Abstract

Ellipsometric modeling of serially bi-deposited glancing-angle-deposition (GLAD) coatings with a high degree of accuracy is imperative for multilayer coatings. High-precision dispersion curves are demonstrated for a wide variety of applications.

© 2019 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Ultralow refractive index optical films with enhanced mechanical performance obtained by hybrid glancing angle deposition

W. Trottier-Lapointe, O. Zabeida, T. Schmitt, and L. Martinu
Appl. Opt. 55(31) 8796-8805 (2016)

Glancing-angle-deposited silica films for ultraviolet wave plates

S. MacNally, C. Smith, J. Spaulding, J. Foster, and J. B. Oliver
Appl. Opt. 59(5) A155-A161 (2020)

Porous broadband antireflection coating by glancing angle deposition

Scott R. Kennedy and Michael J. Brett
Appl. Opt. 42(22) 4573-4579 (2003)

References

  • View by:
  • |
  • |
  • |

  1. A. Kundt, “Ueber doppelbrechung des lichtes in metallschichten, welche durch zerstäuben einer kathode hergestellt sind,” Ann. Phys. 263, 59–71 (1886).
    [Crossref]
  2. L. Grinevičiūtė, A. Andrulevičius, A. Melninkaitis, R. Buzelis, A. Selskis, A. Lazauskas, and T. Tolenis, “Highly resistant zero-order waveplates based on all-silica multilayer coatings,” Phys. Status Solidi A 214, 1770175 (2017).
    [Crossref]
  3. L. Grinevičiūtė, L. Ramalis, K. Gricius, R. Buzelis, and T. Tolenis, “Anisotropic coatings for normal incidence applications,” Proc. SPIE 10691, 1069120 (2018).
    [Crossref]
  4. J. B. Oliver, T. J. Kessler, C. Smith, B. Taylor, V. Gruschow, J. Hettrick, and B. Charles, “Electron-beam-deposited distributed polarization rotator for high-power laser applications,” Opt. Express 22, 23883–23896 (2014).
    [Crossref]
  5. J. B. Oliver, C. Smith, J. Spaulding, A. L. Rigatti, B. Charles, S. Papernov, B. Taylor, J. Foster, C. W. Carr, R. Luthi, B. Hollingsworth, and D. Cross, “Glancing-angle-deposited magnesium oxide films for high-fluence applications,” Opt. Mater. Express 6, 2291–2303 (2016).
    [Crossref]
  6. S. MacNally, C. Smith, D. Spaulding, J. Foster, and J. B. Oliver, “Glancing-angle-deposited silica films for ultraviolet wave plates,” in Optical Interference Coatings Conference (OIC), OSA Technical Digest (Optical Society of America, 2019), paper MD.2.
  7. T. Tolenis, L. Grinevičiūtė, L. Smalakys, M. Ščiuka, R. Drazdys, L. Mažulė, R. Buzelis, and A. Melninkaitis, “Next generation highly resistant mirrors featuring all-silica layers,” Sci. Rep. 7, 10898 (2017).
    [Crossref]
  8. H. Fujiwara, Spectroscopic Ellipsometry: Principles and Applications (Wiley, 2007).
  9. M. M. Hawkeye, M. T. Taschuk, and M. J. Brett, Glancing Angle Deposition of Thin Films: Engineering the Nanoscale, Wiley Series in Materials for Electronic & Optoelectronic Applications (Wiley, 2014), pp. 240–244.
  10. I. Hodgkinson and Q. H. Wu, “Serial bideposition of anisotropic thin films with enhanced linear birefringence,” Appl. Opt. 38, 3621–3625 (1999).
    [Crossref]
  11. S. R. Kennedy and M. J. Brett, “Porous broadband antireflection coating by glancing angle deposition,” Appl. Opt. 42, 4573–4579 (2003).
    [Crossref]
  12. D. Schmidt, E. Schubert, and M. Schubert, “Generalized ellipsometry characterization of sculptured thin films made by glancing angle deposition,” in Ellipsometry at the Nanoscale, M. Losurdo and K. Hingerl, eds. (Springer, 2013), pp. 341–410.
  13. P. Baumeister, Optical Coating Technology (SPIE Optical Engineering, 2004), pp. 956–957.
  14. G. B. Smith, “Theory of angular selective transmittance in oblique columnar thin films containing metal and voids,” Appl. Opt. 29, 3685–3693 (1990).
    [Crossref]

2018 (1)

L. Grinevičiūtė, L. Ramalis, K. Gricius, R. Buzelis, and T. Tolenis, “Anisotropic coatings for normal incidence applications,” Proc. SPIE 10691, 1069120 (2018).
[Crossref]

2017 (2)

L. Grinevičiūtė, A. Andrulevičius, A. Melninkaitis, R. Buzelis, A. Selskis, A. Lazauskas, and T. Tolenis, “Highly resistant zero-order waveplates based on all-silica multilayer coatings,” Phys. Status Solidi A 214, 1770175 (2017).
[Crossref]

T. Tolenis, L. Grinevičiūtė, L. Smalakys, M. Ščiuka, R. Drazdys, L. Mažulė, R. Buzelis, and A. Melninkaitis, “Next generation highly resistant mirrors featuring all-silica layers,” Sci. Rep. 7, 10898 (2017).
[Crossref]

2016 (1)

2014 (1)

2003 (1)

1999 (1)

1990 (1)

1886 (1)

A. Kundt, “Ueber doppelbrechung des lichtes in metallschichten, welche durch zerstäuben einer kathode hergestellt sind,” Ann. Phys. 263, 59–71 (1886).
[Crossref]

Andrulevicius, A.

L. Grinevičiūtė, A. Andrulevičius, A. Melninkaitis, R. Buzelis, A. Selskis, A. Lazauskas, and T. Tolenis, “Highly resistant zero-order waveplates based on all-silica multilayer coatings,” Phys. Status Solidi A 214, 1770175 (2017).
[Crossref]

Baumeister, P.

P. Baumeister, Optical Coating Technology (SPIE Optical Engineering, 2004), pp. 956–957.

Brett, M. J.

S. R. Kennedy and M. J. Brett, “Porous broadband antireflection coating by glancing angle deposition,” Appl. Opt. 42, 4573–4579 (2003).
[Crossref]

M. M. Hawkeye, M. T. Taschuk, and M. J. Brett, Glancing Angle Deposition of Thin Films: Engineering the Nanoscale, Wiley Series in Materials for Electronic & Optoelectronic Applications (Wiley, 2014), pp. 240–244.

Buzelis, R.

L. Grinevičiūtė, L. Ramalis, K. Gricius, R. Buzelis, and T. Tolenis, “Anisotropic coatings for normal incidence applications,” Proc. SPIE 10691, 1069120 (2018).
[Crossref]

L. Grinevičiūtė, A. Andrulevičius, A. Melninkaitis, R. Buzelis, A. Selskis, A. Lazauskas, and T. Tolenis, “Highly resistant zero-order waveplates based on all-silica multilayer coatings,” Phys. Status Solidi A 214, 1770175 (2017).
[Crossref]

T. Tolenis, L. Grinevičiūtė, L. Smalakys, M. Ščiuka, R. Drazdys, L. Mažulė, R. Buzelis, and A. Melninkaitis, “Next generation highly resistant mirrors featuring all-silica layers,” Sci. Rep. 7, 10898 (2017).
[Crossref]

Carr, C. W.

Charles, B.

Cross, D.

Drazdys, R.

T. Tolenis, L. Grinevičiūtė, L. Smalakys, M. Ščiuka, R. Drazdys, L. Mažulė, R. Buzelis, and A. Melninkaitis, “Next generation highly resistant mirrors featuring all-silica layers,” Sci. Rep. 7, 10898 (2017).
[Crossref]

Foster, J.

J. B. Oliver, C. Smith, J. Spaulding, A. L. Rigatti, B. Charles, S. Papernov, B. Taylor, J. Foster, C. W. Carr, R. Luthi, B. Hollingsworth, and D. Cross, “Glancing-angle-deposited magnesium oxide films for high-fluence applications,” Opt. Mater. Express 6, 2291–2303 (2016).
[Crossref]

S. MacNally, C. Smith, D. Spaulding, J. Foster, and J. B. Oliver, “Glancing-angle-deposited silica films for ultraviolet wave plates,” in Optical Interference Coatings Conference (OIC), OSA Technical Digest (Optical Society of America, 2019), paper MD.2.

Fujiwara, H.

H. Fujiwara, Spectroscopic Ellipsometry: Principles and Applications (Wiley, 2007).

Gricius, K.

L. Grinevičiūtė, L. Ramalis, K. Gricius, R. Buzelis, and T. Tolenis, “Anisotropic coatings for normal incidence applications,” Proc. SPIE 10691, 1069120 (2018).
[Crossref]

Grineviciute, L.

L. Grinevičiūtė, L. Ramalis, K. Gricius, R. Buzelis, and T. Tolenis, “Anisotropic coatings for normal incidence applications,” Proc. SPIE 10691, 1069120 (2018).
[Crossref]

L. Grinevičiūtė, A. Andrulevičius, A. Melninkaitis, R. Buzelis, A. Selskis, A. Lazauskas, and T. Tolenis, “Highly resistant zero-order waveplates based on all-silica multilayer coatings,” Phys. Status Solidi A 214, 1770175 (2017).
[Crossref]

T. Tolenis, L. Grinevičiūtė, L. Smalakys, M. Ščiuka, R. Drazdys, L. Mažulė, R. Buzelis, and A. Melninkaitis, “Next generation highly resistant mirrors featuring all-silica layers,” Sci. Rep. 7, 10898 (2017).
[Crossref]

Gruschow, V.

Hawkeye, M. M.

M. M. Hawkeye, M. T. Taschuk, and M. J. Brett, Glancing Angle Deposition of Thin Films: Engineering the Nanoscale, Wiley Series in Materials for Electronic & Optoelectronic Applications (Wiley, 2014), pp. 240–244.

Hettrick, J.

Hodgkinson, I.

Hollingsworth, B.

Kennedy, S. R.

Kessler, T. J.

Kundt, A.

A. Kundt, “Ueber doppelbrechung des lichtes in metallschichten, welche durch zerstäuben einer kathode hergestellt sind,” Ann. Phys. 263, 59–71 (1886).
[Crossref]

Lazauskas, A.

L. Grinevičiūtė, A. Andrulevičius, A. Melninkaitis, R. Buzelis, A. Selskis, A. Lazauskas, and T. Tolenis, “Highly resistant zero-order waveplates based on all-silica multilayer coatings,” Phys. Status Solidi A 214, 1770175 (2017).
[Crossref]

Luthi, R.

MacNally, S.

S. MacNally, C. Smith, D. Spaulding, J. Foster, and J. B. Oliver, “Glancing-angle-deposited silica films for ultraviolet wave plates,” in Optical Interference Coatings Conference (OIC), OSA Technical Digest (Optical Society of America, 2019), paper MD.2.

Mažule, L.

T. Tolenis, L. Grinevičiūtė, L. Smalakys, M. Ščiuka, R. Drazdys, L. Mažulė, R. Buzelis, and A. Melninkaitis, “Next generation highly resistant mirrors featuring all-silica layers,” Sci. Rep. 7, 10898 (2017).
[Crossref]

Melninkaitis, A.

T. Tolenis, L. Grinevičiūtė, L. Smalakys, M. Ščiuka, R. Drazdys, L. Mažulė, R. Buzelis, and A. Melninkaitis, “Next generation highly resistant mirrors featuring all-silica layers,” Sci. Rep. 7, 10898 (2017).
[Crossref]

L. Grinevičiūtė, A. Andrulevičius, A. Melninkaitis, R. Buzelis, A. Selskis, A. Lazauskas, and T. Tolenis, “Highly resistant zero-order waveplates based on all-silica multilayer coatings,” Phys. Status Solidi A 214, 1770175 (2017).
[Crossref]

Oliver, J. B.

Papernov, S.

Ramalis, L.

L. Grinevičiūtė, L. Ramalis, K. Gricius, R. Buzelis, and T. Tolenis, “Anisotropic coatings for normal incidence applications,” Proc. SPIE 10691, 1069120 (2018).
[Crossref]

Rigatti, A. L.

Schmidt, D.

D. Schmidt, E. Schubert, and M. Schubert, “Generalized ellipsometry characterization of sculptured thin films made by glancing angle deposition,” in Ellipsometry at the Nanoscale, M. Losurdo and K. Hingerl, eds. (Springer, 2013), pp. 341–410.

Schubert, E.

D. Schmidt, E. Schubert, and M. Schubert, “Generalized ellipsometry characterization of sculptured thin films made by glancing angle deposition,” in Ellipsometry at the Nanoscale, M. Losurdo and K. Hingerl, eds. (Springer, 2013), pp. 341–410.

Schubert, M.

D. Schmidt, E. Schubert, and M. Schubert, “Generalized ellipsometry characterization of sculptured thin films made by glancing angle deposition,” in Ellipsometry at the Nanoscale, M. Losurdo and K. Hingerl, eds. (Springer, 2013), pp. 341–410.

Šciuka, M.

T. Tolenis, L. Grinevičiūtė, L. Smalakys, M. Ščiuka, R. Drazdys, L. Mažulė, R. Buzelis, and A. Melninkaitis, “Next generation highly resistant mirrors featuring all-silica layers,” Sci. Rep. 7, 10898 (2017).
[Crossref]

Selskis, A.

L. Grinevičiūtė, A. Andrulevičius, A. Melninkaitis, R. Buzelis, A. Selskis, A. Lazauskas, and T. Tolenis, “Highly resistant zero-order waveplates based on all-silica multilayer coatings,” Phys. Status Solidi A 214, 1770175 (2017).
[Crossref]

Smalakys, L.

T. Tolenis, L. Grinevičiūtė, L. Smalakys, M. Ščiuka, R. Drazdys, L. Mažulė, R. Buzelis, and A. Melninkaitis, “Next generation highly resistant mirrors featuring all-silica layers,” Sci. Rep. 7, 10898 (2017).
[Crossref]

Smith, C.

Smith, G. B.

Spaulding, D.

S. MacNally, C. Smith, D. Spaulding, J. Foster, and J. B. Oliver, “Glancing-angle-deposited silica films for ultraviolet wave plates,” in Optical Interference Coatings Conference (OIC), OSA Technical Digest (Optical Society of America, 2019), paper MD.2.

Spaulding, J.

Taschuk, M. T.

M. M. Hawkeye, M. T. Taschuk, and M. J. Brett, Glancing Angle Deposition of Thin Films: Engineering the Nanoscale, Wiley Series in Materials for Electronic & Optoelectronic Applications (Wiley, 2014), pp. 240–244.

Taylor, B.

Tolenis, T.

L. Grinevičiūtė, L. Ramalis, K. Gricius, R. Buzelis, and T. Tolenis, “Anisotropic coatings for normal incidence applications,” Proc. SPIE 10691, 1069120 (2018).
[Crossref]

L. Grinevičiūtė, A. Andrulevičius, A. Melninkaitis, R. Buzelis, A. Selskis, A. Lazauskas, and T. Tolenis, “Highly resistant zero-order waveplates based on all-silica multilayer coatings,” Phys. Status Solidi A 214, 1770175 (2017).
[Crossref]

T. Tolenis, L. Grinevičiūtė, L. Smalakys, M. Ščiuka, R. Drazdys, L. Mažulė, R. Buzelis, and A. Melninkaitis, “Next generation highly resistant mirrors featuring all-silica layers,” Sci. Rep. 7, 10898 (2017).
[Crossref]

Wu, Q. H.

Ann. Phys. (1)

A. Kundt, “Ueber doppelbrechung des lichtes in metallschichten, welche durch zerstäuben einer kathode hergestellt sind,” Ann. Phys. 263, 59–71 (1886).
[Crossref]

Appl. Opt. (3)

Opt. Express (1)

Opt. Mater. Express (1)

Phys. Status Solidi A (1)

L. Grinevičiūtė, A. Andrulevičius, A. Melninkaitis, R. Buzelis, A. Selskis, A. Lazauskas, and T. Tolenis, “Highly resistant zero-order waveplates based on all-silica multilayer coatings,” Phys. Status Solidi A 214, 1770175 (2017).
[Crossref]

Proc. SPIE (1)

L. Grinevičiūtė, L. Ramalis, K. Gricius, R. Buzelis, and T. Tolenis, “Anisotropic coatings for normal incidence applications,” Proc. SPIE 10691, 1069120 (2018).
[Crossref]

Sci. Rep. (1)

T. Tolenis, L. Grinevičiūtė, L. Smalakys, M. Ščiuka, R. Drazdys, L. Mažulė, R. Buzelis, and A. Melninkaitis, “Next generation highly resistant mirrors featuring all-silica layers,” Sci. Rep. 7, 10898 (2017).
[Crossref]

Other (5)

H. Fujiwara, Spectroscopic Ellipsometry: Principles and Applications (Wiley, 2007).

M. M. Hawkeye, M. T. Taschuk, and M. J. Brett, Glancing Angle Deposition of Thin Films: Engineering the Nanoscale, Wiley Series in Materials for Electronic & Optoelectronic Applications (Wiley, 2014), pp. 240–244.

D. Schmidt, E. Schubert, and M. Schubert, “Generalized ellipsometry characterization of sculptured thin films made by glancing angle deposition,” in Ellipsometry at the Nanoscale, M. Losurdo and K. Hingerl, eds. (Springer, 2013), pp. 341–410.

P. Baumeister, Optical Coating Technology (SPIE Optical Engineering, 2004), pp. 956–957.

S. MacNally, C. Smith, D. Spaulding, J. Foster, and J. B. Oliver, “Glancing-angle-deposited silica films for ultraviolet wave plates,” in Optical Interference Coatings Conference (OIC), OSA Technical Digest (Optical Society of America, 2019), paper MD.2.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1. Substrate orientation for the GLAD coating process. Rotation about the $x$ axis leads to film birefringence, while rotation about the $z$ axis can be used to form chiral structures. Serial bi-deposition is based on alternating between positive and negative angles about the $x$ axis, forming vertical columns.
Fig. 2.
Fig. 2. Differences in film density in orthogonal directions lead to birefringent film properties. The film shown was oriented with the flip axis ($x$ as shown in Fig. 1): (a) aligned with the horizontal line and (b) with the $x$ and $y$ axes in the cross section.
Fig. 3.
Fig. 3. $\phi $ rotation with respect to the coating surface.
Fig. 4.
Fig. 4. VASE ellipsometer with a modified rotation mount and environmental enclosure.
Fig. 5.
Fig. 5. Reflected ellipsometric data (generalized ellipsometric, “$p$ into $s$” and “$s$ into $p$” data for 65° and 75°) from a single-layer ${{\rm SiO}_2}$ deposition. As shown, both (a) $\psi $ and (b) $\Delta $ closely fit with the theoretical model.
Fig. 6.
Fig. 6. Single-layer GLAD coating with (a) calculated dispersion curves, (b) an SEM micrograph, and (c) a retardance map.
Fig. 7.
Fig. 7. (a) Spectral design versus measured data used to create the seven-layer coating; (b) SEM image of the calibration coating.
Fig. 8.
Fig. 8. Dispersion curves of the (a) birefringent and (b) dense layers, along with (c) the spectral measurement versus measured data for the 31-layer coating.
Fig. 9.
Fig. 9. Three-layer coating (4L/H/AR) closely approximating the last three layers of the wave plate.
Fig. 10.
Fig. 10. Ellipsometric data from a three-layer ${{\rm SiO}_2}$ deposition. As shown, both (a) $\psi $ and (b) $\Delta $ closely fit with the theoretical model.
Fig. 11.
Fig. 11. Dispersion curve calculated for the final AR layer.

Metrics