Abstract

Birefringent silica films are formed by glancing-angle deposition to fabricate quarter- and half-wave plates at a wavelength of 351 nm. A multilayer design is implemented to achieve low-loss transmittance with a high 351-nm laser-induced damage threshold.

© 2020 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Glancing-angle–deposited magnesium oxide films for high-fluence applications

J. B. Oliver, C. Smith, J. Spaulding, A. L. Rigatti, B. Charles, S. Papernov, B. Taylor, J. Foster, C. W. Carr, R. Luthi, B. Hollingsworth, and D. Cross
Opt. Mater. Express 6(7) 2291-2303 (2016)

Electron-beam–deposited distributed polarization rotator for high-power laser applications

J. B. Oliver, T. J. Kessler, C. Smith, B. Taylor, V. Gruschow, J. Hettrick, and B. Charles
Opt. Express 22(20) 23883-23896 (2014)

Ellipsometric modeling of serially bi-deposited glancing-angle-deposition coatings

C. Smith, S. MacNally, and J. B. Oliver
Appl. Opt. 59(5) A26-A30 (2020)

References

  • View by:
  • |
  • |
  • |

  1. J. B. Oliver, T. J. Kessler, C. Smith, B. Taylor, V. Gruschow, J. Hettrick, and B. Charles, “Electron-beam-deposited distributed polarization rotator for high-power laser applications,” Opt. Express 22, 23883–23896 (2014).
    [Crossref]
  2. D. H. Munro, S. N. Dixit, A. B. Langdon, and J. R. Murray, “Polarization smoothing in a convergent beam,” Appl. Opt. 43, 6639–6647 (2004).
    [Crossref]
  3. J. E. Rothenberg, “Polarization beam smoothing for inertial confinement fusion,” J. Appl. Phys. 87, 3654–3662 (2000).
    [Crossref]
  4. S. Skupsky and R. S. Craxton, “Irradiation uniformity for high-compression laser-fusion experiments,” Phys. Plasmas 6, 2157–2163 (1999).
    [Crossref]
  5. S. N. Dixit, D. Munro, J. R. Murray, M. Nostrand, P. J. Wegner, D. Froula, C. A. Haynam, and B. J. MacGowan, “Polarization smoothing on the National Ignition Facility,” J. Phys. IV (France) 133, 717–720 (2005).
    [Crossref]
  6. B. Mangote, L. Gallais, M. Zerrad, F. Lemarchand, L. H. Gao, M. Commandre, and M. Lequime, “A high accuracy femto-/picosecond laser damage test facility dedicated to the study of optical thin films,” Rev. Sci. Instrum. 83, 013109 (2012).
    [Crossref]
  7. L. González-García, J. Parra-Barranco, J. R. Sánchez-Valencia, A. Barranco, A. Borrás, A. R. González-Elipe, M.-C. García-Gutiérrez, J. J. Hernández, D. R. Rueda, and T. A. Ezquerra, “Correlation lengths, porosity and water adsorption in TiO2 thin films prepared by glancing angle deposition,” Nanotechnology 23, 205701 (2012).
    [Crossref]
  8. S. Kassam, I. J. Hodgkinson, Q. Wu, and S. C. Cloughley, “Light scattering from thin films with an oblique columnar structure and with granular inclusions,” J. Opt. Soc. Am. A 12, 2009–2021 (1995).
    [Crossref]
  9. T. A. Germer, K. A. Sharma, T. G. Brown, and J. B. Oliver, “Polarized optical scattering by inhomogeneities and surface roughness in an anisotropic thin film,” J. Opt. Soc. Am. A 34, 1974–1984 (2017).
    [Crossref]
  10. K. A. Sharma, T. A. Germer, C. Smith, J. D. Zuegel, J. B. Oliver, and T. G. Brown, “Scattered-light analysis of birefringent coatings for distributed polarization rotators,” in Frontiers in Optics, OSA Technical Digest (online) (Optical Society of America, 2016), paper JW4A.48.
  11. C. Smith, S. MacNally, and J. B. Oliver, “Modeling of serially bi-deposited glancing-angle–deposition coatings,” Appl. Opt. 59, A26–A30(2019)..
    [Crossref]
  12. M. W. McCall, I. J. Hodgkinson, and Q. Wu, Birefringent Thin Films and Polarizing Elements, 2nd ed. (Imperial College, 2015), p. 4, 5.
  13. M. M. Hawkeye, M. T. Taschuk, and M. J. Brett, Glancing Angle Deposition of Thin Films: Engineering the Nanoscale, Wiley Series in Materials for Electronic & Optoelectronic Applications (Wiley, 2014), p. 6, 7, 53–60, 237–240.
  14. I. Hodgkinson and Q. H. Wu, “Serial bideposition of anisotropic thin films with enhanced linear birefringence,” Appl. Opt. 38, 3621–3625 (1999).
    [Crossref]
  15. I. J. Hodgkinson, “Linear and circular form birefringence of coatings fabricated by serial bideposition,” Proc. SPIE 3790, 119–132 (1999).
    [Crossref]
  16. S. R. Kennedy and M. J. Brett, “Porous broadband antireflection coating by glancing angle deposition,” Appl. Opt. 42, 4573–4579 (2003).
    [Crossref]
  17. J. Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S.-Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1, 176–179 (2007).
    [Crossref]
  18. K. Kaminska, T. Brown, G. Beydaghyan, and K. Robbie, “Vacuum evaporated porous silicon photonic interference filters,” Appl. Opt. 42, 4212–4219 (2003).
    [Crossref]
  19. K. Kaminska and K. Robbie, “Birefringent omnidirectional reflector,” Appl. Opt. 43, 1570–1576 (2004).
    [Crossref]
  20. S. J. Gregg and K. S. Sing, Adsorption, Surface Area and Porosity (Academic, 1982), pp. 269–274.
  21. S. F. Pellicori and H. L. Hettich, “Reversible spectral shift in coatings,” Appl. Opt. 27, 3061–3062 (1988).
    [Crossref]
  22. M. O. Jensen and M. J. Brett, “Porosity engineering in glancing angle deposition thin films,” Appl. Phys. A 80, 763–768 (2005).
    [Crossref]
  23. D. X. Ye, T. Karabacak, R. C. Picu, G. C. Wang, and T. M. Lu, “Uniform Si nanostructures grown by oblique angle deposition with substrate swing rotation,” Nanotechnology 16, 1717–1723 (2005).
    [Crossref]
  24. L. Grinevičiūtė, A. Andrulevičius, A. Melninkaitis, R. Buzelis, A. Selskis, A. Lazauskas, and T. Tolenis, “Highly resistant zero–order waveplates based on all–silica multilayer coatings,” Phys. Status Solidi A 214, 1770175 (2017).
    [Crossref]
  25. J. B. Oliver, S. MacNally, C. Smith, B. N. Hoffman, J. Spaulding, J. Foster, S. Papernov, and T. J. Kessler, “Fabrication of a glancing-angle-deposited distributed polarization rotator for ultraviolet applications,” Proc. SPIE 10691, 106911C (2018).
    [Crossref]
  26. K. D. Harris, “Fabrication and applications of highly porous thin films,” Ph.D. thesis (University of Alberta, 2003).
  27. D. J. Elliott, Integrated Circuit Fabrication Technology, 2nd ed. (McGraw-Hill, 1989), pp. 62–64.
  28. P. Baumeister, Optical Coating Technology (SPIE Optical Engineering, 2004), pp. 9-56–9-57.
  29. L. Gao, F. Lemarchand, and M. Lequime, “Refractive index determination of SiO2 layer in the UV/Vis/NIR range: spectrophotometric reverse engineering on single and bi-layer designs,” J. Eur. Opt. Soc. Rapid Publ. 8, 13010 (2013).
    [Crossref]
  30. S. Papernov and A. W. Schmid, “Localized absorption effects during 351  nm, pulsed laser irradiation of dielectric multilayer thin films,” J. Appl. Phys. 82, 5422–5432 (1997).
    [Crossref]
  31. S. Papernov, D. Zaksas, J. F. Anzellotti, D. J. Smith, A. W. Schmid, D. R. Collier, and F. A. Carbone, “One step closer to the intrinsic laser-damage threshold of HfO2 and SiO2 monolayer thin films,” Proc. SPIE 3244, 434–445 (1998).
    [Crossref]

2019 (1)

2018 (1)

J. B. Oliver, S. MacNally, C. Smith, B. N. Hoffman, J. Spaulding, J. Foster, S. Papernov, and T. J. Kessler, “Fabrication of a glancing-angle-deposited distributed polarization rotator for ultraviolet applications,” Proc. SPIE 10691, 106911C (2018).
[Crossref]

2017 (2)

L. Grinevičiūtė, A. Andrulevičius, A. Melninkaitis, R. Buzelis, A. Selskis, A. Lazauskas, and T. Tolenis, “Highly resistant zero–order waveplates based on all–silica multilayer coatings,” Phys. Status Solidi A 214, 1770175 (2017).
[Crossref]

T. A. Germer, K. A. Sharma, T. G. Brown, and J. B. Oliver, “Polarized optical scattering by inhomogeneities and surface roughness in an anisotropic thin film,” J. Opt. Soc. Am. A 34, 1974–1984 (2017).
[Crossref]

2014 (1)

2013 (1)

L. Gao, F. Lemarchand, and M. Lequime, “Refractive index determination of SiO2 layer in the UV/Vis/NIR range: spectrophotometric reverse engineering on single and bi-layer designs,” J. Eur. Opt. Soc. Rapid Publ. 8, 13010 (2013).
[Crossref]

2012 (2)

B. Mangote, L. Gallais, M. Zerrad, F. Lemarchand, L. H. Gao, M. Commandre, and M. Lequime, “A high accuracy femto-/picosecond laser damage test facility dedicated to the study of optical thin films,” Rev. Sci. Instrum. 83, 013109 (2012).
[Crossref]

L. González-García, J. Parra-Barranco, J. R. Sánchez-Valencia, A. Barranco, A. Borrás, A. R. González-Elipe, M.-C. García-Gutiérrez, J. J. Hernández, D. R. Rueda, and T. A. Ezquerra, “Correlation lengths, porosity and water adsorption in TiO2 thin films prepared by glancing angle deposition,” Nanotechnology 23, 205701 (2012).
[Crossref]

2007 (1)

J. Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S.-Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1, 176–179 (2007).
[Crossref]

2005 (3)

M. O. Jensen and M. J. Brett, “Porosity engineering in glancing angle deposition thin films,” Appl. Phys. A 80, 763–768 (2005).
[Crossref]

D. X. Ye, T. Karabacak, R. C. Picu, G. C. Wang, and T. M. Lu, “Uniform Si nanostructures grown by oblique angle deposition with substrate swing rotation,” Nanotechnology 16, 1717–1723 (2005).
[Crossref]

S. N. Dixit, D. Munro, J. R. Murray, M. Nostrand, P. J. Wegner, D. Froula, C. A. Haynam, and B. J. MacGowan, “Polarization smoothing on the National Ignition Facility,” J. Phys. IV (France) 133, 717–720 (2005).
[Crossref]

2004 (2)

2003 (2)

2000 (1)

J. E. Rothenberg, “Polarization beam smoothing for inertial confinement fusion,” J. Appl. Phys. 87, 3654–3662 (2000).
[Crossref]

1999 (3)

S. Skupsky and R. S. Craxton, “Irradiation uniformity for high-compression laser-fusion experiments,” Phys. Plasmas 6, 2157–2163 (1999).
[Crossref]

I. Hodgkinson and Q. H. Wu, “Serial bideposition of anisotropic thin films with enhanced linear birefringence,” Appl. Opt. 38, 3621–3625 (1999).
[Crossref]

I. J. Hodgkinson, “Linear and circular form birefringence of coatings fabricated by serial bideposition,” Proc. SPIE 3790, 119–132 (1999).
[Crossref]

1998 (1)

S. Papernov, D. Zaksas, J. F. Anzellotti, D. J. Smith, A. W. Schmid, D. R. Collier, and F. A. Carbone, “One step closer to the intrinsic laser-damage threshold of HfO2 and SiO2 monolayer thin films,” Proc. SPIE 3244, 434–445 (1998).
[Crossref]

1997 (1)

S. Papernov and A. W. Schmid, “Localized absorption effects during 351  nm, pulsed laser irradiation of dielectric multilayer thin films,” J. Appl. Phys. 82, 5422–5432 (1997).
[Crossref]

1995 (1)

1988 (1)

Andrulevicius, A.

L. Grinevičiūtė, A. Andrulevičius, A. Melninkaitis, R. Buzelis, A. Selskis, A. Lazauskas, and T. Tolenis, “Highly resistant zero–order waveplates based on all–silica multilayer coatings,” Phys. Status Solidi A 214, 1770175 (2017).
[Crossref]

Anzellotti, J. F.

S. Papernov, D. Zaksas, J. F. Anzellotti, D. J. Smith, A. W. Schmid, D. R. Collier, and F. A. Carbone, “One step closer to the intrinsic laser-damage threshold of HfO2 and SiO2 monolayer thin films,” Proc. SPIE 3244, 434–445 (1998).
[Crossref]

Barranco, A.

L. González-García, J. Parra-Barranco, J. R. Sánchez-Valencia, A. Barranco, A. Borrás, A. R. González-Elipe, M.-C. García-Gutiérrez, J. J. Hernández, D. R. Rueda, and T. A. Ezquerra, “Correlation lengths, porosity and water adsorption in TiO2 thin films prepared by glancing angle deposition,” Nanotechnology 23, 205701 (2012).
[Crossref]

Baumeister, P.

P. Baumeister, Optical Coating Technology (SPIE Optical Engineering, 2004), pp. 9-56–9-57.

Beydaghyan, G.

Borrás, A.

L. González-García, J. Parra-Barranco, J. R. Sánchez-Valencia, A. Barranco, A. Borrás, A. R. González-Elipe, M.-C. García-Gutiérrez, J. J. Hernández, D. R. Rueda, and T. A. Ezquerra, “Correlation lengths, porosity and water adsorption in TiO2 thin films prepared by glancing angle deposition,” Nanotechnology 23, 205701 (2012).
[Crossref]

Brett, M. J.

M. O. Jensen and M. J. Brett, “Porosity engineering in glancing angle deposition thin films,” Appl. Phys. A 80, 763–768 (2005).
[Crossref]

S. R. Kennedy and M. J. Brett, “Porous broadband antireflection coating by glancing angle deposition,” Appl. Opt. 42, 4573–4579 (2003).
[Crossref]

M. M. Hawkeye, M. T. Taschuk, and M. J. Brett, Glancing Angle Deposition of Thin Films: Engineering the Nanoscale, Wiley Series in Materials for Electronic & Optoelectronic Applications (Wiley, 2014), p. 6, 7, 53–60, 237–240.

Brown, T.

Brown, T. G.

T. A. Germer, K. A. Sharma, T. G. Brown, and J. B. Oliver, “Polarized optical scattering by inhomogeneities and surface roughness in an anisotropic thin film,” J. Opt. Soc. Am. A 34, 1974–1984 (2017).
[Crossref]

K. A. Sharma, T. A. Germer, C. Smith, J. D. Zuegel, J. B. Oliver, and T. G. Brown, “Scattered-light analysis of birefringent coatings for distributed polarization rotators,” in Frontiers in Optics, OSA Technical Digest (online) (Optical Society of America, 2016), paper JW4A.48.

Buzelis, R.

L. Grinevičiūtė, A. Andrulevičius, A. Melninkaitis, R. Buzelis, A. Selskis, A. Lazauskas, and T. Tolenis, “Highly resistant zero–order waveplates based on all–silica multilayer coatings,” Phys. Status Solidi A 214, 1770175 (2017).
[Crossref]

Carbone, F. A.

S. Papernov, D. Zaksas, J. F. Anzellotti, D. J. Smith, A. W. Schmid, D. R. Collier, and F. A. Carbone, “One step closer to the intrinsic laser-damage threshold of HfO2 and SiO2 monolayer thin films,” Proc. SPIE 3244, 434–445 (1998).
[Crossref]

Charles, B.

Chen, M.

J. Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S.-Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1, 176–179 (2007).
[Crossref]

Cloughley, S. C.

Collier, D. R.

S. Papernov, D. Zaksas, J. F. Anzellotti, D. J. Smith, A. W. Schmid, D. R. Collier, and F. A. Carbone, “One step closer to the intrinsic laser-damage threshold of HfO2 and SiO2 monolayer thin films,” Proc. SPIE 3244, 434–445 (1998).
[Crossref]

Commandre, M.

B. Mangote, L. Gallais, M. Zerrad, F. Lemarchand, L. H. Gao, M. Commandre, and M. Lequime, “A high accuracy femto-/picosecond laser damage test facility dedicated to the study of optical thin films,” Rev. Sci. Instrum. 83, 013109 (2012).
[Crossref]

Craxton, R. S.

S. Skupsky and R. S. Craxton, “Irradiation uniformity for high-compression laser-fusion experiments,” Phys. Plasmas 6, 2157–2163 (1999).
[Crossref]

Dixit, S. N.

S. N. Dixit, D. Munro, J. R. Murray, M. Nostrand, P. J. Wegner, D. Froula, C. A. Haynam, and B. J. MacGowan, “Polarization smoothing on the National Ignition Facility,” J. Phys. IV (France) 133, 717–720 (2005).
[Crossref]

D. H. Munro, S. N. Dixit, A. B. Langdon, and J. R. Murray, “Polarization smoothing in a convergent beam,” Appl. Opt. 43, 6639–6647 (2004).
[Crossref]

Elliott, D. J.

D. J. Elliott, Integrated Circuit Fabrication Technology, 2nd ed. (McGraw-Hill, 1989), pp. 62–64.

Ezquerra, T. A.

L. González-García, J. Parra-Barranco, J. R. Sánchez-Valencia, A. Barranco, A. Borrás, A. R. González-Elipe, M.-C. García-Gutiérrez, J. J. Hernández, D. R. Rueda, and T. A. Ezquerra, “Correlation lengths, porosity and water adsorption in TiO2 thin films prepared by glancing angle deposition,” Nanotechnology 23, 205701 (2012).
[Crossref]

Foster, J.

J. B. Oliver, S. MacNally, C. Smith, B. N. Hoffman, J. Spaulding, J. Foster, S. Papernov, and T. J. Kessler, “Fabrication of a glancing-angle-deposited distributed polarization rotator for ultraviolet applications,” Proc. SPIE 10691, 106911C (2018).
[Crossref]

Froula, D.

S. N. Dixit, D. Munro, J. R. Murray, M. Nostrand, P. J. Wegner, D. Froula, C. A. Haynam, and B. J. MacGowan, “Polarization smoothing on the National Ignition Facility,” J. Phys. IV (France) 133, 717–720 (2005).
[Crossref]

Gallais, L.

B. Mangote, L. Gallais, M. Zerrad, F. Lemarchand, L. H. Gao, M. Commandre, and M. Lequime, “A high accuracy femto-/picosecond laser damage test facility dedicated to the study of optical thin films,” Rev. Sci. Instrum. 83, 013109 (2012).
[Crossref]

Gao, L.

L. Gao, F. Lemarchand, and M. Lequime, “Refractive index determination of SiO2 layer in the UV/Vis/NIR range: spectrophotometric reverse engineering on single and bi-layer designs,” J. Eur. Opt. Soc. Rapid Publ. 8, 13010 (2013).
[Crossref]

Gao, L. H.

B. Mangote, L. Gallais, M. Zerrad, F. Lemarchand, L. H. Gao, M. Commandre, and M. Lequime, “A high accuracy femto-/picosecond laser damage test facility dedicated to the study of optical thin films,” Rev. Sci. Instrum. 83, 013109 (2012).
[Crossref]

García-Gutiérrez, M.-C.

L. González-García, J. Parra-Barranco, J. R. Sánchez-Valencia, A. Barranco, A. Borrás, A. R. González-Elipe, M.-C. García-Gutiérrez, J. J. Hernández, D. R. Rueda, and T. A. Ezquerra, “Correlation lengths, porosity and water adsorption in TiO2 thin films prepared by glancing angle deposition,” Nanotechnology 23, 205701 (2012).
[Crossref]

Germer, T. A.

T. A. Germer, K. A. Sharma, T. G. Brown, and J. B. Oliver, “Polarized optical scattering by inhomogeneities and surface roughness in an anisotropic thin film,” J. Opt. Soc. Am. A 34, 1974–1984 (2017).
[Crossref]

K. A. Sharma, T. A. Germer, C. Smith, J. D. Zuegel, J. B. Oliver, and T. G. Brown, “Scattered-light analysis of birefringent coatings for distributed polarization rotators,” in Frontiers in Optics, OSA Technical Digest (online) (Optical Society of America, 2016), paper JW4A.48.

González-Elipe, A. R.

L. González-García, J. Parra-Barranco, J. R. Sánchez-Valencia, A. Barranco, A. Borrás, A. R. González-Elipe, M.-C. García-Gutiérrez, J. J. Hernández, D. R. Rueda, and T. A. Ezquerra, “Correlation lengths, porosity and water adsorption in TiO2 thin films prepared by glancing angle deposition,” Nanotechnology 23, 205701 (2012).
[Crossref]

González-García, L.

L. González-García, J. Parra-Barranco, J. R. Sánchez-Valencia, A. Barranco, A. Borrás, A. R. González-Elipe, M.-C. García-Gutiérrez, J. J. Hernández, D. R. Rueda, and T. A. Ezquerra, “Correlation lengths, porosity and water adsorption in TiO2 thin films prepared by glancing angle deposition,” Nanotechnology 23, 205701 (2012).
[Crossref]

Gregg, S. J.

S. J. Gregg and K. S. Sing, Adsorption, Surface Area and Porosity (Academic, 1982), pp. 269–274.

Grineviciute, L.

L. Grinevičiūtė, A. Andrulevičius, A. Melninkaitis, R. Buzelis, A. Selskis, A. Lazauskas, and T. Tolenis, “Highly resistant zero–order waveplates based on all–silica multilayer coatings,” Phys. Status Solidi A 214, 1770175 (2017).
[Crossref]

Gruschow, V.

Harris, K. D.

K. D. Harris, “Fabrication and applications of highly porous thin films,” Ph.D. thesis (University of Alberta, 2003).

Hawkeye, M. M.

M. M. Hawkeye, M. T. Taschuk, and M. J. Brett, Glancing Angle Deposition of Thin Films: Engineering the Nanoscale, Wiley Series in Materials for Electronic & Optoelectronic Applications (Wiley, 2014), p. 6, 7, 53–60, 237–240.

Haynam, C. A.

S. N. Dixit, D. Munro, J. R. Murray, M. Nostrand, P. J. Wegner, D. Froula, C. A. Haynam, and B. J. MacGowan, “Polarization smoothing on the National Ignition Facility,” J. Phys. IV (France) 133, 717–720 (2005).
[Crossref]

Hernández, J. J.

L. González-García, J. Parra-Barranco, J. R. Sánchez-Valencia, A. Barranco, A. Borrás, A. R. González-Elipe, M.-C. García-Gutiérrez, J. J. Hernández, D. R. Rueda, and T. A. Ezquerra, “Correlation lengths, porosity and water adsorption in TiO2 thin films prepared by glancing angle deposition,” Nanotechnology 23, 205701 (2012).
[Crossref]

Hettich, H. L.

Hettrick, J.

Hodgkinson, I.

Hodgkinson, I. J.

I. J. Hodgkinson, “Linear and circular form birefringence of coatings fabricated by serial bideposition,” Proc. SPIE 3790, 119–132 (1999).
[Crossref]

S. Kassam, I. J. Hodgkinson, Q. Wu, and S. C. Cloughley, “Light scattering from thin films with an oblique columnar structure and with granular inclusions,” J. Opt. Soc. Am. A 12, 2009–2021 (1995).
[Crossref]

M. W. McCall, I. J. Hodgkinson, and Q. Wu, Birefringent Thin Films and Polarizing Elements, 2nd ed. (Imperial College, 2015), p. 4, 5.

Hoffman, B. N.

J. B. Oliver, S. MacNally, C. Smith, B. N. Hoffman, J. Spaulding, J. Foster, S. Papernov, and T. J. Kessler, “Fabrication of a glancing-angle-deposited distributed polarization rotator for ultraviolet applications,” Proc. SPIE 10691, 106911C (2018).
[Crossref]

Jensen, M. O.

M. O. Jensen and M. J. Brett, “Porosity engineering in glancing angle deposition thin films,” Appl. Phys. A 80, 763–768 (2005).
[Crossref]

Kaminska, K.

Karabacak, T.

D. X. Ye, T. Karabacak, R. C. Picu, G. C. Wang, and T. M. Lu, “Uniform Si nanostructures grown by oblique angle deposition with substrate swing rotation,” Nanotechnology 16, 1717–1723 (2005).
[Crossref]

Kassam, S.

Kennedy, S. R.

Kessler, T. J.

J. B. Oliver, S. MacNally, C. Smith, B. N. Hoffman, J. Spaulding, J. Foster, S. Papernov, and T. J. Kessler, “Fabrication of a glancing-angle-deposited distributed polarization rotator for ultraviolet applications,” Proc. SPIE 10691, 106911C (2018).
[Crossref]

J. B. Oliver, T. J. Kessler, C. Smith, B. Taylor, V. Gruschow, J. Hettrick, and B. Charles, “Electron-beam-deposited distributed polarization rotator for high-power laser applications,” Opt. Express 22, 23883–23896 (2014).
[Crossref]

Kim, J. K.

J. Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S.-Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1, 176–179 (2007).
[Crossref]

Langdon, A. B.

Lazauskas, A.

L. Grinevičiūtė, A. Andrulevičius, A. Melninkaitis, R. Buzelis, A. Selskis, A. Lazauskas, and T. Tolenis, “Highly resistant zero–order waveplates based on all–silica multilayer coatings,” Phys. Status Solidi A 214, 1770175 (2017).
[Crossref]

Lemarchand, F.

L. Gao, F. Lemarchand, and M. Lequime, “Refractive index determination of SiO2 layer in the UV/Vis/NIR range: spectrophotometric reverse engineering on single and bi-layer designs,” J. Eur. Opt. Soc. Rapid Publ. 8, 13010 (2013).
[Crossref]

B. Mangote, L. Gallais, M. Zerrad, F. Lemarchand, L. H. Gao, M. Commandre, and M. Lequime, “A high accuracy femto-/picosecond laser damage test facility dedicated to the study of optical thin films,” Rev. Sci. Instrum. 83, 013109 (2012).
[Crossref]

Lequime, M.

L. Gao, F. Lemarchand, and M. Lequime, “Refractive index determination of SiO2 layer in the UV/Vis/NIR range: spectrophotometric reverse engineering on single and bi-layer designs,” J. Eur. Opt. Soc. Rapid Publ. 8, 13010 (2013).
[Crossref]

B. Mangote, L. Gallais, M. Zerrad, F. Lemarchand, L. H. Gao, M. Commandre, and M. Lequime, “A high accuracy femto-/picosecond laser damage test facility dedicated to the study of optical thin films,” Rev. Sci. Instrum. 83, 013109 (2012).
[Crossref]

Lin, S.-Y.

J. Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S.-Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1, 176–179 (2007).
[Crossref]

Liu, W.

J. Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S.-Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1, 176–179 (2007).
[Crossref]

Lu, T. M.

D. X. Ye, T. Karabacak, R. C. Picu, G. C. Wang, and T. M. Lu, “Uniform Si nanostructures grown by oblique angle deposition with substrate swing rotation,” Nanotechnology 16, 1717–1723 (2005).
[Crossref]

MacGowan, B. J.

S. N. Dixit, D. Munro, J. R. Murray, M. Nostrand, P. J. Wegner, D. Froula, C. A. Haynam, and B. J. MacGowan, “Polarization smoothing on the National Ignition Facility,” J. Phys. IV (France) 133, 717–720 (2005).
[Crossref]

MacNally, S.

C. Smith, S. MacNally, and J. B. Oliver, “Modeling of serially bi-deposited glancing-angle–deposition coatings,” Appl. Opt. 59, A26–A30(2019)..
[Crossref]

J. B. Oliver, S. MacNally, C. Smith, B. N. Hoffman, J. Spaulding, J. Foster, S. Papernov, and T. J. Kessler, “Fabrication of a glancing-angle-deposited distributed polarization rotator for ultraviolet applications,” Proc. SPIE 10691, 106911C (2018).
[Crossref]

Mangote, B.

B. Mangote, L. Gallais, M. Zerrad, F. Lemarchand, L. H. Gao, M. Commandre, and M. Lequime, “A high accuracy femto-/picosecond laser damage test facility dedicated to the study of optical thin films,” Rev. Sci. Instrum. 83, 013109 (2012).
[Crossref]

McCall, M. W.

M. W. McCall, I. J. Hodgkinson, and Q. Wu, Birefringent Thin Films and Polarizing Elements, 2nd ed. (Imperial College, 2015), p. 4, 5.

Melninkaitis, A.

L. Grinevičiūtė, A. Andrulevičius, A. Melninkaitis, R. Buzelis, A. Selskis, A. Lazauskas, and T. Tolenis, “Highly resistant zero–order waveplates based on all–silica multilayer coatings,” Phys. Status Solidi A 214, 1770175 (2017).
[Crossref]

Munro, D.

S. N. Dixit, D. Munro, J. R. Murray, M. Nostrand, P. J. Wegner, D. Froula, C. A. Haynam, and B. J. MacGowan, “Polarization smoothing on the National Ignition Facility,” J. Phys. IV (France) 133, 717–720 (2005).
[Crossref]

Munro, D. H.

Murray, J. R.

S. N. Dixit, D. Munro, J. R. Murray, M. Nostrand, P. J. Wegner, D. Froula, C. A. Haynam, and B. J. MacGowan, “Polarization smoothing on the National Ignition Facility,” J. Phys. IV (France) 133, 717–720 (2005).
[Crossref]

D. H. Munro, S. N. Dixit, A. B. Langdon, and J. R. Murray, “Polarization smoothing in a convergent beam,” Appl. Opt. 43, 6639–6647 (2004).
[Crossref]

Nostrand, M.

S. N. Dixit, D. Munro, J. R. Murray, M. Nostrand, P. J. Wegner, D. Froula, C. A. Haynam, and B. J. MacGowan, “Polarization smoothing on the National Ignition Facility,” J. Phys. IV (France) 133, 717–720 (2005).
[Crossref]

Oliver, J. B.

C. Smith, S. MacNally, and J. B. Oliver, “Modeling of serially bi-deposited glancing-angle–deposition coatings,” Appl. Opt. 59, A26–A30(2019)..
[Crossref]

J. B. Oliver, S. MacNally, C. Smith, B. N. Hoffman, J. Spaulding, J. Foster, S. Papernov, and T. J. Kessler, “Fabrication of a glancing-angle-deposited distributed polarization rotator for ultraviolet applications,” Proc. SPIE 10691, 106911C (2018).
[Crossref]

T. A. Germer, K. A. Sharma, T. G. Brown, and J. B. Oliver, “Polarized optical scattering by inhomogeneities and surface roughness in an anisotropic thin film,” J. Opt. Soc. Am. A 34, 1974–1984 (2017).
[Crossref]

J. B. Oliver, T. J. Kessler, C. Smith, B. Taylor, V. Gruschow, J. Hettrick, and B. Charles, “Electron-beam-deposited distributed polarization rotator for high-power laser applications,” Opt. Express 22, 23883–23896 (2014).
[Crossref]

K. A. Sharma, T. A. Germer, C. Smith, J. D. Zuegel, J. B. Oliver, and T. G. Brown, “Scattered-light analysis of birefringent coatings for distributed polarization rotators,” in Frontiers in Optics, OSA Technical Digest (online) (Optical Society of America, 2016), paper JW4A.48.

Papernov, S.

J. B. Oliver, S. MacNally, C. Smith, B. N. Hoffman, J. Spaulding, J. Foster, S. Papernov, and T. J. Kessler, “Fabrication of a glancing-angle-deposited distributed polarization rotator for ultraviolet applications,” Proc. SPIE 10691, 106911C (2018).
[Crossref]

S. Papernov, D. Zaksas, J. F. Anzellotti, D. J. Smith, A. W. Schmid, D. R. Collier, and F. A. Carbone, “One step closer to the intrinsic laser-damage threshold of HfO2 and SiO2 monolayer thin films,” Proc. SPIE 3244, 434–445 (1998).
[Crossref]

S. Papernov and A. W. Schmid, “Localized absorption effects during 351  nm, pulsed laser irradiation of dielectric multilayer thin films,” J. Appl. Phys. 82, 5422–5432 (1997).
[Crossref]

Parra-Barranco, J.

L. González-García, J. Parra-Barranco, J. R. Sánchez-Valencia, A. Barranco, A. Borrás, A. R. González-Elipe, M.-C. García-Gutiérrez, J. J. Hernández, D. R. Rueda, and T. A. Ezquerra, “Correlation lengths, porosity and water adsorption in TiO2 thin films prepared by glancing angle deposition,” Nanotechnology 23, 205701 (2012).
[Crossref]

Pellicori, S. F.

Picu, R. C.

D. X. Ye, T. Karabacak, R. C. Picu, G. C. Wang, and T. M. Lu, “Uniform Si nanostructures grown by oblique angle deposition with substrate swing rotation,” Nanotechnology 16, 1717–1723 (2005).
[Crossref]

Robbie, K.

Rothenberg, J. E.

J. E. Rothenberg, “Polarization beam smoothing for inertial confinement fusion,” J. Appl. Phys. 87, 3654–3662 (2000).
[Crossref]

Rueda, D. R.

L. González-García, J. Parra-Barranco, J. R. Sánchez-Valencia, A. Barranco, A. Borrás, A. R. González-Elipe, M.-C. García-Gutiérrez, J. J. Hernández, D. R. Rueda, and T. A. Ezquerra, “Correlation lengths, porosity and water adsorption in TiO2 thin films prepared by glancing angle deposition,” Nanotechnology 23, 205701 (2012).
[Crossref]

Sánchez-Valencia, J. R.

L. González-García, J. Parra-Barranco, J. R. Sánchez-Valencia, A. Barranco, A. Borrás, A. R. González-Elipe, M.-C. García-Gutiérrez, J. J. Hernández, D. R. Rueda, and T. A. Ezquerra, “Correlation lengths, porosity and water adsorption in TiO2 thin films prepared by glancing angle deposition,” Nanotechnology 23, 205701 (2012).
[Crossref]

Schmid, A. W.

S. Papernov, D. Zaksas, J. F. Anzellotti, D. J. Smith, A. W. Schmid, D. R. Collier, and F. A. Carbone, “One step closer to the intrinsic laser-damage threshold of HfO2 and SiO2 monolayer thin films,” Proc. SPIE 3244, 434–445 (1998).
[Crossref]

S. Papernov and A. W. Schmid, “Localized absorption effects during 351  nm, pulsed laser irradiation of dielectric multilayer thin films,” J. Appl. Phys. 82, 5422–5432 (1997).
[Crossref]

Schubert, E. F.

J. Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S.-Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1, 176–179 (2007).
[Crossref]

Schubert, M. F.

J. Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S.-Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1, 176–179 (2007).
[Crossref]

Selskis, A.

L. Grinevičiūtė, A. Andrulevičius, A. Melninkaitis, R. Buzelis, A. Selskis, A. Lazauskas, and T. Tolenis, “Highly resistant zero–order waveplates based on all–silica multilayer coatings,” Phys. Status Solidi A 214, 1770175 (2017).
[Crossref]

Sharma, K. A.

T. A. Germer, K. A. Sharma, T. G. Brown, and J. B. Oliver, “Polarized optical scattering by inhomogeneities and surface roughness in an anisotropic thin film,” J. Opt. Soc. Am. A 34, 1974–1984 (2017).
[Crossref]

K. A. Sharma, T. A. Germer, C. Smith, J. D. Zuegel, J. B. Oliver, and T. G. Brown, “Scattered-light analysis of birefringent coatings for distributed polarization rotators,” in Frontiers in Optics, OSA Technical Digest (online) (Optical Society of America, 2016), paper JW4A.48.

Sing, K. S.

S. J. Gregg and K. S. Sing, Adsorption, Surface Area and Porosity (Academic, 1982), pp. 269–274.

Skupsky, S.

S. Skupsky and R. S. Craxton, “Irradiation uniformity for high-compression laser-fusion experiments,” Phys. Plasmas 6, 2157–2163 (1999).
[Crossref]

Smart, J. A.

J. Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S.-Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1, 176–179 (2007).
[Crossref]

Smith, C.

C. Smith, S. MacNally, and J. B. Oliver, “Modeling of serially bi-deposited glancing-angle–deposition coatings,” Appl. Opt. 59, A26–A30(2019)..
[Crossref]

J. B. Oliver, S. MacNally, C. Smith, B. N. Hoffman, J. Spaulding, J. Foster, S. Papernov, and T. J. Kessler, “Fabrication of a glancing-angle-deposited distributed polarization rotator for ultraviolet applications,” Proc. SPIE 10691, 106911C (2018).
[Crossref]

J. B. Oliver, T. J. Kessler, C. Smith, B. Taylor, V. Gruschow, J. Hettrick, and B. Charles, “Electron-beam-deposited distributed polarization rotator for high-power laser applications,” Opt. Express 22, 23883–23896 (2014).
[Crossref]

K. A. Sharma, T. A. Germer, C. Smith, J. D. Zuegel, J. B. Oliver, and T. G. Brown, “Scattered-light analysis of birefringent coatings for distributed polarization rotators,” in Frontiers in Optics, OSA Technical Digest (online) (Optical Society of America, 2016), paper JW4A.48.

Smith, D. J.

S. Papernov, D. Zaksas, J. F. Anzellotti, D. J. Smith, A. W. Schmid, D. R. Collier, and F. A. Carbone, “One step closer to the intrinsic laser-damage threshold of HfO2 and SiO2 monolayer thin films,” Proc. SPIE 3244, 434–445 (1998).
[Crossref]

Spaulding, J.

J. B. Oliver, S. MacNally, C. Smith, B. N. Hoffman, J. Spaulding, J. Foster, S. Papernov, and T. J. Kessler, “Fabrication of a glancing-angle-deposited distributed polarization rotator for ultraviolet applications,” Proc. SPIE 10691, 106911C (2018).
[Crossref]

Taschuk, M. T.

M. M. Hawkeye, M. T. Taschuk, and M. J. Brett, Glancing Angle Deposition of Thin Films: Engineering the Nanoscale, Wiley Series in Materials for Electronic & Optoelectronic Applications (Wiley, 2014), p. 6, 7, 53–60, 237–240.

Taylor, B.

Tolenis, T.

L. Grinevičiūtė, A. Andrulevičius, A. Melninkaitis, R. Buzelis, A. Selskis, A. Lazauskas, and T. Tolenis, “Highly resistant zero–order waveplates based on all–silica multilayer coatings,” Phys. Status Solidi A 214, 1770175 (2017).
[Crossref]

Wang, G. C.

D. X. Ye, T. Karabacak, R. C. Picu, G. C. Wang, and T. M. Lu, “Uniform Si nanostructures grown by oblique angle deposition with substrate swing rotation,” Nanotechnology 16, 1717–1723 (2005).
[Crossref]

Wegner, P. J.

S. N. Dixit, D. Munro, J. R. Murray, M. Nostrand, P. J. Wegner, D. Froula, C. A. Haynam, and B. J. MacGowan, “Polarization smoothing on the National Ignition Facility,” J. Phys. IV (France) 133, 717–720 (2005).
[Crossref]

Wu, Q.

Wu, Q. H.

Xi, J. Q.

J. Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S.-Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1, 176–179 (2007).
[Crossref]

Ye, D. X.

D. X. Ye, T. Karabacak, R. C. Picu, G. C. Wang, and T. M. Lu, “Uniform Si nanostructures grown by oblique angle deposition with substrate swing rotation,” Nanotechnology 16, 1717–1723 (2005).
[Crossref]

Zaksas, D.

S. Papernov, D. Zaksas, J. F. Anzellotti, D. J. Smith, A. W. Schmid, D. R. Collier, and F. A. Carbone, “One step closer to the intrinsic laser-damage threshold of HfO2 and SiO2 monolayer thin films,” Proc. SPIE 3244, 434–445 (1998).
[Crossref]

Zerrad, M.

B. Mangote, L. Gallais, M. Zerrad, F. Lemarchand, L. H. Gao, M. Commandre, and M. Lequime, “A high accuracy femto-/picosecond laser damage test facility dedicated to the study of optical thin films,” Rev. Sci. Instrum. 83, 013109 (2012).
[Crossref]

Zuegel, J. D.

K. A. Sharma, T. A. Germer, C. Smith, J. D. Zuegel, J. B. Oliver, and T. G. Brown, “Scattered-light analysis of birefringent coatings for distributed polarization rotators,” in Frontiers in Optics, OSA Technical Digest (online) (Optical Society of America, 2016), paper JW4A.48.

Appl. Opt. (7)

Appl. Phys. A (1)

M. O. Jensen and M. J. Brett, “Porosity engineering in glancing angle deposition thin films,” Appl. Phys. A 80, 763–768 (2005).
[Crossref]

J. Appl. Phys. (2)

J. E. Rothenberg, “Polarization beam smoothing for inertial confinement fusion,” J. Appl. Phys. 87, 3654–3662 (2000).
[Crossref]

S. Papernov and A. W. Schmid, “Localized absorption effects during 351  nm, pulsed laser irradiation of dielectric multilayer thin films,” J. Appl. Phys. 82, 5422–5432 (1997).
[Crossref]

J. Eur. Opt. Soc. Rapid Publ. (1)

L. Gao, F. Lemarchand, and M. Lequime, “Refractive index determination of SiO2 layer in the UV/Vis/NIR range: spectrophotometric reverse engineering on single and bi-layer designs,” J. Eur. Opt. Soc. Rapid Publ. 8, 13010 (2013).
[Crossref]

J. Opt. Soc. Am. A (2)

J. Phys. IV (France) (1)

S. N. Dixit, D. Munro, J. R. Murray, M. Nostrand, P. J. Wegner, D. Froula, C. A. Haynam, and B. J. MacGowan, “Polarization smoothing on the National Ignition Facility,” J. Phys. IV (France) 133, 717–720 (2005).
[Crossref]

Nanotechnology (2)

L. González-García, J. Parra-Barranco, J. R. Sánchez-Valencia, A. Barranco, A. Borrás, A. R. González-Elipe, M.-C. García-Gutiérrez, J. J. Hernández, D. R. Rueda, and T. A. Ezquerra, “Correlation lengths, porosity and water adsorption in TiO2 thin films prepared by glancing angle deposition,” Nanotechnology 23, 205701 (2012).
[Crossref]

D. X. Ye, T. Karabacak, R. C. Picu, G. C. Wang, and T. M. Lu, “Uniform Si nanostructures grown by oblique angle deposition with substrate swing rotation,” Nanotechnology 16, 1717–1723 (2005).
[Crossref]

Nat. Photonics (1)

J. Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S.-Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1, 176–179 (2007).
[Crossref]

Opt. Express (1)

Phys. Plasmas (1)

S. Skupsky and R. S. Craxton, “Irradiation uniformity for high-compression laser-fusion experiments,” Phys. Plasmas 6, 2157–2163 (1999).
[Crossref]

Phys. Status Solidi A (1)

L. Grinevičiūtė, A. Andrulevičius, A. Melninkaitis, R. Buzelis, A. Selskis, A. Lazauskas, and T. Tolenis, “Highly resistant zero–order waveplates based on all–silica multilayer coatings,” Phys. Status Solidi A 214, 1770175 (2017).
[Crossref]

Proc. SPIE (3)

J. B. Oliver, S. MacNally, C. Smith, B. N. Hoffman, J. Spaulding, J. Foster, S. Papernov, and T. J. Kessler, “Fabrication of a glancing-angle-deposited distributed polarization rotator for ultraviolet applications,” Proc. SPIE 10691, 106911C (2018).
[Crossref]

I. J. Hodgkinson, “Linear and circular form birefringence of coatings fabricated by serial bideposition,” Proc. SPIE 3790, 119–132 (1999).
[Crossref]

S. Papernov, D. Zaksas, J. F. Anzellotti, D. J. Smith, A. W. Schmid, D. R. Collier, and F. A. Carbone, “One step closer to the intrinsic laser-damage threshold of HfO2 and SiO2 monolayer thin films,” Proc. SPIE 3244, 434–445 (1998).
[Crossref]

Rev. Sci. Instrum. (1)

B. Mangote, L. Gallais, M. Zerrad, F. Lemarchand, L. H. Gao, M. Commandre, and M. Lequime, “A high accuracy femto-/picosecond laser damage test facility dedicated to the study of optical thin films,” Rev. Sci. Instrum. 83, 013109 (2012).
[Crossref]

Other (7)

K. A. Sharma, T. A. Germer, C. Smith, J. D. Zuegel, J. B. Oliver, and T. G. Brown, “Scattered-light analysis of birefringent coatings for distributed polarization rotators,” in Frontiers in Optics, OSA Technical Digest (online) (Optical Society of America, 2016), paper JW4A.48.

M. W. McCall, I. J. Hodgkinson, and Q. Wu, Birefringent Thin Films and Polarizing Elements, 2nd ed. (Imperial College, 2015), p. 4, 5.

M. M. Hawkeye, M. T. Taschuk, and M. J. Brett, Glancing Angle Deposition of Thin Films: Engineering the Nanoscale, Wiley Series in Materials for Electronic & Optoelectronic Applications (Wiley, 2014), p. 6, 7, 53–60, 237–240.

S. J. Gregg and K. S. Sing, Adsorption, Surface Area and Porosity (Academic, 1982), pp. 269–274.

K. D. Harris, “Fabrication and applications of highly porous thin films,” Ph.D. thesis (University of Alberta, 2003).

D. J. Elliott, Integrated Circuit Fabrication Technology, 2nd ed. (McGraw-Hill, 1989), pp. 62–64.

P. Baumeister, Optical Coating Technology (SPIE Optical Engineering, 2004), pp. 9-56–9-57.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1. Scanning electron microscope (SEM) image of the top of silica GLAD columns (coating surface). The substrate tilt axis is represented by $x$; the shadowing/vapor source direction is represented by $y$. The coating thickness for this sample is 4 µm.
Fig. 2.
Fig. 2. Angstrom Engineering GLAD stage mounted in a 1.2-m vacuum chamber. Substrates remain in the center of the stage as it flips to the programmed $ \pm \theta $. An electron-beam gun is mounted directly below the aperture, and an Inficon Crystal 12 sensor is mounted on the side to measure the deposition rate/thickness.
Fig. 3.
Fig. 3. 100-mm fused-silica substrate with stripes of photoresist. The stripes are 10 mm wide (the width of the lithography tape used to pattern the exposure mask) and are evenly spaced across the surface.
Fig. 4.
Fig. 4. (a) SEM image of a 31-layer quarter-wave plate coating. (b) Theoretical transmittance through the quarter-wave design with backside reflection (solid line) overlaid with spectrophotometer data (dashed line).
Fig. 5.
Fig. 5. Retardance map of a 50-mm-diameter multilayer half-wave plate measured on a Hinds Instruments Exicor 450XT Mueller Matrix Polarimeter. The resolution of this measurement tool is 0.5 mm, and the measurement wavelength is 355 nm.
Fig. 6.
Fig. 6. Retardance measurements for a half-wave plate sample over a five-month period. Ambient measurements are consistently $\sim{20}\% $ higher than nitrogen-purged measurements.
Fig. 7.
Fig. 7. Scatter measurements for a single-layer and multilayer half-wave plate. Eight months after deposition, multilayer scatter has remained approximately the same and single-layer scatter has increased 48%.
Fig. 8.
Fig. 8. Image of a single-layer GLAD stripe on a 50-mm substrate, five months after deposition. The coating thickness is 4 µm.
Fig. 9.
Fig. 9. (a) Image of the 100-mm patterned optic. (b) The retardance map shows uniformity across the 100-mm sample.
Fig. 10.
Fig. 10. SEM images of the 40-layer, patterned GLAD coating.

Metrics