Abstract

Application of electric field and moderately elevated temperature depletes the side facing anode from alkali present in glasses. The change of composition of the treated glass results in variation of refractive index depth profile within the treated glass. Spectroscopic ellipsometry is employed for characterization of optical properties of glass treated in different conditions. The results of optical characterization are verified by secondary ion mass spectroscopy. It is found that the refractive index profile obtained from ellipsometry has a maximum value higher than the one of untreated glass. The obtained refractive index profiles are in very good agreement with concentration profiles.

© 2019 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Planar waveguides in multicomponent glasses fabricated by field-driven differential drift of cations

A. L. R. Brennand and J. S. Wilkinson
Opt. Lett. 27(11) 906-908 (2002)

References

  • View by:
  • |
  • |
  • |

  1. E. C. Ziemath, V. D. Araujo, and C. A. Escanhoela, “Compositional and structural changes at the anodic surface of thermally poled soda-lime float glass,” J. Appl. Phys. 104, 054912 (2008).
    [Crossref]
  2. A. V. Redkov, V. G. Melehin, D. V. Raskhodchikov, I. V. Reshetov, D. K. Taganatsev, V. V. Zhurikhina, and A. A. Lipovski, “Modifications of poled silicate glass under heat treatment,” J. Non-Cryst. Solids 503–504, 279–283 (2019).
    [Crossref]
  3. R. Oven, “Measurement of planar refractive index profiles with rapid variations in glass using interferometry and total variation regularized differentiation,” J. Mod. Opt. 62, S53–S60 (2015).
    [Crossref]
  4. M. Dussauze, E. I. Kamitsos, E. Fargin, and V. Rodriguez, “Refractive index distribution in the non-linear optical layer of thermally poled oxide glasses,” Chem. Phys. Lett. 470, 63–66 (2009).
    [Crossref]
  5. J. Luo, H. He, N. J. Podraza, L. Qian, C. G. Pantano, and S. H. Kim, “Thermal poling of soda-lime silica glass with nonblocking electrodes—part 1: effects of sodium ion migration and water ingress on glass surface structure,” J. Am. Ceram. Soc. 99, 1221–1260 (2016).
    [Crossref]
  6. A. L. R. Brennand and J. S. Wilkinson, “Planar waveguides in multicomponent glasses fabricated by field-driven differential drift of cations,” Opt. Lett. 27, 906–908 (2002).
    [Crossref]
  7. L. A. H. Fleming, D. M. Goldie, and A. Abdolvand, “Imprinting of glass,” Opt. Mater. Express 5, 1674–1681 (2015).
    [Crossref]
  8. L. A. H. Fleming, S. Wackerow, A. C. Hourd, W. A. Gillespie, G. Seifert, and A. Abdolvand, “Diffractive optical element embedded in silver-doped nanocomposite glass,” Opt. Express 20, 22579–22584 (2012).
    [Crossref]
  9. A. Lipovskii, V. Zhurikhina, and D. Taganatsev, “2D-structuring of glass via thermal poling: a short review,” Int. J. Appl. Glass Sci. 9, 24–28 (2018).
    [Crossref]
  10. G. Yang, M. Dussauze, V. Rodriguez, F. Adamietz, N. Marquestaut, K. L. N. Deepak, D. Grojo, O. Uteza, P. Delaporte, T. Cardinal, and E. Fargin, “Large scaled micro-structured optical second harmonic generation response imprinted on glass surface by thermal poling,” J. Appl. Phys. 118, 043105 (2015).
    [Crossref]
  11. S. E. Alexandrov, A. A. Lipovskii, A. A. Osipov, I. V. Reduto, and D. K. Taganatsev, “Plasma-etching of 2D-poled glasses: a route to dry lithography,” Appl. Phys. Lett. 111, 111604 (2017).
    [Crossref]
  12. I. Reduto, A. Kamenskii, A. Redkov, and A. Lipovskii, “Mechanisms and peculiarities of electric field imprinting in glasses,” J. Electrochem. Soc. 164, E385–E390 (2017).
    [Crossref]
  13. I. Reduto, A. Kamenskii, P. Brunkov, V. Zhurikhina, Y. Svirko, and A. Lipovskii, “Relief micro- and nanostructures by the reactive ion and chemical etching of poled glasses,” Opt. Mater. Express 9, 3059–3068 (2019).
    [Crossref]
  14. V. Janicki, I. Fabijanić, B. Okorn, P. Dubček, and J. Sancho-Parramon, “Selective electric field assisted dissolution as a technique for micro and nano structuring of metal thin films,” Appl. Phys. Lett. 113, 183508 (2018).
    [Crossref]
  15. F. Mezzapesa, I. C. S. Carvalho, P. Kazansky, O. Deparis, M. Kawazu, and K. Sakaguchi, “Bleaching of sol-gel glass film with embedded gold nanoparticles by thermal poling,” Appl. Phys. Lett. 89, 183121 (2006).
    [Crossref]
  16. F. Gonella, P. Canton, E. Cattaruzza, A. Quaranta, C. Sada, and A. Vomiero, “Field-assisted ion diffusion of transition metals for the synthesis of nanocomposite silica glass,” Mater. Sci. Eng. C 26, 1087–1091 (2006).
    [Crossref]
  17. E. Cattaruzza, F. Gonella, S. Ali, C. Sada, and A. Quaranta, “Silver and gold doping of SiO2 glass by solid-state field-assisted dissolution,” J. Non-Cryst. Solids 355, 1136–1139 (2009).
    [Crossref]
  18. N. Takamure, A. Kondyurin, and D. R. McKenzie, “Electric field assisted ion exchange of silver in soda-lime glass: a study of ion depletion layers and interactions with potassium,” J. Appl. Phys. 125, 175104 (2019).
    [Crossref]
  19. R. G. Gossink, “SIMS analysis of a field-assisted glass-to-metal seal,” J. Am. Ceram. Soc. 61, 539–540 (1978).
    [Crossref]
  20. T. G. Alley and S. R. J. Brueck, “Secondary ion mass spectrometry study of space-charge formation in thermally poled fused silica,” J. Appl. Phys. 86, 6634–6640 (1999).
    [Crossref]
  21. S. Ali, Y. Iqbal, M. Ajmal, F. Gonella, E. Cattaruzza, and A. Quaranta, “Field-driven diffusion of transition metal and rare-earth ions in silicate glasses,” J. Non-Cryst. Solids 405, 39–44 (2014).
    [Crossref]
  22. R. Oven, “Measurement of the refractive index of electrically poled soda-lime glass using leaky modes,” Appl. Opt. 55, 9123–9130 (2016).
    [Crossref]
  23. A. N. Miliou, R. Srivastava, and R. V. Ramaswamy, “Modelling of the index change in K+-Na+ ion-exchanged glass,” Appl. Opt. 30, 674–681 (1991).
    [Crossref]
  24. V. Janicki, J. Sancho-Parramon, and H. Zorc, “Refractive index profile modelling of dielectric inhomogeneous coatings using effective medium theories,” Thin Solid Films 516, 3368–3373 (2008).
    [Crossref]

2019 (3)

A. V. Redkov, V. G. Melehin, D. V. Raskhodchikov, I. V. Reshetov, D. K. Taganatsev, V. V. Zhurikhina, and A. A. Lipovski, “Modifications of poled silicate glass under heat treatment,” J. Non-Cryst. Solids 503–504, 279–283 (2019).
[Crossref]

I. Reduto, A. Kamenskii, P. Brunkov, V. Zhurikhina, Y. Svirko, and A. Lipovskii, “Relief micro- and nanostructures by the reactive ion and chemical etching of poled glasses,” Opt. Mater. Express 9, 3059–3068 (2019).
[Crossref]

N. Takamure, A. Kondyurin, and D. R. McKenzie, “Electric field assisted ion exchange of silver in soda-lime glass: a study of ion depletion layers and interactions with potassium,” J. Appl. Phys. 125, 175104 (2019).
[Crossref]

2018 (2)

V. Janicki, I. Fabijanić, B. Okorn, P. Dubček, and J. Sancho-Parramon, “Selective electric field assisted dissolution as a technique for micro and nano structuring of metal thin films,” Appl. Phys. Lett. 113, 183508 (2018).
[Crossref]

A. Lipovskii, V. Zhurikhina, and D. Taganatsev, “2D-structuring of glass via thermal poling: a short review,” Int. J. Appl. Glass Sci. 9, 24–28 (2018).
[Crossref]

2017 (2)

S. E. Alexandrov, A. A. Lipovskii, A. A. Osipov, I. V. Reduto, and D. K. Taganatsev, “Plasma-etching of 2D-poled glasses: a route to dry lithography,” Appl. Phys. Lett. 111, 111604 (2017).
[Crossref]

I. Reduto, A. Kamenskii, A. Redkov, and A. Lipovskii, “Mechanisms and peculiarities of electric field imprinting in glasses,” J. Electrochem. Soc. 164, E385–E390 (2017).
[Crossref]

2016 (2)

J. Luo, H. He, N. J. Podraza, L. Qian, C. G. Pantano, and S. H. Kim, “Thermal poling of soda-lime silica glass with nonblocking electrodes—part 1: effects of sodium ion migration and water ingress on glass surface structure,” J. Am. Ceram. Soc. 99, 1221–1260 (2016).
[Crossref]

R. Oven, “Measurement of the refractive index of electrically poled soda-lime glass using leaky modes,” Appl. Opt. 55, 9123–9130 (2016).
[Crossref]

2015 (3)

R. Oven, “Measurement of planar refractive index profiles with rapid variations in glass using interferometry and total variation regularized differentiation,” J. Mod. Opt. 62, S53–S60 (2015).
[Crossref]

G. Yang, M. Dussauze, V. Rodriguez, F. Adamietz, N. Marquestaut, K. L. N. Deepak, D. Grojo, O. Uteza, P. Delaporte, T. Cardinal, and E. Fargin, “Large scaled micro-structured optical second harmonic generation response imprinted on glass surface by thermal poling,” J. Appl. Phys. 118, 043105 (2015).
[Crossref]

L. A. H. Fleming, D. M. Goldie, and A. Abdolvand, “Imprinting of glass,” Opt. Mater. Express 5, 1674–1681 (2015).
[Crossref]

2014 (1)

S. Ali, Y. Iqbal, M. Ajmal, F. Gonella, E. Cattaruzza, and A. Quaranta, “Field-driven diffusion of transition metal and rare-earth ions in silicate glasses,” J. Non-Cryst. Solids 405, 39–44 (2014).
[Crossref]

2012 (1)

2009 (2)

M. Dussauze, E. I. Kamitsos, E. Fargin, and V. Rodriguez, “Refractive index distribution in the non-linear optical layer of thermally poled oxide glasses,” Chem. Phys. Lett. 470, 63–66 (2009).
[Crossref]

E. Cattaruzza, F. Gonella, S. Ali, C. Sada, and A. Quaranta, “Silver and gold doping of SiO2 glass by solid-state field-assisted dissolution,” J. Non-Cryst. Solids 355, 1136–1139 (2009).
[Crossref]

2008 (2)

E. C. Ziemath, V. D. Araujo, and C. A. Escanhoela, “Compositional and structural changes at the anodic surface of thermally poled soda-lime float glass,” J. Appl. Phys. 104, 054912 (2008).
[Crossref]

V. Janicki, J. Sancho-Parramon, and H. Zorc, “Refractive index profile modelling of dielectric inhomogeneous coatings using effective medium theories,” Thin Solid Films 516, 3368–3373 (2008).
[Crossref]

2006 (2)

F. Mezzapesa, I. C. S. Carvalho, P. Kazansky, O. Deparis, M. Kawazu, and K. Sakaguchi, “Bleaching of sol-gel glass film with embedded gold nanoparticles by thermal poling,” Appl. Phys. Lett. 89, 183121 (2006).
[Crossref]

F. Gonella, P. Canton, E. Cattaruzza, A. Quaranta, C. Sada, and A. Vomiero, “Field-assisted ion diffusion of transition metals for the synthesis of nanocomposite silica glass,” Mater. Sci. Eng. C 26, 1087–1091 (2006).
[Crossref]

2002 (1)

1999 (1)

T. G. Alley and S. R. J. Brueck, “Secondary ion mass spectrometry study of space-charge formation in thermally poled fused silica,” J. Appl. Phys. 86, 6634–6640 (1999).
[Crossref]

1991 (1)

1978 (1)

R. G. Gossink, “SIMS analysis of a field-assisted glass-to-metal seal,” J. Am. Ceram. Soc. 61, 539–540 (1978).
[Crossref]

Abdolvand, A.

Adamietz, F.

G. Yang, M. Dussauze, V. Rodriguez, F. Adamietz, N. Marquestaut, K. L. N. Deepak, D. Grojo, O. Uteza, P. Delaporte, T. Cardinal, and E. Fargin, “Large scaled micro-structured optical second harmonic generation response imprinted on glass surface by thermal poling,” J. Appl. Phys. 118, 043105 (2015).
[Crossref]

Ajmal, M.

S. Ali, Y. Iqbal, M. Ajmal, F. Gonella, E. Cattaruzza, and A. Quaranta, “Field-driven diffusion of transition metal and rare-earth ions in silicate glasses,” J. Non-Cryst. Solids 405, 39–44 (2014).
[Crossref]

Alexandrov, S. E.

S. E. Alexandrov, A. A. Lipovskii, A. A. Osipov, I. V. Reduto, and D. K. Taganatsev, “Plasma-etching of 2D-poled glasses: a route to dry lithography,” Appl. Phys. Lett. 111, 111604 (2017).
[Crossref]

Ali, S.

S. Ali, Y. Iqbal, M. Ajmal, F. Gonella, E. Cattaruzza, and A. Quaranta, “Field-driven diffusion of transition metal and rare-earth ions in silicate glasses,” J. Non-Cryst. Solids 405, 39–44 (2014).
[Crossref]

E. Cattaruzza, F. Gonella, S. Ali, C. Sada, and A. Quaranta, “Silver and gold doping of SiO2 glass by solid-state field-assisted dissolution,” J. Non-Cryst. Solids 355, 1136–1139 (2009).
[Crossref]

Alley, T. G.

T. G. Alley and S. R. J. Brueck, “Secondary ion mass spectrometry study of space-charge formation in thermally poled fused silica,” J. Appl. Phys. 86, 6634–6640 (1999).
[Crossref]

Araujo, V. D.

E. C. Ziemath, V. D. Araujo, and C. A. Escanhoela, “Compositional and structural changes at the anodic surface of thermally poled soda-lime float glass,” J. Appl. Phys. 104, 054912 (2008).
[Crossref]

Brennand, A. L. R.

Brueck, S. R. J.

T. G. Alley and S. R. J. Brueck, “Secondary ion mass spectrometry study of space-charge formation in thermally poled fused silica,” J. Appl. Phys. 86, 6634–6640 (1999).
[Crossref]

Brunkov, P.

Canton, P.

F. Gonella, P. Canton, E. Cattaruzza, A. Quaranta, C. Sada, and A. Vomiero, “Field-assisted ion diffusion of transition metals for the synthesis of nanocomposite silica glass,” Mater. Sci. Eng. C 26, 1087–1091 (2006).
[Crossref]

Cardinal, T.

G. Yang, M. Dussauze, V. Rodriguez, F. Adamietz, N. Marquestaut, K. L. N. Deepak, D. Grojo, O. Uteza, P. Delaporte, T. Cardinal, and E. Fargin, “Large scaled micro-structured optical second harmonic generation response imprinted on glass surface by thermal poling,” J. Appl. Phys. 118, 043105 (2015).
[Crossref]

Carvalho, I. C. S.

F. Mezzapesa, I. C. S. Carvalho, P. Kazansky, O. Deparis, M. Kawazu, and K. Sakaguchi, “Bleaching of sol-gel glass film with embedded gold nanoparticles by thermal poling,” Appl. Phys. Lett. 89, 183121 (2006).
[Crossref]

Cattaruzza, E.

S. Ali, Y. Iqbal, M. Ajmal, F. Gonella, E. Cattaruzza, and A. Quaranta, “Field-driven diffusion of transition metal and rare-earth ions in silicate glasses,” J. Non-Cryst. Solids 405, 39–44 (2014).
[Crossref]

E. Cattaruzza, F. Gonella, S. Ali, C. Sada, and A. Quaranta, “Silver and gold doping of SiO2 glass by solid-state field-assisted dissolution,” J. Non-Cryst. Solids 355, 1136–1139 (2009).
[Crossref]

F. Gonella, P. Canton, E. Cattaruzza, A. Quaranta, C. Sada, and A. Vomiero, “Field-assisted ion diffusion of transition metals for the synthesis of nanocomposite silica glass,” Mater. Sci. Eng. C 26, 1087–1091 (2006).
[Crossref]

Deepak, K. L. N.

G. Yang, M. Dussauze, V. Rodriguez, F. Adamietz, N. Marquestaut, K. L. N. Deepak, D. Grojo, O. Uteza, P. Delaporte, T. Cardinal, and E. Fargin, “Large scaled micro-structured optical second harmonic generation response imprinted on glass surface by thermal poling,” J. Appl. Phys. 118, 043105 (2015).
[Crossref]

Delaporte, P.

G. Yang, M. Dussauze, V. Rodriguez, F. Adamietz, N. Marquestaut, K. L. N. Deepak, D. Grojo, O. Uteza, P. Delaporte, T. Cardinal, and E. Fargin, “Large scaled micro-structured optical second harmonic generation response imprinted on glass surface by thermal poling,” J. Appl. Phys. 118, 043105 (2015).
[Crossref]

Deparis, O.

F. Mezzapesa, I. C. S. Carvalho, P. Kazansky, O. Deparis, M. Kawazu, and K. Sakaguchi, “Bleaching of sol-gel glass film with embedded gold nanoparticles by thermal poling,” Appl. Phys. Lett. 89, 183121 (2006).
[Crossref]

Dubcek, P.

V. Janicki, I. Fabijanić, B. Okorn, P. Dubček, and J. Sancho-Parramon, “Selective electric field assisted dissolution as a technique for micro and nano structuring of metal thin films,” Appl. Phys. Lett. 113, 183508 (2018).
[Crossref]

Dussauze, M.

G. Yang, M. Dussauze, V. Rodriguez, F. Adamietz, N. Marquestaut, K. L. N. Deepak, D. Grojo, O. Uteza, P. Delaporte, T. Cardinal, and E. Fargin, “Large scaled micro-structured optical second harmonic generation response imprinted on glass surface by thermal poling,” J. Appl. Phys. 118, 043105 (2015).
[Crossref]

M. Dussauze, E. I. Kamitsos, E. Fargin, and V. Rodriguez, “Refractive index distribution in the non-linear optical layer of thermally poled oxide glasses,” Chem. Phys. Lett. 470, 63–66 (2009).
[Crossref]

Escanhoela, C. A.

E. C. Ziemath, V. D. Araujo, and C. A. Escanhoela, “Compositional and structural changes at the anodic surface of thermally poled soda-lime float glass,” J. Appl. Phys. 104, 054912 (2008).
[Crossref]

Fabijanic, I.

V. Janicki, I. Fabijanić, B. Okorn, P. Dubček, and J. Sancho-Parramon, “Selective electric field assisted dissolution as a technique for micro and nano structuring of metal thin films,” Appl. Phys. Lett. 113, 183508 (2018).
[Crossref]

Fargin, E.

G. Yang, M. Dussauze, V. Rodriguez, F. Adamietz, N. Marquestaut, K. L. N. Deepak, D. Grojo, O. Uteza, P. Delaporte, T. Cardinal, and E. Fargin, “Large scaled micro-structured optical second harmonic generation response imprinted on glass surface by thermal poling,” J. Appl. Phys. 118, 043105 (2015).
[Crossref]

M. Dussauze, E. I. Kamitsos, E. Fargin, and V. Rodriguez, “Refractive index distribution in the non-linear optical layer of thermally poled oxide glasses,” Chem. Phys. Lett. 470, 63–66 (2009).
[Crossref]

Fleming, L. A. H.

Gillespie, W. A.

Goldie, D. M.

Gonella, F.

S. Ali, Y. Iqbal, M. Ajmal, F. Gonella, E. Cattaruzza, and A. Quaranta, “Field-driven diffusion of transition metal and rare-earth ions in silicate glasses,” J. Non-Cryst. Solids 405, 39–44 (2014).
[Crossref]

E. Cattaruzza, F. Gonella, S. Ali, C. Sada, and A. Quaranta, “Silver and gold doping of SiO2 glass by solid-state field-assisted dissolution,” J. Non-Cryst. Solids 355, 1136–1139 (2009).
[Crossref]

F. Gonella, P. Canton, E. Cattaruzza, A. Quaranta, C. Sada, and A. Vomiero, “Field-assisted ion diffusion of transition metals for the synthesis of nanocomposite silica glass,” Mater. Sci. Eng. C 26, 1087–1091 (2006).
[Crossref]

Gossink, R. G.

R. G. Gossink, “SIMS analysis of a field-assisted glass-to-metal seal,” J. Am. Ceram. Soc. 61, 539–540 (1978).
[Crossref]

Grojo, D.

G. Yang, M. Dussauze, V. Rodriguez, F. Adamietz, N. Marquestaut, K. L. N. Deepak, D. Grojo, O. Uteza, P. Delaporte, T. Cardinal, and E. Fargin, “Large scaled micro-structured optical second harmonic generation response imprinted on glass surface by thermal poling,” J. Appl. Phys. 118, 043105 (2015).
[Crossref]

He, H.

J. Luo, H. He, N. J. Podraza, L. Qian, C. G. Pantano, and S. H. Kim, “Thermal poling of soda-lime silica glass with nonblocking electrodes—part 1: effects of sodium ion migration and water ingress on glass surface structure,” J. Am. Ceram. Soc. 99, 1221–1260 (2016).
[Crossref]

Hourd, A. C.

Iqbal, Y.

S. Ali, Y. Iqbal, M. Ajmal, F. Gonella, E. Cattaruzza, and A. Quaranta, “Field-driven diffusion of transition metal and rare-earth ions in silicate glasses,” J. Non-Cryst. Solids 405, 39–44 (2014).
[Crossref]

Janicki, V.

V. Janicki, I. Fabijanić, B. Okorn, P. Dubček, and J. Sancho-Parramon, “Selective electric field assisted dissolution as a technique for micro and nano structuring of metal thin films,” Appl. Phys. Lett. 113, 183508 (2018).
[Crossref]

V. Janicki, J. Sancho-Parramon, and H. Zorc, “Refractive index profile modelling of dielectric inhomogeneous coatings using effective medium theories,” Thin Solid Films 516, 3368–3373 (2008).
[Crossref]

Kamenskii, A.

I. Reduto, A. Kamenskii, P. Brunkov, V. Zhurikhina, Y. Svirko, and A. Lipovskii, “Relief micro- and nanostructures by the reactive ion and chemical etching of poled glasses,” Opt. Mater. Express 9, 3059–3068 (2019).
[Crossref]

I. Reduto, A. Kamenskii, A. Redkov, and A. Lipovskii, “Mechanisms and peculiarities of electric field imprinting in glasses,” J. Electrochem. Soc. 164, E385–E390 (2017).
[Crossref]

Kamitsos, E. I.

M. Dussauze, E. I. Kamitsos, E. Fargin, and V. Rodriguez, “Refractive index distribution in the non-linear optical layer of thermally poled oxide glasses,” Chem. Phys. Lett. 470, 63–66 (2009).
[Crossref]

Kawazu, M.

F. Mezzapesa, I. C. S. Carvalho, P. Kazansky, O. Deparis, M. Kawazu, and K. Sakaguchi, “Bleaching of sol-gel glass film with embedded gold nanoparticles by thermal poling,” Appl. Phys. Lett. 89, 183121 (2006).
[Crossref]

Kazansky, P.

F. Mezzapesa, I. C. S. Carvalho, P. Kazansky, O. Deparis, M. Kawazu, and K. Sakaguchi, “Bleaching of sol-gel glass film with embedded gold nanoparticles by thermal poling,” Appl. Phys. Lett. 89, 183121 (2006).
[Crossref]

Kim, S. H.

J. Luo, H. He, N. J. Podraza, L. Qian, C. G. Pantano, and S. H. Kim, “Thermal poling of soda-lime silica glass with nonblocking electrodes—part 1: effects of sodium ion migration and water ingress on glass surface structure,” J. Am. Ceram. Soc. 99, 1221–1260 (2016).
[Crossref]

Kondyurin, A.

N. Takamure, A. Kondyurin, and D. R. McKenzie, “Electric field assisted ion exchange of silver in soda-lime glass: a study of ion depletion layers and interactions with potassium,” J. Appl. Phys. 125, 175104 (2019).
[Crossref]

Lipovski, A. A.

A. V. Redkov, V. G. Melehin, D. V. Raskhodchikov, I. V. Reshetov, D. K. Taganatsev, V. V. Zhurikhina, and A. A. Lipovski, “Modifications of poled silicate glass under heat treatment,” J. Non-Cryst. Solids 503–504, 279–283 (2019).
[Crossref]

Lipovskii, A.

I. Reduto, A. Kamenskii, P. Brunkov, V. Zhurikhina, Y. Svirko, and A. Lipovskii, “Relief micro- and nanostructures by the reactive ion and chemical etching of poled glasses,” Opt. Mater. Express 9, 3059–3068 (2019).
[Crossref]

A. Lipovskii, V. Zhurikhina, and D. Taganatsev, “2D-structuring of glass via thermal poling: a short review,” Int. J. Appl. Glass Sci. 9, 24–28 (2018).
[Crossref]

I. Reduto, A. Kamenskii, A. Redkov, and A. Lipovskii, “Mechanisms and peculiarities of electric field imprinting in glasses,” J. Electrochem. Soc. 164, E385–E390 (2017).
[Crossref]

Lipovskii, A. A.

S. E. Alexandrov, A. A. Lipovskii, A. A. Osipov, I. V. Reduto, and D. K. Taganatsev, “Plasma-etching of 2D-poled glasses: a route to dry lithography,” Appl. Phys. Lett. 111, 111604 (2017).
[Crossref]

Luo, J.

J. Luo, H. He, N. J. Podraza, L. Qian, C. G. Pantano, and S. H. Kim, “Thermal poling of soda-lime silica glass with nonblocking electrodes—part 1: effects of sodium ion migration and water ingress on glass surface structure,” J. Am. Ceram. Soc. 99, 1221–1260 (2016).
[Crossref]

Marquestaut, N.

G. Yang, M. Dussauze, V. Rodriguez, F. Adamietz, N. Marquestaut, K. L. N. Deepak, D. Grojo, O. Uteza, P. Delaporte, T. Cardinal, and E. Fargin, “Large scaled micro-structured optical second harmonic generation response imprinted on glass surface by thermal poling,” J. Appl. Phys. 118, 043105 (2015).
[Crossref]

McKenzie, D. R.

N. Takamure, A. Kondyurin, and D. R. McKenzie, “Electric field assisted ion exchange of silver in soda-lime glass: a study of ion depletion layers and interactions with potassium,” J. Appl. Phys. 125, 175104 (2019).
[Crossref]

Melehin, V. G.

A. V. Redkov, V. G. Melehin, D. V. Raskhodchikov, I. V. Reshetov, D. K. Taganatsev, V. V. Zhurikhina, and A. A. Lipovski, “Modifications of poled silicate glass under heat treatment,” J. Non-Cryst. Solids 503–504, 279–283 (2019).
[Crossref]

Mezzapesa, F.

F. Mezzapesa, I. C. S. Carvalho, P. Kazansky, O. Deparis, M. Kawazu, and K. Sakaguchi, “Bleaching of sol-gel glass film with embedded gold nanoparticles by thermal poling,” Appl. Phys. Lett. 89, 183121 (2006).
[Crossref]

Miliou, A. N.

Okorn, B.

V. Janicki, I. Fabijanić, B. Okorn, P. Dubček, and J. Sancho-Parramon, “Selective electric field assisted dissolution as a technique for micro and nano structuring of metal thin films,” Appl. Phys. Lett. 113, 183508 (2018).
[Crossref]

Osipov, A. A.

S. E. Alexandrov, A. A. Lipovskii, A. A. Osipov, I. V. Reduto, and D. K. Taganatsev, “Plasma-etching of 2D-poled glasses: a route to dry lithography,” Appl. Phys. Lett. 111, 111604 (2017).
[Crossref]

Oven, R.

R. Oven, “Measurement of the refractive index of electrically poled soda-lime glass using leaky modes,” Appl. Opt. 55, 9123–9130 (2016).
[Crossref]

R. Oven, “Measurement of planar refractive index profiles with rapid variations in glass using interferometry and total variation regularized differentiation,” J. Mod. Opt. 62, S53–S60 (2015).
[Crossref]

Pantano, C. G.

J. Luo, H. He, N. J. Podraza, L. Qian, C. G. Pantano, and S. H. Kim, “Thermal poling of soda-lime silica glass with nonblocking electrodes—part 1: effects of sodium ion migration and water ingress on glass surface structure,” J. Am. Ceram. Soc. 99, 1221–1260 (2016).
[Crossref]

Podraza, N. J.

J. Luo, H. He, N. J. Podraza, L. Qian, C. G. Pantano, and S. H. Kim, “Thermal poling of soda-lime silica glass with nonblocking electrodes—part 1: effects of sodium ion migration and water ingress on glass surface structure,” J. Am. Ceram. Soc. 99, 1221–1260 (2016).
[Crossref]

Qian, L.

J. Luo, H. He, N. J. Podraza, L. Qian, C. G. Pantano, and S. H. Kim, “Thermal poling of soda-lime silica glass with nonblocking electrodes—part 1: effects of sodium ion migration and water ingress on glass surface structure,” J. Am. Ceram. Soc. 99, 1221–1260 (2016).
[Crossref]

Quaranta, A.

S. Ali, Y. Iqbal, M. Ajmal, F. Gonella, E. Cattaruzza, and A. Quaranta, “Field-driven diffusion of transition metal and rare-earth ions in silicate glasses,” J. Non-Cryst. Solids 405, 39–44 (2014).
[Crossref]

E. Cattaruzza, F. Gonella, S. Ali, C. Sada, and A. Quaranta, “Silver and gold doping of SiO2 glass by solid-state field-assisted dissolution,” J. Non-Cryst. Solids 355, 1136–1139 (2009).
[Crossref]

F. Gonella, P. Canton, E. Cattaruzza, A. Quaranta, C. Sada, and A. Vomiero, “Field-assisted ion diffusion of transition metals for the synthesis of nanocomposite silica glass,” Mater. Sci. Eng. C 26, 1087–1091 (2006).
[Crossref]

Ramaswamy, R. V.

Raskhodchikov, D. V.

A. V. Redkov, V. G. Melehin, D. V. Raskhodchikov, I. V. Reshetov, D. K. Taganatsev, V. V. Zhurikhina, and A. A. Lipovski, “Modifications of poled silicate glass under heat treatment,” J. Non-Cryst. Solids 503–504, 279–283 (2019).
[Crossref]

Redkov, A.

I. Reduto, A. Kamenskii, A. Redkov, and A. Lipovskii, “Mechanisms and peculiarities of electric field imprinting in glasses,” J. Electrochem. Soc. 164, E385–E390 (2017).
[Crossref]

Redkov, A. V.

A. V. Redkov, V. G. Melehin, D. V. Raskhodchikov, I. V. Reshetov, D. K. Taganatsev, V. V. Zhurikhina, and A. A. Lipovski, “Modifications of poled silicate glass under heat treatment,” J. Non-Cryst. Solids 503–504, 279–283 (2019).
[Crossref]

Reduto, I.

I. Reduto, A. Kamenskii, P. Brunkov, V. Zhurikhina, Y. Svirko, and A. Lipovskii, “Relief micro- and nanostructures by the reactive ion and chemical etching of poled glasses,” Opt. Mater. Express 9, 3059–3068 (2019).
[Crossref]

I. Reduto, A. Kamenskii, A. Redkov, and A. Lipovskii, “Mechanisms and peculiarities of electric field imprinting in glasses,” J. Electrochem. Soc. 164, E385–E390 (2017).
[Crossref]

Reduto, I. V.

S. E. Alexandrov, A. A. Lipovskii, A. A. Osipov, I. V. Reduto, and D. K. Taganatsev, “Plasma-etching of 2D-poled glasses: a route to dry lithography,” Appl. Phys. Lett. 111, 111604 (2017).
[Crossref]

Reshetov, I. V.

A. V. Redkov, V. G. Melehin, D. V. Raskhodchikov, I. V. Reshetov, D. K. Taganatsev, V. V. Zhurikhina, and A. A. Lipovski, “Modifications of poled silicate glass under heat treatment,” J. Non-Cryst. Solids 503–504, 279–283 (2019).
[Crossref]

Rodriguez, V.

G. Yang, M. Dussauze, V. Rodriguez, F. Adamietz, N. Marquestaut, K. L. N. Deepak, D. Grojo, O. Uteza, P. Delaporte, T. Cardinal, and E. Fargin, “Large scaled micro-structured optical second harmonic generation response imprinted on glass surface by thermal poling,” J. Appl. Phys. 118, 043105 (2015).
[Crossref]

M. Dussauze, E. I. Kamitsos, E. Fargin, and V. Rodriguez, “Refractive index distribution in the non-linear optical layer of thermally poled oxide glasses,” Chem. Phys. Lett. 470, 63–66 (2009).
[Crossref]

Sada, C.

E. Cattaruzza, F. Gonella, S. Ali, C. Sada, and A. Quaranta, “Silver and gold doping of SiO2 glass by solid-state field-assisted dissolution,” J. Non-Cryst. Solids 355, 1136–1139 (2009).
[Crossref]

F. Gonella, P. Canton, E. Cattaruzza, A. Quaranta, C. Sada, and A. Vomiero, “Field-assisted ion diffusion of transition metals for the synthesis of nanocomposite silica glass,” Mater. Sci. Eng. C 26, 1087–1091 (2006).
[Crossref]

Sakaguchi, K.

F. Mezzapesa, I. C. S. Carvalho, P. Kazansky, O. Deparis, M. Kawazu, and K. Sakaguchi, “Bleaching of sol-gel glass film with embedded gold nanoparticles by thermal poling,” Appl. Phys. Lett. 89, 183121 (2006).
[Crossref]

Sancho-Parramon, J.

V. Janicki, I. Fabijanić, B. Okorn, P. Dubček, and J. Sancho-Parramon, “Selective electric field assisted dissolution as a technique for micro and nano structuring of metal thin films,” Appl. Phys. Lett. 113, 183508 (2018).
[Crossref]

V. Janicki, J. Sancho-Parramon, and H. Zorc, “Refractive index profile modelling of dielectric inhomogeneous coatings using effective medium theories,” Thin Solid Films 516, 3368–3373 (2008).
[Crossref]

Seifert, G.

Srivastava, R.

Svirko, Y.

Taganatsev, D.

A. Lipovskii, V. Zhurikhina, and D. Taganatsev, “2D-structuring of glass via thermal poling: a short review,” Int. J. Appl. Glass Sci. 9, 24–28 (2018).
[Crossref]

Taganatsev, D. K.

A. V. Redkov, V. G. Melehin, D. V. Raskhodchikov, I. V. Reshetov, D. K. Taganatsev, V. V. Zhurikhina, and A. A. Lipovski, “Modifications of poled silicate glass under heat treatment,” J. Non-Cryst. Solids 503–504, 279–283 (2019).
[Crossref]

S. E. Alexandrov, A. A. Lipovskii, A. A. Osipov, I. V. Reduto, and D. K. Taganatsev, “Plasma-etching of 2D-poled glasses: a route to dry lithography,” Appl. Phys. Lett. 111, 111604 (2017).
[Crossref]

Takamure, N.

N. Takamure, A. Kondyurin, and D. R. McKenzie, “Electric field assisted ion exchange of silver in soda-lime glass: a study of ion depletion layers and interactions with potassium,” J. Appl. Phys. 125, 175104 (2019).
[Crossref]

Uteza, O.

G. Yang, M. Dussauze, V. Rodriguez, F. Adamietz, N. Marquestaut, K. L. N. Deepak, D. Grojo, O. Uteza, P. Delaporte, T. Cardinal, and E. Fargin, “Large scaled micro-structured optical second harmonic generation response imprinted on glass surface by thermal poling,” J. Appl. Phys. 118, 043105 (2015).
[Crossref]

Vomiero, A.

F. Gonella, P. Canton, E. Cattaruzza, A. Quaranta, C. Sada, and A. Vomiero, “Field-assisted ion diffusion of transition metals for the synthesis of nanocomposite silica glass,” Mater. Sci. Eng. C 26, 1087–1091 (2006).
[Crossref]

Wackerow, S.

Wilkinson, J. S.

Yang, G.

G. Yang, M. Dussauze, V. Rodriguez, F. Adamietz, N. Marquestaut, K. L. N. Deepak, D. Grojo, O. Uteza, P. Delaporte, T. Cardinal, and E. Fargin, “Large scaled micro-structured optical second harmonic generation response imprinted on glass surface by thermal poling,” J. Appl. Phys. 118, 043105 (2015).
[Crossref]

Zhurikhina, V.

Zhurikhina, V. V.

A. V. Redkov, V. G. Melehin, D. V. Raskhodchikov, I. V. Reshetov, D. K. Taganatsev, V. V. Zhurikhina, and A. A. Lipovski, “Modifications of poled silicate glass under heat treatment,” J. Non-Cryst. Solids 503–504, 279–283 (2019).
[Crossref]

Ziemath, E. C.

E. C. Ziemath, V. D. Araujo, and C. A. Escanhoela, “Compositional and structural changes at the anodic surface of thermally poled soda-lime float glass,” J. Appl. Phys. 104, 054912 (2008).
[Crossref]

Zorc, H.

V. Janicki, J. Sancho-Parramon, and H. Zorc, “Refractive index profile modelling of dielectric inhomogeneous coatings using effective medium theories,” Thin Solid Films 516, 3368–3373 (2008).
[Crossref]

Appl. Opt. (2)

Appl. Phys. Lett. (3)

S. E. Alexandrov, A. A. Lipovskii, A. A. Osipov, I. V. Reduto, and D. K. Taganatsev, “Plasma-etching of 2D-poled glasses: a route to dry lithography,” Appl. Phys. Lett. 111, 111604 (2017).
[Crossref]

V. Janicki, I. Fabijanić, B. Okorn, P. Dubček, and J. Sancho-Parramon, “Selective electric field assisted dissolution as a technique for micro and nano structuring of metal thin films,” Appl. Phys. Lett. 113, 183508 (2018).
[Crossref]

F. Mezzapesa, I. C. S. Carvalho, P. Kazansky, O. Deparis, M. Kawazu, and K. Sakaguchi, “Bleaching of sol-gel glass film with embedded gold nanoparticles by thermal poling,” Appl. Phys. Lett. 89, 183121 (2006).
[Crossref]

Chem. Phys. Lett. (1)

M. Dussauze, E. I. Kamitsos, E. Fargin, and V. Rodriguez, “Refractive index distribution in the non-linear optical layer of thermally poled oxide glasses,” Chem. Phys. Lett. 470, 63–66 (2009).
[Crossref]

Int. J. Appl. Glass Sci. (1)

A. Lipovskii, V. Zhurikhina, and D. Taganatsev, “2D-structuring of glass via thermal poling: a short review,” Int. J. Appl. Glass Sci. 9, 24–28 (2018).
[Crossref]

J. Am. Ceram. Soc. (2)

J. Luo, H. He, N. J. Podraza, L. Qian, C. G. Pantano, and S. H. Kim, “Thermal poling of soda-lime silica glass with nonblocking electrodes—part 1: effects of sodium ion migration and water ingress on glass surface structure,” J. Am. Ceram. Soc. 99, 1221–1260 (2016).
[Crossref]

R. G. Gossink, “SIMS analysis of a field-assisted glass-to-metal seal,” J. Am. Ceram. Soc. 61, 539–540 (1978).
[Crossref]

J. Appl. Phys. (4)

T. G. Alley and S. R. J. Brueck, “Secondary ion mass spectrometry study of space-charge formation in thermally poled fused silica,” J. Appl. Phys. 86, 6634–6640 (1999).
[Crossref]

E. C. Ziemath, V. D. Araujo, and C. A. Escanhoela, “Compositional and structural changes at the anodic surface of thermally poled soda-lime float glass,” J. Appl. Phys. 104, 054912 (2008).
[Crossref]

G. Yang, M. Dussauze, V. Rodriguez, F. Adamietz, N. Marquestaut, K. L. N. Deepak, D. Grojo, O. Uteza, P. Delaporte, T. Cardinal, and E. Fargin, “Large scaled micro-structured optical second harmonic generation response imprinted on glass surface by thermal poling,” J. Appl. Phys. 118, 043105 (2015).
[Crossref]

N. Takamure, A. Kondyurin, and D. R. McKenzie, “Electric field assisted ion exchange of silver in soda-lime glass: a study of ion depletion layers and interactions with potassium,” J. Appl. Phys. 125, 175104 (2019).
[Crossref]

J. Electrochem. Soc. (1)

I. Reduto, A. Kamenskii, A. Redkov, and A. Lipovskii, “Mechanisms and peculiarities of electric field imprinting in glasses,” J. Electrochem. Soc. 164, E385–E390 (2017).
[Crossref]

J. Mod. Opt. (1)

R. Oven, “Measurement of planar refractive index profiles with rapid variations in glass using interferometry and total variation regularized differentiation,” J. Mod. Opt. 62, S53–S60 (2015).
[Crossref]

J. Non-Cryst. Solids (3)

E. Cattaruzza, F. Gonella, S. Ali, C. Sada, and A. Quaranta, “Silver and gold doping of SiO2 glass by solid-state field-assisted dissolution,” J. Non-Cryst. Solids 355, 1136–1139 (2009).
[Crossref]

S. Ali, Y. Iqbal, M. Ajmal, F. Gonella, E. Cattaruzza, and A. Quaranta, “Field-driven diffusion of transition metal and rare-earth ions in silicate glasses,” J. Non-Cryst. Solids 405, 39–44 (2014).
[Crossref]

A. V. Redkov, V. G. Melehin, D. V. Raskhodchikov, I. V. Reshetov, D. K. Taganatsev, V. V. Zhurikhina, and A. A. Lipovski, “Modifications of poled silicate glass under heat treatment,” J. Non-Cryst. Solids 503–504, 279–283 (2019).
[Crossref]

Mater. Sci. Eng. C (1)

F. Gonella, P. Canton, E. Cattaruzza, A. Quaranta, C. Sada, and A. Vomiero, “Field-assisted ion diffusion of transition metals for the synthesis of nanocomposite silica glass,” Mater. Sci. Eng. C 26, 1087–1091 (2006).
[Crossref]

Opt. Express (1)

Opt. Lett. (1)

Opt. Mater. Express (2)

Thin Solid Films (1)

V. Janicki, J. Sancho-Parramon, and H. Zorc, “Refractive index profile modelling of dielectric inhomogeneous coatings using effective medium theories,” Thin Solid Films 516, 3368–3373 (2008).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. Comparison of the experimental data and the data obtained from optical characterization based on ellipsometry for the samples poled at 300°C for 2 h at 350 V, 500 V, and 700 V. Corresponding MSE values are 3.53, 7.88, and 7.7, respectively. (Left side) Ellipsometric functions $\Psi (E)$ and (right side) $\Delta (E)$: experimental (full line) and fitted data (dots).
Fig. 2.
Fig. 2. Change of refractive index profile with the potential applied during poling (350 V, 500 V, and 700 V). Refractive index profiles are obtained from optical characterization based on ellipsometric measurements of the poled samples. Sample/air interface that was facing anode during poling is at 0 nm. All of the profiles end with the refractive index of untreated glass.
Fig. 3.
Fig. 3. Change of refractive index profile with the poling temperature (200°C, 250°C, and 300°C). Refractive index profiles are obtained from optical characterization based on ellipsometric measurements of the poled samples. Sample/air interface that was facing anode during poling is at 0 nm. All of the profiles end with the refractive index of untreated glass.
Fig. 4.
Fig. 4. Change of refractive index profile with the time of poling (0.5 h, 1 h, and 2 h). Refractive index profiles are obtained from optical characterization based on ellipsometric measurements of the poled samples. Sample/air interface that was facing anode during poling is at 0 nm. All of the profiles end with the refractive index of untreated glass.
Fig. 5.
Fig. 5. Concentration profiles obtained from SIMS analysis of the same samples as presented in Figs. 1 and 2(c) [samples poled at 300°C for 2 h with (a) 350 V, (b) 500 V, and (c) 700 V]. For comparison, the refractive index profiles (reduced by 1.47 to fit the scale) of the corresponding samples are also plotted (black solid line).

Metrics