Abstract

Amorphous tantala (${{\rm Ta}_2}{{\rm O}_5}$) thin films were deposited by reactive ion beam sputtering with simultaneous low energy assist ${{\rm Ar}^ + }$ or ${{\rm Ar}^ + }/{\rm O}_2^ + $ bombardment. Under the conditions of the experiment, the as-deposited thin films are amorphous and stoichiometric. The refractive index and optical band gap of thin films remain unchanged by ion bombardment. Around 20% improvement in room temperature mechanical loss and 60% decrease in absorption loss are found in samples bombarded with 100-eV ${{\rm Ar}^ + }$. A detrimental influence from low energy ${\rm O}_2^ + $ bombardment on absorption loss and mechanical loss is observed. Low energy ${{\rm Ar}^ + }$ bombardment removes excess oxygen point defects, while ${\rm O}_2^ + $ bombardment introduces defects into the tantala films.

© 2020 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Ultra-low stress SiO2 coatings by ion beam sputtering deposition

Aaron Davenport, Emmett Randel, and Carmen S. Menoni
Appl. Opt. 59(7) 1871-1875 (2020)

Ion-assisted deposition of optical thin films: low energy vs high energy bombardment

John R. McNeil, Alan C. Barron, S. R. Wilson, and W. C. Herrmann
Appl. Opt. 23(4) 552-559 (1984)

Effects of bombardment on optical properties during the deposition of silicon nitride by reactive ion-beam sputtering

M. F. Lambrinos, R. Valizadeh, and J. S. Colligon
Appl. Opt. 35(19) 3620-3626 (1996)

References

  • View by:
  • |
  • |
  • |

  1. S. D. Penn, P. H. Sneddon, H. Armandula, J. C. Betzwieser, G. Cagnoli, J. Camp, D. R. M. Crooks, M. M. Fejer, A. M. Gretarsson, and G. M. Harry, “Mechanical loss in tantala/silica dielectric mirror coatings,” Classical Quantum Gravity 20, 2917–2928 (2003).
    [Crossref]
  2. A. Brown, A. Ogloza, L. Taylor, J. Thomas, and J. Talghader, “Continuous-wave laser damage and conditioning of particle contaminated optics,” Appl. Opt. 54, 5216–5222 (2015).
    [Crossref]
  3. D. Schiltz, D. Patel, C. Baumgarten, B. A. Reagan, J. J. Rocca, and C. S. Menoni, “Strategies to increase laser damage performance of Ta2O5/SiO2 mirrors by modifications of the top layer design,” Appl. Opt. 56, C136–C139 (2017).
    [Crossref]
  4. D. Gangloff, M. Shi, T. Wu, A. Bylinskii, B. Braverman, M. Gutierrez, R. Nichols, J. Li, K. Aichholz, M. Cetina, L. Karpa, B. Jelenković, I. Chuang, and V. Vuletić, “Preventing and reversing vacuum-induced optical losses in high-finesse tantalum (V) oxide mirror coatings,” Opt. Express 23, 18014–18028 (2015).
    [Crossref]
  5. L. Pinard, C. Michel, B. Sassolas, L. Balzarini, J. Degallaix, V. Dolique, R. Flaminio, D. Forest, M. Granata, B. Lagrange, N. Straniero, J. Teillon, and G. Cagnoli, “Mirrors used in the LIGO interferometers for first detection of gravitational waves,” Appl. Opt. 56, C11–C15 (2017).
    [Crossref]
  6. M. Granata, E. Saracco, N. Morgado, A. Cajgfinger, G. Cagnoli, J. Degallaix, V. Dolique, D. Forest, J. Franc, C. Michel, L. Pinard, and R. Flaminio, “Mechanical loss in state-of-the-art amorphous optical coatings,” Phys. Rev. D 93, 012007 (2016).
    [Crossref]
  7. The LIGO Scientific Collaboration, “Advanced LIGO,” Classical Quantum Gravity 32, 074001 (2015).
    [Crossref]
  8. P. J. Martin, R. P. Netterfield, and W. G. Sainty, “Modification of the optical and structural properties of dielectric ZrO2 films by ion-assisted deposition,” J. Appl. Phys. 55, 235–241 (1984).
    [Crossref]
  9. E. Çetinörgü, B. Baloukas, O. Zabeida, J. E. Klemberg-Sapieha, and L. Martinu, “Mechanical and thermoelastic characteristics of optical thin films deposited by dual ion beam sputtering,” Appl. Opt. 48, 4536–4544 (2009).
    [Crossref]
  10. C. Lee, J. Hsu, D. T. Wei, and J. Lin, “Morphology of dual beam ion sputtered films investigated by atomic force microscopy,” Thin Solid Films 308-309, 74–78 (1997).
    [Crossref]
  11. W. Ensinger, “Low energy ion assist during deposition—an effective tool for controlling thin film microstructure,” Nucl. Instrum. Methods Phys. Res. B 127-128, 796–808 (1997).
    [Crossref]
  12. M. F. Lambrinos, R. Valizadeh, and J. S. Colligon, “Effects of bombardment on optical properties during the deposition of silicon nitride by reactive ion-beam sputtering,” Appl. Opt. 35, 3620–3626 (1996).
    [Crossref]
  13. A. S. Markosyan, R. Route, M. M. Fejer, D. Patel, and C. Menoni, “Study of spontaneous and induced absorption in amorphous Ta2O5 and SiO2 dielectric thin films,” J. Appl. Phys. 113, 133104 (2013).
    [Crossref]
  14. G. Vajente, A. Ananyeva, G. Billingsley, E. Gustafson, A. Heptonstall, E. Sanchez, and C. Torrie, “A high throughput instrument to measure mechanical losses in thin film coatings,” Rev. Sci. Instrum. 88, 073901 (2017).
    [Crossref]
  15. P. F. Langston, E. Krous, D. Schiltz, D. Patel, L. Emmert, A. Markosyan, B. Reagan, K. Wernsing, Y. Xu, Z. Sun, R. Route, M. M. Fejer, J. J. Rocca, W. Rudolph, and C. S. Menoni, “Point defects in Sc2O3 thin films by ion beam sputtering,” Appl. Opt. 53, A276–A280 (2014).
    [Crossref]
  16. N. Winograd, “The magic of cluster SIMS,” Anal. Chem. 77, 142A–149A (2005).
    [Crossref]
  17. T. J. Bright, J. I. Watjen, Z. M. Zhang, C. Muratore, A. A. Voevodin, D. I. Koukis, D. B. Tanner, and D. J. Arenas, “Infrared optical properties of amorphous and nanocrystalline Ta2O5 thin films,” J. Appl. Phys. 114, 083515 (2013).
    [Crossref]
  18. M. Cevro and G. Carter, “Ion-beam and dual-ion-beam sputter deposition of tantalum oxide films,” Opt. Eng. 34, 596–606 (1995).
    [Crossref]
  19. C. Mannequina, T. Tsuruoka, T. Hasegawa, and M. Aono, “Identification and roles of nonstoichiometric oxygen in amorphous Ta2O5 thin films deposited by electron beam and sputtering processes,” Appl. Surf. Sci. 385, 426–435 (2016).
    [Crossref]
  20. D. R. M. Crooks, G. Cagnoli, M. M. Fejer, A. Gretarsson, G. Harry, J. Hough, N. Nakagawa, S. Penn, R. Route, S. Rowan, and P. H. Sneddon, “Experimental measurements of coating mechanical loss factors,” Classical Quantum Gravity 21, S1059–S1065 (2004).
    [Crossref]
  21. L. Yang, E. Randel, G. Vajente, A. Ananyeva, E. Gustafson, A. Markosyan, R. Bassiri, M. M. Fejer, and C. S. Menoni, “Investigation of effects of assist ion bombardment on mechanical loss of sputtered tantala thin films for gravitational wave interferometers,” Phys. Rev. D 100, 122004 (2019).
    [Crossref]

2019 (1)

L. Yang, E. Randel, G. Vajente, A. Ananyeva, E. Gustafson, A. Markosyan, R. Bassiri, M. M. Fejer, and C. S. Menoni, “Investigation of effects of assist ion bombardment on mechanical loss of sputtered tantala thin films for gravitational wave interferometers,” Phys. Rev. D 100, 122004 (2019).
[Crossref]

2017 (3)

2016 (2)

M. Granata, E. Saracco, N. Morgado, A. Cajgfinger, G. Cagnoli, J. Degallaix, V. Dolique, D. Forest, J. Franc, C. Michel, L. Pinard, and R. Flaminio, “Mechanical loss in state-of-the-art amorphous optical coatings,” Phys. Rev. D 93, 012007 (2016).
[Crossref]

C. Mannequina, T. Tsuruoka, T. Hasegawa, and M. Aono, “Identification and roles of nonstoichiometric oxygen in amorphous Ta2O5 thin films deposited by electron beam and sputtering processes,” Appl. Surf. Sci. 385, 426–435 (2016).
[Crossref]

2015 (3)

2014 (1)

2013 (2)

T. J. Bright, J. I. Watjen, Z. M. Zhang, C. Muratore, A. A. Voevodin, D. I. Koukis, D. B. Tanner, and D. J. Arenas, “Infrared optical properties of amorphous and nanocrystalline Ta2O5 thin films,” J. Appl. Phys. 114, 083515 (2013).
[Crossref]

A. S. Markosyan, R. Route, M. M. Fejer, D. Patel, and C. Menoni, “Study of spontaneous and induced absorption in amorphous Ta2O5 and SiO2 dielectric thin films,” J. Appl. Phys. 113, 133104 (2013).
[Crossref]

2009 (1)

2005 (1)

N. Winograd, “The magic of cluster SIMS,” Anal. Chem. 77, 142A–149A (2005).
[Crossref]

2004 (1)

D. R. M. Crooks, G. Cagnoli, M. M. Fejer, A. Gretarsson, G. Harry, J. Hough, N. Nakagawa, S. Penn, R. Route, S. Rowan, and P. H. Sneddon, “Experimental measurements of coating mechanical loss factors,” Classical Quantum Gravity 21, S1059–S1065 (2004).
[Crossref]

2003 (1)

S. D. Penn, P. H. Sneddon, H. Armandula, J. C. Betzwieser, G. Cagnoli, J. Camp, D. R. M. Crooks, M. M. Fejer, A. M. Gretarsson, and G. M. Harry, “Mechanical loss in tantala/silica dielectric mirror coatings,” Classical Quantum Gravity 20, 2917–2928 (2003).
[Crossref]

1997 (2)

C. Lee, J. Hsu, D. T. Wei, and J. Lin, “Morphology of dual beam ion sputtered films investigated by atomic force microscopy,” Thin Solid Films 308-309, 74–78 (1997).
[Crossref]

W. Ensinger, “Low energy ion assist during deposition—an effective tool for controlling thin film microstructure,” Nucl. Instrum. Methods Phys. Res. B 127-128, 796–808 (1997).
[Crossref]

1996 (1)

1995 (1)

M. Cevro and G. Carter, “Ion-beam and dual-ion-beam sputter deposition of tantalum oxide films,” Opt. Eng. 34, 596–606 (1995).
[Crossref]

1984 (1)

P. J. Martin, R. P. Netterfield, and W. G. Sainty, “Modification of the optical and structural properties of dielectric ZrO2 films by ion-assisted deposition,” J. Appl. Phys. 55, 235–241 (1984).
[Crossref]

Aichholz, K.

Ananyeva, A.

L. Yang, E. Randel, G. Vajente, A. Ananyeva, E. Gustafson, A. Markosyan, R. Bassiri, M. M. Fejer, and C. S. Menoni, “Investigation of effects of assist ion bombardment on mechanical loss of sputtered tantala thin films for gravitational wave interferometers,” Phys. Rev. D 100, 122004 (2019).
[Crossref]

G. Vajente, A. Ananyeva, G. Billingsley, E. Gustafson, A. Heptonstall, E. Sanchez, and C. Torrie, “A high throughput instrument to measure mechanical losses in thin film coatings,” Rev. Sci. Instrum. 88, 073901 (2017).
[Crossref]

Aono, M.

C. Mannequina, T. Tsuruoka, T. Hasegawa, and M. Aono, “Identification and roles of nonstoichiometric oxygen in amorphous Ta2O5 thin films deposited by electron beam and sputtering processes,” Appl. Surf. Sci. 385, 426–435 (2016).
[Crossref]

Arenas, D. J.

T. J. Bright, J. I. Watjen, Z. M. Zhang, C. Muratore, A. A. Voevodin, D. I. Koukis, D. B. Tanner, and D. J. Arenas, “Infrared optical properties of amorphous and nanocrystalline Ta2O5 thin films,” J. Appl. Phys. 114, 083515 (2013).
[Crossref]

Armandula, H.

S. D. Penn, P. H. Sneddon, H. Armandula, J. C. Betzwieser, G. Cagnoli, J. Camp, D. R. M. Crooks, M. M. Fejer, A. M. Gretarsson, and G. M. Harry, “Mechanical loss in tantala/silica dielectric mirror coatings,” Classical Quantum Gravity 20, 2917–2928 (2003).
[Crossref]

Baloukas, B.

Balzarini, L.

Bassiri, R.

L. Yang, E. Randel, G. Vajente, A. Ananyeva, E. Gustafson, A. Markosyan, R. Bassiri, M. M. Fejer, and C. S. Menoni, “Investigation of effects of assist ion bombardment on mechanical loss of sputtered tantala thin films for gravitational wave interferometers,” Phys. Rev. D 100, 122004 (2019).
[Crossref]

Baumgarten, C.

Betzwieser, J. C.

S. D. Penn, P. H. Sneddon, H. Armandula, J. C. Betzwieser, G. Cagnoli, J. Camp, D. R. M. Crooks, M. M. Fejer, A. M. Gretarsson, and G. M. Harry, “Mechanical loss in tantala/silica dielectric mirror coatings,” Classical Quantum Gravity 20, 2917–2928 (2003).
[Crossref]

Billingsley, G.

G. Vajente, A. Ananyeva, G. Billingsley, E. Gustafson, A. Heptonstall, E. Sanchez, and C. Torrie, “A high throughput instrument to measure mechanical losses in thin film coatings,” Rev. Sci. Instrum. 88, 073901 (2017).
[Crossref]

Braverman, B.

Bright, T. J.

T. J. Bright, J. I. Watjen, Z. M. Zhang, C. Muratore, A. A. Voevodin, D. I. Koukis, D. B. Tanner, and D. J. Arenas, “Infrared optical properties of amorphous and nanocrystalline Ta2O5 thin films,” J. Appl. Phys. 114, 083515 (2013).
[Crossref]

Brown, A.

Bylinskii, A.

Cagnoli, G.

L. Pinard, C. Michel, B. Sassolas, L. Balzarini, J. Degallaix, V. Dolique, R. Flaminio, D. Forest, M. Granata, B. Lagrange, N. Straniero, J. Teillon, and G. Cagnoli, “Mirrors used in the LIGO interferometers for first detection of gravitational waves,” Appl. Opt. 56, C11–C15 (2017).
[Crossref]

M. Granata, E. Saracco, N. Morgado, A. Cajgfinger, G. Cagnoli, J. Degallaix, V. Dolique, D. Forest, J. Franc, C. Michel, L. Pinard, and R. Flaminio, “Mechanical loss in state-of-the-art amorphous optical coatings,” Phys. Rev. D 93, 012007 (2016).
[Crossref]

D. R. M. Crooks, G. Cagnoli, M. M. Fejer, A. Gretarsson, G. Harry, J. Hough, N. Nakagawa, S. Penn, R. Route, S. Rowan, and P. H. Sneddon, “Experimental measurements of coating mechanical loss factors,” Classical Quantum Gravity 21, S1059–S1065 (2004).
[Crossref]

S. D. Penn, P. H. Sneddon, H. Armandula, J. C. Betzwieser, G. Cagnoli, J. Camp, D. R. M. Crooks, M. M. Fejer, A. M. Gretarsson, and G. M. Harry, “Mechanical loss in tantala/silica dielectric mirror coatings,” Classical Quantum Gravity 20, 2917–2928 (2003).
[Crossref]

Cajgfinger, A.

M. Granata, E. Saracco, N. Morgado, A. Cajgfinger, G. Cagnoli, J. Degallaix, V. Dolique, D. Forest, J. Franc, C. Michel, L. Pinard, and R. Flaminio, “Mechanical loss in state-of-the-art amorphous optical coatings,” Phys. Rev. D 93, 012007 (2016).
[Crossref]

Camp, J.

S. D. Penn, P. H. Sneddon, H. Armandula, J. C. Betzwieser, G. Cagnoli, J. Camp, D. R. M. Crooks, M. M. Fejer, A. M. Gretarsson, and G. M. Harry, “Mechanical loss in tantala/silica dielectric mirror coatings,” Classical Quantum Gravity 20, 2917–2928 (2003).
[Crossref]

Carter, G.

M. Cevro and G. Carter, “Ion-beam and dual-ion-beam sputter deposition of tantalum oxide films,” Opt. Eng. 34, 596–606 (1995).
[Crossref]

Cetina, M.

Çetinörgü, E.

Cevro, M.

M. Cevro and G. Carter, “Ion-beam and dual-ion-beam sputter deposition of tantalum oxide films,” Opt. Eng. 34, 596–606 (1995).
[Crossref]

Chuang, I.

Colligon, J. S.

Crooks, D. R. M.

D. R. M. Crooks, G. Cagnoli, M. M. Fejer, A. Gretarsson, G. Harry, J. Hough, N. Nakagawa, S. Penn, R. Route, S. Rowan, and P. H. Sneddon, “Experimental measurements of coating mechanical loss factors,” Classical Quantum Gravity 21, S1059–S1065 (2004).
[Crossref]

S. D. Penn, P. H. Sneddon, H. Armandula, J. C. Betzwieser, G. Cagnoli, J. Camp, D. R. M. Crooks, M. M. Fejer, A. M. Gretarsson, and G. M. Harry, “Mechanical loss in tantala/silica dielectric mirror coatings,” Classical Quantum Gravity 20, 2917–2928 (2003).
[Crossref]

Degallaix, J.

L. Pinard, C. Michel, B. Sassolas, L. Balzarini, J. Degallaix, V. Dolique, R. Flaminio, D. Forest, M. Granata, B. Lagrange, N. Straniero, J. Teillon, and G. Cagnoli, “Mirrors used in the LIGO interferometers for first detection of gravitational waves,” Appl. Opt. 56, C11–C15 (2017).
[Crossref]

M. Granata, E. Saracco, N. Morgado, A. Cajgfinger, G. Cagnoli, J. Degallaix, V. Dolique, D. Forest, J. Franc, C. Michel, L. Pinard, and R. Flaminio, “Mechanical loss in state-of-the-art amorphous optical coatings,” Phys. Rev. D 93, 012007 (2016).
[Crossref]

Dolique, V.

L. Pinard, C. Michel, B. Sassolas, L. Balzarini, J. Degallaix, V. Dolique, R. Flaminio, D. Forest, M. Granata, B. Lagrange, N. Straniero, J. Teillon, and G. Cagnoli, “Mirrors used in the LIGO interferometers for first detection of gravitational waves,” Appl. Opt. 56, C11–C15 (2017).
[Crossref]

M. Granata, E. Saracco, N. Morgado, A. Cajgfinger, G. Cagnoli, J. Degallaix, V. Dolique, D. Forest, J. Franc, C. Michel, L. Pinard, and R. Flaminio, “Mechanical loss in state-of-the-art amorphous optical coatings,” Phys. Rev. D 93, 012007 (2016).
[Crossref]

Emmert, L.

Ensinger, W.

W. Ensinger, “Low energy ion assist during deposition—an effective tool for controlling thin film microstructure,” Nucl. Instrum. Methods Phys. Res. B 127-128, 796–808 (1997).
[Crossref]

Fejer, M. M.

L. Yang, E. Randel, G. Vajente, A. Ananyeva, E. Gustafson, A. Markosyan, R. Bassiri, M. M. Fejer, and C. S. Menoni, “Investigation of effects of assist ion bombardment on mechanical loss of sputtered tantala thin films for gravitational wave interferometers,” Phys. Rev. D 100, 122004 (2019).
[Crossref]

P. F. Langston, E. Krous, D. Schiltz, D. Patel, L. Emmert, A. Markosyan, B. Reagan, K. Wernsing, Y. Xu, Z. Sun, R. Route, M. M. Fejer, J. J. Rocca, W. Rudolph, and C. S. Menoni, “Point defects in Sc2O3 thin films by ion beam sputtering,” Appl. Opt. 53, A276–A280 (2014).
[Crossref]

A. S. Markosyan, R. Route, M. M. Fejer, D. Patel, and C. Menoni, “Study of spontaneous and induced absorption in amorphous Ta2O5 and SiO2 dielectric thin films,” J. Appl. Phys. 113, 133104 (2013).
[Crossref]

D. R. M. Crooks, G. Cagnoli, M. M. Fejer, A. Gretarsson, G. Harry, J. Hough, N. Nakagawa, S. Penn, R. Route, S. Rowan, and P. H. Sneddon, “Experimental measurements of coating mechanical loss factors,” Classical Quantum Gravity 21, S1059–S1065 (2004).
[Crossref]

S. D. Penn, P. H. Sneddon, H. Armandula, J. C. Betzwieser, G. Cagnoli, J. Camp, D. R. M. Crooks, M. M. Fejer, A. M. Gretarsson, and G. M. Harry, “Mechanical loss in tantala/silica dielectric mirror coatings,” Classical Quantum Gravity 20, 2917–2928 (2003).
[Crossref]

Flaminio, R.

L. Pinard, C. Michel, B. Sassolas, L. Balzarini, J. Degallaix, V. Dolique, R. Flaminio, D. Forest, M. Granata, B. Lagrange, N. Straniero, J. Teillon, and G. Cagnoli, “Mirrors used in the LIGO interferometers for first detection of gravitational waves,” Appl. Opt. 56, C11–C15 (2017).
[Crossref]

M. Granata, E. Saracco, N. Morgado, A. Cajgfinger, G. Cagnoli, J. Degallaix, V. Dolique, D. Forest, J. Franc, C. Michel, L. Pinard, and R. Flaminio, “Mechanical loss in state-of-the-art amorphous optical coatings,” Phys. Rev. D 93, 012007 (2016).
[Crossref]

Forest, D.

L. Pinard, C. Michel, B. Sassolas, L. Balzarini, J. Degallaix, V. Dolique, R. Flaminio, D. Forest, M. Granata, B. Lagrange, N. Straniero, J. Teillon, and G. Cagnoli, “Mirrors used in the LIGO interferometers for first detection of gravitational waves,” Appl. Opt. 56, C11–C15 (2017).
[Crossref]

M. Granata, E. Saracco, N. Morgado, A. Cajgfinger, G. Cagnoli, J. Degallaix, V. Dolique, D. Forest, J. Franc, C. Michel, L. Pinard, and R. Flaminio, “Mechanical loss in state-of-the-art amorphous optical coatings,” Phys. Rev. D 93, 012007 (2016).
[Crossref]

Franc, J.

M. Granata, E. Saracco, N. Morgado, A. Cajgfinger, G. Cagnoli, J. Degallaix, V. Dolique, D. Forest, J. Franc, C. Michel, L. Pinard, and R. Flaminio, “Mechanical loss in state-of-the-art amorphous optical coatings,” Phys. Rev. D 93, 012007 (2016).
[Crossref]

Gangloff, D.

Granata, M.

L. Pinard, C. Michel, B. Sassolas, L. Balzarini, J. Degallaix, V. Dolique, R. Flaminio, D. Forest, M. Granata, B. Lagrange, N. Straniero, J. Teillon, and G. Cagnoli, “Mirrors used in the LIGO interferometers for first detection of gravitational waves,” Appl. Opt. 56, C11–C15 (2017).
[Crossref]

M. Granata, E. Saracco, N. Morgado, A. Cajgfinger, G. Cagnoli, J. Degallaix, V. Dolique, D. Forest, J. Franc, C. Michel, L. Pinard, and R. Flaminio, “Mechanical loss in state-of-the-art amorphous optical coatings,” Phys. Rev. D 93, 012007 (2016).
[Crossref]

Gretarsson, A.

D. R. M. Crooks, G. Cagnoli, M. M. Fejer, A. Gretarsson, G. Harry, J. Hough, N. Nakagawa, S. Penn, R. Route, S. Rowan, and P. H. Sneddon, “Experimental measurements of coating mechanical loss factors,” Classical Quantum Gravity 21, S1059–S1065 (2004).
[Crossref]

Gretarsson, A. M.

S. D. Penn, P. H. Sneddon, H. Armandula, J. C. Betzwieser, G. Cagnoli, J. Camp, D. R. M. Crooks, M. M. Fejer, A. M. Gretarsson, and G. M. Harry, “Mechanical loss in tantala/silica dielectric mirror coatings,” Classical Quantum Gravity 20, 2917–2928 (2003).
[Crossref]

Gustafson, E.

L. Yang, E. Randel, G. Vajente, A. Ananyeva, E. Gustafson, A. Markosyan, R. Bassiri, M. M. Fejer, and C. S. Menoni, “Investigation of effects of assist ion bombardment on mechanical loss of sputtered tantala thin films for gravitational wave interferometers,” Phys. Rev. D 100, 122004 (2019).
[Crossref]

G. Vajente, A. Ananyeva, G. Billingsley, E. Gustafson, A. Heptonstall, E. Sanchez, and C. Torrie, “A high throughput instrument to measure mechanical losses in thin film coatings,” Rev. Sci. Instrum. 88, 073901 (2017).
[Crossref]

Gutierrez, M.

Harry, G.

D. R. M. Crooks, G. Cagnoli, M. M. Fejer, A. Gretarsson, G. Harry, J. Hough, N. Nakagawa, S. Penn, R. Route, S. Rowan, and P. H. Sneddon, “Experimental measurements of coating mechanical loss factors,” Classical Quantum Gravity 21, S1059–S1065 (2004).
[Crossref]

Harry, G. M.

S. D. Penn, P. H. Sneddon, H. Armandula, J. C. Betzwieser, G. Cagnoli, J. Camp, D. R. M. Crooks, M. M. Fejer, A. M. Gretarsson, and G. M. Harry, “Mechanical loss in tantala/silica dielectric mirror coatings,” Classical Quantum Gravity 20, 2917–2928 (2003).
[Crossref]

Hasegawa, T.

C. Mannequina, T. Tsuruoka, T. Hasegawa, and M. Aono, “Identification and roles of nonstoichiometric oxygen in amorphous Ta2O5 thin films deposited by electron beam and sputtering processes,” Appl. Surf. Sci. 385, 426–435 (2016).
[Crossref]

Heptonstall, A.

G. Vajente, A. Ananyeva, G. Billingsley, E. Gustafson, A. Heptonstall, E. Sanchez, and C. Torrie, “A high throughput instrument to measure mechanical losses in thin film coatings,” Rev. Sci. Instrum. 88, 073901 (2017).
[Crossref]

Hough, J.

D. R. M. Crooks, G. Cagnoli, M. M. Fejer, A. Gretarsson, G. Harry, J. Hough, N. Nakagawa, S. Penn, R. Route, S. Rowan, and P. H. Sneddon, “Experimental measurements of coating mechanical loss factors,” Classical Quantum Gravity 21, S1059–S1065 (2004).
[Crossref]

Hsu, J.

C. Lee, J. Hsu, D. T. Wei, and J. Lin, “Morphology of dual beam ion sputtered films investigated by atomic force microscopy,” Thin Solid Films 308-309, 74–78 (1997).
[Crossref]

Jelenkovic, B.

Karpa, L.

Klemberg-Sapieha, J. E.

Koukis, D. I.

T. J. Bright, J. I. Watjen, Z. M. Zhang, C. Muratore, A. A. Voevodin, D. I. Koukis, D. B. Tanner, and D. J. Arenas, “Infrared optical properties of amorphous and nanocrystalline Ta2O5 thin films,” J. Appl. Phys. 114, 083515 (2013).
[Crossref]

Krous, E.

Lagrange, B.

Lambrinos, M. F.

Langston, P. F.

Lee, C.

C. Lee, J. Hsu, D. T. Wei, and J. Lin, “Morphology of dual beam ion sputtered films investigated by atomic force microscopy,” Thin Solid Films 308-309, 74–78 (1997).
[Crossref]

Li, J.

Lin, J.

C. Lee, J. Hsu, D. T. Wei, and J. Lin, “Morphology of dual beam ion sputtered films investigated by atomic force microscopy,” Thin Solid Films 308-309, 74–78 (1997).
[Crossref]

Mannequina, C.

C. Mannequina, T. Tsuruoka, T. Hasegawa, and M. Aono, “Identification and roles of nonstoichiometric oxygen in amorphous Ta2O5 thin films deposited by electron beam and sputtering processes,” Appl. Surf. Sci. 385, 426–435 (2016).
[Crossref]

Markosyan, A.

L. Yang, E. Randel, G. Vajente, A. Ananyeva, E. Gustafson, A. Markosyan, R. Bassiri, M. M. Fejer, and C. S. Menoni, “Investigation of effects of assist ion bombardment on mechanical loss of sputtered tantala thin films for gravitational wave interferometers,” Phys. Rev. D 100, 122004 (2019).
[Crossref]

P. F. Langston, E. Krous, D. Schiltz, D. Patel, L. Emmert, A. Markosyan, B. Reagan, K. Wernsing, Y. Xu, Z. Sun, R. Route, M. M. Fejer, J. J. Rocca, W. Rudolph, and C. S. Menoni, “Point defects in Sc2O3 thin films by ion beam sputtering,” Appl. Opt. 53, A276–A280 (2014).
[Crossref]

Markosyan, A. S.

A. S. Markosyan, R. Route, M. M. Fejer, D. Patel, and C. Menoni, “Study of spontaneous and induced absorption in amorphous Ta2O5 and SiO2 dielectric thin films,” J. Appl. Phys. 113, 133104 (2013).
[Crossref]

Martin, P. J.

P. J. Martin, R. P. Netterfield, and W. G. Sainty, “Modification of the optical and structural properties of dielectric ZrO2 films by ion-assisted deposition,” J. Appl. Phys. 55, 235–241 (1984).
[Crossref]

Martinu, L.

Menoni, C.

A. S. Markosyan, R. Route, M. M. Fejer, D. Patel, and C. Menoni, “Study of spontaneous and induced absorption in amorphous Ta2O5 and SiO2 dielectric thin films,” J. Appl. Phys. 113, 133104 (2013).
[Crossref]

Menoni, C. S.

Michel, C.

L. Pinard, C. Michel, B. Sassolas, L. Balzarini, J. Degallaix, V. Dolique, R. Flaminio, D. Forest, M. Granata, B. Lagrange, N. Straniero, J. Teillon, and G. Cagnoli, “Mirrors used in the LIGO interferometers for first detection of gravitational waves,” Appl. Opt. 56, C11–C15 (2017).
[Crossref]

M. Granata, E. Saracco, N. Morgado, A. Cajgfinger, G. Cagnoli, J. Degallaix, V. Dolique, D. Forest, J. Franc, C. Michel, L. Pinard, and R. Flaminio, “Mechanical loss in state-of-the-art amorphous optical coatings,” Phys. Rev. D 93, 012007 (2016).
[Crossref]

Morgado, N.

M. Granata, E. Saracco, N. Morgado, A. Cajgfinger, G. Cagnoli, J. Degallaix, V. Dolique, D. Forest, J. Franc, C. Michel, L. Pinard, and R. Flaminio, “Mechanical loss in state-of-the-art amorphous optical coatings,” Phys. Rev. D 93, 012007 (2016).
[Crossref]

Muratore, C.

T. J. Bright, J. I. Watjen, Z. M. Zhang, C. Muratore, A. A. Voevodin, D. I. Koukis, D. B. Tanner, and D. J. Arenas, “Infrared optical properties of amorphous and nanocrystalline Ta2O5 thin films,” J. Appl. Phys. 114, 083515 (2013).
[Crossref]

Nakagawa, N.

D. R. M. Crooks, G. Cagnoli, M. M. Fejer, A. Gretarsson, G. Harry, J. Hough, N. Nakagawa, S. Penn, R. Route, S. Rowan, and P. H. Sneddon, “Experimental measurements of coating mechanical loss factors,” Classical Quantum Gravity 21, S1059–S1065 (2004).
[Crossref]

Netterfield, R. P.

P. J. Martin, R. P. Netterfield, and W. G. Sainty, “Modification of the optical and structural properties of dielectric ZrO2 films by ion-assisted deposition,” J. Appl. Phys. 55, 235–241 (1984).
[Crossref]

Nichols, R.

Ogloza, A.

Patel, D.

Penn, S.

D. R. M. Crooks, G. Cagnoli, M. M. Fejer, A. Gretarsson, G. Harry, J. Hough, N. Nakagawa, S. Penn, R. Route, S. Rowan, and P. H. Sneddon, “Experimental measurements of coating mechanical loss factors,” Classical Quantum Gravity 21, S1059–S1065 (2004).
[Crossref]

Penn, S. D.

S. D. Penn, P. H. Sneddon, H. Armandula, J. C. Betzwieser, G. Cagnoli, J. Camp, D. R. M. Crooks, M. M. Fejer, A. M. Gretarsson, and G. M. Harry, “Mechanical loss in tantala/silica dielectric mirror coatings,” Classical Quantum Gravity 20, 2917–2928 (2003).
[Crossref]

Pinard, L.

L. Pinard, C. Michel, B. Sassolas, L. Balzarini, J. Degallaix, V. Dolique, R. Flaminio, D. Forest, M. Granata, B. Lagrange, N. Straniero, J. Teillon, and G. Cagnoli, “Mirrors used in the LIGO interferometers for first detection of gravitational waves,” Appl. Opt. 56, C11–C15 (2017).
[Crossref]

M. Granata, E. Saracco, N. Morgado, A. Cajgfinger, G. Cagnoli, J. Degallaix, V. Dolique, D. Forest, J. Franc, C. Michel, L. Pinard, and R. Flaminio, “Mechanical loss in state-of-the-art amorphous optical coatings,” Phys. Rev. D 93, 012007 (2016).
[Crossref]

Randel, E.

L. Yang, E. Randel, G. Vajente, A. Ananyeva, E. Gustafson, A. Markosyan, R. Bassiri, M. M. Fejer, and C. S. Menoni, “Investigation of effects of assist ion bombardment on mechanical loss of sputtered tantala thin films for gravitational wave interferometers,” Phys. Rev. D 100, 122004 (2019).
[Crossref]

Reagan, B.

Reagan, B. A.

Rocca, J. J.

Route, R.

P. F. Langston, E. Krous, D. Schiltz, D. Patel, L. Emmert, A. Markosyan, B. Reagan, K. Wernsing, Y. Xu, Z. Sun, R. Route, M. M. Fejer, J. J. Rocca, W. Rudolph, and C. S. Menoni, “Point defects in Sc2O3 thin films by ion beam sputtering,” Appl. Opt. 53, A276–A280 (2014).
[Crossref]

A. S. Markosyan, R. Route, M. M. Fejer, D. Patel, and C. Menoni, “Study of spontaneous and induced absorption in amorphous Ta2O5 and SiO2 dielectric thin films,” J. Appl. Phys. 113, 133104 (2013).
[Crossref]

D. R. M. Crooks, G. Cagnoli, M. M. Fejer, A. Gretarsson, G. Harry, J. Hough, N. Nakagawa, S. Penn, R. Route, S. Rowan, and P. H. Sneddon, “Experimental measurements of coating mechanical loss factors,” Classical Quantum Gravity 21, S1059–S1065 (2004).
[Crossref]

Rowan, S.

D. R. M. Crooks, G. Cagnoli, M. M. Fejer, A. Gretarsson, G. Harry, J. Hough, N. Nakagawa, S. Penn, R. Route, S. Rowan, and P. H. Sneddon, “Experimental measurements of coating mechanical loss factors,” Classical Quantum Gravity 21, S1059–S1065 (2004).
[Crossref]

Rudolph, W.

Sainty, W. G.

P. J. Martin, R. P. Netterfield, and W. G. Sainty, “Modification of the optical and structural properties of dielectric ZrO2 films by ion-assisted deposition,” J. Appl. Phys. 55, 235–241 (1984).
[Crossref]

Sanchez, E.

G. Vajente, A. Ananyeva, G. Billingsley, E. Gustafson, A. Heptonstall, E. Sanchez, and C. Torrie, “A high throughput instrument to measure mechanical losses in thin film coatings,” Rev. Sci. Instrum. 88, 073901 (2017).
[Crossref]

Saracco, E.

M. Granata, E. Saracco, N. Morgado, A. Cajgfinger, G. Cagnoli, J. Degallaix, V. Dolique, D. Forest, J. Franc, C. Michel, L. Pinard, and R. Flaminio, “Mechanical loss in state-of-the-art amorphous optical coatings,” Phys. Rev. D 93, 012007 (2016).
[Crossref]

Sassolas, B.

Schiltz, D.

Shi, M.

Sneddon, P. H.

D. R. M. Crooks, G. Cagnoli, M. M. Fejer, A. Gretarsson, G. Harry, J. Hough, N. Nakagawa, S. Penn, R. Route, S. Rowan, and P. H. Sneddon, “Experimental measurements of coating mechanical loss factors,” Classical Quantum Gravity 21, S1059–S1065 (2004).
[Crossref]

S. D. Penn, P. H. Sneddon, H. Armandula, J. C. Betzwieser, G. Cagnoli, J. Camp, D. R. M. Crooks, M. M. Fejer, A. M. Gretarsson, and G. M. Harry, “Mechanical loss in tantala/silica dielectric mirror coatings,” Classical Quantum Gravity 20, 2917–2928 (2003).
[Crossref]

Straniero, N.

Sun, Z.

Talghader, J.

Tanner, D. B.

T. J. Bright, J. I. Watjen, Z. M. Zhang, C. Muratore, A. A. Voevodin, D. I. Koukis, D. B. Tanner, and D. J. Arenas, “Infrared optical properties of amorphous and nanocrystalline Ta2O5 thin films,” J. Appl. Phys. 114, 083515 (2013).
[Crossref]

Taylor, L.

Teillon, J.

Thomas, J.

Torrie, C.

G. Vajente, A. Ananyeva, G. Billingsley, E. Gustafson, A. Heptonstall, E. Sanchez, and C. Torrie, “A high throughput instrument to measure mechanical losses in thin film coatings,” Rev. Sci. Instrum. 88, 073901 (2017).
[Crossref]

Tsuruoka, T.

C. Mannequina, T. Tsuruoka, T. Hasegawa, and M. Aono, “Identification and roles of nonstoichiometric oxygen in amorphous Ta2O5 thin films deposited by electron beam and sputtering processes,” Appl. Surf. Sci. 385, 426–435 (2016).
[Crossref]

Vajente, G.

L. Yang, E. Randel, G. Vajente, A. Ananyeva, E. Gustafson, A. Markosyan, R. Bassiri, M. M. Fejer, and C. S. Menoni, “Investigation of effects of assist ion bombardment on mechanical loss of sputtered tantala thin films for gravitational wave interferometers,” Phys. Rev. D 100, 122004 (2019).
[Crossref]

G. Vajente, A. Ananyeva, G. Billingsley, E. Gustafson, A. Heptonstall, E. Sanchez, and C. Torrie, “A high throughput instrument to measure mechanical losses in thin film coatings,” Rev. Sci. Instrum. 88, 073901 (2017).
[Crossref]

Valizadeh, R.

Voevodin, A. A.

T. J. Bright, J. I. Watjen, Z. M. Zhang, C. Muratore, A. A. Voevodin, D. I. Koukis, D. B. Tanner, and D. J. Arenas, “Infrared optical properties of amorphous and nanocrystalline Ta2O5 thin films,” J. Appl. Phys. 114, 083515 (2013).
[Crossref]

Vuletic, V.

Watjen, J. I.

T. J. Bright, J. I. Watjen, Z. M. Zhang, C. Muratore, A. A. Voevodin, D. I. Koukis, D. B. Tanner, and D. J. Arenas, “Infrared optical properties of amorphous and nanocrystalline Ta2O5 thin films,” J. Appl. Phys. 114, 083515 (2013).
[Crossref]

Wei, D. T.

C. Lee, J. Hsu, D. T. Wei, and J. Lin, “Morphology of dual beam ion sputtered films investigated by atomic force microscopy,” Thin Solid Films 308-309, 74–78 (1997).
[Crossref]

Wernsing, K.

Winograd, N.

N. Winograd, “The magic of cluster SIMS,” Anal. Chem. 77, 142A–149A (2005).
[Crossref]

Wu, T.

Xu, Y.

Yang, L.

L. Yang, E. Randel, G. Vajente, A. Ananyeva, E. Gustafson, A. Markosyan, R. Bassiri, M. M. Fejer, and C. S. Menoni, “Investigation of effects of assist ion bombardment on mechanical loss of sputtered tantala thin films for gravitational wave interferometers,” Phys. Rev. D 100, 122004 (2019).
[Crossref]

Zabeida, O.

Zhang, Z. M.

T. J. Bright, J. I. Watjen, Z. M. Zhang, C. Muratore, A. A. Voevodin, D. I. Koukis, D. B. Tanner, and D. J. Arenas, “Infrared optical properties of amorphous and nanocrystalline Ta2O5 thin films,” J. Appl. Phys. 114, 083515 (2013).
[Crossref]

Anal. Chem. (1)

N. Winograd, “The magic of cluster SIMS,” Anal. Chem. 77, 142A–149A (2005).
[Crossref]

Appl. Opt. (6)

Appl. Surf. Sci. (1)

C. Mannequina, T. Tsuruoka, T. Hasegawa, and M. Aono, “Identification and roles of nonstoichiometric oxygen in amorphous Ta2O5 thin films deposited by electron beam and sputtering processes,” Appl. Surf. Sci. 385, 426–435 (2016).
[Crossref]

Classical Quantum Gravity (3)

D. R. M. Crooks, G. Cagnoli, M. M. Fejer, A. Gretarsson, G. Harry, J. Hough, N. Nakagawa, S. Penn, R. Route, S. Rowan, and P. H. Sneddon, “Experimental measurements of coating mechanical loss factors,” Classical Quantum Gravity 21, S1059–S1065 (2004).
[Crossref]

S. D. Penn, P. H. Sneddon, H. Armandula, J. C. Betzwieser, G. Cagnoli, J. Camp, D. R. M. Crooks, M. M. Fejer, A. M. Gretarsson, and G. M. Harry, “Mechanical loss in tantala/silica dielectric mirror coatings,” Classical Quantum Gravity 20, 2917–2928 (2003).
[Crossref]

The LIGO Scientific Collaboration, “Advanced LIGO,” Classical Quantum Gravity 32, 074001 (2015).
[Crossref]

J. Appl. Phys. (3)

P. J. Martin, R. P. Netterfield, and W. G. Sainty, “Modification of the optical and structural properties of dielectric ZrO2 films by ion-assisted deposition,” J. Appl. Phys. 55, 235–241 (1984).
[Crossref]

A. S. Markosyan, R. Route, M. M. Fejer, D. Patel, and C. Menoni, “Study of spontaneous and induced absorption in amorphous Ta2O5 and SiO2 dielectric thin films,” J. Appl. Phys. 113, 133104 (2013).
[Crossref]

T. J. Bright, J. I. Watjen, Z. M. Zhang, C. Muratore, A. A. Voevodin, D. I. Koukis, D. B. Tanner, and D. J. Arenas, “Infrared optical properties of amorphous and nanocrystalline Ta2O5 thin films,” J. Appl. Phys. 114, 083515 (2013).
[Crossref]

Nucl. Instrum. Methods Phys. Res. B (1)

W. Ensinger, “Low energy ion assist during deposition—an effective tool for controlling thin film microstructure,” Nucl. Instrum. Methods Phys. Res. B 127-128, 796–808 (1997).
[Crossref]

Opt. Eng. (1)

M. Cevro and G. Carter, “Ion-beam and dual-ion-beam sputter deposition of tantalum oxide films,” Opt. Eng. 34, 596–606 (1995).
[Crossref]

Opt. Express (1)

Phys. Rev. D (2)

M. Granata, E. Saracco, N. Morgado, A. Cajgfinger, G. Cagnoli, J. Degallaix, V. Dolique, D. Forest, J. Franc, C. Michel, L. Pinard, and R. Flaminio, “Mechanical loss in state-of-the-art amorphous optical coatings,” Phys. Rev. D 93, 012007 (2016).
[Crossref]

L. Yang, E. Randel, G. Vajente, A. Ananyeva, E. Gustafson, A. Markosyan, R. Bassiri, M. M. Fejer, and C. S. Menoni, “Investigation of effects of assist ion bombardment on mechanical loss of sputtered tantala thin films for gravitational wave interferometers,” Phys. Rev. D 100, 122004 (2019).
[Crossref]

Rev. Sci. Instrum. (1)

G. Vajente, A. Ananyeva, G. Billingsley, E. Gustafson, A. Heptonstall, E. Sanchez, and C. Torrie, “A high throughput instrument to measure mechanical losses in thin film coatings,” Rev. Sci. Instrum. 88, 073901 (2017).
[Crossref]

Thin Solid Films (1)

C. Lee, J. Hsu, D. T. Wei, and J. Lin, “Morphology of dual beam ion sputtered films investigated by atomic force microscopy,” Thin Solid Films 308-309, 74–78 (1997).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1. Absorption loss at 1064 nm for all samples. Green solid line represents the absorption loss of control sample c0. Samples bombarded with ${{\rm Ar}^ + }$ only are shown in solid marks, and samples bombarded with ${\rm O}_2^ + $ are shown in hollow marks.
Fig. 2.
Fig. 2. Dispersion of refractive index of samples s11, s12, and s13. Sample s21, s22, and s23 show very similar behavior (not shown) to group 1. The group 3 series shows there are no variations in the dispersion.
Fig. 3.
Fig. 3. XPS spectra of Ta ${4}f$ doublets of control sample c0, sample s11, and s13. s11 has the smallest absorption loss of 7 ppm, and s13 has the highest absorption loss of 20 ppm.
Fig. 4.
Fig. 4. Coating loss angle of control sample c0 and samples bombarded with assist ions. The green solid line represents the loss angle of control sample c0, and the red-dotted line represents the loss angle of annealed samples. The shades indicate the experimental error.

Tables (3)

Tables Icon

Table 1. Deposition Condition and Characterization Results for Each Sample

Tables Icon

Table 2. Sputtering Yield and Vacancy Creation of A r + and O + of Different Energies

Tables Icon

Table 3. Refractive Index at 1  µm and Band Gap of Samples

Metrics