators with quadratic and cubic nonlinearities,” J. Opt. Soc. Am. B 33, 1207–1215 (2016).
[Crossref]

F. Leo, T. Hansson, I. Ricciardi, M. De Rosa, S. Coen, S. Wabnitz, and M. Erkintalo, “Frequency-comb formation in doubly resonant second-harmonic generation,” Phys. Rev. A 93, 043831 (2016).
[Crossref]

F. Leo, T. Hansson, I. Ricciardi, M. De Rosa, S. Coen, S. Wabnitz, and M. Erkintalo, “Walk-off-induced modulation instability, temporal pattern formation, and frequency comb generation in cavity-enhanced second-harmonic generation,” Phys. Rev. Lett. 116, 033901 (2016).
[Crossref]

J. Jang, M. Erkintalo, S. Murdoch, and S. Coen, “Writing and erasing of temporal cavity solitons by direct phase modulation of the cavity driving field,” Opt. Lett. 40, 4755–4758 (2015).
[Crossref]

M. Erkintalo and S. Coen, “Coherence properties of Kerr frequency combs,” Opt. Lett. 39, 283–286 (2014).
[Crossref]

J. K. Jang, M. Erkintalo, S. G. Murdoch, and S. Coen, “Observation of dispersive wave emission by temporal cavity solitons,” Opt. Lett. 39, 5503–5506 (2014).
[Crossref]

S. Coen, H. Randle, T. Sylvestre, and M. Erkintalo, “Modeling of octave-spanning Kerr frequency combs using a generalized mean-field Lugiato-Lefever model,” Opt. Lett. 38, 37–39 (2013).
[Crossref]

Coillet, A.

J. Pfeifle, A. Coillet, R. Henriet, K. Saleh, P. Schindler, C. Weimann, W. Freude, I. V. Balakireva, L. Larger, C. Koos, and Y. K. Chembo, “Optimally coherent Kerr combs generated with crystalline whispering gallery mode resonators for ultrahigh capacity fiber communications,” Phys. Rev. Lett. 114, 093902 (2015).
[Crossref]

R. Henriet, G. Lin, A. Coillet, M. Jacquot, L. Furfaro, L. Larger, and Y. K. Chembo, “Kerr optical frequency comb generation in strontium fluoride whispering-gallery mode resonators with billion quality factor,” Opt. Lett. 40, 1567–1570 (2015).
[Crossref]

C. Godey, I. Balakireva, A. Coillet, and Y. Chembo, “Stability analysis of the spatiotemporal Lugiato-Lefever model for Kerr optical frequency combs in the anomalous and normal dispersion regimes,” Phys. Rev. A 89, 063814 (2014).
[Crossref]

K. Saleh, R. Henriet, S. Diallo, G. Lin, R. Martinenghi, I. V. Balakireva, P. Salzenstein, A. Coillet, and Y. K. Chembo, “Phase noise performance comparison between optoelectronic oscillators based on optical delay lines and whispering gallery mode resonators,” Opt. Express 22, 32158–32173 (2014).
[Crossref]

A. Coillet and Y. Chembo, “Routes to spatiotemporal chaos in Kerr optical frequency combs,” Chaos 24, 013113 (2014).
[Crossref]

Cole, D. C.

D. C. Cole, J. R. Stone, M. Erkintalo, K. Y. Yang, X. Yi, K. J. Vahala, and S. B. Papp, “Kerr-microresonator solitons from a chirped background,” Optica 5, 1304–1310 (2018).
[Crossref]

D. C. Cole, E. S. Lamb, P. Del’Haye, S. A. Diddams, and S. B. Papp, “Soliton crystals in Kerr resonators,” Nat. Photonics 11, 671–676 (2017).
[Crossref]

Conti, G. N.

Cooper, A.

H. Bao, A. Cooper, M. Rowley, L. Di Lauro, J. S. T. Gongora, S. T. Chu, B. E. Little, G.-L. Oppo, R. Morandotti, D. J. Moss, B. Wetzel, M. Peccianti, and A. Pasquazi, “Laser cavity-soliton microcombs,” Nat. Photonics 13, 384–389 (2019).
[Crossref]

Copie, F.

Corres, J. M.

Cotter, D.

P. Butcher and D. Cotter, The Elements of Nonlinear Optics (Cambridge University, 1991).

Cui, Q.

C. Xu, F. Qin, Q. Zhu, J. Lu, Y. Wang, J. Li, Y. Lin, Q. Cui, Z. Shi, and A. G. Manohari, “Plasmon-enhanced ZnO whispering-gallery mode lasing,” Nano Res. 11, 3050–3064 (2018).
[Crossref]

N. Kumar, S. Najmaei, Q. Cui, F. Ceballos, P. M. Ajayan, J. Lou, and H. Zhao, “Second harmonic microscopy of monolayer MoS2,” Phys. Rev. B 87, 161403 (2013).
[Crossref]

Cundiff, S.

S. Cundiff, “Phase stabilization of ultrashort optical pulses,” J. Phys. D 35, R43 (2002).
[Crossref]

J. Hall, J. Ye, S. Diddams, L. Ma, S. Cundiff, and D. Jones, “Ultrasensitive spectroscopy, the ultrastable lasers, the ultrafast lasers, and the seriously nonlinear fiber: a new alliance for physics and metrology,” IEEE J. Quantum Electron. 37, 1482–1492 (2001).
[Crossref]

D. Jones, S. Diddams, J. Ranka, A. Stentz, R. Windeler, J. Hall, and S. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
[Crossref]

Dai, D.

Dai, L. Y.

Daido, H.

K. Ikeda, H. Daido, and O. Akimoto, “Optical turbulence: chaotic behavior of transmitted light from a ring cavity,” Phys. Rev. Lett. 45, 709–712 (1980).
[Crossref]

Dalton, L.

Davis, E.

De Natale, P.

A. Giorgini, S. Avino, P. Malara, P. De Natale, M. Yannai, T. Carmon, and G. Gagliardi, “Stimulated Brillouin cavity optomechanics in liquid droplets,” Phys. Rev. Lett. 120, 073902 (2018).
[Crossref]

I. Ricciardi, S. Mosca, M. Parisi, P. Maddaloni, L. Santamaria, P. De Natale, and M. De Rosa, “Frequency comb generation in quadratic nonlinear media,” Phys. Rev. A 91, 063839 (2015).
[Crossref]

De Rosa, M.

T. Hansson, F. Leo, M. Erkintalo, S. Coen, I. Ricciardi, M. De Rosa, and S. Wabnitz, “Singly resonant second-harmonic-generation frequency combs,” Phys. Rev. A 95, 013805 (2017).
[Crossref]

F. Leo, T. Hansson, I. Ricciardi, M. De Rosa, S. Coen, S. Wabnitz, and M. Erkintalo, “Walk-off-induced modulation instability, temporal pattern formation, and frequency comb generation in cavity-enhanced second-harmonic generation,” Phys. Rev. Lett. 116, 033901 (2016).
[Crossref]

F. Leo, T. Hansson, I. Ricciardi, M. De Rosa, S. Coen, S. Wabnitz, and M. Erkintalo, “Frequency-comb formation in doubly resonant second-harmonic generation,” Phys. Rev. A 93, 043831 (2016).
[Crossref]

I. Ricciardi, S. Mosca, M. Parisi, P. Maddaloni, L. Santamaria, P. De Natale, and M. De Rosa, “Frequency comb generation in quadratic nonlinear media,” Phys. Rev. A 91, 063839 (2015).
[Crossref]

Debray, J. P.

Deka, N.

Del Villar, I.

Del’Haye, P.

S. Zhang, J. M. Silver, L. D. Bino, F. Copie, M. T. M. Woodley, G. N. Ghalanos, A. Ø. Svela, N. Moroney, and P. Del’Haye, “Sub-milliwatt-level microresonator solitons with extended access range using an auxiliary laser,” Optica 6, 206–212 (2019).
[Crossref]

A. Pasquazi, M. Peccianti, L. Razzari, D. J. Moss, S. Coen, M. Erkintalo, Y. K. Chembo, T. Hansson, S. Wabnitz, P. Del’Haye, X. Xue, A. M. Weiner, and R. Morandotti, “Micro-combs: a novel generation of optical sources,” Phys. Rep. 729, 1–81 (2018).
[Crossref]

D. C. Cole, E. S. Lamb, P. Del’Haye, S. A. Diddams, and S. B. Papp, “Soliton crystals in Kerr resonators,” Nat. Photonics 11, 671–676 (2017).
[Crossref]

H. Taheri, P. Del’Haye, A. Eftekhar, K. Wiesenfeld, and A. Adibi, “Self-synchronization phenomena in the Lugiato-Lefever equation,” Phys. Rev. A 96, 013828 (2016).
[Crossref]

S. B. Papp, K. Beha, P. Del’Haye, F. Quinlan, H. Lee, K. J. Vahala, and S. A. Diddams, “Microresonator frequency comb optical clock,” Optica 1, 10–14 (2014).
[Crossref]

C. Y. Wang, T. Herr, P. Del’Haye, A. Schliesser, J. Hofer, R. Holzwarth, T. W. Haensch, N. Picque, and T. J. Kippenberg, “Mid-infrared optical frequency combs at 2.5  µm based on crystalline microresonators,” Nat. Commun. 4, 1345 (2013).
[Crossref]

P. Del’Haye, S. A. Diddams, and S. B. Papp, “Laser-machined ultra-high-Q microrod resonators for nonlinear optics,” Appl. Phys. Lett. 102, 221119 (2013).
[Crossref]

P. Del’Haye, T. Herr, E. Gavartin, M. L. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, “Octave spanning tunable frequency comb from a microresonator,” Phys. Rev. Lett. 107, 063901 (2011).
[Crossref]

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450, 1214–1217 (2007).
[Crossref]

Deng, Y.

Deotare, P.

B. J. M. Hausmann, I. Bulu, V. Venkataraman, P. Deotare, and M. Loncar, “Diamond nonlinear photonics,” Nat. Photonics 8, 369–374 (2014).
[Crossref]

Deotare, P. B.

B. J. M. Hausmann, I. B. Bulu, P. B. Deotare, M. McCutcheon, V. Venkataraman, M. L. Markham, D. J. Twitchen, and M. Loncar, “Integrated high-quality factor optical resonators in diamond,” Nano Lett. 13, 1898–1902 (2013).
[Crossref]

DeRose, G.

DeRose, G. A.

Desiatov, B.

DeTal, N.

N. DeTal, H. Taheri, and K. Wiesenfeld, “Synchronization behavior in a ternary phase model,” Chaos 29, 063115 (2019).
[Crossref]

Devakottai, B.

A. Ray, B. Devakottai, A. Souyri, and J. Huckaby, “Evaporation characteristics of droplets coated with immisicible layers of nonvolatile liquids,” Langmuir 7, 525–531 (1991).
[Crossref]

Di Lauro, L.

H. Bao, A. Cooper, M. Rowley, L. Di Lauro, J. S. T. Gongora, S. T. Chu, B. E. Little, G.-L. Oppo, R. Morandotti, D. J. Moss, B. Wetzel, M. Peccianti, and A. Pasquazi, “Laser cavity-soliton microcombs,” Nat. Photonics 13, 384–389 (2019).
[Crossref]

Di Stefano, O.

I. I. Arkhipov, A. Miranowicz, O. Di Stefano, R. Stassi, S. Savasta, F. Nori, and Ş. K. Özdemir, “Scully-Lamb quantum laser model for parity-time-symmetric whispering-gallery microcavities: gain saturation effects and nonreciprocity,” Phys. Rev. A 99, 053806 (2019).
[Crossref]

Diallo, S.

Diddams, S.

A. Bartels, D. Heinecke, and S. Diddams, “10-GHz self-referenced optical frequency comb,” Science 326, 681 (2009).
[Crossref]

D. Braje, L. Hollberg, and S. Diddams, “Brillouin-enhanced hyperparametric generation of an optical frequency comb in a monolithic highly nonlinear fiber cavity pumped by a cw laser,” Phys. Rev. Lett. 102, 193902 (2009).
[Crossref]

J. Hall, J. Ye, S. Diddams, L. Ma, S. Cundiff, and D. Jones, “Ultrasensitive spectroscopy, the ultrastable lasers, the ultrafast lasers, and the seriously nonlinear fiber: a new alliance for physics and metrology,” IEEE J. Quantum Electron. 37, 1482–1492 (2001).
[Crossref]

D. Jones, S. Diddams, J. Ranka, A. Stentz, R. Windeler, J. Hall, and S. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
[Crossref]

Diddams, S. A.

S.-P. Yu, T. C. Briles, G. T. Moille, X. Lu, S. A. Diddams, K. Srinivasan, and S. B. Papp, “Tuning Kerr-soliton frequency combs to atomic resonances,” Phys. Rev. Appl. 11, 044017 (2019).
[Crossref]

Z. L. Newman, V. Maurice, T. Drake, J. R. Stone, T. C. Briles, D. T. Spencer, C. Fredrick, Q. Li, D. Westly, B. R. Ilic, B. Shen, M.-G. Suh, K. Y. Yang, C. Johnson, D. M. S. Johnson, L. Hollberg, K. J. Vahala, K. Srinivasan, S. A. Diddams, J. Kitching, S. B. Papp, and M. T. Hummon, “Architecture for the photonic integration of an optical atomic clock,” Optica 6, 680–685 (2019).
[Crossref]

M.-G. Suh, X. Yi, Y.-H. Lai, S. Leifer, I. S. Grudinin, G. Vasisht, E. C. Martin, M. P. Fitzgerald, G. Doppmann, J. Wang, D. Mawet, S. B. Papp, S. A. Diddams, C. Beichman, and K. Vahala, “Searching for exoplanets using a microresonator astrocomb,” Nat. Photonics 13, 25–30 (2019).
[Crossref]

T. E. Drake, T. C. Briles, J. R. Stone, D. T. Spencer, D. R. Carlson, D. D. Hickstein, Q. Li, D. Westly, K. Srinivasan, S. A. Diddams, and S. B. Papp, “Terahertz-rate Kerr-microresonator optical clockwork,” Phys. Rev. X 9, 031023 (2019).
[Crossref]

D. T. Spencer, T. Drake, T. C. Briles, J. Stone, L. C. Sinclair, C. Fredrick, Q. Li, D. Westly, B. R. Ilic, A. Bluestone, N. Volet, T. Komljenovic, L. Chang, S. H. Lee, D. Y. Oh, M.-G. Suh, K. Y. Yang, M. H. P. Pfeiffer, T. J. Kippenberg, E. Norberg, L. Theogarajan, K. Vahala, N. R. Newbury, K. Srinivasan, J. E. Bowers, S. A. Diddams, and S. B. Papp, “An optical-frequency synthesizer using integrated photonics,” Nature 557, 81–85 (2018).
[Crossref]

Q. Li, T. C. Briles, D. A. Westly, T. E. Drake, J. R. Stone, B. R. Ilic, S. A. Diddams, S. B. Papp, and K. Srinivasan, “Stably accessing octave-spanning microresonator frequency combs in the soliton regime,” Optica 4, 193–203 (2017).
[Crossref]

D. C. Cole, E. S. Lamb, P. Del’Haye, S. A. Diddams, and S. B. Papp, “Soliton crystals in Kerr resonators,” Nat. Photonics 11, 671–676 (2017).
[Crossref]

S. B. Papp, K. Beha, P. Del’Haye, F. Quinlan, H. Lee, K. J. Vahala, and S. A. Diddams, “Microresonator frequency comb optical clock,” Optica 1, 10–14 (2014).
[Crossref]

P. Del’Haye, S. A. Diddams, and S. B. Papp, “Laser-machined ultra-high-Q microrod resonators for nonlinear optics,” Appl. Phys. Lett. 102, 221119 (2013).
[Crossref]

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332, 555–559 (2011).
[Crossref]

Diep, V. M.

S. Soltani, V. M. Diep, R. Zeto, and A. M. Armani, “Stimulated anti-Stokes Raman emission generated by gold nanorod coated optical resonators,” ACS Photon. 5, 3550–3556 (2018).
[Crossref]

X. Shen, R. C. Beltran, V. M. Diep, S. Soltani, and A. M. Armani, “Low-threshold parametric oscillation in organically modified microcavities,” Sci. Adv. 4, eaao4507 (2018).
[Crossref]

R. Castro-Beltrán, V. M. Diep, S. Soltani, E. Gungor, and A. M. Armani, “Plasmonically enhanced Kerr frequency combs,” ACS Photon. 4, 2828–2834 (2017).
[Crossref]

Díez, A.

Dinyari, K. N.

M. Larsson, K. N. Dinyari, and H. Wang, “Composite optical microcavity of diamond nanopillar and silica microsphere,” Nano Lett. 9, 1447–1450 (2009).
[Crossref]

Dodabalapur, A.

M. Berggren, A. Dodabalapur, Z. Bao, and R. Slusher, “Solid-state droplet laser made from an organic blend with a conjugated polymer emitter,” Adv. Mater. 9, 968–971 (1997).
[Crossref]

Döhler, G. H.

Dominguez-Juarez, J. L.

J. L. Dominguez-Juarez, G. Kozyreff, and J. Martorell, “Whispering gallery microresonators for second harmonic light generation from a low number of small molecules,” Nat. Commun. 2, 254 (2011).
[Crossref]

Dong, C.-H.

Y. Chen, Z.-H. Zhou, C.-L. Zou, Z. Shen, G.-C. Guo, and C.-H. Dong, “Tunable Raman laser in a hollow bottle-like microresonator,” Opt. Express 25, 16879–16887 (2017).
[Crossref]

C.-H. Dong, Z. Shen, C.-L. Zou, Y.-L. Zhang, W. Fu, and G.-C. Guo, “Brillouin-scattering-induced transparency and non-reciprocal light storage,” Nat. Commun. 6, 6193 (2015).
[Crossref]

Dong, P.

Doppmann, G.

M.-G. Suh, X. Yi, Y.-H. Lai, S. Leifer, I. S. Grudinin, G. Vasisht, E. C. Martin, M. P. Fitzgerald, G. Doppmann, J. Wang, D. Mawet, S. B. Papp, S. A. Diddams, C. Beichman, and K. Vahala, “Searching for exoplanets using a microresonator astrocomb,” Nat. Photonics 13, 25–30 (2019).
[Crossref]

Drake, T.

Z. L. Newman, V. Maurice, T. Drake, J. R. Stone, T. C. Briles, D. T. Spencer, C. Fredrick, Q. Li, D. Westly, B. R. Ilic, B. Shen, M.-G. Suh, K. Y. Yang, C. Johnson, D. M. S. Johnson, L. Hollberg, K. J. Vahala, K. Srinivasan, S. A. Diddams, J. Kitching, S. B. Papp, and M. T. Hummon, “Architecture for the photonic integration of an optical atomic clock,” Optica 6, 680–685 (2019).
[Crossref]

D. T. Spencer, T. Drake, T. C. Briles, J. Stone, L. C. Sinclair, C. Fredrick, Q. Li, D. Westly, B. R. Ilic, A. Bluestone, N. Volet, T. Komljenovic, L. Chang, S. H. Lee, D. Y. Oh, M.-G. Suh, K. Y. Yang, M. H. P. Pfeiffer, T. J. Kippenberg, E. Norberg, L. Theogarajan, K. Vahala, N. R. Newbury, K. Srinivasan, J. E. Bowers, S. A. Diddams, and S. B. Papp, “An optical-frequency synthesizer using integrated photonics,” Nature 557, 81–85 (2018).
[Crossref]

Drake, T. E.

T. E. Drake, T. C. Briles, J. R. Stone, D. T. Spencer, D. R. Carlson, D. D. Hickstein, Q. Li, D. Westly, K. Srinivasan, S. A. Diddams, and S. B. Papp, “Terahertz-rate Kerr-microresonator optical clockwork,” Phys. Rev. X 9, 031023 (2019).
[Crossref]

Q. Li, T. C. Briles, D. A. Westly, T. E. Drake, J. R. Stone, B. R. Ilic, S. A. Diddams, S. B. Papp, and K. Srinivasan, “Stably accessing octave-spanning microresonator frequency combs in the soliton regime,” Optica 4, 193–203 (2017).
[Crossref]

Du, F.

Duan, X.

B. Yao, S.-W. Huang, Y. Liu, A. K. Vinod, C. Choi, M. Hoff, Y. Li, M. Yu, Z. Feng, D.-L. Kwong, Y. Huang, Y. Rao, X. Duan, and C. W. Wong, “Gate-tunable frequency combs in graphene-nitride microresonators,” Nature 558, 410–414 (2018).
[Crossref]

Duchesne, D.

Z.-F. Bi, A. W. Rodriguez, H. Hashemi, D. Duchesne, M. Loncar, K.-M. Wang, and S. G. Johnson, “High-efficiency second-harmonic generation in doubly-resonant χ(2) microring resonators,” Opt. Express 20, 7526–7543 (2012).
[Crossref]

L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. E. Little, and D. J. Moss, “CMOS-compatible integrated optical hyper-parametric oscillator,” Nat. Photonics 4, 41–45 (2010).
[Crossref]

M. Ferrera, D. Duchesne, L. Razzari, M. Peccianti, R. Morandotti, P. Cheben, S. Janz, D.-X. Xu, B. E. Little, S. Chu, and D. J. Moss, “Low power four wave mixing in an integrated, micro-ring resonator with Q = 1.2 million,” Opt. Express 17, 14098–14103 (2009).
[Crossref]

M. Ferrera, L. Razzari, D. Duchesne, R. Morandotti, Z. Yang, M. Liscidini, J. E. Sipe, S. Chu, B. E. Little, and D. J. Moss, “Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures,” Nat. Photonics 2, 737–740 (2008).
[Crossref]

Dudley, J. M.

G. Lin, S. Diallo, J. M. Dudley, and Y. K. Chembo, “Universal nonlinear scattering in ultra-high Q whispering gallery-mode resonators,” Opt. Express 24, 14880–14894 (2016).
[Crossref]

M. Erkintalo, G. Genty, B. Wetzel, and J. M. Dudley, “Akhmediev breather evolution in optical fiber for realistic initial conditions,” Phys. Lett. A 375, 2029–2034 (2011).
[Crossref]

Dulkeith, E.

Dunn, M.

M. Dunn and M. Ebrahimzadeh, “Parametric generation of tunable light from continuous-wave to femtosecond pulses,” Science 286, 1513–1517 (1999).
[Crossref]

Dutt, A.

A. Dutt, C. Joshi, X. Ji, J. Cardenas, Y. Okawachi, K. Luke, A. L. Gaeta, and M. Lipson, “On-chip dual-comb source for spectroscopy,” Sci. Adv. 4, e1701858 (2018).
[Crossref]

K. Luke, A. Dutt, C. B. Poitras, and M. Lipson, “Overcoming Si3N4 film stress limitations for high quality factor ring resonators,” Opt. Express 21, 22829–22833 (2013).
[Crossref]

Ebrahimzadeh, M.

M. Dunn and M. Ebrahimzadeh, “Parametric generation of tunable light from continuous-wave to femtosecond pulses,” Science 286, 1513–1517 (1999).
[Crossref]

Eftekhar, A.

H. Taheri, P. Del’Haye, A. Eftekhar, K. Wiesenfeld, and A. Adibi, “Self-synchronization phenomena in the Lugiato-Lefever equation,” Phys. Rev. A 96, 013828 (2016).
[Crossref]

H. Taheri, A. Eftekhar, K. Wiesenfeld, and A. Adibi, “Soliton formation in whispering-gallery-mode resonators via input phase modulation,” IEEE Photon. J. 7, 2200309 (2015).
[Crossref]

Eftekhar, A. A.

H. Taheri, A. A. Eftekhar, K. Wiesenfeld, and A. Adibi, “Anatomy of phase locking in hyperparametric oscillations based on Kerr nonlinearity,” IEEE Photon. J. 9, 6100911 (2017).
[Crossref]

Elder, D.

Eliyahu, D.

W. Liang, A. A. Savchenkov, V. S. Ilchenko, D. Eliyahu, A. B. Matsko, and L. Maleki, “Stabilized C-band Kerr frequency comb,” IEEE Photon. J. 9, 5502411 (2017).
[Crossref]

A. Matsko, W. Liang, A. Savchenkov, D. Eliyahu, and L. Maleki, “Optical Cherenkov radiation in overmoded microresonators,” Opt. Lett. 41, 2907–2910 (2016).
[Crossref]

W. Liang, D. Eliyahu, V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, D. Seidel, and L. Maleki, “High spectral purity Kerr frequency comb radio frequency photonic oscillator,” Nat. Commun. 6, 7957 (2015).
[Crossref]

W. Liang, V. S. Ilchenko, D. Eliyahu, A. A. Savchenkov, A. B. Matsko, D. Seidel, and L. Maleki, “Ultralow noise miniature external cavity semiconductor laser,” Nat. Commun. 6, 7371 (2015).
[Crossref]

W. Liang, A. A. Savchenkov, V. S. Ilchenko, D. Eliyahu, D. Seidel, A. B. Matsko, and L. Maleki, “Generation of a coherent near-infrared Kerr frequency comb in a monolithic microresonator with normal GVD,” Opt. Lett. 39, 2920–2923 (2014).
[Crossref]

A. B. Matsko, D. Eliyahu, and L. Maleki, “Theory of coupled optoelectronic microwave oscillator II: phase noise,” J. Opt. Soc. Am. B 30, 3316–3323 (2013).
[Crossref]

L. Maleki, A. Savchenkov, V. Ilchenko, W. Liang, D. Eliyahu, A. Matsko, D. Seidel, N. Wells, J. Camparo, and B. Jaduszliwer, “All-optical integrated rubidium atomic clock,” in Proceedings of the Joint Conference of the IEEE International Frequency Control and the European Frequency and Time Forum (FCS) (IEEE, 2011), pp. 1–5.

Epping, J. P.

Eriksson, T.

Erkintalo, M.

A. Pasquazi, M. Peccianti, L. Razzari, D. J. Moss, S. Coen, M. Erkintalo, Y. K. Chembo, T. Hansson, S. Wabnitz, P. Del’Haye, X. Xue, A. M. Weiner, and R. Morandotti, “Micro-combs: a novel generation of optical sources,” Phys. Rep. 729, 1–81 (2018).
[Crossref]

D. C. Cole, J. R. Stone, M. Erkintalo, K. Y. Yang, X. Yi, K. J. Vahala, and S. B. Papp, “Kerr-microresonator solitons from a chirped background,” Optica 5, 1304–1310 (2018).
[Crossref]

Y. Wang, F. Leo, J. Fatome, M. Erkintalo, S. G. Murdoch, and S. Coen, “Universal mechanism for the binding of temporal cavity solitons,” Optica 4, 855–863 (2017).
[Crossref]

T. Hansson, F. Leo, M. Erkintalo, S. Coen, I. Ricciardi, M. De Rosa, and S. Wabnitz, “Singly resonant second-harmonic-generation frequency combs,” Phys. Rev. A 95, 013805 (2017).
[Crossref]

X. Xue, F. Leo, Y. Xuan, J. A. Jaramillo-Villegas, P.-H. Wang, D. E. Leaird, M. Erkintalo, M. Qi, and A. M. Weiner, “Second-harmonic-assisted four-wave mixing in chip-based microresonator frequency comb generation,” Light Sci. Appl. 6, e16253 (2017).
[Crossref]

F. Leo, T. Hansson, I. Ricciardi, M. De Rosa, S. Coen, S. Wabnitz, and M. Erkintalo, “Walk-off-induced modulation instability, temporal pattern formation, and frequency comb generation in cavity-enhanced second-harmonic generation,” Phys. Rev. Lett. 116, 033901 (2016).
[Crossref]

F. Leo, T. Hansson, I. Ricciardi, M. De Rosa, S. Coen, S. Wabnitz, and M. Erkintalo, “Frequency-comb formation in doubly resonant second-harmonic generation,” Phys. Rev. A 93, 043831 (2016).
[Crossref]

T. Hansson, F. Leo, M. Erkintalo, J. Anthony, S. Coen, I. Ricciardi, M. D. Rosa, and S. Wabnitz, “Single envelope equation modeling of multi-octave comb arrays in microresonators with quadratic and cubic nonlinearities,” J. Opt. Soc. Am. B 33, 1207–1215 (2016).
[Crossref]

K. E. Webb, M. Erkintalo, S. Coen, and S. G. Murdoch, “Experimental observation of coherent cavity soliton frequency combs in silica microspheres,” Opt. Lett. 41, 4613–4616 (2016).
[Crossref]

J. Jang, M. Erkintalo, S. Murdoch, and S. Coen, “Writing and erasing of temporal cavity solitons by direct phase modulation of the cavity driving field,” Opt. Lett. 40, 4755–4758 (2015).
[Crossref]

M. Erkintalo and S. Coen, “Coherence properties of Kerr frequency combs,” Opt. Lett. 39, 283–286 (2014).
[Crossref]

J. K. Jang, M. Erkintalo, S. G. Murdoch, and S. Coen, “Observation of dispersive wave emission by temporal cavity solitons,” Opt. Lett. 39, 5503–5506 (2014).
[Crossref]

S. Coen, H. Randle, T. Sylvestre, and M. Erkintalo, “Modeling of octave-spanning Kerr frequency combs using a generalized mean-field Lugiato-Lefever model,” Opt. Lett. 38, 37–39 (2013).
[Crossref]

M. Erkintalo, G. Genty, B. Wetzel, and J. M. Dudley, “Akhmediev breather evolution in optical fiber for realistic initial conditions,” Phys. Lett. A 375, 2029–2034 (2011).
[Crossref]

Eversole, J.

Fain, R.

A. G. Griffith, R. K. W. Lau, J. Cardenas, Y. Okawachi, A. Mohanty, R. Fain, Y. H. D. Lee, M. Yu, C. T. Phare, C. B. Poitras, A. L. Gaeta, and M. Lipson, “Silicon-chip mid-infrared frequency comb generation,” Nat. Commun. 6, 6299 (2015).
[Crossref]

Fainman, Y.

Fajardo, J. E.

A. Schweinsberg, S. Hocdé, N. N. Lepeshkin, R. W. Boyd, C. Chase, and J. E. Fajardo, “An environmental sensor based on an integrated optical whispering gallery mode disk resonator,” Sens. Actuators B Chem. 123, 727–732 (2007).
[Crossref]

Fallahpour, A.

Fan, X.

G. Bahl, X. Fan, and T. Carmon, “Acoustic whispering-gallery modes in optomechanical shells,” New J. Phys. 14, 115026 (2012).
[Crossref]

Fang, W.

Z. Zhang, N. Yao, J. Pan, L. Zhang, W. Fang, and L. Tong, “A new route for fabricating polymer optical microcavities,” Nanoscale 11, 5203–5208 (2019).
[Crossref]

J. Lin, Y. Xu, Z. Fang, M. Wang, J. Song, N. Wang, L. Qiao, W. Fang, and Y. Cheng, “Fabrication of high-Q lithium niobate microresonators using femtosecond laser micromachining,” Sci. Rep. 5, 8072 (2015).
[Crossref]

Fang, Z.

Y. Zheng, Z. Fang, S. Liu, Y. Cheng, and X. Chen, “High-Q exterior whispering-gallery modes in a double-layer crystalline microdisk resonator,” Phys. Rev. Lett. 122, 253902 (2019).
[Crossref]

J. Lin, Y. Xu, Z. Fang, M. Wang, J. Song, N. Wang, L. Qiao, W. Fang, and Y. Cheng, “Fabrication of high-Q lithium niobate microresonators using femtosecond laser micromachining,” Sci. Rep. 5, 8072 (2015).
[Crossref]

Faraon, A.

A. Faraon, P. E. Barclay, C. Santori, K.-M. C. Fu, and R. G. Beausoleil, “Resonant enhancement of the zero-phonon emission from a colour centre in a diamond cavity,” Nat. Photonics 5, 301–305 (2011).
[Crossref]

Farm, E.

Farnesi, D.

Farrell, G.

A. K. Mallik, G. Farrell, D. Liu, V. Kavungal, Q. Wu, and Y. Semenova, “Silica gel coated spherical micro resonator for ultra-high sensitivity detection of ammonia gas concentration in air,” Sci. Rep. 8, 1620 (2018).
[Crossref]

Farsi, A.

S. Ramelow, A. Farsi, Z. Vernon, S. Clemmen, X. Ji, J. E. Sipe, M. Liscidini, M. Lipson, and A. L. Gaeta, “Strong nonlinear coupling in a Si3N4 ring resonator,” Phys. Rev. Lett. 122, 153906 (2019).
[Crossref]

Fatome, J.

Fedorov, V.

Fejer, M. M.

Feng, D.

Feng, S.

Feng, X.-B.

Z.-P. Liu, Y. Li, Y.-F. Xiao, B.-B. Li, X.-F. Jiang, Y. Qin, X.-B. Feng, H. Yang, and Q. Gong, “Direct laser writing of whispering gallery microcavities by two-photon polymerization,” Appl. Phys. Lett. 97, 211105 (2010).
[Crossref]

Feng, Y.

Y. Feng, Y. Zheng, F. Zhang, J. Yang, T. Qin, and W. Wan, “Passive fine-tuning of microcavity whispering gallery mode for nonlinear optics by thermo-optical effect,” Appl. Phys. Lett. 114, 101103 (2019).
[Crossref]

Feng, Z.

B. Yao, S.-W. Huang, Y. Liu, A. K. Vinod, C. Choi, M. Hoff, Y. Li, M. Yu, Z. Feng, D.-L. Kwong, Y. Huang, Y. Rao, X. Duan, and C. W. Wong, “Gate-tunable frequency combs in graphene-nitride microresonators,” Nature 558, 410–414 (2018).
[Crossref]

Ferdous, F.

F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by-line pulse shaping of on-chip microresonator frequency combs,” Nat. Photonics 5, 770–776 (2011).
[Crossref]

Ferguson, A. J.

J. A. Haigh, A. Nunnenkamp, A. J. Ramsay, and A. J. Ferguson, “Triple-resonant Brillouin light scattering in magneto-optical cavities,” Phys. Rev. Lett. 117, 133602 (2016).
[Crossref]

Fernandes, G.

Ferrera, M.

L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. E. Little, and D. J. Moss, “CMOS-compatible integrated optical hyper-parametric oscillator,” Nat. Photonics 4, 41–45 (2010).
[Crossref]

M. Ferrera, D. Duchesne, L. Razzari, M. Peccianti, R. Morandotti, P. Cheben, S. Janz, D.-X. Xu, B. E. Little, S. Chu, and D. J. Moss, “Low power four wave mixing in an integrated, micro-ring resonator with Q = 1.2 million,” Opt. Express 17, 14098–14103 (2009).
[Crossref]

M. Ferrera, L. Razzari, D. Duchesne, R. Morandotti, Z. Yang, M. Liscidini, J. E. Sipe, S. Chu, B. E. Little, and D. J. Moss, “Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures,” Nat. Photonics 2, 737–740 (2008).
[Crossref]

Fiore, A.

Firth, W. J.

W. J. Firth and A. J. Scroggie, “Optical bullet holes: robust controllable localized states of a nonlinear cavity,” Phys. Rev. Lett. 76, 1623–1626 (1996).
[Crossref]

Fitzgerald, M. P.

M.-G. Suh, X. Yi, Y.-H. Lai, S. Leifer, I. S. Grudinin, G. Vasisht, E. C. Martin, M. P. Fitzgerald, G. Doppmann, J. Wang, D. Mawet, S. B. Papp, S. A. Diddams, C. Beichman, and K. Vahala, “Searching for exoplanets using a microresonator astrocomb,” Nat. Photonics 13, 25–30 (2019).
[Crossref]

Flatae, A. M.

A. M. Flatae, M. Burresi, H. Zeng, S. Nocentini, S. Wiegele, C. Parmeggiani, H. Kalt, and D. Wiersma, “Optically controlled elastic microcavities,” Light Sci. Appl. 4, e282 (2015).
[Crossref]

Flores-Flores, R.

Fong, K. Y.

Foresi, J. S.

B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, “Ultra-compact Si-SiO2 microring resonator optical channel dropping filters,” IEEE Photon. Technol. Lett. 10, 549–551 (1998).
[Crossref]

Forstner, S.

Foster, M.

Foster, M. A.

R. Halir, Y. Okawachi, J. S. Levy, M. A. Foster, M. Lipson, and A. L. Gaeta, “Ultrabroadband supercontinuum generation in a CMOS-compatible platform,” Opt. Lett. 37, 1685–1687 (2012).
[Crossref]

J. S. Levy, K. Saha, Y. Okawachi, M. A. Foster, A. L. Gaeta, and M. Lipson, “High-performance silicon-nitride-based multiple-wavelength source,” IEEE Photon. Technol. Lett. 24, 1375–1377 (2012).
[Crossref]

J. S. Levy, M. A. Foster, A. L. Gaeta, and M. Lipson, “Harmonic generation in silicon nitride ring resonators,” Opt. Express 19, 11415–11421 (2011).
[Crossref]

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4, 37–40 (2010).
[Crossref]

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441, 960–963 (2006).
[Crossref]

Francois, A.

M. Himmelhaus and A. Francois, “In-vitro sensing of biomechanical forces in live cells by a whispering gallery mode biosensor,” Biosens. Bioelectron. 25, 418–427 (2009).
[Crossref]

Fredrick, C.

Z. L. Newman, V. Maurice, T. Drake, J. R. Stone, T. C. Briles, D. T. Spencer, C. Fredrick, Q. Li, D. Westly, B. R. Ilic, B. Shen, M.-G. Suh, K. Y. Yang, C. Johnson, D. M. S. Johnson, L. Hollberg, K. J. Vahala, K. Srinivasan, S. A. Diddams, J. Kitching, S. B. Papp, and M. T. Hummon, “Architecture for the photonic integration of an optical atomic clock,” Optica 6, 680–685 (2019).
[Crossref]

D. T. Spencer, T. Drake, T. C. Briles, J. Stone, L. C. Sinclair, C. Fredrick, Q. Li, D. Westly, B. R. Ilic, A. Bluestone, N. Volet, T. Komljenovic, L. Chang, S. H. Lee, D. Y. Oh, M.-G. Suh, K. Y. Yang, M. H. P. Pfeiffer, T. J. Kippenberg, E. Norberg, L. Theogarajan, K. Vahala, N. R. Newbury, K. Srinivasan, J. E. Bowers, S. A. Diddams, and S. B. Papp, “An optical-frequency synthesizer using integrated photonics,” Nature 557, 81–85 (2018).
[Crossref]

Freude, W.

P. Trocha, M. Karpov, D. Ganin, M. H. P. Pfeiffer, A. Kordts, S. Wolf, J. Krockenberger, P. Marin-Palomo, C. Weimann, S. Randel, W. Freude, T. J. Kippenberg, and C. Koos, “Ultrafast optical ranging using microresonator soliton frequency combs,” Science 359, 887–891 (2018).
[Crossref]

P. Marin-Palomo, J. N. Kemal, M. Karpov, A. Kordts, J. Pfeifle, M. H. P. Pfeiffer, P. Trocha, S. Wolf, V. Brasch, M. H. Anderson, R. Rosenberger, K. Vijayan, W. Freude, T. J. Kippenberg, and C. Koos, “Microresonator-based solitons for massively parallel coherent optical communications,” Nature 546, 274–279 (2017).
[Crossref]

J. Pfeifle, A. Coillet, R. Henriet, K. Saleh, P. Schindler, C. Weimann, W. Freude, I. V. Balakireva, L. Larger, C. Koos, and Y. K. Chembo, “Optimally coherent Kerr combs generated with crystalline whispering gallery mode resonators for ultrahigh capacity fiber communications,” Phys. Rev. Lett. 114, 093902 (2015).
[Crossref]

J. Pfeifle, V. Brasch, M. Lauermann, Y. Yu, D. Wegner, T. Herr, K. Hartinger, P. Schindler, J. Li, D. Hillerkuss, R. Schmogrow, C. Weimann, R. Holzwarth, W. Freude, J. Leuthold, T. J. Kippenberg, and C. Koos, “Coherent terabit communications with microresonator Kerr frequency combs,” Nat. Photonics 8, 375–380 (2014).
[Crossref]

C. Weimann, P. Schindler, R. Palmer, S. Wolf, D. Bekele, D. Korn, J. Pfeifle, S. Koeber, R. Schmogrow, L. Alloatti, D. Elder, H. Yu, W. Bogaerts, L. Dalton, W. Freude, J. Leuthold, and C. Koos, “Silicon-organic hybrid (SOH) frequency comb sources for terabit/s data transmission,” Opt. Express 22, 3629–3637 (2014).
[Crossref]

Frustaci, S.

S. Frustaci and F. Vollmer, “Whispering-gallery mode (WGM) sensors: review of established and WGM-based techniques to study protein conformational dynamics,” Curr. Opin. Chem. Biol. 51, 66–73 (2019).
[Crossref]

Fu, K.-M. C.

A. D. Logan, M. Gould, E. R. Schmidgall, K. Hestroffer, Z. Lin, W. Jin, A. Majumdar, F. Hatami, A. W. Rodriguez, and K.-M. C. Fu, “400%/W second harmonic conversion efficiency in 14 µm-diameter gallium phosphide-on-oxide resonators,” Opt. Express 26, 33687–33699 (2018).
[Crossref]

A. Faraon, P. E. Barclay, C. Santori, K.-M. C. Fu, and R. G. Beausoleil, “Resonant enhancement of the zero-phonon emission from a colour centre in a diamond cavity,” Nat. Photonics 5, 301–305 (2011).
[Crossref]

Fu, W.

C.-H. Dong, Z. Shen, C.-L. Zou, Y.-L. Zhang, W. Fu, and G.-C. Guo, “Brillouin-scattering-induced transparency and non-reciprocal light storage,” Nat. Commun. 6, 6193 (2015).
[Crossref]

Fuchida, M.

S. Fujii, S. Tanaka, M. Fuchida, H. Amano, Y. Hayama, R. Suzuki, Y. Kakinuma, and T. Tanabe, “Octave-wide phase-matched four-wave mixing in dispersion-engineered crystalline microresonators,” Opt. Lett. 44, 3146–3149 (2019).
[Crossref]

S. Fujii, M. Fuchida, H. Amano, R. Suzuki, Y. Kakinuma, and T. Tanabe, “Ultrahigh-Q crystalline microresonator fabricated with computer-controlled machining without polishing,” in Conference on Lasers and Electro-Optics (CLEO) (Optical Society of America, 2019), paper STh4J.6.

Fujii, S.

Fuller, K.

Fülöp, A.

A. Fülöp, M. Mazur, A. Lorences-Riesgo, Ó. B. Helgason, P.-H. Wang, Y. Xuan, D. E. Leaird, M. Qi, P. A. Andrekson, A. M. Weiner, and V. Torres-Company, “High-order coherent communications using mode-locked dark-pulse Kerr combs from microresonators,” Nat. Commun. 9, 1–8 (2018).
[Crossref]

A. Fülöp, M. Mazur, A. Lorences-Riesgo, T. Eriksson, P.-H. Wang, D. Leaird, M. Qi, P. A. Andrekson, A. M. Weiner, and V. Torres-Company, “Long-haul coherent communications using microresonator-based frequency combs,” Opt. Express 25, 26678–26688 (2017).
[Crossref]

Furfaro, L.

S. Diallo, G. Lin, R. Martinenghi, L. Furfaro, M. Jacquot, and Y. K. Chembo, “Brillouin lasing in ultra-high-Q lithium fluoride disk resonators,” IEEE Photon. Technol. Lett. 28, 955–958 (2016).
[Crossref]

R. Henriet, G. Lin, A. Coillet, M. Jacquot, L. Furfaro, L. Larger, and Y. K. Chembo, “Kerr optical frequency comb generation in strontium fluoride whispering-gallery mode resonators with billion quality factor,” Opt. Lett. 40, 1567–1570 (2015).
[Crossref]

Gaeta, A.

Gaeta, A. L.

S. Ramelow, A. Farsi, Z. Vernon, S. Clemmen, X. Ji, J. E. Sipe, M. Liscidini, M. Lipson, and A. L. Gaeta, “Strong nonlinear coupling in a Si3N4 ring resonator,” Phys. Rev. Lett. 122, 153906 (2019).
[Crossref]

B. Y. Kim, Y. Okawachi, J. K. Jang, M. Yu, X. Ji, Y. Zhao, C. Joshi, M. Lipson, and A. L. Gaeta, “Turn-key, high-efficiency Kerr comb source,” Opt. Lett. 44, 4475–4478 (2019).
[Crossref]

A. L. Gaeta, M. Lipson, and T. J. Kippenberg, “Photonic-chip-based frequency combs,” Nat. Photonics 13, 158–169 (2019).
[Crossref]

B. Stern, X. Ji, Y. Okawachi, A. L. Gaeta, and M. Lipson, “Battery-operated integrated frequency comb generator,” Nature 562, 401–405 (2018).
[Crossref]

L. Koehler, P. Chevalier, E. Shim, B. Desiatov, A. Shams-Ansari, M. Piccardo, Y. Okawachi, M. Yu, M. Loncar, M. Lipson, A. L. Gaeta, and F. Capasso, “Direct thermo-optical tuning of silicon microresonators for the mid-infrared,” Opt. Express 26, 34965–34976 (2018).
[Crossref]

M. Yu, Y. Okawachi, A. G. Griffith, N. Picqué, M. Lipson, and A. L. Gaeta, “Silicon-chip-based mid-infrared dual-comb spectroscopy,” Nat. Commun. 9, 1–6 (2018).
[Crossref]

A. Dutt, C. Joshi, X. Ji, J. Cardenas, Y. Okawachi, K. Luke, A. L. Gaeta, and M. Lipson, “On-chip dual-comb source for spectroscopy,” Sci. Adv. 4, e1701858 (2018).
[Crossref]

J. K. Jang, A. Klenner, X. Ji, Y. Okawachi, M. Lipson, and A. L. Gaeta, “Synchronization of coupled optical microresonators,” Nat. Photonics 12, 688–693 (2018).
[Crossref]

T. J. Kippenberg, A. L. Gaeta, M. Lipson, and M. L. Gorodetsky, “Dissipative Kerr solitons in optical microresonators,” Science 361, eaan8083 (2018).
[Crossref]

M. Yu, J. K. Jang, Y. Okawachi, A. G. Griffith, K. Luke, S. A. Miller, X. Ji, M. Lipson, and A. L. Gaeta, “Breather soliton dynamics in microresonators,” Nat. Commun. 8, 14569 (2017).
[Crossref]

S. A. Miller, M. Yu, X. Ji, A. G. Griffith, J. Cardenas, A. L. Gaeta, and M. Lipson, “Low-loss silicon platform for broadband mid-infrared photonics,” Optica 4, 707–712 (2017).
[Crossref]

A. G. Griffith, M. Yu, Y. Okawachi, J. Cardenas, A. Mohanty, A. L. Gaeta, and M. Lipson, “Coherent mid-infrared frequency combs in silicon-microresonators in the presence of Raman effects,” Opt. Express 24, 13044–13050 (2016).
[Crossref]

C. Joshi, J. K. Jang, K. Luke, X. Ji, S. A. Miller, A. Klenner, Y. Okawachi, M. Lipson, and A. L. Gaeta, “Thermally controlled comb generation and soliton modelocking in microresonators,” Opt. Lett. 41, 2565–2568 (2016).
[Crossref]

M. Yu, Y. Okawachi, A. G. Griffith, M. Lipson, and A. L. Gaeta, “Mode-locked mid-infrared frequency combs in a silicon microresonator,” Optica 3, 854–860 (2016).
[Crossref]

A. G. Griffith, R. K. W. Lau, J. Cardenas, Y. Okawachi, A. Mohanty, R. Fain, Y. H. D. Lee, M. Yu, C. T. Phare, C. B. Poitras, A. L. Gaeta, and M. Lipson, “Silicon-chip mid-infrared frequency comb generation,” Nat. Commun. 6, 6299 (2015).
[Crossref]

K. Luke, Y. Okawachi, M. R. E. Lamont, A. L. Gaeta, and M. Lipson, “Broadband mid-infrared frequency comb generation in a Si3N4 microresonator,” Opt. Lett. 40, 4823–4826 (2015).
[Crossref]

D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics,” Nat. Photonics 7, 597–607 (2013).
[Crossref]

R. Halir, Y. Okawachi, J. S. Levy, M. A. Foster, M. Lipson, and A. L. Gaeta, “Ultrabroadband supercontinuum generation in a CMOS-compatible platform,” Opt. Lett. 37, 1685–1687 (2012).
[Crossref]

J. S. Levy, K. Saha, Y. Okawachi, M. A. Foster, A. L. Gaeta, and M. Lipson, “High-performance silicon-nitride-based multiple-wavelength source,” IEEE Photon. Technol. Lett. 24, 1375–1377 (2012).
[Crossref]

Y. Okawachi, K. Saha, J. S. Levy, Y. H. Wen, M. Lipson, and A. L. Gaeta, “Octave-spanning frequency comb generation in a silicon nitride chip,” Opt. Lett. 36, 3398–3400 (2011).
[Crossref]

J. S. Levy, M. A. Foster, A. L. Gaeta, and M. Lipson, “Harmonic generation in silicon nitride ring resonators,” Opt. Express 19, 11415–11421 (2011).
[Crossref]

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4, 37–40 (2010).
[Crossref]

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441, 960–963 (2006).
[Crossref]

Gagliardi, G.

A. Giorgini, S. Avino, P. Malara, P. De Natale, M. Yannai, T. Carmon, and G. Gagliardi, “Stimulated Brillouin cavity optomechanics in liquid droplets,” Phys. Rev. Lett. 120, 073902 (2018).
[Crossref]

Gambin, V.

D. Chen, A. Kovach, S. Poust, V. Gambin, and A. M. Armani, “Normal dispersion silicon oxynitride microresonator Kerr frequency combs,” Appl. Phys. Lett. 115, 051105 (2019).
[Crossref]

Ganin, D.

P. Trocha, M. Karpov, D. Ganin, M. H. P. Pfeiffer, A. Kordts, S. Wolf, J. Krockenberger, P. Marin-Palomo, C. Weimann, S. Randel, W. Freude, T. J. Kippenberg, and C. Koos, “Ultrafast optical ranging using microresonator soliton frequency combs,” Science 359, 887–891 (2018).
[Crossref]

Gavartin, E.

P. Del’Haye, T. Herr, E. Gavartin, M. L. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, “Octave spanning tunable frequency comb from a microresonator,” Phys. Rev. Lett. 107, 063901 (2011).
[Crossref]

Gazman, A.

Gehring, T.

Geiselmann, M.

E. Obrzud, M. Rainer, A. Harutyunyan, M. H. Anderson, J. Liu, M. Geiselmann, B. Chazelas, S. Kundermann, S. Lecomte, M. Cecconi, A. Ghedina, E. Molinari, F. Pepe, F. Wildi, F. Bouchy, T. J. Kippenberg, and T. Herr, “A microphotonic astrocomb,” Nat. Photonics 13, 31–35 (2019).
[Crossref]

J. Liu, A. S. Raja, M. H. P. Pfeiffer, C. Herkommer, H. Guo, M. Zervas, M. Geiselmann, and T. J. Kippenberg, “Double inverse nanotapers for efficient light coupling to integrated photonic devices,” Opt. Lett. 43, 3200–3203 (2018).
[Crossref]

M. H. P. Pfeiffer, C. Herkommer, J. Liu, T. Morais, M. Zervas, M. Geiselmann, and T. J. Kippenberg, “Photonic Damascene process for low-loss, high-confinement silicon nitride waveguides,” IEEE J. Sel. Top. Quantum Electron. 24, 6101411 (2018).
[Crossref]

H. Guo, E. Lucas, M. H. P. Pfeiffer, M. Karpov, M. Anderson, J. Liu, M. Geiselmann, J. D. Jost, and T. J. Kippenberg, “Intermode breather solitons in optical microresonators,” Phys. Rev. X 7, 041055 (2017).
[Crossref]

M. H. P. Pfeiffer, J. Liu, M. Geiselmann, and T. J. Kippenberg, “Coupling ideality of integrated planar high-Q microresonators,” Phys. Rev. Appl. 7, 024026 (2017).
[Crossref]

V. Brasch, M. Geiselmann, T. Herr, G. Lihachev, M. Pfeiffer, M. Gorodetsky, and T. Kippenberg, “Photonic chip-based optical frequency comb using soliton Cherenkov radiation,” Science 351, 357–360 (2016).
[Crossref]

M. Karpov, H. Guo, A. Kordts, V. Brasch, M. H. P. Pfeiffer, M. Zervas, M. Geiselmann, and T. J. Kippenberg, “Raman self-frequency shift of dissipative Kerr solitons in an optical microresonator,” Phys. Rev. Lett. 116, 103902 (2016).
[Crossref]

M. H. P. Pfeiffer, A. Kordts, V. Brasch, M. Zervas, M. Geiselmann, J. D. Jost, and T. J. Kippenberg, “Photonic damascene process for integrated high-Q microresonator based nonlinear photonics,” Optica 3, 20–25 (2016).
[Crossref]

V. Brasch, M. Geiselmann, S. Lecomte, G. Lihachev, M. H. P. Pfeiffer, M. L. Gorodetsky, and T. J. A. Kippenberg, “Photonic chip based optical frequency comb using soliton induced Cherenkov radiation,” in Conference on Lasers and Electro-Optics (CLEO) (2015), pp. 1–2.

Gelens, L.

P. Parra-Rivas, D. Gomila, E. Knobloch, S. Coen, and L. Gelens, “Origin and stability of dark pulse Kerr combs in normal dispersion resonators,” Opt. Lett. 41, 2402–2405 (2016).
[Crossref]

P. Parra-Rivas, E. Knobloch, D. Gomila, and L. Gelens, “Dark solitons in the Lugiato-Lefever equation with normal dispersion,” Phys. Rev. A 93, 063839 (2016).
[Crossref]

Genty, G.

M. Erkintalo, G. Genty, B. Wetzel, and J. M. Dudley, “Akhmediev breather evolution in optical fiber for realistic initial conditions,” Phys. Lett. A 375, 2029–2034 (2011).
[Crossref]

Ghalanos, G. N.

Ghasemkhani, M.

M. Ghasemkhani, A. Savchenkov, A. Matsko, and H. Taheri, “Dissipative quartic Kerr solitons for WDM applications,” in Frontiers in Optics–Laser Science APS/DLS (Optical Society of America, 2019), paper JTu4A.84.

Ghedina, A.

E. Obrzud, M. Rainer, A. Harutyunyan, M. H. Anderson, J. Liu, M. Geiselmann, B. Chazelas, S. Kundermann, S. Lecomte, M. Cecconi, A. Ghedina, E. Molinari, F. Pepe, F. Wildi, F. Bouchy, T. J. Kippenberg, and T. Herr, “A microphotonic astrocomb,” Nat. Photonics 13, 31–35 (2019).
[Crossref]

Ghulinyan, M.

Gimeno, B.

Giorgini, A.

A. Giorgini, S. Avino, P. Malara, P. De Natale, M. Yannai, T. Carmon, and G. Gagliardi, “Stimulated Brillouin cavity optomechanics in liquid droplets,” Phys. Rev. Lett. 120, 073902 (2018).
[Crossref]

Glass, A.

D. Milam, M. Weber, and A. Glass, “Nonlinear refractive-index of fluoride-crystals,” Appl. Phys. Lett. 31, 822–825 (1977).
[Crossref]

Godey, C.

C. Godey, I. Balakireva, A. Coillet, and Y. Chembo, “Stability analysis of the spatiotemporal Lugiato-Lefever model for Kerr optical frequency combs in the anomalous and normal dispersion regimes,” Phys. Rev. A 89, 063814 (2014).
[Crossref]

Goldman, E.

I. Medintz, H. Uyeda, E. Goldman, and H. Mattoussi, “Quantum dot bioconjugates for imaging, labelling and sensing,” Nat. Mater. 4, 435–446 (2005).
[Crossref]

Goldsmith, R. H.

K. A. Knapper, E. H. Horak, C. H. Vollbrecht, K. D. Heylman, and R. H. Goldsmith, “Phase-sensitive photothermal imaging of ultrahigh-Q polyoxide toroidal microresonators,” Appl. Phys. Lett. 113, 231105 (2018).
[Crossref]

K. A. Knapper, F. Pan, M. T. Rea, E. H. Horak, J. D. Rogers, and R. H. Goldsmith, “Single-particle photothermal imaging via inverted excitation through high-Q all-glass toroidal microresonators,” Opt. Express 26, 25020–25030 (2018).
[Crossref]

Gomila, D.

P. Parra-Rivas, D. Gomila, E. Knobloch, S. Coen, and L. Gelens, “Origin and stability of dark pulse Kerr combs in normal dispersion resonators,” Opt. Lett. 41, 2402–2405 (2016).
[Crossref]

P. Parra-Rivas, E. Knobloch, D. Gomila, and L. Gelens, “Dark solitons in the Lugiato-Lefever equation with normal dispersion,” Phys. Rev. A 93, 063839 (2016).
[Crossref]

Gondarenko, A.

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4, 37–40 (2010).
[Crossref]

A. Gondarenko, J. S. Levy, and M. Lipson, “High confinement micron-scale silicon nitride high Q ring resonator,” Opt. Express 17, 11366–11370 (2009).
[Crossref]

Gong, Q.

B.-B. Li, Y.-F. Xiao, M.-Y. Yan, W. R. Clements, and Q. Gong, “Low-threshold Raman laser from an on-chip, high-Q, polymer-coated microcavity,” Opt. Lett. 38, 1802–1804 (2013).
[Crossref]

Z.-P. Liu, Y. Li, Y.-F. Xiao, B.-B. Li, X.-F. Jiang, Y. Qin, X.-B. Feng, H. Yang, and Q. Gong, “Direct laser writing of whispering gallery microcavities by two-photon polymerization,” Appl. Phys. Lett. 97, 211105 (2010).
[Crossref]

Gong, Z.

Gongora, J. S. T.

H. Bao, A. Cooper, M. Rowley, L. Di Lauro, J. S. T. Gongora, S. T. Chu, B. E. Little, G.-L. Oppo, R. Morandotti, D. J. Moss, B. Wetzel, M. Peccianti, and A. Pasquazi, “Laser cavity-soliton microcombs,” Nat. Photonics 13, 384–389 (2019).
[Crossref]

Gorbach, A. V.

C. Milian, A. V. Gorbach, M. Taki, A. V. Yulin, and D. V. Skryabin, “Solitons and frequency combs in silica microring resonators: interplay of the Raman and higher-order dispersion effects,” Phys. Rev. A 92, 033851 (2015).
[Crossref]

Gorodetskii, M. L.

V. S. Il’chenko and M. L. Gorodetskii, “Thermal nonlinear effects in optical whispering gallery microresonators,” Laser Phys. 2, 1004–1009 (1992).

Gorodetsky, M.

V. Brasch, M. Geiselmann, T. Herr, G. Lihachev, M. Pfeiffer, M. Gorodetsky, and T. Kippenberg, “Photonic chip-based optical frequency comb using soliton Cherenkov radiation,” Science 351, 357–360 (2016).
[Crossref]

V. Lobanov, G. Lihachev, N. Pavlov, A. Cherenkov, T. Kippenberg, and M. Gorodetsky, “Harmonization of chaos into a soliton in Kerr frequency combs,” Opt. Express 24, 27382–27394 (2016).
[Crossref]

V. Lobanov, G. Lihachev, and M. Gorodetsky, “Generation of platicons and frequency combs in optical microresonators with normal GVD by modulated pump,” Europhys. Lett. 112, 54008 (2015).
[Crossref]

V. Lobanov, G. Lihachev, T. Kippenberg, and M. Gorodetsky, “Frequency combs and platicons in optical microresonators with normal GVD,” Opt. Express 23, 7713–7721 (2015).
[Crossref]

M. Gorodetsky and V. Ilchenko, “Optical microsphere resonators: optimal coupling to high-Q whispering-gallery modes,” J. Opt. Soc. Am. B 16, 147–154 (1999).
[Crossref]

M. Gorodetsky, A. Savchenkov, and V. Ilchenko, “Ultimate Q of optical microsphere resonators,” Opt. Lett. 21, 453–455 (1996).
[Crossref]

V. Braginsky, M. Gorodetsky, and V. Ilchenko, “Quality-factor and nonlinear properties of optical whispering-gallery modes,” Phys. Lett. A 137, 393–397 (1989).
[Crossref]

Gorodetsky, M. L.

W. Weng, E. Lucas, G. Lihachev, V. E. Lobanov, H. Guo, M. L. Gorodetsky, and T. J. Kippenberg, “Spectral purification of microwave signals with disciplined dissipative Kerr solitons,” Phys. Rev. Lett. 122, 013902 (2019).
[Crossref]

L. A. Lugiato, F. Prati, M. L. Gorodetsky, and T. J. Kippenberg, “From the Lugiato-Lefever equation to microresonator-based soliton Kerr frequency combs,” Philos. Trans. R. Soc. A 376, 20180113 (2018).
[Crossref]

Y. V. Kartashov, M. L. Gorodetsky, A. Kudlinski, and D. V. Skryabin, “Two-dimensional nonlinear modes and frequency combs in bottle microresonators,” Opt. Lett. 43, 2680–2683 (2018).
[Crossref]

M. Anderson, N. G. Pavlov, J. D. Jost, G. Lihachev, J. Liu, T. Morais, M. Zervas, M. L. Gorodetsky, and T. J. Kippenberg, “Highly efficient coupling of crystalline microresonators to integrated photonic waveguides,” Opt. Lett. 43, 2106–2109 (2018).
[Crossref]

T. J. Kippenberg, A. L. Gaeta, M. Lipson, and M. L. Gorodetsky, “Dissipative Kerr solitons in optical microresonators,” Science 361, eaan8083 (2018).
[Crossref]

A. V. Cherenkov, N. M. Kondratiev, V. E. Lobanov, A. E. Shitikov, D. V. Skryabin, and M. L. Gorodetsky, “Raman-Kerr frequency combs in microresonators with normal dispersion,” Opt. Express 25, 31148–31158 (2017).
[Crossref]

V. E. Lobanov, A. V. Cherenkov, A. E. Shitikov, I. A. Bilenko, and M. L. Gorodetsky, “Dynamics of platicons due to third-order dispersion,” Eur. Phys. J. D 71, 185 (2017).
[Crossref]

H. Guo, M. Karpov, E. Lucas, A. Kordts, M. H. P. Pfeiffer, V. Brasch, G. Lihachev, V. E. Lobanov, M. L. Gorodetsky, and T. J. Kippenberg, “Universal dynamics and deterministic switching of dissipative Kerr solitons in optical microresonators,” Nat. Phys. 13, 94–102 (2016).
[Crossref]

T. Herr, V. Brasch, J. D. Jost, C. Y. Wang, N. M. Kondratiev, M. L. Gorodetsky, and T. J. Kippenberg, “Temporal solitons in optical microresonators,” Nat. Photonics 8, 145–152 (2014).
[Crossref]

T. Herr, V. Brasch, J. D. Jost, I. Mirgorodskiy, G. Lihachev, M. L. Gorodetsky, and T. J. Kippenberg, “Mode spectrum and temporal soliton formation in optical microresonators,” Phys. Rev. Lett. 113, 123901 (2014).
[Crossref]

P. Del’Haye, T. Herr, E. Gavartin, M. L. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, “Octave spanning tunable frequency comb from a microresonator,” Phys. Rev. Lett. 107, 063901 (2011).
[Crossref]

V. Brasch, M. Geiselmann, S. Lecomte, G. Lihachev, M. H. P. Pfeiffer, M. L. Gorodetsky, and T. J. A. Kippenberg, “Photonic chip based optical frequency comb using soliton induced Cherenkov radiation,” in Conference on Lasers and Electro-Optics (CLEO) (2015), pp. 1–2.

G. Lihachev, N. Pavlov, S. Koptyaev, I. A. Bilenko, and M. L. Gorodetsky, “Kerr frequency comb and Brillouin lasing in BaF2 whispering gallery mode resonator,” in International Conference Laser Optics (LO) (2016), pp. PD-4.

Gould, M.

Green, W. M. J.

Greene, W.

B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, “Ultra-compact Si-SiO2 microring resonator optical channel dropping filters,” IEEE Photon. Technol. Lett. 10, 549–551 (1998).
[Crossref]

Greentree, A. D.

I. Aharonovich, A. D. Greentree, and S. Prawer, “Diamond photonics,” Nat. Photonics 5, 397–405 (2011).
[Crossref]

Griffith, A. G.

M. Yu, Y. Okawachi, A. G. Griffith, N. Picqué, M. Lipson, and A. L. Gaeta, “Silicon-chip-based mid-infrared dual-comb spectroscopy,” Nat. Commun. 9, 1–6 (2018).
[Crossref]

S. A. Miller, M. Yu, X. Ji, A. G. Griffith, J. Cardenas, A. L. Gaeta, and M. Lipson, “Low-loss silicon platform for broadband mid-infrared photonics,” Optica 4, 707–712 (2017).
[Crossref]

M. Yu, J. K. Jang, Y. Okawachi, A. G. Griffith, K. Luke, S. A. Miller, X. Ji, M. Lipson, and A. L. Gaeta, “Breather soliton dynamics in microresonators,” Nat. Commun. 8, 14569 (2017).
[Crossref]

M. Yu, Y. Okawachi, A. G. Griffith, M. Lipson, and A. L. Gaeta, “Mode-locked mid-infrared frequency combs in a silicon microresonator,” Optica 3, 854–860 (2016).
[Crossref]

A. G. Griffith, M. Yu, Y. Okawachi, J. Cardenas, A. Mohanty, A. L. Gaeta, and M. Lipson, “Coherent mid-infrared frequency combs in silicon-microresonators in the presence of Raman effects,” Opt. Express 24, 13044–13050 (2016).
[Crossref]

A. G. Griffith, R. K. W. Lau, J. Cardenas, Y. Okawachi, A. Mohanty, R. Fain, Y. H. D. Lee, M. Yu, C. T. Phare, C. B. Poitras, A. L. Gaeta, and M. Lipson, “Silicon-chip mid-infrared frequency comb generation,” Nat. Commun. 6, 6299 (2015).
[Crossref]

Grossmann, T.

Grudinin, I. S.

M.-G. Suh, X. Yi, Y.-H. Lai, S. Leifer, I. S. Grudinin, G. Vasisht, E. C. Martin, M. P. Fitzgerald, G. Doppmann, J. Wang, D. Mawet, S. B. Papp, S. A. Diddams, C. Beichman, and K. Vahala, “Searching for exoplanets using a microresonator astrocomb,” Nat. Photonics 13, 25–30 (2019).
[Crossref]

Y. K. Chembo, I. S. Grudinin, and N. Yu, “Spatiotemporal dynamics of Kerr-Raman optical frequency combs,” Phys. Rev. A 92, 043818 (2015).
[Crossref]

I. S. Grudinin and N. Yu, “Dispersion engineering of crystalline resonators via microstructuring,” Optica 2, 221–224 (2015).
[Crossref]

I. S. Grudinin, L. Baumgartel, and N. Yu, “Impact of cavity spectrum on span in microresonator frequency combs,” Opt. Express 21, 26929–26935 (2013).
[Crossref]

I. S. Grudinin, L. Baumgartel, and N. Yu, “Frequency comb from a microresonator with engineered spectrum,” Opt. Express 20, 6604–6609 (2012).
[Crossref]

I. S. Grudinin, A. B. Matsko, and L. Maleki, “Brillouin lasing with a CaF2 whispering gallery mode resonator,” Phys. Rev. Lett. 102, 043902 (2009).
[Crossref]

I. S. Grudinin, N. Yu, and L. Maleki, “Generation of optical frequency combs with a CaF2 resonator,” Opt. Lett. 34, 878–880 (2009).
[Crossref]

I. S. Grudinin, A. B. Matsko, and L. Maleki, “On the fundamental limits of Q factor of crystalline dielectric resonators,” Opt. Express 15, 3390–3395 (2007).
[Crossref]

Gu, H.

Gu, J.

Guarino, A.

Gui, X.

Z. Chen, G. Lou, H. Zhu, A. Chen, Y. Wu, Y. Ren, J. Li, Z. Qiu, X. Gui, and Z. Tang, “Enhancement of two-photon absorption photoresponse based on whispering gallery modes,” Nanoscale 10, 14047–14054 (2018).
[Crossref]

Gungor, E.

R. Castro-Beltrán, V. M. Diep, S. Soltani, E. Gungor, and A. M. Armani, “Plasmonically enhanced Kerr frequency combs,” ACS Photon. 4, 2828–2834 (2017).
[Crossref]

Günter, P.

Guo, C.

Guo, G.-C.

Y. Chen, Z.-H. Zhou, C.-L. Zou, Z. Shen, G.-C. Guo, and C.-H. Dong, “Tunable Raman laser in a hollow bottle-like microresonator,” Opt. Express 25, 16879–16887 (2017).
[Crossref]

C.-H. Dong, Z. Shen, C.-L. Zou, Y.-L. Zhang, W. Fu, and G.-C. Guo, “Brillouin-scattering-induced transparency and non-reciprocal light storage,” Nat. Commun. 6, 6193 (2015).
[Crossref]

Guo, H.

W. Weng, E. Lucas, G. Lihachev, V. E. Lobanov, H. Guo, M. L. Gorodetsky, and T. J. Kippenberg, “Spectral purification of microwave signals with disciplined dissipative Kerr solitons,” Phys. Rev. Lett. 122, 013902 (2019).
[Crossref]

J. Liu, A. S. Raja, M. H. P. Pfeiffer, C. Herkommer, H. Guo, M. Zervas, M. Geiselmann, and T. J. Kippenberg, “Double inverse nanotapers for efficient light coupling to integrated photonic devices,” Opt. Lett. 43, 3200–3203 (2018).
[Crossref]

H. Guo, E. Lucas, M. H. P. Pfeiffer, M. Karpov, M. Anderson, J. Liu, M. Geiselmann, J. D. Jost, and T. J. Kippenberg, “Intermode breather solitons in optical microresonators,” Phys. Rev. X 7, 041055 (2017).
[Crossref]

M. H. P. Pfeiffer, C. Herkommer, J. Liu, H. Guo, M. Karpov, E. Lucas, M. Zervas, and T. J. Kippenberg, “Octave-spanning dissipative Kerr soliton frequency combs in Si3N4 microresonators,” Optica 4, 684–691 (2017).
[Crossref]

A. Kordts, M. H. P. Pfeiffer, H. Guo, V. Brasch, and T. J. Kippenberg, “Higher order mode suppression in high-Q anomalous dispersion SiN microresonators for temporal dissipative Kerr soliton formation,” Opt. Lett. 41, 452–455 (2016).
[Crossref]

H. Guo, M. Karpov, E. Lucas, A. Kordts, M. H. P. Pfeiffer, V. Brasch, G. Lihachev, V. E. Lobanov, M. L. Gorodetsky, and T. J. Kippenberg, “Universal dynamics and deterministic switching of dissipative Kerr solitons in optical microresonators,” Nat. Phys. 13, 94–102 (2016).
[Crossref]

M. Karpov, H. Guo, A. Kordts, V. Brasch, M. H. P. Pfeiffer, M. Zervas, M. Geiselmann, and T. J. Kippenberg, “Raman self-frequency shift of dissipative Kerr solitons in an optical microresonator,” Phys. Rev. Lett. 116, 103902 (2016).
[Crossref]

Guo, L. J.

Guo, X.

Haase, M.

S. Haubold, M. Haase, A. Kornowski, and H. Weller, “Strongly luminescent InP/ZnS core-shell nanoparticles,” Chem. Phys. Chem. 2, 331–334 (2001).
[Crossref]

Hadden, J. P.

Haelterman, M.

M. Haelterman, S. Trillo, and S. Wabnitz, “Dissipative modulation instability in a nonlinear dispersive ring cavity,” Opt. Commun. 91, 401–407 (1992).
[Crossref]

Haensch, T. W.

C. Y. Wang, T. Herr, P. Del’Haye, A. Schliesser, J. Hofer, R. Holzwarth, T. W. Haensch, N. Picque, and T. J. Kippenberg, “Mid-infrared optical frequency combs at 2.5  µm based on crystalline microresonators,” Nat. Commun. 4, 1345 (2013).
[Crossref]

Haigh, J. A.

J. A. Haigh, A. Nunnenkamp, A. J. Ramsay, and A. J. Ferguson, “Triple-resonant Brillouin light scattering in magneto-optical cavities,” Phys. Rev. Lett. 117, 133602 (2016).
[Crossref]

Hajimiri, A.

A. Hajimiri and T. H. Lee, “A general theory of phase noise in electrical oscillators,” IEEE J. Solid-State Circuits 33, 179–194 (1998).
[Crossref]

Haldar, R.

R. Haldar, A. Roy, P. Mondal, V. Mishra, and S. K. Varshney, “Free-carrier-driven Kerr frequency comb in optical microcavities: steady state, bistability, self-pulsation, and modulation instability,” Phys. Rev. A 99, 033848 (2019).
[Crossref]

Halir, R.

Hall, J.

J. Hall, J. Ye, S. Diddams, L. Ma, S. Cundiff, and D. Jones, “Ultrasensitive spectroscopy, the ultrastable lasers, the ultrafast lasers, and the seriously nonlinear fiber: a new alliance for physics and metrology,” IEEE J. Quantum Electron. 37, 1482–1492 (2001).
[Crossref]

D. Jones, S. Diddams, J. Ranka, A. Stentz, R. Windeler, J. Hall, and S. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
[Crossref]

Han, B.

Y. Zhang, T. Zhou, B. Han, A. Zhang, and Y. Zhao, “Optical bio-chemical sensors based on whispering gallery mode resonators,” Nanoscale 10, 13832–13856 (2018).
[Crossref]

Han, K.

S. Kim, K. Han, C. Wang, J. A. Jaramillo-Villegas, X. Xue, C. Bao, Y. Xuan, D. E. Leaird, A. M. Weiner, and M. Qi, “Dispersion engineering and frequency comb generation in thin silicon nitride concentric microresonators,” Nat. Commun. 8, 372 (2017).
[Crossref]

J. Kim, M. C. Kuzyk, K. Han, H. Wang, and G. Bahl, “Non-reciprocal Brillouin scattering induced transparency,” Nat. Phys. 11, 275–280 (2015).
[Crossref]

Han, Y.

X. Li, C. Sun, B. Xiong, L. Wang, J. Wang, Y. Han, Z. Hao, H. Li, Y. Luo, J. Yan, T. Wei, Y. Zhang, and J. Wang, “Generation of multiple near-visible comb lines in an AlN microring via chi((2)) and chi((3)) optical nonlinearities,” Appl. Phys. Lett. 113, 171106 (2018).
[Crossref]

Hansch, T.

R. Holzwarth, M. Zimmermann, T. Udem, and T. Hansch, “Optical clockworks and the measurement of laser frequencies with a mode-locked frequency comb,” IEEE J. Quantum Electron. 37, 1493–1501 (2001).
[Crossref]

R. Holzwarth, T. Udem, T. Hansch, J. Knight, W. Wadsworth, and P. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett. 85, 2264–2267 (2000).
[Crossref]

Hansson, T.

A. Pasquazi, M. Peccianti, L. Razzari, D. J. Moss, S. Coen, M. Erkintalo, Y. K. Chembo, T. Hansson, S. Wabnitz, P. Del’Haye, X. Xue, A. M. Weiner, and R. Morandotti, “Micro-combs: a novel generation of optical sources,” Phys. Rep. 729, 1–81 (2018).
[Crossref]

T. Hansson, F. Leo, M. Erkintalo, S. Coen, I. Ricciardi, M. De Rosa, and S. Wabnitz, “Singly resonant second-harmonic-generation frequency combs,” Phys. Rev. A 95, 013805 (2017).
[Crossref]

T. Hansson, F. Leo, M. Erkintalo, J. Anthony, S. Coen, I. Ricciardi, M. D. Rosa, and S. Wabnitz, “Single envelope equation modeling of multi-octave comb arrays in microresonators with quadratic and cubic nonlinearities,” J. Opt. Soc. Am. B 33, 1207–1215 (2016).
[Crossref]

F. Leo, T. Hansson, I. Ricciardi, M. De Rosa, S. Coen, S. Wabnitz, and M. Erkintalo, “Walk-off-induced modulation instability, temporal pattern formation, and frequency comb generation in cavity-enhanced second-harmonic generation,” Phys. Rev. Lett. 116, 033901 (2016).
[Crossref]

F. Leo, T. Hansson, I. Ricciardi, M. De Rosa, S. Coen, S. Wabnitz, and M. Erkintalo, “Frequency-comb formation in doubly resonant second-harmonic generation,” Phys. Rev. A 93, 043831 (2016).
[Crossref]

T. Hansson and S. Wabnitz, “Frequency comb generation beyond the Lugiato-Lefever equation: multi-stability and super cavity solitons,” J. Opt. Soc. Am. B 32, 1259–1266 (2015).
[Crossref]

T. Hansson, D. Modotto, and S. Wabnitz, “On the numerical simulation of Kerr frequency combs using coupled mode equations,” Opt. Commun. 312, 134–136 (2014).
[Crossref]

T. Hansson and S. Wabnitz, “Bichromatically pumped microresonator frequency combs,” Phys. Rev. A 90, 013811 (2014).
[Crossref]

Hao, Z.

X. Li, C. Sun, B. Xiong, L. Wang, J. Wang, Y. Han, Z. Hao, H. Li, Y. Luo, J. Yan, T. Wei, Y. Zhang, and J. Wang, “Generation of multiple near-visible comb lines in an AlN microring via chi((2)) and chi((3)) optical nonlinearities,” Appl. Phys. Lett. 113, 171106 (2018).
[Crossref]

Hardin, R.

R. Hardin and F. Tappert, “Applications of the split-step Fourier method to the numerical solution of nonlinear and variable coefficient wave equations,” Siam Rev. 15, 423–429 (1973).

Harmand, J. C.

Harris, G. I.

K. H. Lee, T. G. McRae, G. I. Harris, J. Knittel, and W. P. Bowen, “Cooling and control of a cavity optoelectromechanical system,” Phys. Rev. Lett. 104, 123604 (2010).
[Crossref]

Hartinger, K.

J. Pfeifle, V. Brasch, M. Lauermann, Y. Yu, D. Wegner, T. Herr, K. Hartinger, P. Schindler, J. Li, D. Hillerkuss, R. Schmogrow, C. Weimann, R. Holzwarth, W. Freude, J. Leuthold, T. J. Kippenberg, and C. Koos, “Coherent terabit communications with microresonator Kerr frequency combs,” Nat. Photonics 8, 375–380 (2014).
[Crossref]

J. Riemensberger, K. Hartinger, T. Herr, V. Brasch, R. Holzwarth, and T. J. Kippenberg, “Dispersion engineering of thick high-Q silicon nitride ring-resonators via atomic layer deposition,” Opt. Express 20, 27661–27669 (2012).
[Crossref]

Harutyunyan, A.

E. Obrzud, M. Rainer, A. Harutyunyan, M. H. Anderson, J. Liu, M. Geiselmann, B. Chazelas, S. Kundermann, S. Lecomte, M. Cecconi, A. Ghedina, E. Molinari, F. Pepe, F. Wildi, F. Bouchy, T. J. Kippenberg, and T. Herr, “A microphotonic astrocomb,” Nat. Photonics 13, 31–35 (2019).
[Crossref]

Hashemi, H.

Hatami, F.

Haubold, S.

S. Haubold, M. Haase, A. Kornowski, and H. Weller, “Strongly luminescent InP/ZnS core-shell nanoparticles,” Chem. Phys. Chem. 2, 331–334 (2001).
[Crossref]

Haus, H.

H. Haus, “Mode-locking of lasers,” IEEE J. Sel. Top. Quantum Electron. 6, 1173–1185 (2000).
[Crossref]

Haus, H. A.

B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, “Ultra-compact Si-SiO2 microring resonator optical channel dropping filters,” IEEE Photon. Technol. Lett. 10, 549–551 (1998).
[Crossref]

H. A. Haus, Waves and Fields in Optoelectronics (Prentice Hall, 1984).

Hauser, M.

Hausmann, B. J. M.

B. J. M. Hausmann, I. Bulu, V. Venkataraman, P. Deotare, and M. Loncar, “Diamond nonlinear photonics,” Nat. Photonics 8, 369–374 (2014).
[Crossref]

B. J. M. Hausmann, I. B. Bulu, P. B. Deotare, M. McCutcheon, V. Venkataraman, M. L. Markham, D. J. Twitchen, and M. Loncar, “Integrated high-quality factor optical resonators in diamond,” Nano Lett. 13, 1898–1902 (2013).
[Crossref]

Hayama, Y.

He, G.

He, K.

K. He, N. Kumar, L. Zhao, Z. Wang, K. F. Mak, H. Zhao, and J. Shan, “Tightly bound excitons in monolayer WSe2,” Phys. Rev. Lett. 113, 026803 (2014).
[Crossref]

He, L.

He, S.

Heideman, R. G.

Heinecke, D.

A. Bartels, D. Heinecke, and S. Diddams, “10-GHz self-referenced optical frequency comb,” Science 326, 681 (2009).
[Crossref]

Helgason, Ó. B.

A. Fülöp, M. Mazur, A. Lorences-Riesgo, Ó. B. Helgason, P.-H. Wang, Y. Xuan, D. E. Leaird, M. Qi, P. A. Andrekson, A. M. Weiner, and V. Torres-Company, “High-order coherent communications using mode-locked dark-pulse Kerr combs from microresonators,” Nat. Commun. 9, 1–8 (2018).
[Crossref]

Henkel, C.

M. M. Naiini, C. Henkel, G. B. Mahn, and M. Ostling, “ALD high-k layer grating couplers for single and double slot on-chip SOI photonics,” Solid-State Electron. 74, 58–63 (2012).
[Crossref]

Henriet, R.

Henze, R.

Herkommer, C.

Herr, T.

E. Obrzud, M. Rainer, A. Harutyunyan, M. H. Anderson, J. Liu, M. Geiselmann, B. Chazelas, S. Kundermann, S. Lecomte, M. Cecconi, A. Ghedina, E. Molinari, F. Pepe, F. Wildi, F. Bouchy, T. J. Kippenberg, and T. Herr, “A microphotonic astrocomb,” Nat. Photonics 13, 31–35 (2019).
[Crossref]

E. Obrzud, S. Lecomte, and T. Herr, “Temporal solitons in microresonators driven by optical pulses,” Nat. Photonics 11, 600–607 (2017).
[Crossref]

V. Brasch, M. Geiselmann, T. Herr, G. Lihachev, M. Pfeiffer, M. Gorodetsky, and T. Kippenberg, “Photonic chip-based optical frequency comb using soliton Cherenkov radiation,” Science 351, 357–360 (2016).
[Crossref]

J. Jost, T. Herr, C. Lecaplain, V. Brasch, M. Pfeiffer, and T. Kippenberg, “Counting the cycles of light using a self-referenced optical microresonator,” Optica 2, 706–711 (2015).
[Crossref]

J. Pfeifle, V. Brasch, M. Lauermann, Y. Yu, D. Wegner, T. Herr, K. Hartinger, P. Schindler, J. Li, D. Hillerkuss, R. Schmogrow, C. Weimann, R. Holzwarth, W. Freude, J. Leuthold, T. J. Kippenberg, and C. Koos, “Coherent terabit communications with microresonator Kerr frequency combs,” Nat. Photonics 8, 375–380 (2014).
[Crossref]

T. Herr, V. Brasch, J. D. Jost, C. Y. Wang, N. M. Kondratiev, M. L. Gorodetsky, and T. J. Kippenberg, “Temporal solitons in optical microresonators,” Nat. Photonics 8, 145–152 (2014).
[Crossref]

T. Herr, V. Brasch, J. D. Jost, I. Mirgorodskiy, G. Lihachev, M. L. Gorodetsky, and T. J. Kippenberg, “Mode spectrum and temporal soliton formation in optical microresonators,” Phys. Rev. Lett. 113, 123901 (2014).
[Crossref]

C. Y. Wang, T. Herr, P. Del’Haye, A. Schliesser, J. Hofer, R. Holzwarth, T. W. Haensch, N. Picque, and T. J. Kippenberg, “Mid-infrared optical frequency combs at 2.5  µm based on crystalline microresonators,” Nat. Commun. 4, 1345 (2013).
[Crossref]

J. Riemensberger, K. Hartinger, T. Herr, V. Brasch, R. Holzwarth, and T. J. Kippenberg, “Dispersion engineering of thick high-Q silicon nitride ring-resonators via atomic layer deposition,” Opt. Express 20, 27661–27669 (2012).
[Crossref]

P. Del’Haye, T. Herr, E. Gavartin, M. L. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, “Octave spanning tunable frequency comb from a microresonator,” Phys. Rev. Lett. 107, 063901 (2011).
[Crossref]

Hestroffer, K.

Heylman, K. D.

K. A. Knapper, E. H. Horak, C. H. Vollbrecht, K. D. Heylman, and R. H. Goldsmith, “Phase-sensitive photothermal imaging of ultrahigh-Q polyoxide toroidal microresonators,” Appl. Phys. Lett. 113, 231105 (2018).
[Crossref]

Hickstein, D. D.

T. E. Drake, T. C. Briles, J. R. Stone, D. T. Spencer, D. R. Carlson, D. D. Hickstein, Q. Li, D. Westly, K. Srinivasan, S. A. Diddams, and S. B. Papp, “Terahertz-rate Kerr-microresonator optical clockwork,” Phys. Rev. X 9, 031023 (2019).
[Crossref]

Hierle, R.

M. Lebental, J. Lauret, R. Hierle, and J. Zyss, “Highly directional stadium-shaped polymer microlasers,” Appl. Phys. Lett. 88, 031108 (2006).
[Crossref]

Hill, S.

Hillerkuss, D.

J. Pfeifle, V. Brasch, M. Lauermann, Y. Yu, D. Wegner, T. Herr, K. Hartinger, P. Schindler, J. Li, D. Hillerkuss, R. Schmogrow, C. Weimann, R. Holzwarth, W. Freude, J. Leuthold, T. J. Kippenberg, and C. Koos, “Coherent terabit communications with microresonator Kerr frequency combs,” Nat. Photonics 8, 375–380 (2014).
[Crossref]

Himmelhaus, M.

M. Himmelhaus and A. Francois, “In-vitro sensing of biomechanical forces in live cells by a whispering gallery mode biosensor,” Biosens. Bioelectron. 25, 418–427 (2009).
[Crossref]

Hocdé, S.

A. Schweinsberg, S. Hocdé, N. N. Lepeshkin, R. W. Boyd, C. Chase, and J. E. Fajardo, “An environmental sensor based on an integrated optical whispering gallery mode disk resonator,” Sens. Actuators B Chem. 123, 727–732 (2007).
[Crossref]

Hochberg, M.

T. Baehr-Jones, M. Hochberg, C. Walker, and A. Scherer, “High-Q ring resonators in thin silicon-on-insulator,” Appl. Phys. Lett. 85, 3346–3347 (2004).
[Crossref]

Hoekman, M.

Hofer, J.

C. Y. Wang, T. Herr, P. Del’Haye, A. Schliesser, J. Hofer, R. Holzwarth, T. W. Haensch, N. Picque, and T. J. Kippenberg, “Mid-infrared optical frequency combs at 2.5  µm based on crystalline microresonators,” Nat. Commun. 4, 1345 (2013).
[Crossref]

J. Hofer, A. Schliesser, and T. J. Kippenberg, “Cavity optomechanics with ultrahigh-Q crystalline microresonators,” Phys. Rev. A 82, 031804 (2010).
[Crossref]

Hoff, M.

B. Yao, S.-W. Huang, Y. Liu, A. K. Vinod, C. Choi, M. Hoff, Y. Li, M. Yu, Z. Feng, D.-L. Kwong, Y. Huang, Y. Rao, X. Duan, and C. W. Wong, “Gate-tunable frequency combs in graphene-nitride microresonators,” Nature 558, 410–414 (2018).
[Crossref]

Hoff, U. B.

Hollberg, L.

Holzlohner, R.

Holzwarth, R.

J. Pfeifle, V. Brasch, M. Lauermann, Y. Yu, D. Wegner, T. Herr, K. Hartinger, P. Schindler, J. Li, D. Hillerkuss, R. Schmogrow, C. Weimann, R. Holzwarth, W. Freude, J. Leuthold, T. J. Kippenberg, and C. Koos, “Coherent terabit communications with microresonator Kerr frequency combs,” Nat. Photonics 8, 375–380 (2014).
[Crossref]

C. Y. Wang, T. Herr, P. Del’Haye, A. Schliesser, J. Hofer, R. Holzwarth, T. W. Haensch, N. Picque, and T. J. Kippenberg, “Mid-infrared optical frequency combs at 2.5  µm based on crystalline microresonators,” Nat. Commun. 4, 1345 (2013).
[Crossref]

J. Riemensberger, K. Hartinger, T. Herr, V. Brasch, R. Holzwarth, and T. J. Kippenberg, “Dispersion engineering of thick high-Q silicon nitride ring-resonators via atomic layer deposition,” Opt. Express 20, 27661–27669 (2012).
[Crossref]

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332, 555–559 (2011).
[Crossref]

P. Del’Haye, T. Herr, E. Gavartin, M. L. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, “Octave spanning tunable frequency comb from a microresonator,” Phys. Rev. Lett. 107, 063901 (2011).
[Crossref]

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450, 1214–1217 (2007).
[Crossref]

R. Holzwarth, M. Zimmermann, T. Udem, and T. Hansch, “Optical clockworks and the measurement of laser frequencies with a mode-locked frequency comb,” IEEE J. Quantum Electron. 37, 1493–1501 (2001).
[Crossref]

R. Holzwarth, T. Udem, T. Hansch, J. Knight, W. Wadsworth, and P. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett. 85, 2264–2267 (2000).
[Crossref]

Hong, W.

M. J. Burek, Y. Chu, M. S. Z. Liddy, P. Patel, J. Rochman, S. Meesala, W. Hong, Q. Quan, M. D. Lukin, and M. Loncar, “High quality-factor optical nanocavities in bulk single-crystal diamond,” Nat. Commun. 5, 5718 (2014).
[Crossref]

Honkanen, S.

Hönl, S.

D. J. Wilson, D. J. Wilson, S. Hönl, K. Schneider, M. Anderson, T. J. Kippenberg, and P. Seidler, “Gallium phosphide microresonator frequency combs,” in Conference on Lasers and Electro-Optics (CLEO) (Optical Society of America, 2018), paper SW3A.1.

Hoogland, S.

B. R. Sutherland, S. Hoogland, M. M. Adachi, C. T. O. Wong, and E. H. Sargent, “Conformal organohalide perovskites enable lasing on spherical resonators,” ACS Nano 8, 10947–10952 (2014).
[Crossref]

Horak, E. H.

K. A. Knapper, E. H. Horak, C. H. Vollbrecht, K. D. Heylman, and R. H. Goldsmith, “Phase-sensitive photothermal imaging of ultrahigh-Q polyoxide toroidal microresonators,” Appl. Phys. Lett. 113, 231105 (2018).
[Crossref]

K. A. Knapper, F. Pan, M. T. Rea, E. H. Horak, J. D. Rogers, and R. H. Goldsmith, “Single-particle photothermal imaging via inverted excitation through high-Q all-glass toroidal microresonators,” Opt. Express 26, 25020–25030 (2018).
[Crossref]

Hori, A.

Hossein-Zadeh, M.

Hu, H.

C. Wang, M. Zhang, M. Yu, R. Zhu, H. Hu, and M. Loncar, “Monolithic lithium niobate photonic circuits for Kerr frequency comb generation and modulation,” Nat. Commun. 10, 978 (2019).
[Crossref]

Hu, Y.-Q.

T. Wang, M. Wang, Y.-Q. Hu, and G.-L. Long, “Optothermal control of the Raman gain enhanced ringing in microresonators,” Europhys. Lett. 124, 14002 (2018).
[Crossref]

Huang, S.-W.

B. Yao, S.-W. Huang, Y. Liu, A. K. Vinod, C. Choi, M. Hoff, Y. Li, M. Yu, Z. Feng, D.-L. Kwong, Y. Huang, Y. Rao, X. Duan, and C. W. Wong, “Gate-tunable frequency combs in graphene-nitride microresonators,” Nature 558, 410–414 (2018).
[Crossref]

S.-W. Huang, H. Zhou, J. Yang, J. McMillan, A. Matsko, M. Yu, D.-L. Kwong, L. Maleki, and C. Wong, “Mode-locked ultrashort pulse generation from on-chip normal dispersion microresonators,” Phys. Rev. Lett. 114, 053901 (2015).
[Crossref]

Huang, Y.

B. Yao, S.-W. Huang, Y. Liu, A. K. Vinod, C. Choi, M. Hoff, Y. Li, M. Yu, Z. Feng, D.-L. Kwong, Y. Huang, Y. Rao, X. Duan, and C. W. Wong, “Gate-tunable frequency combs in graphene-nitride microresonators,” Nature 558, 410–414 (2018).
[Crossref]

C. Guo, K. Che, P. Zhang, J. Wu, Y. Huang, H. Xu, and Z. Cai, “Low-threshold stimulated Brillouin scattering in high-Q whispering gallery mode tellurite microspheres,” Opt. Express 23, 32261–32266 (2015).
[Crossref]

J. Poon, Y. Huang, G. Paloczi, and A. Yariv, “Soft lithography replica molding of critically coupled polymer microring resonators,” IEEE Photon. Technol. Lett. 16, 2496–2498 (2004).
[Crossref]

Huckaby, J.

A. Ray, B. Devakottai, A. Souyri, and J. Huckaby, “Evaporation characteristics of droplets coated with immisicible layers of nonvolatile liquids,” Langmuir 7, 525–531 (1991).
[Crossref]

Hummon, M. T.

Hunt, H. K.

H. K. Hunt and A. M. Armani, “Label-free biological and chemical sensors,” Nanoscale 2, 1544–1559 (2010).
[Crossref]

Ikeda, K.

K. Ikeda, R. E. Saperstein, N. Alic, and Y. Fainman, “Thermal and Kerr nonlinear properties of plasma-deposited silicon nitride/silicon dioxide waveguides,” Opt. Express 16, 12987–12994 (2008).
[Crossref]

K. Ikeda, H. Daido, and O. Akimoto, “Optical turbulence: chaotic behavior of transmitted light from a ring cavity,” Phys. Rev. Lett. 45, 709–712 (1980).
[Crossref]

K. Ikeda, “Multiple-valued stationary state and its instability of the transmitted light by a ring cavity system,” Opt. Commun. 30, 257–261 (1979).
[Crossref]

Il’chenko, V. S.

V. S. Il’chenko and M. L. Gorodetskii, “Thermal nonlinear effects in optical whispering gallery microresonators,” Laser Phys. 2, 1004–1009 (1992).

Ilchenko, V.

A. Matsko, A. Savchenkov, W. Liang, V. Ilchenko, D. Seidel, and L. Maleki, “Mode-locked Kerr frequency combs,” Opt. Lett. 36, 2845–2847 (2011).
[Crossref]

V. Ilchenko and A. Matsko, “Optical resonators with whispering-gallery modes - part II: applications,” IEEE J. Sel. Top. Quantum Electron. 12, 15–32 (2006).
[Crossref]

A. Matsko and V. Ilchenko, “Optical resonators with whispering-gallery modes - part I: basics,” IEEE J. Sel. Top. Quantum Electron. 12, 3–14 (2006).
[Crossref]

A. Matsko, A. Savchenkov, D. Strekalov, V. Ilchenko, and L. Maleki, “Optical hyperparametric oscillations in a whispering-gallery-mode resonator: threshold and phase diffusion,” Phys. Rev. A 71, 033804 (2005).
[Crossref]

V. Ilchenko, A. Savchenkov, A. Matsko, and L. Maleki, “Nonlinear optics and crystalline whispering gallery mode cavities,” Phys. Rev. Lett. 92, 043903 (2004).
[Crossref]

A. Savchenkov, V. Ilchenko, A. Matsko, and L. Maleki, “Kilohertz optical resonances in dielectric crystal cavities,” Phys. Rev. A 70, 051804 (2004).
[Crossref]

M. Gorodetsky and V. Ilchenko, “Optical microsphere resonators: optimal coupling to high-Q whispering-gallery modes,” J. Opt. Soc. Am. B 16, 147–154 (1999).
[Crossref]

M. Gorodetsky, A. Savchenkov, and V. Ilchenko, “Ultimate Q of optical microsphere resonators,” Opt. Lett. 21, 453–455 (1996).
[Crossref]

V. Braginsky, M. Gorodetsky, and V. Ilchenko, “Quality-factor and nonlinear properties of optical whispering-gallery modes,” Phys. Lett. A 137, 393–397 (1989).
[Crossref]

L. Maleki, A. Savchenkov, V. Ilchenko, W. Liang, D. Eliyahu, A. Matsko, D. Seidel, N. Wells, J. Camparo, and B. Jaduszliwer, “All-optical integrated rubidium atomic clock,” in Proceedings of the Joint Conference of the IEEE International Frequency Control and the European Frequency and Time Forum (FCS) (IEEE, 2011), pp. 1–5.

Ilchenko, V. S.

G. Liu, V. S. Ilchenko, T. Su, Y.-C. Ling, S. Feng, K. Shang, Y. Zhang, W. Liang, A. A. Savchenkov, A. B. Matsko, L. Maleki, and S. J. Ben Yoo, “Low-loss prism-waveguide optical coupling for ultrahigh-Q low-index monolithic resonators,” Optica 5, 219–226 (2018).
[Crossref]

A. A. Savchenkov, H. Mahalingam, V. S. Ilchenko, S. Takahashi, A. B. Matsko, W. H. Steier, and L. Maleki, “Polymer waveguide couplers for fluorite microresonators,” IEEE Photon. Technol. Lett. 29, 667–670 (2017).
[Crossref]

W. Liang, A. A. Savchenkov, V. S. Ilchenko, D. Eliyahu, A. B. Matsko, and L. Maleki, “Stabilized C-band Kerr frequency comb,” IEEE Photon. J. 9, 5502411 (2017).
[Crossref]

W. Liang, V. S. Ilchenko, D. Eliyahu, A. A. Savchenkov, A. B. Matsko, D. Seidel, and L. Maleki, “Ultralow noise miniature external cavity semiconductor laser,” Nat. Commun. 6, 7371 (2015).
[Crossref]

W. Liang, D. Eliyahu, V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, D. Seidel, and L. Maleki, “High spectral purity Kerr frequency comb radio frequency photonic oscillator,” Nat. Commun. 6, 7957 (2015).
[Crossref]

W. Liang, A. A. Savchenkov, V. S. Ilchenko, D. Eliyahu, D. Seidel, A. B. Matsko, and L. Maleki, “Generation of a coherent near-infrared Kerr frequency comb in a monolithic microresonator with normal GVD,” Opt. Lett. 39, 2920–2923 (2014).
[Crossref]

A. B. Matsko, A. A. Savchenkov, V. S. Ilchenko, D. Seidel, and L. Maleki, “Hard and soft excitation regimes of Kerr frequency combs,” Phys. Rev. A 85, 023830 (2012).
[Crossref]

A. A. Savchenkov, A. B. Matsko, W. Liang, V. S. Ilchenko, D. Seidel, and L. Maleki, “Kerr frequency comb generation in overmoded resonators,” Opt. Express 20, 27290–27298 (2012).
[Crossref]

W. Liang, A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, D. Seidel, and L. Maleki, “Generation of near-infrared frequency combs from a MgF2 whispering gallery mode resonator,” Opt. Lett. 36, 2290–2292 (2011).
[Crossref]

A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, I. Solomatine, D. Seidel, and L. Maleki, “Tunable optical frequency comb with a crystalline whispering gallery mode resonator,” Phys. Rev. Lett. 101, 093902 (2008).
[Crossref]

A. A. Savchenkov, E. Rubiola, A. B. Matsko, V. S. Ilchenko, and L. Maleki, “Phase noise of whispering gallery photonic hyper-parametric microwave oscillators,” Opt. Express 16, 4130–4144 (2008).
[Crossref]

A. A. Savchenkov, A. B. Matsko, D. Strekalov, V. S. Ilchenko, and L. Maleki, “Mode filtering in optical whispering gallery resonators,” Electron. Lett. 41, 495–497 (2005).
[Crossref]

A. A. Savchenkov, A. B. Matsko, D. Strekalov, M. Mohageg, V. S. Ilchenko, and L. Maleki, “Low threshold optical oscillations in a whispering gallery mode CaF2 resonator,” Phys. Rev. Lett. 93, 243905 (2004).
[Crossref]

A. B. Matsko, A. A. Savchenkov, V. S. Ilchenko, and L. Maleki, “Optical gyroscope with whispering gallery mode optical cavities,” Opt. Commun. 233, 107–112 (2004).
[Crossref]

A. B. Matsko, A. A. Savchenkov, R. J. Letargat, V. S. Ilchenko, and L. Maleki, “On cavity modification of stimulated Raman scattering,” J. Opt. B 5, 272–278 (2003).
[Crossref]

V. S. Ilchenko and L. Maleki, “Novel whispering-gallery resonators for lasers, modulators, and sensors,” Proc. SPIE 4270, 120–130 (2001).
[Crossref]

V. S. Ilchenko, X. S. Yao, and L. Maleki, “Microsphere integration in active and passive photonics devices,” Proc. SPIE 3930, 154–162 (2000).
[Crossref]

A. B. Matsko, A. A. Savchenkov, W. Liang, V. S. Ilchenko, D. Seidel, and L. Maleki, “Whispering gallery mode oscillators and optical comb generators,” in Frequency Standards and Metrology (World Scientific, 2009), pp. 539–558.

L. Maleki, V. S. Ilchenko, A. A. Savchenkov, W. Liang, D. Seidel, and A. B. Matsko, “High performance, miniature hyper-parametric microwave photonic oscillator,” in IEEE International Frequency Control Symposium (IEEE, 2010), pp. 558–563.

Ilic, B. R.

Z. L. Newman, V. Maurice, T. Drake, J. R. Stone, T. C. Briles, D. T. Spencer, C. Fredrick, Q. Li, D. Westly, B. R. Ilic, B. Shen, M.-G. Suh, K. Y. Yang, C. Johnson, D. M. S. Johnson, L. Hollberg, K. J. Vahala, K. Srinivasan, S. A. Diddams, J. Kitching, S. B. Papp, and M. T. Hummon, “Architecture for the photonic integration of an optical atomic clock,” Optica 6, 680–685 (2019).
[Crossref]

D. T. Spencer, T. Drake, T. C. Briles, J. Stone, L. C. Sinclair, C. Fredrick, Q. Li, D. Westly, B. R. Ilic, A. Bluestone, N. Volet, T. Komljenovic, L. Chang, S. H. Lee, D. Y. Oh, M.-G. Suh, K. Y. Yang, M. H. P. Pfeiffer, T. J. Kippenberg, E. Norberg, L. Theogarajan, K. Vahala, N. R. Newbury, K. Srinivasan, J. E. Bowers, S. A. Diddams, and S. B. Papp, “An optical-frequency synthesizer using integrated photonics,” Nature 557, 81–85 (2018).
[Crossref]

Q. Li, T. C. Briles, D. A. Westly, T. E. Drake, J. R. Stone, B. R. Ilic, S. A. Diddams, S. B. Papp, and K. Srinivasan, “Stably accessing octave-spanning microresonator frequency combs in the soliton regime,” Optica 4, 193–203 (2017).
[Crossref]

Ioppolo, T.

Ippen, E. P.

B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, “Ultra-compact Si-SiO2 microring resonator optical channel dropping filters,” IEEE Photon. Technol. Lett. 10, 549–551 (1998).
[Crossref]

Itobe, H.

Y. Nakagawa, Y. Mizumoto, T. Kato, T. Kobatake, H. Itobe, Y. Kakinuma, and T. Tanabe, “Dispersion tailoring of a crystalline whispering gallery mode microcavity for a wide-spanning optical Kerr frequency comb,” J. Opt. Soc. Am. B 33, 1913–1920 (2016).
[Crossref]

T. Kobatake, T. Kato, H. Itobe, Y. Nakagawa, and T. Tanabe, “Thermal effects on Kerr comb generation in a CaF2 whispering-gallery mode microcavity,” IEEE Photon. J. 8, 4501109 (2016).
[Crossref]

Jacquot, M.

S. Diallo, G. Lin, R. Martinenghi, L. Furfaro, M. Jacquot, and Y. K. Chembo, “Brillouin lasing in ultra-high-Q lithium fluoride disk resonators,” IEEE Photon. Technol. Lett. 28, 955–958 (2016).
[Crossref]

R. Henriet, G. Lin, A. Coillet, M. Jacquot, L. Furfaro, L. Larger, and Y. K. Chembo, “Kerr optical frequency comb generation in strontium fluoride whispering-gallery mode resonators with billion quality factor,” Opt. Lett. 40, 1567–1570 (2015).
[Crossref]

Jaduszliwer, B.

L. Maleki, A. Savchenkov, V. Ilchenko, W. Liang, D. Eliyahu, A. Matsko, D. Seidel, N. Wells, J. Camparo, and B. Jaduszliwer, “All-optical integrated rubidium atomic clock,” in Proceedings of the Joint Conference of the IEEE International Frequency Control and the European Frequency and Time Forum (FCS) (IEEE, 2011), pp. 1–5.

Jain, R. K.

Jang, J.

Jang, J. K.

Janosik, N.

Janz, S.

Jaramillo-Villegas, J.

Jaramillo-Villegas, J. A.

S. Kim, K. Han, C. Wang, J. A. Jaramillo-Villegas, X. Xue, C. Bao, Y. Xuan, D. E. Leaird, A. M. Weiner, and M. Qi, “Dispersion engineering and frequency comb generation in thin silicon nitride concentric microresonators,” Nat. Commun. 8, 372 (2017).
[Crossref]

X. Xue, F. Leo, Y. Xuan, J. A. Jaramillo-Villegas, P.-H. Wang, D. E. Leaird, M. Erkintalo, M. Qi, and A. M. Weiner, “Second-harmonic-assisted four-wave mixing in chip-based microresonator frequency comb generation,” Light Sci. Appl. 6, e16253 (2017).
[Crossref]

C. Bao, J. A. Jaramillo-Villegas, Y. Xuan, D. E. Leaird, M. Qi, and A. M. Weiner, “Observation of fermi-pasta-ulam recurrence induced by breather solitons in an optical microresonator,” Phys. Rev. Lett. 117, 163901 (2016).
[Crossref]

Jazbinsek, M.

Jenkins, W.

Jeon, S.

H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, “Chemically etched ultrahigh-Q wedge-resonator on a silicon chip,” Nat. Photonics 6, 369–373 (2012).
[Crossref]

Ji, X.

S. Ramelow, A. Farsi, Z. Vernon, S. Clemmen, X. Ji, J. E. Sipe, M. Liscidini, M. Lipson, and A. L. Gaeta, “Strong nonlinear coupling in a Si3N4 ring resonator,” Phys. Rev. Lett. 122, 153906 (2019).
[Crossref]

B. Y. Kim, Y. Okawachi, J. K. Jang, M. Yu, X. Ji, Y. Zhao, C. Joshi, M. Lipson, and A. L. Gaeta, “Turn-key, high-efficiency Kerr comb source,” Opt. Lett. 44, 4475–4478 (2019).
[Crossref]

B. Stern, X. Ji, Y. Okawachi, A. L. Gaeta, and M. Lipson, “Battery-operated integrated frequency comb generator,” Nature 562, 401–405 (2018).
[Crossref]

J. K. Jang, A. Klenner, X. Ji, Y. Okawachi, M. Lipson, and A. L. Gaeta, “Synchronization of coupled optical microresonators,” Nat. Photonics 12, 688–693 (2018).
[Crossref]

A. Dutt, C. Joshi, X. Ji, J. Cardenas, Y. Okawachi, K. Luke, A. L. Gaeta, and M. Lipson, “On-chip dual-comb source for spectroscopy,” Sci. Adv. 4, e1701858 (2018).
[Crossref]

M. Yu, J. K. Jang, Y. Okawachi, A. G. Griffith, K. Luke, S. A. Miller, X. Ji, M. Lipson, and A. L. Gaeta, “Breather soliton dynamics in microresonators,” Nat. Commun. 8, 14569 (2017).
[Crossref]

S. A. Miller, M. Yu, X. Ji, A. G. Griffith, J. Cardenas, A. L. Gaeta, and M. Lipson, “Low-loss silicon platform for broadband mid-infrared photonics,” Optica 4, 707–712 (2017).
[Crossref]

C. Joshi, J. K. Jang, K. Luke, X. Ji, S. A. Miller, A. Klenner, Y. Okawachi, M. Lipson, and A. L. Gaeta, “Thermally controlled comb generation and soliton modelocking in microresonators,” Opt. Lett. 41, 2565–2568 (2016).
[Crossref]

Jiang, B.

S. Zhu, B. Xiao, B. Jiang, L. Shi, and X. Zhang, “Tunable Brillouin and Raman microlasers using hybrid microbottle resonators,” Nanophotonics 8, 931–940 (2019).
[Crossref]

Jiang, X.

Jiang, X.-F.

Z.-P. Liu, Y. Li, Y.-F. Xiao, B.-B. Li, X.-F. Jiang, Y. Qin, X.-B. Feng, H. Yang, and Q. Gong, “Direct laser writing of whispering gallery microcavities by two-photon polymerization,” Appl. Phys. Lett. 97, 211105 (2010).
[Crossref]

Jin, W.

Johnson, A.

Johnson, C.

Johnson, D. M. S.

Johnson, S. G.

Jones, A. H.

Jones, D.

J. Hall, J. Ye, S. Diddams, L. Ma, S. Cundiff, and D. Jones, “Ultrasensitive spectroscopy, the ultrastable lasers, the ultrafast lasers, and the seriously nonlinear fiber: a new alliance for physics and metrology,” IEEE J. Quantum Electron. 37, 1482–1492 (2001).
[Crossref]

D. Jones, S. Diddams, J. Ranka, A. Stentz, R. Windeler, J. Hall, and S. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
[Crossref]

Joshi, C.

Jost, J.

Jost, J. D.

M. Anderson, N. G. Pavlov, J. D. Jost, G. Lihachev, J. Liu, T. Morais, M. Zervas, M. L. Gorodetsky, and T. J. Kippenberg, “Highly efficient coupling of crystalline microresonators to integrated photonic waveguides,” Opt. Lett. 43, 2106–2109 (2018).
[Crossref]

H. Guo, E. Lucas, M. H. P. Pfeiffer, M. Karpov, M. Anderson, J. Liu, M. Geiselmann, J. D. Jost, and T. J. Kippenberg, “Intermode breather solitons in optical microresonators,” Phys. Rev. X 7, 041055 (2017).
[Crossref]

M. H. P. Pfeiffer, A. Kordts, V. Brasch, M. Zervas, M. Geiselmann, J. D. Jost, and T. J. Kippenberg, “Photonic damascene process for integrated high-Q microresonator based nonlinear photonics,” Optica 3, 20–25 (2016).
[Crossref]

T. Herr, V. Brasch, J. D. Jost, I. Mirgorodskiy, G. Lihachev, M. L. Gorodetsky, and T. J. Kippenberg, “Mode spectrum and temporal soliton formation in optical microresonators,” Phys. Rev. Lett. 113, 123901 (2014).
[Crossref]

T. Herr, V. Brasch, J. D. Jost, C. Y. Wang, N. M. Kondratiev, M. L. Gorodetsky, and T. J. Kippenberg, “Temporal solitons in optical microresonators,” Nat. Photonics 8, 145–152 (2014).
[Crossref]

Jung, H.

H. Jung and H. X. Tang, “Aluminum nitride as nonlinear optical material for on-chip frequency comb generation and frequency conversion,” Nanophotonics 5, 263–271 (2016).
[Crossref]

H. Jung, C. Xiong, K. Y. Fong, X. Zhang, and H. X. Tang, “Optical frequency comb generation from aluminum nitride microring resonator,” Opt. Lett. 38, 2810–2813 (2013).
[Crossref]

Jung, Y.

Kadavanich, A.

X. Peng, L. Manna, W. Yang, J. Wickham, E. Scher, A. Kadavanich, and A. Alivisatos, “Shape control of CdSe nanocrystals,” Nature 404, 59–61 (2000).
[Crossref]

Kahn, J. M.

M. Zhang, B. Buscaino, C. Wang, A. Shams-Ansari, C. Reimer, R. Zhu, J. M. Kahn, and M. Loncar, “Broadband electro-optic frequency comb generation in a lithium niobate microring resonator,” Nature 568, 373–377 (2019).
[Crossref]

Kakinuma, Y.

Kalra, R.

Kalt, H.

Karlsson, M.

N. Akhmediev and M. Karlsson, “Cherenkov radiation emitted by solitons in optical fibers,” Phys. Rev. A 51, 2602–2609 (1995).
[Crossref]

Karpov, M.

P. Trocha, M. Karpov, D. Ganin, M. H. P. Pfeiffer, A. Kordts, S. Wolf, J. Krockenberger, P. Marin-Palomo, C. Weimann, S. Randel, W. Freude, T. J. Kippenberg, and C. Koos, “Ultrafast optical ranging using microresonator soliton frequency combs,” Science 359, 887–891 (2018).
[Crossref]

A. N. Willner, P. Liao, K. Zou, Y. Cao, A. Kordts, M. Karpov, M. H. P. Pfeiffer, A. Almaiman, A. Fallahpour, F. Alishahi, K. Manukyan, M. Tur, T. J. Kippenberg, and A. E. Willner, “Scalable and reconfigurable optical tapped-delay-line for multichannel equalization and correlation using nonlinear wave mixing and a Kerr frequency comb,” Opt. Lett. 43, 5563–5566 (2018).
[Crossref]

H. Guo, E. Lucas, M. H. P. Pfeiffer, M. Karpov, M. Anderson, J. Liu, M. Geiselmann, J. D. Jost, and T. J. Kippenberg, “Intermode breather solitons in optical microresonators,” Phys. Rev. X 7, 041055 (2017).
[Crossref]

P. Marin-Palomo, J. N. Kemal, M. Karpov, A. Kordts, J. Pfeifle, M. H. P. Pfeiffer, P. Trocha, S. Wolf, V. Brasch, M. H. Anderson, R. Rosenberger, K. Vijayan, W. Freude, T. J. Kippenberg, and C. Koos, “Microresonator-based solitons for massively parallel coherent optical communications,” Nature 546, 274–279 (2017).
[Crossref]

M. H. P. Pfeiffer, C. Herkommer, J. Liu, H. Guo, M. Karpov, E. Lucas, M. Zervas, and T. J. Kippenberg, “Octave-spanning dissipative Kerr soliton frequency combs in Si3N4 microresonators,” Optica 4, 684–691 (2017).
[Crossref]

H. Guo, M. Karpov, E. Lucas, A. Kordts, M. H. P. Pfeiffer, V. Brasch, G. Lihachev, V. E. Lobanov, M. L. Gorodetsky, and T. J. Kippenberg, “Universal dynamics and deterministic switching of dissipative Kerr solitons in optical microresonators,” Nat. Phys. 13, 94–102 (2016).
[Crossref]

M. Karpov, H. Guo, A. Kordts, V. Brasch, M. H. P. Pfeiffer, M. Zervas, M. Geiselmann, and T. J. Kippenberg, “Raman self-frequency shift of dissipative Kerr solitons in an optical microresonator,” Phys. Rev. Lett. 116, 103902 (2016).
[Crossref]

C. Bao, P. Liao, A. Kordts, M. Karpov, M. H. P. Pfeiffer, L. Zhang, Y. Yan, G. Xie, Y. Cao, A. Almaiman, M. Ziyadi, L. Li, Z. Zhao, A. Mohajerin-Ariaei, S. R. Wilkinson, M. Tur, M. M. Fejer, T. J. Kippenberg, and A. E. Willner, “Demonstration of optical multicasting using Kerr frequency comb lines,” Opt. Lett. 41, 3876–3879 (2016).
[Crossref]

Kartashov, Y. V.

Karvonen, L.

Kasumie, S.

Kato, T.

Kavungal, V.

A. K. Mallik, G. Farrell, D. Liu, V. Kavungal, Q. Wu, and Y. Semenova, “Silica gel coated spherical micro resonator for ultra-high sensitivity detection of ammonia gas concentration in air,” Sci. Rep. 8, 1620 (2018).
[Crossref]

Kellerer, J.

Kemal, J. N.

P. Marin-Palomo, J. N. Kemal, M. Karpov, A. Kordts, J. Pfeifle, M. H. P. Pfeiffer, P. Trocha, S. Wolf, V. Brasch, M. H. Anderson, R. Rosenberger, K. Vijayan, W. Freude, T. J. Kippenberg, and C. Koos, “Microresonator-based solitons for massively parallel coherent optical communications,” Nature 546, 274–279 (2017).
[Crossref]

Kemell, M.

Kesterson, T.

Khanaliloo, B.

Kim, B. Y.

Kim, H.-J.

Kim, J.

J. Kim, M. C. Kuzyk, K. Han, H. Wang, and G. Bahl, “Non-reciprocal Brillouin scattering induced transparency,” Nat. Phys. 11, 275–280 (2015).
[Crossref]

Kim, S.

S. Kim, K. Han, C. Wang, J. A. Jaramillo-Villegas, X. Xue, C. Bao, Y. Xuan, D. E. Leaird, A. M. Weiner, and M. Qi, “Dispersion engineering and frequency comb generation in thin silicon nitride concentric microresonators,” Nat. Commun. 8, 372 (2017).
[Crossref]

Kim, S.-W.

Kim, Y.-J.

Kimerling, L. C.

C. Bao, L. Zhang, A. Matsko, Y. Yan, Z. Zhao, G. Xie, A. M. Agarwal, L. C. Kimerling, J. Michel, L. Maleki, and A. E. Willner, “Nonlinear conversion efficiency in Kerr frequency comb generation,” Opt. Lett. 39, 6126–6129 (2014).
[Crossref]

B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, “Ultra-compact Si-SiO2 microring resonator optical channel dropping filters,” IEEE Photon. Technol. Lett. 10, 549–551 (1998).
[Crossref]

King, E.

G. Zhao, Ş. K. Özdemir, T. Wang, L. Xu, E. King, G.-L. Long, and L. Yang, “Raman lasing and Fano lineshapes in a packaged fiber-coupled whispering-gallery-mode microresonator,” Sci. Bull. 62(12), 875–878 (2017).
[Crossref]

Kippenberg, T.

V. Brasch, M. Geiselmann, T. Herr, G. Lihachev, M. Pfeiffer, M. Gorodetsky, and T. Kippenberg, “Photonic chip-based optical frequency comb using soliton Cherenkov radiation,” Science 351, 357–360 (2016).
[Crossref]

V. Lobanov, G. Lihachev, N. Pavlov, A. Cherenkov, T. Kippenberg, and M. Gorodetsky, “Harmonization of chaos into a soliton in Kerr frequency combs,” Opt. Express 24, 27382–27394 (2016).
[Crossref]

J. Jost, T. Herr, C. Lecaplain, V. Brasch, M. Pfeiffer, and T. Kippenberg, “Counting the cycles of light using a self-referenced optical microresonator,” Optica 2, 706–711 (2015).
[Crossref]

V. Lobanov, G. Lihachev, T. Kippenberg, and M. Gorodetsky, “Frequency combs and platicons in optical microresonators with normal GVD,” Opt. Express 23, 7713–7721 (2015).
[Crossref]

T. Kippenberg, S. Spillane, and K. Vahala, “Kerr-nonlinearity optical parametric oscillation in an ultrahigh-Q toroid microcavity,” Phys. Rev. Lett. 93, 083904 (2004).
[Crossref]

D. Armani, T. Kippenberg, S. Spillane, and K. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421, 925–928 (2003).
[Crossref]

S. Spillane, T. Kippenberg, and K. Vahala, “Ultralow-threshold Raman laser using a spherical dielectric microcavity,” Nature 415, 621–623 (2002).
[Crossref]

Kippenberg, T. J.

A. L. Gaeta, M. Lipson, and T. J. Kippenberg, “Photonic-chip-based frequency combs,” Nat. Photonics 13, 158–169 (2019).
[Crossref]

W. Weng, E. Lucas, G. Lihachev, V. E. Lobanov, H. Guo, M. L. Gorodetsky, and T. J. Kippenberg, “Spectral purification of microwave signals with disciplined dissipative Kerr solitons,” Phys. Rev. Lett. 122, 013902 (2019).
[Crossref]

D. Martyshkin, V. Fedorov, T. Kesterson, S. Vasilyev, H. Gu, J. Liu, W. Weng, K. Vodopyanov, T. J. Kippenberg, and S. Mirov, “Visible-near-middle infrared spanning supercontinuum generation in a silicon nitride (Si3N4) waveguide,” Opt. Mater. Express 9, 2553–2559 (2019).
[Crossref]

E. Obrzud, M. Rainer, A. Harutyunyan, M. H. Anderson, J. Liu, M. Geiselmann, B. Chazelas, S. Kundermann, S. Lecomte, M. Cecconi, A. Ghedina, E. Molinari, F. Pepe, F. Wildi, F. Bouchy, T. J. Kippenberg, and T. Herr, “A microphotonic astrocomb,” Nat. Photonics 13, 31–35 (2019).
[Crossref]

L. A. Lugiato, F. Prati, M. L. Gorodetsky, and T. J. Kippenberg, “From the Lugiato-Lefever equation to microresonator-based soliton Kerr frequency combs,” Philos. Trans. R. Soc. A 376, 20180113 (2018).
[Crossref]

A. N. Willner, P. Liao, K. Zou, Y. Cao, A. Kordts, M. Karpov, M. H. P. Pfeiffer, A. Almaiman, A. Fallahpour, F. Alishahi, K. Manukyan, M. Tur, T. J. Kippenberg, and A. E. Willner, “Scalable and reconfigurable optical tapped-delay-line for multichannel equalization and correlation using nonlinear wave mixing and a Kerr frequency comb,” Opt. Lett. 43, 5563–5566 (2018).
[Crossref]

J. Liu, A. S. Raja, M. H. P. Pfeiffer, C. Herkommer, H. Guo, M. Zervas, M. Geiselmann, and T. J. Kippenberg, “Double inverse nanotapers for efficient light coupling to integrated photonic devices,” Opt. Lett. 43, 3200–3203 (2018).
[Crossref]

P. Trocha, M. Karpov, D. Ganin, M. H. P. Pfeiffer, A. Kordts, S. Wolf, J. Krockenberger, P. Marin-Palomo, C. Weimann, S. Randel, W. Freude, T. J. Kippenberg, and C. Koos, “Ultrafast optical ranging using microresonator soliton frequency combs,” Science 359, 887–891 (2018).
[Crossref]

D. T. Spencer, T. Drake, T. C. Briles, J. Stone, L. C. Sinclair, C. Fredrick, Q. Li, D. Westly, B. R. Ilic, A. Bluestone, N. Volet, T. Komljenovic, L. Chang, S. H. Lee, D. Y. Oh, M.-G. Suh, K. Y. Yang, M. H. P. Pfeiffer, T. J. Kippenberg, E. Norberg, L. Theogarajan, K. Vahala, N. R. Newbury, K. Srinivasan, J. E. Bowers, S. A. Diddams, and S. B. Papp, “An optical-frequency synthesizer using integrated photonics,” Nature 557, 81–85 (2018).
[Crossref]

M. H. P. Pfeiffer, C. Herkommer, J. Liu, T. Morais, M. Zervas, M. Geiselmann, and T. J. Kippenberg, “Photonic Damascene process for low-loss, high-confinement silicon nitride waveguides,” IEEE J. Sel. Top. Quantum Electron. 24, 6101411 (2018).
[Crossref]

M. Anderson, N. G. Pavlov, J. D. Jost, G. Lihachev, J. Liu, T. Morais, M. Zervas, M. L. Gorodetsky, and T. J. Kippenberg, “Highly efficient coupling of crystalline microresonators to integrated photonic waveguides,” Opt. Lett. 43, 2106–2109 (2018).
[Crossref]

T. J. Kippenberg, A. L. Gaeta, M. Lipson, and M. L. Gorodetsky, “Dissipative Kerr solitons in optical microresonators,” Science 361, eaan8083 (2018).
[Crossref]

M. H. P. Pfeiffer, C. Herkommer, J. Liu, H. Guo, M. Karpov, E. Lucas, M. Zervas, and T. J. Kippenberg, “Octave-spanning dissipative Kerr soliton frequency combs in Si3N4 microresonators,” Optica 4, 684–691 (2017).
[Crossref]

H. Guo, E. Lucas, M. H. P. Pfeiffer, M. Karpov, M. Anderson, J. Liu, M. Geiselmann, J. D. Jost, and T. J. Kippenberg, “Intermode breather solitons in optical microresonators,” Phys. Rev. X 7, 041055 (2017).
[Crossref]

P. Marin-Palomo, J. N. Kemal, M. Karpov, A. Kordts, J. Pfeifle, M. H. P. Pfeiffer, P. Trocha, S. Wolf, V. Brasch, M. H. Anderson, R. Rosenberger, K. Vijayan, W. Freude, T. J. Kippenberg, and C. Koos, “Microresonator-based solitons for massively parallel coherent optical communications,” Nature 546, 274–279 (2017).
[Crossref]

M. H. P. Pfeiffer, J. Liu, M. Geiselmann, and T. J. Kippenberg, “Coupling ideality of integrated planar high-Q microresonators,” Phys. Rev. Appl. 7, 024026 (2017).
[Crossref]

C. Bao, P. Liao, A. Kordts, M. Karpov, M. H. P. Pfeiffer, L. Zhang, Y. Yan, G. Xie, Y. Cao, A. Almaiman, M. Ziyadi, L. Li, Z. Zhao, A. Mohajerin-Ariaei, S. R. Wilkinson, M. Tur, M. M. Fejer, T. J. Kippenberg, and A. E. Willner, “Demonstration of optical multicasting using Kerr frequency comb lines,” Opt. Lett. 41, 3876–3879 (2016).
[Crossref]

M. Karpov, H. Guo, A. Kordts, V. Brasch, M. H. P. Pfeiffer, M. Zervas, M. Geiselmann, and T. J. Kippenberg, “Raman self-frequency shift of dissipative Kerr solitons in an optical microresonator,” Phys. Rev. Lett. 116, 103902 (2016).
[Crossref]

M. H. P. Pfeiffer, A. Kordts, V. Brasch, M. Zervas, M. Geiselmann, J. D. Jost, and T. J. Kippenberg, “Photonic damascene process for integrated high-Q microresonator based nonlinear photonics,” Optica 3, 20–25 (2016).
[Crossref]

H. Guo, M. Karpov, E. Lucas, A. Kordts, M. H. P. Pfeiffer, V. Brasch, G. Lihachev, V. E. Lobanov, M. L. Gorodetsky, and T. J. Kippenberg, “Universal dynamics and deterministic switching of dissipative Kerr solitons in optical microresonators,” Nat. Phys. 13, 94–102 (2016).
[Crossref]

A. Kordts, M. H. P. Pfeiffer, H. Guo, V. Brasch, and T. J. Kippenberg, “Higher order mode suppression in high-Q anomalous dispersion SiN microresonators for temporal dissipative Kerr soliton formation,” Opt. Lett. 41, 452–455 (2016).
[Crossref]

J. Pfeifle, V. Brasch, M. Lauermann, Y. Yu, D. Wegner, T. Herr, K. Hartinger, P. Schindler, J. Li, D. Hillerkuss, R. Schmogrow, C. Weimann, R. Holzwarth, W. Freude, J. Leuthold, T. J. Kippenberg, and C. Koos, “Coherent terabit communications with microresonator Kerr frequency combs,” Nat. Photonics 8, 375–380 (2014).
[Crossref]

T. Herr, V. Brasch, J. D. Jost, I. Mirgorodskiy, G. Lihachev, M. L. Gorodetsky, and T. J. Kippenberg, “Mode spectrum and temporal soliton formation in optical microresonators,” Phys. Rev. Lett. 113, 123901 (2014).
[Crossref]

T. Herr, V. Brasch, J. D. Jost, C. Y. Wang, N. M. Kondratiev, M. L. Gorodetsky, and T. J. Kippenberg, “Temporal solitons in optical microresonators,” Nat. Photonics 8, 145–152 (2014).
[Crossref]

C. Y. Wang, T. Herr, P. Del’Haye, A. Schliesser, J. Hofer, R. Holzwarth, T. W. Haensch, N. Picque, and T. J. Kippenberg, “Mid-infrared optical frequency combs at 2.5  µm based on crystalline microresonators,” Nat. Commun. 4, 1345 (2013).
[Crossref]

J. Riemensberger, K. Hartinger, T. Herr, V. Brasch, R. Holzwarth, and T. J. Kippenberg, “Dispersion engineering of thick high-Q silicon nitride ring-resonators via atomic layer deposition,” Opt. Express 20, 27661–27669 (2012).
[Crossref]

P. Del’Haye, T. Herr, E. Gavartin, M. L. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, “Octave spanning tunable frequency comb from a microresonator,” Phys. Rev. Lett. 107, 063901 (2011).
[Crossref]

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332, 555–559 (2011).
[Crossref]

J. Hofer, A. Schliesser, and T. J. Kippenberg, “Cavity optomechanics with ultrahigh-Q crystalline microresonators,” Phys. Rev. A 82, 031804 (2010).
[Crossref]

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450, 1214–1217 (2007).
[Crossref]

T. J. Kippenberg, S. M. Spillane, D. K. Armani, and K. J. Vahala, “Fabrication and coupling to planar high-Q silica disk microcavities,” Appl. Phys. Lett. 83, 797–799 (2003).
[Crossref]

S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, “Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics,” Phys. Rev. Lett. 91, 043902 (2003).
[Crossref]

D. J. Wilson, D. J. Wilson, S. Hönl, K. Schneider, M. Anderson, T. J. Kippenberg, and P. Seidler, “Gallium phosphide microresonator frequency combs,” in Conference on Lasers and Electro-Optics (CLEO) (Optical Society of America, 2018), paper SW3A.1.

Kippenberg, T. J. A.

V. Brasch, M. Geiselmann, S. Lecomte, G. Lihachev, M. H. P. Pfeiffer, M. L. Gorodetsky, and T. J. A. Kippenberg, “Photonic chip based optical frequency comb using soliton induced Cherenkov radiation,” in Conference on Lasers and Electro-Optics (CLEO) (2015), pp. 1–2.

Kitching, J.

Klemens, G.

Klenner, A.

J. K. Jang, A. Klenner, X. Ji, Y. Okawachi, M. Lipson, and A. L. Gaeta, “Synchronization of coupled optical microresonators,” Nat. Photonics 12, 688–693 (2018).
[Crossref]

C. Joshi, J. K. Jang, K. Luke, X. Ji, S. A. Miller, A. Klenner, Y. Okawachi, M. Lipson, and A. L. Gaeta, “Thermally controlled comb generation and soliton modelocking in microresonators,” Opt. Lett. 41, 2565–2568 (2016).
[Crossref]

Klusmann, C.

Knapper, K. A.

K. A. Knapper, E. H. Horak, C. H. Vollbrecht, K. D. Heylman, and R. H. Goldsmith, “Phase-sensitive photothermal imaging of ultrahigh-Q polyoxide toroidal microresonators,” Appl. Phys. Lett. 113, 231105 (2018).
[Crossref]

K. A. Knapper, F. Pan, M. T. Rea, E. H. Horak, J. D. Rogers, and R. H. Goldsmith, “Single-particle photothermal imaging via inverted excitation through high-Q all-glass toroidal microresonators,” Opt. Express 26, 25020–25030 (2018).
[Crossref]

Knight, J.

R. Holzwarth, T. Udem, T. Hansch, J. Knight, W. Wadsworth, and P. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett. 85, 2264–2267 (2000).
[Crossref]

Knittel, J.

J. Knittel, J. D. Swaim, D. L. McAuslan, G. A. Brawley, and W. P. Bowen, “Back-scatter based whispering gallery mode sensing,” Sci. Rep. 3, 2974 (2013).
[Crossref]

K. H. Lee, T. G. McRae, G. I. Harris, J. Knittel, and W. P. Bowen, “Cooling and control of a cavity optoelectromechanical system,” Phys. Rev. Lett. 104, 123604 (2010).
[Crossref]

Knobloch, E.

P. Parra-Rivas, D. Gomila, E. Knobloch, S. Coen, and L. Gelens, “Origin and stability of dark pulse Kerr combs in normal dispersion resonators,” Opt. Lett. 41, 2402–2405 (2016).
[Crossref]

P. Parra-Rivas, E. Knobloch, D. Gomila, and L. Gelens, “Dark solitons in the Lugiato-Lefever equation with normal dispersion,” Phys. Rev. A 93, 063839 (2016).
[Crossref]

Kobatake, T.

Y. Nakagawa, Y. Mizumoto, T. Kato, T. Kobatake, H. Itobe, Y. Kakinuma, and T. Tanabe, “Dispersion tailoring of a crystalline whispering gallery mode microcavity for a wide-spanning optical Kerr frequency comb,” J. Opt. Soc. Am. B 33, 1913–1920 (2016).
[Crossref]

T. Kobatake, T. Kato, H. Itobe, Y. Nakagawa, and T. Tanabe, “Thermal effects on Kerr comb generation in a CaF2 whispering-gallery mode microcavity,” IEEE Photon. J. 8, 4501109 (2016).
[Crossref]

Kobayashi, M.

Koeber, S.

Koehler, L.

Komljenovic, T.

D. T. Spencer, T. Drake, T. C. Briles, J. Stone, L. C. Sinclair, C. Fredrick, Q. Li, D. Westly, B. R. Ilic, A. Bluestone, N. Volet, T. Komljenovic, L. Chang, S. H. Lee, D. Y. Oh, M.-G. Suh, K. Y. Yang, M. H. P. Pfeiffer, T. J. Kippenberg, E. Norberg, L. Theogarajan, K. Vahala, N. R. Newbury, K. Srinivasan, J. E. Bowers, S. A. Diddams, and S. B. Papp, “An optical-frequency synthesizer using integrated photonics,” Nature 557, 81–85 (2018).
[Crossref]

Kondratiev, N. M.

A. V. Cherenkov, N. M. Kondratiev, V. E. Lobanov, A. E. Shitikov, D. V. Skryabin, and M. L. Gorodetsky, “Raman-Kerr frequency combs in microresonators with normal dispersion,” Opt. Express 25, 31148–31158 (2017).
[Crossref]

T. Herr, V. Brasch, J. D. Jost, C. Y. Wang, N. M. Kondratiev, M. L. Gorodetsky, and T. J. Kippenberg, “Temporal solitons in optical microresonators,” Nat. Photonics 8, 145–152 (2014).
[Crossref]

Koos, C.

P. Trocha, M. Karpov, D. Ganin, M. H. P. Pfeiffer, A. Kordts, S. Wolf, J. Krockenberger, P. Marin-Palomo, C. Weimann, S. Randel, W. Freude, T. J. Kippenberg, and C. Koos, “Ultrafast optical ranging using microresonator soliton frequency combs,” Science 359, 887–891 (2018).
[Crossref]

P. Marin-Palomo, J. N. Kemal, M. Karpov, A. Kordts, J. Pfeifle, M. H. P. Pfeiffer, P. Trocha, S. Wolf, V. Brasch, M. H. Anderson, R. Rosenberger, K. Vijayan, W. Freude, T. J. Kippenberg, and C. Koos, “Microresonator-based solitons for massively parallel coherent optical communications,” Nature 546, 274–279 (2017).
[Crossref]

J. Pfeifle, A. Coillet, R. Henriet, K. Saleh, P. Schindler, C. Weimann, W. Freude, I. V. Balakireva, L. Larger, C. Koos, and Y. K. Chembo, “Optimally coherent Kerr combs generated with crystalline whispering gallery mode resonators for ultrahigh capacity fiber communications,” Phys. Rev. Lett. 114, 093902 (2015).
[Crossref]

J. Pfeifle, V. Brasch, M. Lauermann, Y. Yu, D. Wegner, T. Herr, K. Hartinger, P. Schindler, J. Li, D. Hillerkuss, R. Schmogrow, C. Weimann, R. Holzwarth, W. Freude, J. Leuthold, T. J. Kippenberg, and C. Koos, “Coherent terabit communications with microresonator Kerr frequency combs,” Nat. Photonics 8, 375–380 (2014).
[Crossref]

C. Weimann, P. Schindler, R. Palmer, S. Wolf, D. Bekele, D. Korn, J. Pfeifle, S. Koeber, R. Schmogrow, L. Alloatti, D. Elder, H. Yu, W. Bogaerts, L. Dalton, W. Freude, J. Leuthold, and C. Koos, “Silicon-organic hybrid (SOH) frequency comb sources for terabit/s data transmission,” Opt. Express 22, 3629–3637 (2014).
[Crossref]

Koptyaev, S.

G. Lihachev, N. Pavlov, S. Koptyaev, I. A. Bilenko, and M. L. Gorodetsky, “Kerr frequency comb and Brillouin lasing in BaF2 whispering gallery mode resonator,” in International Conference Laser Optics (LO) (2016), pp. PD-4.

Kordts, A.

P. Trocha, M. Karpov, D. Ganin, M. H. P. Pfeiffer, A. Kordts, S. Wolf, J. Krockenberger, P. Marin-Palomo, C. Weimann, S. Randel, W. Freude, T. J. Kippenberg, and C. Koos, “Ultrafast optical ranging using microresonator soliton frequency combs,” Science 359, 887–891 (2018).
[Crossref]

A. N. Willner, P. Liao, K. Zou, Y. Cao, A. Kordts, M. Karpov, M. H. P. Pfeiffer, A. Almaiman, A. Fallahpour, F. Alishahi, K. Manukyan, M. Tur, T. J. Kippenberg, and A. E. Willner, “Scalable and reconfigurable optical tapped-delay-line for multichannel equalization and correlation using nonlinear wave mixing and a Kerr frequency comb,” Opt. Lett. 43, 5563–5566 (2018).
[Crossref]

P. Marin-Palomo, J. N. Kemal, M. Karpov, A. Kordts, J. Pfeifle, M. H. P. Pfeiffer, P. Trocha, S. Wolf, V. Brasch, M. H. Anderson, R. Rosenberger, K. Vijayan, W. Freude, T. J. Kippenberg, and C. Koos, “Microresonator-based solitons for massively parallel coherent optical communications,” Nature 546, 274–279 (2017).
[Crossref]

M. Karpov, H. Guo, A. Kordts, V. Brasch, M. H. P. Pfeiffer, M. Zervas, M. Geiselmann, and T. J. Kippenberg, “Raman self-frequency shift of dissipative Kerr solitons in an optical microresonator,” Phys. Rev. Lett. 116, 103902 (2016).
[Crossref]

C. Bao, P. Liao, A. Kordts, M. Karpov, M. H. P. Pfeiffer, L. Zhang, Y. Yan, G. Xie, Y. Cao, A. Almaiman, M. Ziyadi, L. Li, Z. Zhao, A. Mohajerin-Ariaei, S. R. Wilkinson, M. Tur, M. M. Fejer, T. J. Kippenberg, and A. E. Willner, “Demonstration of optical multicasting using Kerr frequency comb lines,” Opt. Lett. 41, 3876–3879 (2016).
[Crossref]

A. Kordts, M. H. P. Pfeiffer, H. Guo, V. Brasch, and T. J. Kippenberg, “Higher order mode suppression in high-Q anomalous dispersion SiN microresonators for temporal dissipative Kerr soliton formation,” Opt. Lett. 41, 452–455 (2016).
[Crossref]

H. Guo, M. Karpov, E. Lucas, A. Kordts, M. H. P. Pfeiffer, V. Brasch, G. Lihachev, V. E. Lobanov, M. L. Gorodetsky, and T. J. Kippenberg, “Universal dynamics and deterministic switching of dissipative Kerr solitons in optical microresonators,” Nat. Phys. 13, 94–102 (2016).
[Crossref]

M. H. P. Pfeiffer, A. Kordts, V. Brasch, M. Zervas, M. Geiselmann, J. D. Jost, and T. J. Kippenberg, “Photonic damascene process for integrated high-Q microresonator based nonlinear photonics,” Optica 3, 20–25 (2016).
[Crossref]

Korn, D.

Kornowski, A.

S. Haubold, M. Haase, A. Kornowski, and H. Weller, “Strongly luminescent InP/ZnS core-shell nanoparticles,” Chem. Phys. Chem. 2, 331–334 (2001).
[Crossref]

Korobov, V.

I. Barashenkov, M. Bogdan, and V. Korobov, “Stability diagram of the phase-locked solitons in the parametrically driven, damped nonlinear Schrödinger equation,” Europhys. Lett. 15, 113 (1991).
[Crossref]

Kovach, A.

D. Chen, A. Kovach, S. Poust, V. Gambin, and A. M. Armani, “Normal dispersion silicon oxynitride microresonator Kerr frequency combs,” Appl. Phys. Lett. 115, 051105 (2019).
[Crossref]

D. Chen, A. Kovach, X. Shen, S. Poust, and A. M. Armani, “On-chip ultra-high-Q silicon oxynitride optical resonators,” ACS Photon. 4, 2376–2381 (2017).
[Crossref]

Kozhevnikov, M.

Kozyreff, G.

J. L. Dominguez-Juarez, G. Kozyreff, and J. Martorell, “Whispering gallery microresonators for second harmonic light generation from a low number of small molecules,” Nat. Commun. 2, 254 (2011).
[Crossref]

Krämmer, S.

Krishnamoorthy, A. V.

Krockenberger, J.

P. Trocha, M. Karpov, D. Ganin, M. H. P. Pfeiffer, A. Kordts, S. Wolf, J. Krockenberger, P. Marin-Palomo, C. Weimann, S. Randel, W. Freude, T. J. Kippenberg, and C. Koos, “Ultrafast optical ranging using microresonator soliton frequency combs,” Science 359, 887–891 (2018).
[Crossref]

Kudlinski, A.

Kues, M.

M. Kues, C. Reimer, J. M. Lukens, W. J. Munro, A. M. Weiner, D. J. Moss, and R. Morandotti, “Quantum optical microcombs,” Nat. Photonics 13, 170–179 (2019).
[Crossref]

Kumar, J.

R. Wang, H.-C. Chien, J. Kumar, N. Kumar, H.-Y. Chiu, and H. Zhao, “Third-harmonic generation in ultrathin films of MoS2,” ACS Appl. Mater. Interfaces 6, 314–318 (2014).
[Crossref]

Kumar, N.

R. Wang, H.-C. Chien, J. Kumar, N. Kumar, H.-Y. Chiu, and H. Zhao, “Third-harmonic generation in ultrathin films of MoS2,” ACS Appl. Mater. Interfaces 6, 314–318 (2014).
[Crossref]

K. He, N. Kumar, L. Zhao, Z. Wang, K. F. Mak, H. Zhao, and J. Shan, “Tightly bound excitons in monolayer WSe2,” Phys. Rev. Lett. 113, 026803 (2014).
[Crossref]

N. Kumar, S. Najmaei, Q. Cui, F. Ceballos, P. M. Ajayan, J. Lou, and H. Zhao, “Second harmonic microscopy of monolayer MoS2,” Phys. Rev. B 87, 161403 (2013).
[Crossref]

Kundermann, S.

E. Obrzud, M. Rainer, A. Harutyunyan, M. H. Anderson, J. Liu, M. Geiselmann, B. Chazelas, S. Kundermann, S. Lecomte, M. Cecconi, A. Ghedina, E. Molinari, F. Pepe, F. Wildi, F. Bouchy, T. J. Kippenberg, and T. Herr, “A microphotonic astrocomb,” Nat. Photonics 13, 31–35 (2019).
[Crossref]

Kung, C.-C.

Kuzyk, M. C.

J. Kim, M. C. Kuzyk, K. Han, H. Wang, and G. Bahl, “Non-reciprocal Brillouin scattering induced transparency,” Nat. Phys. 11, 275–280 (2015).
[Crossref]

Kwon, O.-P.

Kwong, D.-L.

B. Yao, S.-W. Huang, Y. Liu, A. K. Vinod, C. Choi, M. Hoff, Y. Li, M. Yu, Z. Feng, D.-L. Kwong, Y. Huang, Y. Rao, X. Duan, and C. W. Wong, “Gate-tunable frequency combs in graphene-nitride microresonators,” Nature 558, 410–414 (2018).
[Crossref]

S.-W. Huang, H. Zhou, J. Yang, J. McMillan, A. Matsko, M. Yu, D.-L. Kwong, L. Maleki, and C. Wong, “Mode-locked ultrashort pulse generation from on-chip normal dispersion microresonators,” Phys. Rev. Lett. 114, 053901 (2015).
[Crossref]

Lai, H. M.

Lai, Y.-H.

M.-G. Suh, X. Yi, Y.-H. Lai, S. Leifer, I. S. Grudinin, G. Vasisht, E. C. Martin, M. P. Fitzgerald, G. Doppmann, J. Wang, D. Mawet, S. B. Papp, S. A. Diddams, C. Beichman, and K. Vahala, “Searching for exoplanets using a microresonator astrocomb,” Nat. Photonics 13, 25–30 (2019).
[Crossref]

Lake, D. P.

Lam, C. C.

Lamb, E. S.

D. C. Cole, E. S. Lamb, P. Del’Haye, S. A. Diddams, and S. B. Papp, “Soliton crystals in Kerr resonators,” Nat. Photonics 11, 671–676 (2017).
[Crossref]

Lamont, M.

Lamont, M. R. E.

Lampérez, A. G.

Larger, L.

J. Pfeifle, A. Coillet, R. Henriet, K. Saleh, P. Schindler, C. Weimann, W. Freude, I. V. Balakireva, L. Larger, C. Koos, and Y. K. Chembo, “Optimally coherent Kerr combs generated with crystalline whispering gallery mode resonators for ultrahigh capacity fiber communications,” Phys. Rev. Lett. 114, 093902 (2015).
[Crossref]

R. Henriet, G. Lin, A. Coillet, M. Jacquot, L. Furfaro, L. Larger, and Y. K. Chembo, “Kerr optical frequency comb generation in strontium fluoride whispering-gallery mode resonators with billion quality factor,” Opt. Lett. 40, 1567–1570 (2015).
[Crossref]

Larsson, M.

M. Larsson, K. N. Dinyari, and H. Wang, “Composite optical microcavity of diamond nanopillar and silica microsphere,” Nano Lett. 9, 1447–1450 (2009).
[Crossref]

Latawiec, P.

Latifi, H.

Lau, R. K. W.

A. G. Griffith, R. K. W. Lau, J. Cardenas, Y. Okawachi, A. Mohanty, R. Fain, Y. H. D. Lee, M. Yu, C. T. Phare, C. B. Poitras, A. L. Gaeta, and M. Lipson, “Silicon-chip mid-infrared frequency comb generation,” Nat. Commun. 6, 6299 (2015).
[Crossref]

Lauermann, M.

J. Pfeifle, V. Brasch, M. Lauermann, Y. Yu, D. Wegner, T. Herr, K. Hartinger, P. Schindler, J. Li, D. Hillerkuss, R. Schmogrow, C. Weimann, R. Holzwarth, W. Freude, J. Leuthold, T. J. Kippenberg, and C. Koos, “Coherent terabit communications with microresonator Kerr frequency combs,” Nat. Photonics 8, 375–380 (2014).
[Crossref]

Lauret, J.

M. Lebental, J. Lauret, R. Hierle, and J. Zyss, “Highly directional stadium-shaped polymer microlasers,” Appl. Phys. Lett. 88, 031108 (2006).
[Crossref]

Leaird, D.

Leaird, D. E.

A. Fülöp, M. Mazur, A. Lorences-Riesgo, Ó. B. Helgason, P.-H. Wang, Y. Xuan, D. E. Leaird, M. Qi, P. A. Andrekson, A. M. Weiner, and V. Torres-Company, “High-order coherent communications using mode-locked dark-pulse Kerr combs from microresonators,” Nat. Commun. 9, 1–8 (2018).
[Crossref]

S. Kim, K. Han, C. Wang, J. A. Jaramillo-Villegas, X. Xue, C. Bao, Y. Xuan, D. E. Leaird, A. M. Weiner, and M. Qi, “Dispersion engineering and frequency comb generation in thin silicon nitride concentric microresonators,” Nat. Commun. 8, 372 (2017).
[Crossref]

X. Xue, F. Leo, Y. Xuan, J. A. Jaramillo-Villegas, P.-H. Wang, D. E. Leaird, M. Erkintalo, M. Qi, and A. M. Weiner, “Second-harmonic-assisted four-wave mixing in chip-based microresonator frequency comb generation,” Light Sci. Appl. 6, e16253 (2017).
[Crossref]

C. Bao, J. A. Jaramillo-Villegas, Y. Xuan, D. E. Leaird, M. Qi, and A. M. Weiner, “Observation of fermi-pasta-ulam recurrence induced by breather solitons in an optical microresonator,” Phys. Rev. Lett. 117, 163901 (2016).
[Crossref]

X. Xue, Y. Xuan, H.-J. Kim, J. Wang, D. E. Leaird, M. Qi, and A. M. Weiner, “Programmable single-bandpass photonic RF filter based on Kerr comb from a microring,” J. Lightwave Technol. 32, 3557–3565 (2014).
[Crossref]

F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by-line pulse shaping of on-chip microresonator frequency combs,” Nat. Photonics 5, 770–776 (2011).
[Crossref]

Lebental, M.

M. Lebental, J. Lauret, R. Hierle, and J. Zyss, “Highly directional stadium-shaped polymer microlasers,” Appl. Phys. Lett. 88, 031108 (2006).
[Crossref]

Lecaplain, C.

Lecomte, S.

E. Obrzud, M. Rainer, A. Harutyunyan, M. H. Anderson, J. Liu, M. Geiselmann, B. Chazelas, S. Kundermann, S. Lecomte, M. Cecconi, A. Ghedina, E. Molinari, F. Pepe, F. Wildi, F. Bouchy, T. J. Kippenberg, and T. Herr, “A microphotonic astrocomb,” Nat. Photonics 13, 31–35 (2019).
[Crossref]

E. Obrzud, S. Lecomte, and T. Herr, “Temporal solitons in microresonators driven by optical pulses,” Nat. Photonics 11, 600–607 (2017).
[Crossref]

V. Brasch, M. Geiselmann, S. Lecomte, G. Lihachev, M. H. P. Pfeiffer, M. L. Gorodetsky, and T. J. A. Kippenberg, “Photonic chip based optical frequency comb using soliton induced Cherenkov radiation,” in Conference on Lasers and Electro-Optics (CLEO) (2015), pp. 1–2.

Lee, C. J.

Lee, H.

S. B. Papp, K. Beha, P. Del’Haye, F. Quinlan, H. Lee, K. J. Vahala, and S. A. Diddams, “Microresonator frequency comb optical clock,” Optica 1, 10–14 (2014).
[Crossref]

H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, “Chemically etched ultrahigh-Q wedge-resonator on a silicon chip,” Nat. Photonics 6, 369–373 (2012).
[Crossref]

Lee, J.

Lee, K.

Lee, K. H.

K. H. Lee, T. G. McRae, G. I. Harris, J. Knittel, and W. P. Bowen, “Cooling and control of a cavity optoelectromechanical system,” Phys. Rev. Lett. 104, 123604 (2010).
[Crossref]

Lee, S. H.

K. Y. Yang, D. Y. Oh, S. H. Lee, Q.-F. Yang, X. Yi, B. Shen, H. Wang, and K. Vahala, “Bridging ultrahigh-Q devices and photonic circuits,” Nat. Photonics 12, 297–302 (2018).
[Crossref]

D. T. Spencer, T. Drake, T. C. Briles, J. Stone, L. C. Sinclair, C. Fredrick, Q. Li, D. Westly, B. R. Ilic, A. Bluestone, N. Volet, T. Komljenovic, L. Chang, S. H. Lee, D. Y. Oh, M.-G. Suh, K. Y. Yang, M. H. P. Pfeiffer, T. J. Kippenberg, E. Norberg, L. Theogarajan, K. Vahala, N. R. Newbury, K. Srinivasan, J. E. Bowers, S. A. Diddams, and S. B. Papp, “An optical-frequency synthesizer using integrated photonics,” Nature 557, 81–85 (2018).
[Crossref]

Lee, T. H.

A. Hajimiri and T. H. Lee, “A general theory of phase noise in electrical oscillators,” IEEE J. Solid-State Circuits 33, 179–194 (1998).
[Crossref]

Lee, Y. C.

Lee, Y. H. D.

A. G. Griffith, R. K. W. Lau, J. Cardenas, Y. Okawachi, A. Mohanty, R. Fain, Y. H. D. Lee, M. Yu, C. T. Phare, C. B. Poitras, A. L. Gaeta, and M. Lipson, “Silicon-chip mid-infrared frequency comb generation,” Nat. Commun. 6, 6299 (2015).
[Crossref]

Lefever, R.

L. A. Lugiato and R. Lefever, “Spatial dissipative structures in passive optical systems,” Phys. Rev. Lett. 58, 2209–2211 (1987).
[Crossref]

Legare, F.

Leifer, S.

M.-G. Suh, X. Yi, Y.-H. Lai, S. Leifer, I. S. Grudinin, G. Vasisht, E. C. Martin, M. P. Fitzgerald, G. Doppmann, J. Wang, D. Mawet, S. B. Papp, S. A. Diddams, C. Beichman, and K. Vahala, “Searching for exoplanets using a microresonator astrocomb,” Nat. Photonics 13, 25–30 (2019).
[Crossref]

Leinse, A.

Leo, F.

Y. Wang, F. Leo, J. Fatome, M. Erkintalo, S. G. Murdoch, and S. Coen, “Universal mechanism for the binding of temporal cavity solitons,” Optica 4, 855–863 (2017).
[Crossref]

T. Hansson, F. Leo, M. Erkintalo, S. Coen, I. Ricciardi, M. De Rosa, and S. Wabnitz, “Singly resonant second-harmonic-generation frequency combs,” Phys. Rev. A 95, 013805 (2017).
[Crossref]

X. Xue, F. Leo, Y. Xuan, J. A. Jaramillo-Villegas, P.-H. Wang, D. E. Leaird, M. Erkintalo, M. Qi, and A. M. Weiner, “Second-harmonic-assisted four-wave mixing in chip-based microresonator frequency comb generation,” Light Sci. Appl. 6, e16253 (2017).
[Crossref]

F. Leo, T. Hansson, I. Ricciardi, M. De Rosa, S. Coen, S. Wabnitz, and M. Erkintalo, “Walk-off-induced modulation instability, temporal pattern formation, and frequency comb generation in cavity-enhanced second-harmonic generation,” Phys. Rev. Lett. 116, 033901 (2016).
[Crossref]

F. Leo, T. Hansson, I. Ricciardi, M. De Rosa, S. Coen, S. Wabnitz, and M. Erkintalo, “Frequency-comb formation in doubly resonant second-harmonic generation,” Phys. Rev. A 93, 043831 (2016).
[Crossref]

T. Hansson, F. Leo, M. Erkintalo, J. Anthony, S. Coen, I. Ricciardi, M. D. Rosa, and S. Wabnitz, “Single envelope equation modeling of multi-octave comb arrays in microresonators with quadratic and cubic nonlinearities,” J. Opt. Soc. Am. B 33, 1207–1215 (2016).
[Crossref]

Leonhardt, R.

Lepeshkin, N. N.

A. Schweinsberg, S. Hocdé, N. N. Lepeshkin, R. W. Boyd, C. Chase, and J. E. Fajardo, “An environmental sensor based on an integrated optical whispering gallery mode disk resonator,” Sens. Actuators B Chem. 123, 727–732 (2007).
[Crossref]

Leskela, M.

Letargat, R. J.

A. B. Matsko, A. A. Savchenkov, R. J. Letargat, V. S. Ilchenko, and L. Maleki, “On cavity modification of stimulated Raman scattering,” J. Opt. B 5, 272–278 (2003).
[Crossref]

Lettieri, T.

Leung, P. T.

Leuthold, J.

C. Weimann, P. Schindler, R. Palmer, S. Wolf, D. Bekele, D. Korn, J. Pfeifle, S. Koeber, R. Schmogrow, L. Alloatti, D. Elder, H. Yu, W. Bogaerts, L. Dalton, W. Freude, J. Leuthold, and C. Koos, “Silicon-organic hybrid (SOH) frequency comb sources for terabit/s data transmission,” Opt. Express 22, 3629–3637 (2014).
[Crossref]

J. Pfeifle, V. Brasch, M. Lauermann, Y. Yu, D. Wegner, T. Herr, K. Hartinger, P. Schindler, J. Li, D. Hillerkuss, R. Schmogrow, C. Weimann, R. Holzwarth, W. Freude, J. Leuthold, T. J. Kippenberg, and C. Koos, “Coherent terabit communications with microresonator Kerr frequency combs,” Nat. Photonics 8, 375–380 (2014).
[Crossref]

Lev, B.

P. E. Barclay, K. Srinivasan, O. Painter, B. Lev, and H. Mabuchi, “Integration of fiber-coupled high-Q SiNx microdisks with atom chips,” Appl. Phys. Lett. 89, 131108 (2006).
[Crossref]

Levenson, J. A.

Levy, J.

Levy, J. S.

Li, B.-B.

Li, G.

Li, H.

Li, J.

C. Xu, F. Qin, Q. Zhu, J. Lu, Y. Wang, J. Li, Y. Lin, Q. Cui, Z. Shi, and A. G. Manohari, “Plasmon-enhanced ZnO whispering-gallery mode lasing,” Nano Res. 11, 3050–3064 (2018).
[Crossref]

Z. Chen, G. Lou, H. Zhu, A. Chen, Y. Wu, Y. Ren, J. Li, Z. Qiu, X. Gui, and Z. Tang, “Enhancement of two-photon absorption photoresponse based on whispering gallery modes,” Nanoscale 10, 14047–14054 (2018).
[Crossref]

J. Pfeifle, V. Brasch, M. Lauermann, Y. Yu, D. Wegner, T. Herr, K. Hartinger, P. Schindler, J. Li, D. Hillerkuss, R. Schmogrow, C. Weimann, R. Holzwarth, W. Freude, J. Leuthold, T. J. Kippenberg, and C. Koos, “Coherent terabit communications with microresonator Kerr frequency combs,” Nat. Photonics 8, 375–380 (2014).
[Crossref]

H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, “Chemically etched ultrahigh-Q wedge-resonator on a silicon chip,” Nat. Photonics 6, 369–373 (2012).
[Crossref]

Li, L.

Li, M.

Li, Q.

Z. L. Newman, V. Maurice, T. Drake, J. R. Stone, T. C. Briles, D. T. Spencer, C. Fredrick, Q. Li, D. Westly, B. R. Ilic, B. Shen, M.-G. Suh, K. Y. Yang, C. Johnson, D. M. S. Johnson, L. Hollberg, K. J. Vahala, K. Srinivasan, S. A. Diddams, J. Kitching, S. B. Papp, and M. T. Hummon, “Architecture for the photonic integration of an optical atomic clock,” Optica 6, 680–685 (2019).
[Crossref]

T. E. Drake, T. C. Briles, J. R. Stone, D. T. Spencer, D. R. Carlson, D. D. Hickstein, Q. Li, D. Westly, K. Srinivasan, S. A. Diddams, and S. B. Papp, “Terahertz-rate Kerr-microresonator optical clockwork,” Phys. Rev. X 9, 031023 (2019).
[Crossref]

D. T. Spencer, T. Drake, T. C. Briles, J. Stone, L. C. Sinclair, C. Fredrick, Q. Li, D. Westly, B. R. Ilic, A. Bluestone, N. Volet, T. Komljenovic, L. Chang, S. H. Lee, D. Y. Oh, M.-G. Suh, K. Y. Yang, M. H. P. Pfeiffer, T. J. Kippenberg, E. Norberg, L. Theogarajan, K. Vahala, N. R. Newbury, K. Srinivasan, J. E. Bowers, S. A. Diddams, and S. B. Papp, “An optical-frequency synthesizer using integrated photonics,” Nature 557, 81–85 (2018).
[Crossref]

Q. Li, T. C. Briles, D. A. Westly, T. E. Drake, J. R. Stone, B. R. Ilic, S. A. Diddams, S. B. Papp, and K. Srinivasan, “Stably accessing octave-spanning microresonator frequency combs in the soliton regime,” Optica 4, 193–203 (2017).
[Crossref]

Li, X.

X. Li, C. Sun, B. Xiong, L. Wang, J. Wang, Y. Han, Z. Hao, H. Li, Y. Luo, J. Yan, T. Wei, Y. Zhang, and J. Wang, “Generation of multiple near-visible comb lines in an AlN microring via chi((2)) and chi((3)) optical nonlinearities,” Appl. Phys. Lett. 113, 171106 (2018).
[Crossref]

X. Yi, Q.-F. Yang, X. Zhang, K. Y. Yang, X. Li, and K. Vahala, “Single-mode dispersive waves and soliton microcomb dynamics,” Nat. Commun. 8, 14869 (2017).
[Crossref]

Li, Y.

B. Yao, S.-W. Huang, Y. Liu, A. K. Vinod, C. Choi, M. Hoff, Y. Li, M. Yu, Z. Feng, D.-L. Kwong, Y. Huang, Y. Rao, X. Duan, and C. W. Wong, “Gate-tunable frequency combs in graphene-nitride microresonators,” Nature 558, 410–414 (2018).
[Crossref]

B. Chen, H. Zhong, W. Zhang, Z. Tan, Y. Li, C. Yu, T. Zhai, Y. Bando, S. Yang, and B. Zou, “Highly emissive and color-tunable CuInS2-based colloidal semiconductor nanocrystals: off-stoichiometry effects and improved electroluminescence performance,” Adv. Funct. Mater. 22, 2081–2088 (2012).
[Crossref]

Z.-P. Liu, Y. Li, Y.-F. Xiao, B.-B. Li, X.-F. Jiang, Y. Qin, X.-B. Feng, H. Yang, and Q. Gong, “Direct laser writing of whispering gallery microcavities by two-photon polymerization,” Appl. Phys. Lett. 97, 211105 (2010).
[Crossref]

Liang, H.

Liang, W.

G. Liu, V. S. Ilchenko, T. Su, Y.-C. Ling, S. Feng, K. Shang, Y. Zhang, W. Liang, A. A. Savchenkov, A. B. Matsko, L. Maleki, and S. J. Ben Yoo, “Low-loss prism-waveguide optical coupling for ultrahigh-Q low-index monolithic resonators,” Optica 5, 219–226 (2018).
[Crossref]

W. Liang, A. A. Savchenkov, V. S. Ilchenko, D. Eliyahu, A. B. Matsko, and L. Maleki, “Stabilized C-band Kerr frequency comb,” IEEE Photon. J. 9, 5502411 (2017).
[Crossref]

A. Matsko, W. Liang, A. Savchenkov, D. Eliyahu, and L. Maleki, “Optical Cherenkov radiation in overmoded microresonators,” Opt. Lett. 41, 2907–2910 (2016).
[Crossref]

W. Liang, D. Eliyahu, V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, D. Seidel, and L. Maleki, “High spectral purity Kerr frequency comb radio frequency photonic oscillator,” Nat. Commun. 6, 7957 (2015).
[Crossref]

W. Liang, V. S. Ilchenko, D. Eliyahu, A. A. Savchenkov, A. B. Matsko, D. Seidel, and L. Maleki, “Ultralow noise miniature external cavity semiconductor laser,” Nat. Commun. 6, 7371 (2015).
[Crossref]

W. Liang, A. A. Savchenkov, V. S. Ilchenko, D. Eliyahu, D. Seidel, A. B. Matsko, and L. Maleki, “Generation of a coherent near-infrared Kerr frequency comb in a monolithic microresonator with normal GVD,” Opt. Lett. 39, 2920–2923 (2014).
[Crossref]

A. A. Savchenkov, A. B. Matsko, W. Liang, V. S. Ilchenko, D. Seidel, and L. Maleki, “Kerr frequency comb generation in overmoded resonators,” Opt. Express 20, 27290–27298 (2012).
[Crossref]

A. Matsko, A. Savchenkov, W. Liang, V. Ilchenko, D. Seidel, and L. Maleki, “Mode-locked Kerr frequency combs,” Opt. Lett. 36, 2845–2847 (2011).
[Crossref]

W. Liang, A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, D. Seidel, and L. Maleki, “Generation of near-infrared frequency combs from a MgF2 whispering gallery mode resonator,” Opt. Lett. 36, 2290–2292 (2011).
[Crossref]

L. Maleki, A. Savchenkov, V. Ilchenko, W. Liang, D. Eliyahu, A. Matsko, D. Seidel, N. Wells, J. Camparo, and B. Jaduszliwer, “All-optical integrated rubidium atomic clock,” in Proceedings of the Joint Conference of the IEEE International Frequency Control and the European Frequency and Time Forum (FCS) (IEEE, 2011), pp. 1–5.

L. Maleki, V. S. Ilchenko, A. A. Savchenkov, W. Liang, D. Seidel, and A. B. Matsko, “High performance, miniature hyper-parametric microwave photonic oscillator,” in IEEE International Frequency Control Symposium (IEEE, 2010), pp. 558–563.

A. B. Matsko, A. A. Savchenkov, W. Liang, V. S. Ilchenko, D. Seidel, and L. Maleki, “Whispering gallery mode oscillators and optical comb generators,” in Frequency Standards and Metrology (World Scientific, 2009), pp. 539–558.

Liao, L. S.

Y. Chen Tao, X. D. Wang, and L. S. Liao, “Active whispering-gallery-mode optical microcavity based on self-assembled organic microspheres,” J. Mater. Chem. C 7, 3443–3446 (2019).
[Crossref]

Liao, P.

Liao, S.

Liddy, M. S. Z.

M. J. Burek, Y. Chu, M. S. Z. Liddy, P. Patel, J. Rochman, S. Meesala, W. Hong, Q. Quan, M. D. Lukin, and M. Loncar, “High quality-factor optical nanocavities in bulk single-crystal diamond,” Nat. Commun. 5, 5718 (2014).
[Crossref]

Lihachev, G.

W. Weng, E. Lucas, G. Lihachev, V. E. Lobanov, H. Guo, M. L. Gorodetsky, and T. J. Kippenberg, “Spectral purification of microwave signals with disciplined dissipative Kerr solitons,” Phys. Rev. Lett. 122, 013902 (2019).
[Crossref]

M. Anderson, N. G. Pavlov, J. D. Jost, G. Lihachev, J. Liu, T. Morais, M. Zervas, M. L. Gorodetsky, and T. J. Kippenberg, “Highly efficient coupling of crystalline microresonators to integrated photonic waveguides,” Opt. Lett. 43, 2106–2109 (2018).
[Crossref]

H. Guo, M. Karpov, E. Lucas, A. Kordts, M. H. P. Pfeiffer, V. Brasch, G. Lihachev, V. E. Lobanov, M. L. Gorodetsky, and T. J. Kippenberg, “Universal dynamics and deterministic switching of dissipative Kerr solitons in optical microresonators,” Nat. Phys. 13, 94–102 (2016).
[Crossref]

V. Lobanov, G. Lihachev, N. Pavlov, A. Cherenkov, T. Kippenberg, and M. Gorodetsky, “Harmonization of chaos into a soliton in Kerr frequency combs,” Opt. Express 24, 27382–27394 (2016).
[Crossref]

V. Brasch, M. Geiselmann, T. Herr, G. Lihachev, M. Pfeiffer, M. Gorodetsky, and T. Kippenberg, “Photonic chip-based optical frequency comb using soliton Cherenkov radiation,” Science 351, 357–360 (2016).
[Crossref]

V. Lobanov, G. Lihachev, and M. Gorodetsky, “Generation of platicons and frequency combs in optical microresonators with normal GVD by modulated pump,” Europhys. Lett. 112, 54008 (2015).
[Crossref]

V. Lobanov, G. Lihachev, T. Kippenberg, and M. Gorodetsky, “Frequency combs and platicons in optical microresonators with normal GVD,” Opt. Express 23, 7713–7721 (2015).
[Crossref]

T. Herr, V. Brasch, J. D. Jost, I. Mirgorodskiy, G. Lihachev, M. L. Gorodetsky, and T. J. Kippenberg, “Mode spectrum and temporal soliton formation in optical microresonators,” Phys. Rev. Lett. 113, 123901 (2014).
[Crossref]

V. Brasch, M. Geiselmann, S. Lecomte, G. Lihachev, M. H. P. Pfeiffer, M. L. Gorodetsky, and T. J. A. Kippenberg, “Photonic chip based optical frequency comb using soliton induced Cherenkov radiation,” in Conference on Lasers and Electro-Optics (CLEO) (2015), pp. 1–2.

G. Lihachev, N. Pavlov, S. Koptyaev, I. A. Bilenko, and M. L. Gorodetsky, “Kerr frequency comb and Brillouin lasing in BaF2 whispering gallery mode resonator,” in International Conference Laser Optics (LO) (2016), pp. PD-4.

Lin, G.

G. Lin, S. Diallo, J. M. Dudley, and Y. K. Chembo, “Universal nonlinear scattering in ultra-high Q whispering gallery-mode resonators,” Opt. Express 24, 14880–14894 (2016).
[Crossref]

S. Diallo, G. Lin, R. Martinenghi, L. Furfaro, M. Jacquot, and Y. K. Chembo, “Brillouin lasing in ultra-high-Q lithium fluoride disk resonators,” IEEE Photon. Technol. Lett. 28, 955–958 (2016).
[Crossref]

G. Lin and Y. K. Chembo, “On the dispersion management of fluorite whispering-gallery mode resonators for Kerr optical frequency comb generation in the telecom and mid-infrared range,” Opt. Express 23, 1594–1604 (2015).
[Crossref]

S. Diallo, G. Lin, and Y. K. Chembo, “Giant thermo-optical relaxation oscillations in millimeter-size whispering gallery mode disk resonators,” Opt. Lett. 40, 3834–3837 (2015).
[Crossref]

R. Henriet, G. Lin, A. Coillet, M. Jacquot, L. Furfaro, L. Larger, and Y. K. Chembo, “Kerr optical frequency comb generation in strontium fluoride whispering-gallery mode resonators with billion quality factor,” Opt. Lett. 40, 1567–1570 (2015).
[Crossref]

K. Saleh, R. Henriet, S. Diallo, G. Lin, R. Martinenghi, I. V. Balakireva, P. Salzenstein, A. Coillet, and Y. K. Chembo, “Phase noise performance comparison between optoelectronic oscillators based on optical delay lines and whispering gallery mode resonators,” Opt. Express 22, 32158–32173 (2014).
[Crossref]

G. Lin, S. Diallo, K. Saleh, R. Martinenghi, J.-C. Beugnot, T. Sylvestre, and Y. K. Chembo, “Cascaded Brillouin lasing in monolithic barium fluoride whispering gallery mode resonators,” Appl. Phys. Lett. 105, 231103 (2014).
[Crossref]

Lin, H.

Lin, J.

J. Lin, Y. Xu, Z. Fang, M. Wang, J. Song, N. Wang, L. Qiao, W. Fang, and Y. Cheng, “Fabrication of high-Q lithium niobate microresonators using femtosecond laser micromachining,” Sci. Rep. 5, 8072 (2015).
[Crossref]

Lin, Y.

C. Xu, F. Qin, Q. Zhu, J. Lu, Y. Wang, J. Li, Y. Lin, Q. Cui, Z. Shi, and A. G. Manohari, “Plasmon-enhanced ZnO whispering-gallery mode lasing,” Nano Res. 11, 3050–3064 (2018).
[Crossref]

Lin, Z.

Ling, T.

Ling, Y.-C.

Liow, T. Y.

Lipsanen, H.

Lipson, M.

S. Ramelow, A. Farsi, Z. Vernon, S. Clemmen, X. Ji, J. E. Sipe, M. Liscidini, M. Lipson, and A. L. Gaeta, “Strong nonlinear coupling in a Si3N4 ring resonator,” Phys. Rev. Lett. 122, 153906 (2019).
[Crossref]

A. L. Gaeta, M. Lipson, and T. J. Kippenberg, “Photonic-chip-based frequency combs,” Nat. Photonics 13, 158–169 (2019).
[Crossref]

B. Y. Kim, Y. Okawachi, J. K. Jang, M. Yu, X. Ji, Y. Zhao, C. Joshi, M. Lipson, and A. L. Gaeta, “Turn-key, high-efficiency Kerr comb source,” Opt. Lett. 44, 4475–4478 (2019).
[Crossref]

B. Stern, X. Ji, Y. Okawachi, A. L. Gaeta, and M. Lipson, “Battery-operated integrated frequency comb generator,” Nature 562, 401–405 (2018).
[Crossref]

L. Koehler, P. Chevalier, E. Shim, B. Desiatov, A. Shams-Ansari, M. Piccardo, Y. Okawachi, M. Yu, M. Loncar, M. Lipson, A. L. Gaeta, and F. Capasso, “Direct thermo-optical tuning of silicon microresonators for the mid-infrared,” Opt. Express 26, 34965–34976 (2018).
[Crossref]

M. Yu, Y. Okawachi, A. G. Griffith, N. Picqué, M. Lipson, and A. L. Gaeta, “Silicon-chip-based mid-infrared dual-comb spectroscopy,” Nat. Commun. 9, 1–6 (2018).
[Crossref]

A. Dutt, C. Joshi, X. Ji, J. Cardenas, Y. Okawachi, K. Luke, A. L. Gaeta, and M. Lipson, “On-chip dual-comb source for spectroscopy,” Sci. Adv. 4, e1701858 (2018).
[Crossref]

J. K. Jang, A. Klenner, X. Ji, Y. Okawachi, M. Lipson, and A. L. Gaeta, “Synchronization of coupled optical microresonators,” Nat. Photonics 12, 688–693 (2018).
[Crossref]

T. J. Kippenberg, A. L. Gaeta, M. Lipson, and M. L. Gorodetsky, “Dissipative Kerr solitons in optical microresonators,” Science 361, eaan8083 (2018).
[Crossref]

M. Yu, J. K. Jang, Y. Okawachi, A. G. Griffith, K. Luke, S. A. Miller, X. Ji, M. Lipson, and A. L. Gaeta, “Breather soliton dynamics in microresonators,” Nat. Commun. 8, 14569 (2017).
[Crossref]

S. A. Miller, M. Yu, X. Ji, A. G. Griffith, J. Cardenas, A. L. Gaeta, and M. Lipson, “Low-loss silicon platform for broadband mid-infrared photonics,” Optica 4, 707–712 (2017).
[Crossref]

A. G. Griffith, M. Yu, Y. Okawachi, J. Cardenas, A. Mohanty, A. L. Gaeta, and M. Lipson, “Coherent mid-infrared frequency combs in silicon-microresonators in the presence of Raman effects,” Opt. Express 24, 13044–13050 (2016).
[Crossref]

C. Joshi, J. K. Jang, K. Luke, X. Ji, S. A. Miller, A. Klenner, Y. Okawachi, M. Lipson, and A. L. Gaeta, “Thermally controlled comb generation and soliton modelocking in microresonators,” Opt. Lett. 41, 2565–2568 (2016).
[Crossref]

M. Yu, Y. Okawachi, A. G. Griffith, M. Lipson, and A. L. Gaeta, “Mode-locked mid-infrared frequency combs in a silicon microresonator,” Optica 3, 854–860 (2016).
[Crossref]

A. G. Griffith, R. K. W. Lau, J. Cardenas, Y. Okawachi, A. Mohanty, R. Fain, Y. H. D. Lee, M. Yu, C. T. Phare, C. B. Poitras, A. L. Gaeta, and M. Lipson, “Silicon-chip mid-infrared frequency comb generation,” Nat. Commun. 6, 6299 (2015).
[Crossref]

K. Luke, Y. Okawachi, M. R. E. Lamont, A. L. Gaeta, and M. Lipson, “Broadband mid-infrared frequency comb generation in a Si3N4 microresonator,” Opt. Lett. 40, 4823–4826 (2015).
[Crossref]

Y. Okawachi, M. Lamont, K. Luke, D. Carvalho, M. Yu, M. Lipson, and A. Gaeta, “Bandwidth shaping of microresonator-based frequency combs via dispersion engineering,” Opt. Lett. 39, 3535–3538 (2014).
[Crossref]

K. Saha, Y. Okawachi, B. Shim, J. Levy, R. Salem, A. Johnson, M. Foster, M. Lamont, M. Lipson, and A. Gaeta, “Modelocking and femtosecond pulse generation in chip-based frequency combs,” Opt. Express 21, 1335–1343 (2013).
[Crossref]

K. Luke, A. Dutt, C. B. Poitras, and M. Lipson, “Overcoming Si3N4 film stress limitations for high quality factor ring resonators,” Opt. Express 21, 22829–22833 (2013).
[Crossref]

D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics,” Nat. Photonics 7, 597–607 (2013).
[Crossref]

R. Halir, Y. Okawachi, J. S. Levy, M. A. Foster, M. Lipson, and A. L. Gaeta, “Ultrabroadband supercontinuum generation in a CMOS-compatible platform,” Opt. Lett. 37, 1685–1687 (2012).
[Crossref]

J. S. Levy, K. Saha, Y. Okawachi, M. A. Foster, A. L. Gaeta, and M. Lipson, “High-performance silicon-nitride-based multiple-wavelength source,” IEEE Photon. Technol. Lett. 24, 1375–1377 (2012).
[Crossref]

Y. Okawachi, K. Saha, J. S. Levy, Y. H. Wen, M. Lipson, and A. L. Gaeta, “Octave-spanning frequency comb generation in a silicon nitride chip,” Opt. Lett. 36, 3398–3400 (2011).
[Crossref]

J. S. Levy, M. A. Foster, A. L. Gaeta, and M. Lipson, “Harmonic generation in silicon nitride ring resonators,” Opt. Express 19, 11415–11421 (2011).
[Crossref]

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4, 37–40 (2010).
[Crossref]

J. Cardenas, C. B. Poitras, J. T. Robinson, K. Preston, L. Chen, and M. Lipson, “Low loss etchless silicon photonic waveguides,” Opt. Express 17, 4752–4757 (2009).
[Crossref]

A. Gondarenko, J. S. Levy, and M. Lipson, “High confinement micron-scale silicon nitride high Q ring resonator,” Opt. Express 17, 11366–11370 (2009).
[Crossref]

Q. Xu, S. Manipatruni, B. Schmidt, J. Shakya, and M. Lipson, “12.5 Gbit/s carrier-injection-based silicon micro-ring silicon modulators,” Opt. Express 15, 430–436 (2007).
[Crossref]

Q. Xu and M. Lipson, “All-optical logic based on silicon micro-ring resonators,” Opt. Express 15, 924–929 (2007).
[Crossref]

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441, 960–963 (2006).
[Crossref]

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435, 325–327 (2005).
[Crossref]

V. Almeida, C. Barrios, R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431, 1081–1084 (2004).
[Crossref]

V. Almeida and M. Lipson, “Optical bistability on a silicon chip,” Opt. Lett. 29, 2387–2389 (2004).
[Crossref]

Liscidini, M.

S. Ramelow, A. Farsi, Z. Vernon, S. Clemmen, X. Ji, J. E. Sipe, M. Liscidini, M. Lipson, and A. L. Gaeta, “Strong nonlinear coupling in a Si3N4 ring resonator,” Phys. Rev. Lett. 122, 153906 (2019).
[Crossref]

M. Ferrera, L. Razzari, D. Duchesne, R. Morandotti, Z. Yang, M. Liscidini, J. E. Sipe, S. Chu, B. E. Little, and D. J. Moss, “Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures,” Nat. Photonics 2, 737–740 (2008).
[Crossref]

Little, B. E.

H. Bao, A. Cooper, M. Rowley, L. Di Lauro, J. S. T. Gongora, S. T. Chu, B. E. Little, G.-L. Oppo, R. Morandotti, D. J. Moss, B. Wetzel, M. Peccianti, and A. Pasquazi, “Laser cavity-soliton microcombs,” Nat. Photonics 13, 384–389 (2019).
[Crossref]

J. Wu, X. Xu, T. G. Nguyen, S. T. Chu, B. E. Little, R. Morandotti, A. Mitchell, and D. J. Moss, “RF photonics: an optical microcombs’ perspective,” IEEE J. Sel. Top. Quantum Electron. 24, 6101020 (2018).
[Crossref]

X. Xu, J. Wu, M. Shoeiby, T. G. Nguyen, S. T. Chu, B. E. Little, R. Morandotti, A. Mitchell, and D. J. Moss, “Reconfigurable broadband microwave photonic intensity differentiator based on an integrated optical frequency comb source,” APL Photon. 2, 096104 (2017).
[Crossref]

T. G. Nguyen, M. Shoeiby, S. T. Chu, B. E. Little, R. Morandotti, A. Mitchell, and D. J. Moss, “Integrated frequency comb source based Hilbert transformer for wideband microwave photonic phase analysis,” Opt. Express 23, 22087–22097 (2015).
[Crossref]

L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. E. Little, and D. J. Moss, “CMOS-compatible integrated optical hyper-parametric oscillator,” Nat. Photonics 4, 41–45 (2010).
[Crossref]

A. Pasquazi, Y. Park, J. Azana, F. Legare, R. Morandotti, B. E. Little, S. T. Chu, and D. J. Moss, “Efficient wavelength conversion and net parametric gain via four wave mixing in a high index doped silica waveguide,” Opt. Express 18, 7634–7641 (2010).
[Crossref]

M. Ferrera, D. Duchesne, L. Razzari, M. Peccianti, R. Morandotti, P. Cheben, S. Janz, D.-X. Xu, B. E. Little, S. Chu, and D. J. Moss, “Low power four wave mixing in an integrated, micro-ring resonator with Q = 1.2 million,” Opt. Express 17, 14098–14103 (2009).
[Crossref]

M. Ferrera, L. Razzari, D. Duchesne, R. Morandotti, Z. Yang, M. Liscidini, J. E. Sipe, S. Chu, B. E. Little, and D. J. Moss, “Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures,” Nat. Photonics 2, 737–740 (2008).
[Crossref]

B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, “Ultra-compact Si-SiO2 microring resonator optical channel dropping filters,” IEEE Photon. Technol. Lett. 10, 549–551 (1998).
[Crossref]

Liu, D.

A. K. Mallik, G. Farrell, D. Liu, V. Kavungal, Q. Wu, and Y. Semenova, “Silica gel coated spherical micro resonator for ultra-high sensitivity detection of ammonia gas concentration in air,” Sci. Rep. 8, 1620 (2018).
[Crossref]

Liu, G.

Liu, J.

D. Martyshkin, V. Fedorov, T. Kesterson, S. Vasilyev, H. Gu, J. Liu, W. Weng, K. Vodopyanov, T. J. Kippenberg, and S. Mirov, “Visible-near-middle infrared spanning supercontinuum generation in a silicon nitride (Si3N4) waveguide,” Opt. Mater. Express 9, 2553–2559 (2019).
[Crossref]

E. Obrzud, M. Rainer, A. Harutyunyan, M. H. Anderson, J. Liu, M. Geiselmann, B. Chazelas, S. Kundermann, S. Lecomte, M. Cecconi, A. Ghedina, E. Molinari, F. Pepe, F. Wildi, F. Bouchy, T. J. Kippenberg, and T. Herr, “A microphotonic astrocomb,” Nat. Photonics 13, 31–35 (2019).
[Crossref]

J. Liu, A. S. Raja, M. H. P. Pfeiffer, C. Herkommer, H. Guo, M. Zervas, M. Geiselmann, and T. J. Kippenberg, “Double inverse nanotapers for efficient light coupling to integrated photonic devices,” Opt. Lett. 43, 3200–3203 (2018).
[Crossref]

M. H. P. Pfeiffer, C. Herkommer, J. Liu, T. Morais, M. Zervas, M. Geiselmann, and T. J. Kippenberg, “Photonic Damascene process for low-loss, high-confinement silicon nitride waveguides,” IEEE J. Sel. Top. Quantum Electron. 24, 6101411 (2018).
[Crossref]

M. Anderson, N. G. Pavlov, J. D. Jost, G. Lihachev, J. Liu, T. Morais, M. Zervas, M. L. Gorodetsky, and T. J. Kippenberg, “Highly efficient coupling of crystalline microresonators to integrated photonic waveguides,” Opt. Lett. 43, 2106–2109 (2018).
[Crossref]

M. H. P. Pfeiffer, C. Herkommer, J. Liu, H. Guo, M. Karpov, E. Lucas, M. Zervas, and T. J. Kippenberg, “Octave-spanning dissipative Kerr soliton frequency combs in Si3N4 microresonators,” Optica 4, 684–691 (2017).
[Crossref]

H. Guo, E. Lucas, M. H. P. Pfeiffer, M. Karpov, M. Anderson, J. Liu, M. Geiselmann, J. D. Jost, and T. J. Kippenberg, “Intermode breather solitons in optical microresonators,” Phys. Rev. X 7, 041055 (2017).
[Crossref]

M. H. P. Pfeiffer, J. Liu, M. Geiselmann, and T. J. Kippenberg, “Coupling ideality of integrated planar high-Q microresonators,” Phys. Rev. Appl. 7, 024026 (2017).
[Crossref]

Liu, L.

Liu, P.

Liu, S.

Y. Zheng, Z. Fang, S. Liu, Y. Cheng, and X. Chen, “High-Q exterior whispering-gallery modes in a double-layer crystalline microdisk resonator,” Phys. Rev. Lett. 122, 253902 (2019).
[Crossref]

Liu, X.

Liu, Y.

B. Yao, S.-W. Huang, Y. Liu, A. K. Vinod, C. Choi, M. Hoff, Y. Li, M. Yu, Z. Feng, D.-L. Kwong, Y. Huang, Y. Rao, X. Duan, and C. W. Wong, “Gate-tunable frequency combs in graphene-nitride microresonators,” Nature 558, 410–414 (2018).
[Crossref]

Z. Liu, Y. Chen, L. Zhao, Y. Zhang, Y. Wei, H. Li, Y. Liu, Y. Zhang, E. Zhao, X. Yang, J. Zhang, and L. Yuan, “Single-fiber tweezers applied for dye lasing in a fluid droplet,” Opt. Lett. 41, 2966–2969 (2016).
[Crossref]

X. Xue, Y. Xuan, P.-H. Wang, Y. Liu, D. Leaird, M. Qi, and A. Weiner, “Normal-dispersion microcombs enabled by controllable mode interactions,” Laser Photon. Rev. 9, L23–L28 (2015).
[Crossref]

Liu, Z.

Liu, Z.-P.

Z.-P. Liu, Y. Li, Y.-F. Xiao, B.-B. Li, X.-F. Jiang, Y. Qin, X.-B. Feng, H. Yang, and Q. Gong, “Direct laser writing of whispering gallery microcavities by two-photon polymerization,” Appl. Phys. Lett. 97, 211105 (2010).
[Crossref]

Lo, G. Q.

Lobanov, V.

Lobanov, V. E.

W. Weng, E. Lucas, G. Lihachev, V. E. Lobanov, H. Guo, M. L. Gorodetsky, and T. J. Kippenberg, “Spectral purification of microwave signals with disciplined dissipative Kerr solitons,” Phys. Rev. Lett. 122, 013902 (2019).
[Crossref]

V. E. Lobanov, A. V. Cherenkov, A. E. Shitikov, I. A. Bilenko, and M. L. Gorodetsky, “Dynamics of platicons due to third-order dispersion,” Eur. Phys. J. D 71, 185 (2017).
[Crossref]

A. V. Cherenkov, N. M. Kondratiev, V. E. Lobanov, A. E. Shitikov, D. V. Skryabin, and M. L. Gorodetsky, “Raman-Kerr frequency combs in microresonators with normal dispersion,” Opt. Express 25, 31148–31158 (2017).
[Crossref]

H. Guo, M. Karpov, E. Lucas, A. Kordts, M. H. P. Pfeiffer, V. Brasch, G. Lihachev, V. E. Lobanov, M. L. Gorodetsky, and T. J. Kippenberg, “Universal dynamics and deterministic switching of dissipative Kerr solitons in optical microresonators,” Nat. Phys. 13, 94–102 (2016).
[Crossref]

Logan, A. D.

Loncar, M.

M. Zhang, B. Buscaino, C. Wang, A. Shams-Ansari, C. Reimer, R. Zhu, J. M. Kahn, and M. Loncar, “Broadband electro-optic frequency comb generation in a lithium niobate microring resonator,” Nature 568, 373–377 (2019).
[Crossref]

C. Wang, M. Zhang, M. Yu, R. Zhu, H. Hu, and M. Loncar, “Monolithic lithium niobate photonic circuits for Kerr frequency comb generation and modulation,” Nat. Commun. 10, 978 (2019).
[Crossref]

L. Koehler, P. Chevalier, E. Shim, B. Desiatov, A. Shams-Ansari, M. Piccardo, Y. Okawachi, M. Yu, M. Loncar, M. Lipson, A. L. Gaeta, and F. Capasso, “Direct thermo-optical tuning of silicon microresonators for the mid-infrared,” Opt. Express 26, 34965–34976 (2018).
[Crossref]

P. Latawiec, V. Venkataraman, A. Shams-Ansari, M. Markham, and M. Lončar, “Integrated diamond Raman laser pumped in the near-visible,” Opt. Lett. 43, 318–321 (2018).
[Crossref]

M. J. Burek, Y. Chu, M. S. Z. Liddy, P. Patel, J. Rochman, S. Meesala, W. Hong, Q. Quan, M. D. Lukin, and M. Loncar, “High quality-factor optical nanocavities in bulk single-crystal diamond,” Nat. Commun. 5, 5718 (2014).
[Crossref]

B. J. M. Hausmann, I. Bulu, V. Venkataraman, P. Deotare, and M. Loncar, “Diamond nonlinear photonics,” Nat. Photonics 8, 369–374 (2014).
[Crossref]

B. J. M. Hausmann, I. B. Bulu, P. B. Deotare, M. McCutcheon, V. Venkataraman, M. L. Markham, D. J. Twitchen, and M. Loncar, “Integrated high-quality factor optical resonators in diamond,” Nano Lett. 13, 1898–1902 (2013).
[Crossref]

Z.-F. Bi, A. W. Rodriguez, H. Hashemi, D. Duchesne, M. Loncar, K.-M. Wang, and S. G. Johnson, “High-efficiency second-harmonic generation in doubly-resonant χ(2) microring resonators,” Opt. Express 20, 7526–7543 (2012).
[Crossref]

Long, G.-L.

T. Wang, M. Wang, Y.-Q. Hu, and G.-L. Long, “Optothermal control of the Raman gain enhanced ringing in microresonators,” Europhys. Lett. 124, 14002 (2018).
[Crossref]

G. Zhao, Ş. K. Özdemir, T. Wang, L. Xu, E. King, G.-L. Long, and L. Yang, “Raman lasing and Fano lineshapes in a packaged fiber-coupled whispering-gallery-mode microresonator,” Sci. Bull. 62(12), 875–878 (2017).
[Crossref]

Long, M.

Lorences-Riesgo, A.

A. Fülöp, M. Mazur, A. Lorences-Riesgo, Ó. B. Helgason, P.-H. Wang, Y. Xuan, D. E. Leaird, M. Qi, P. A. Andrekson, A. M. Weiner, and V. Torres-Company, “High-order coherent communications using mode-locked dark-pulse Kerr combs from microresonators,” Nat. Commun. 9, 1–8 (2018).
[Crossref]

A. Fülöp, M. Mazur, A. Lorences-Riesgo, T. Eriksson, P.-H. Wang, D. Leaird, M. Qi, P. A. Andrekson, A. M. Weiner, and V. Torres-Company, “Long-haul coherent co