Abstract

Broadband, coherent narrow-linewidth optical frequency synthesis is of crucial importance in dual-comb interferometric measurement. Here we present a detailed description of the construction and performance characterization of a hertz-level linewidth coherent optical frequency synthesizer across the optical telecommunication band. A narrow-linewidth cavity-stabilized laser at 1565.00 nm is built and coherently transferred through a fiber link with an additional fractional frequency instability of ${2.0} \times {{10}^{- 16}}$ at 1 s averaging time. Broadband, coherent optical frequency synthesis is then achieved by steering one mode of a laser frequency comb with the transferred optical frequency oscillation. By beating with a 1542.14 nm ultra-stable cavity-stabilized laser, the evaluated fractional frequency stability and absolute linewidth of the nearest synthesized optical oscillation are ${3.5} \times {{10}^{- 15}}$ at 1 s averaging time and 1.8 Hz, respectively. According to the ultra-low-noise feature of the utilized laser frequency comb of ${4.7} \times {{10}^{- 17}}$ at 1 s averaging time, the synthesized optical frequency oscillations could maintain the high coherence across the comb’s output bandwidth.

© 2020 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. I. Coddington, W. Swann, L. Nenadovic, and N. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics 3, 351–356 (2009).
    [Crossref]
  2. I. Coddington, W. Swan, and N. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett. 100, 013902 (2008).
    [Crossref]
  3. S. Okubo, K. Iwakuni, H. Inaba, K. Hosaka, A. Onae, H. Sasada, and F. Hong, “Ultra-broadband dual-comb spectroscopy across 1.0–1.9  µm,” Appl. Phys. Express 8, 082402 (2015).
    [Crossref]
  4. H. Yang, H. Wei, K. Chen, S. Zhang, and Y. Li, “Simply-integrated dual-comb spectrometer via tunable repetition rates and avoiding self-referencing,” Opt. Express 25, 8063–8072 (2017).
    [Crossref]
  5. L. Sinclair, H. Bergeron, W. C. Swann, E. Baumann, J.-D. Deschênes, and N. R. Newbury, “Comparing optical oscillators across the air to milliradians in phase and 10−17 in frequency,” Phys. Rev. Lett. 120, 050801 (2018).
    [Crossref]
  6. I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent dual-comb spectroscopy at high signal-to-noise ratio,” Phys. Rev. A 82, 043817 (2010).
    [Crossref]
  7. H. Zhang, H. Wei, X. Wu, H. Yang, and Y. Li, “Absolute distance measurement by dual-comb nonlinear asynchronous optical sampling,” Opt. Express 22, 6597–6604 (2014).
    [Crossref]
  8. H. Zhang, H. Wei, H. Yang, and Y. Li, “Active laser ranging with frequency transfer using frequency comb,” Appl. Phys. Lett. 108, 181101 (2016).
    [Crossref]
  9. F. Keilmann, C. Gohle, and R. Holzwarth, “Time-domain mid-infrared frequency-comb spectrometer,” Opt. Lett. 29, 1542–1544 (2004).
    [Crossref]
  10. H. Yang, H. Wei, H. Zhang, K. Chen, Y. Li, V. Smolski, and K. Vodopyanov, “Performance estimation of dual-comb spectroscopy in different frequency-control schemes,” Appl. Opt. 55, 6321–6330 (2016).
    [Crossref]
  11. F. Quinlan, T. Fortier, M. Kirchner, J. Taylor, M. Thorpe, N. Lemke, A. Ludlow, Y. Jiang, and S. Diddams, “Ultralow phase noise microwave generation with an Er:fiber-based optical frequency divider,” Opt. Lett. 36, 3260–3262 (2011).
    [Crossref]
  12. X. Xie, R. Bouchand, D. Nicolodi, M. Giunta, W. Hänsel, M. Lezius, A. Joshi, S. Datta, C. Alexandre, M. Lours, P. Tremblin, G. Santarelli, R. Holzwarth, and Y. Le Coq, “Photonic microwave signals with zeptosecond-level absolute timing noise,” Nat. Photonics 11, 44–47 (2016).
    [Crossref]
  13. R. Drever, J. Hall, F. Kowalski, J. Hough, G. Ford, A. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
    [Crossref]
  14. J. Alnis, A. Matveev, N. Kolachevsky, T. Udem, and T. Hänsch, “Subhertz linewidth diode lasers by stabilization to vibrationally and thermally compensated ultralow-expansion glass Fabry-Pérot cavities,” Phys. Rev. A 77, 053809 (2008).
    [Crossref]
  15. D. G. Matei, T. Legero, S. Häfner, C. Grebing, R. Weyrich, W. Zhang, L. Sonderhouse, J. Robinson, J. Ye, F. Riehle, and U. Sterr, “1.5  µm lasers with sub-10  mHz linewidth,” Phys. Rev. Lett. 118, 263202 (2017).
    [Crossref]
  16. S. Amairi, T. Legero, T. Kessler, U. Sterr, J. Wübbena, O. Mandel, and P. Schmidt, “Reducing the effect of thermal noise in optical cavities,” Appl. Phys. B 113, 233–242 (2013).
    [Crossref]
  17. G. Cole, W. Zhang, M. Martin, J. Ye, and M. Aspelmeyer, “Tenfold reduction of Brownian noise in high-reflectivity optical coatings,” Nat. Photonics 7, 644–650 (2013).
    [Crossref]
  18. W. Zhang, M. J. Martin, C. Benko, J. Hall, J. Ye, C. Hagemann, T. Legero, U. Sterr, F. Riehle, G. Cole, and M. Aspelmeyer, “Reduction of residual amplitude modulation to 1 × 10−6for frequency modulation and laser stabilization,” Opt. Lett. 39, 1980–1983 (2014).
    [Crossref]
  19. Z. Tai, L. Yan, Y. Zhang, X. Zhang, W. Guo, S. Zhang, and H. Jiang, “Electro-optic modulator with ultra-low residual amplitude modulation for frequency modulation and laser stabilization,” Opt. Lett. 41, 5584–5587 (2016).
    [Crossref]
  20. E. Oelker, R. B. Hutson, C. Kennedy, L. Sonderhouse, T. Bothwell, A. Goban, D. Kedar, C. Sanner, J. M. Robinson, G. Marti, D. Matei, T. Legero, M. Giunta, R. Holzwarth, F. Riehle, U. Sterr, and J. Ye, “Demonstration of 4.8 × 10−17 stability at 1  s for two independent optical clocks,” Nat. Photonics 13, 714–719 (2019).
    [Crossref]
  21. D. Hudson, K. Holman, R. Jones, S. Cundiff, J. Ye, and D. Jones, “Mode-locked fiber laser frequency-controlled with an intracavity electro-optic modulator,” Opt. Lett. 30, 2948–2950 (2005).
    [Crossref]
  22. K. Iwakuni, H. Inaba, Y. Nakajima, T. Kobayashi, K. Hosaka, A. Onae, and F. Hong, “Narrow linewidth comb realized with a mode-locked fiber laser using an intra-cavity waveguide electro-optic modulator for high-speed control,” Opt. Express 20, 13769–13776 (2012).
    [Crossref]
  23. L. Sinclair, J. Deschênes, L. Sonderhouse, W. Swann, I. Khader, E. Baumann, N. Newbury, and I. Coddington, “Invited article: a compact optically coherent fiber frequency comb,” Rev. Sci. Instrum. 86, 081301 (2015).
    [Crossref]
  24. H. Yang, X. Wu, H. Zhang, S. Zhao, L. Yang, H. Wei, and Y. Li, “Optically stabilized erbium fiber frequency comb with hybrid mode-locking and a broad tunable range of repetition rate,” Appl. Opt. 55, D29–D34 (2016).
    [Crossref]
  25. J. McFerran, W. Swann, B. Washburn, and N. Newbury, “Suppression of pump-induced frequency noise in fiber-laser frequency combs leading to sub-radian FCEO phase excursions,” Appl. Phys. B 86, 219–227 (2007).
    [Crossref]
  26. M. Takamoto, I. Ushijima, M. Das, N. Nemitz, T. Ohkubo, K. Yamanaka, N. Ohmae, T. Takano, T. Akatsuka, A. Yamaguchi, and H. Katori, “Frequency ratios of Sr, Yb, and Hg based optical lattice clocks and their applications,” C. R. Phys. 16, 489–498 (2015).
    [Crossref]
  27. N. Nemitz, T. Ohkubo, M. Takamoto, I. Ushijima, M. Das, N. Ohmae, and H. Katori, “Frequency ratio of Yb and Sr clocks with 5 × 10−17 uncertainty at 150 seconds averaging time,” Nat. Photonics 10, 258–261 (2016).
    [Crossref]
  28. L. Ma, P. Jungner, J. Ye, and J. L. Hall, “Delivering the same optical frequency at two places: accurate cancellation of phase noise introduced by an optical fiber or other time-varying path,” Opt. Lett. 19, 1777–1779 (1994).
    [Crossref]
  29. D. Jones, S. Diddams, J. Ranka, A. Stentz, R. Windeler, J. Hall, and S. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
    [Crossref]
  30. W. Swann, J. McFerran, I. Coddington, N. Newbury, I. Hartl, M. Fermann, P. Westbrook, J. Nicholson, K. Feder, C. Langrock, and M. Fejer, “Fiber-laser frequency combs with subhertz relative linewidths,” Opt. Lett. 31, 3046–3048 (2006).
    [Crossref]
  31. Z. Tai, L. Yan, Y. Zhang, X. Zhang, W. Guo, S. Zhang, and H. Jiang, “Transportable 1555-nm ultra-stable laser with sub-0.185-Hz linewidth,” Chin. Phys. Lett. 34, 090602 (2017).
    [Crossref]

2019 (1)

E. Oelker, R. B. Hutson, C. Kennedy, L. Sonderhouse, T. Bothwell, A. Goban, D. Kedar, C. Sanner, J. M. Robinson, G. Marti, D. Matei, T. Legero, M. Giunta, R. Holzwarth, F. Riehle, U. Sterr, and J. Ye, “Demonstration of 4.8 × 10−17 stability at 1  s for two independent optical clocks,” Nat. Photonics 13, 714–719 (2019).
[Crossref]

2018 (1)

L. Sinclair, H. Bergeron, W. C. Swann, E. Baumann, J.-D. Deschênes, and N. R. Newbury, “Comparing optical oscillators across the air to milliradians in phase and 10−17 in frequency,” Phys. Rev. Lett. 120, 050801 (2018).
[Crossref]

2017 (3)

H. Yang, H. Wei, K. Chen, S. Zhang, and Y. Li, “Simply-integrated dual-comb spectrometer via tunable repetition rates and avoiding self-referencing,” Opt. Express 25, 8063–8072 (2017).
[Crossref]

D. G. Matei, T. Legero, S. Häfner, C. Grebing, R. Weyrich, W. Zhang, L. Sonderhouse, J. Robinson, J. Ye, F. Riehle, and U. Sterr, “1.5  µm lasers with sub-10  mHz linewidth,” Phys. Rev. Lett. 118, 263202 (2017).
[Crossref]

Z. Tai, L. Yan, Y. Zhang, X. Zhang, W. Guo, S. Zhang, and H. Jiang, “Transportable 1555-nm ultra-stable laser with sub-0.185-Hz linewidth,” Chin. Phys. Lett. 34, 090602 (2017).
[Crossref]

2016 (6)

N. Nemitz, T. Ohkubo, M. Takamoto, I. Ushijima, M. Das, N. Ohmae, and H. Katori, “Frequency ratio of Yb and Sr clocks with 5 × 10−17 uncertainty at 150 seconds averaging time,” Nat. Photonics 10, 258–261 (2016).
[Crossref]

Z. Tai, L. Yan, Y. Zhang, X. Zhang, W. Guo, S. Zhang, and H. Jiang, “Electro-optic modulator with ultra-low residual amplitude modulation for frequency modulation and laser stabilization,” Opt. Lett. 41, 5584–5587 (2016).
[Crossref]

H. Yang, X. Wu, H. Zhang, S. Zhao, L. Yang, H. Wei, and Y. Li, “Optically stabilized erbium fiber frequency comb with hybrid mode-locking and a broad tunable range of repetition rate,” Appl. Opt. 55, D29–D34 (2016).
[Crossref]

H. Yang, H. Wei, H. Zhang, K. Chen, Y. Li, V. Smolski, and K. Vodopyanov, “Performance estimation of dual-comb spectroscopy in different frequency-control schemes,” Appl. Opt. 55, 6321–6330 (2016).
[Crossref]

X. Xie, R. Bouchand, D. Nicolodi, M. Giunta, W. Hänsel, M. Lezius, A. Joshi, S. Datta, C. Alexandre, M. Lours, P. Tremblin, G. Santarelli, R. Holzwarth, and Y. Le Coq, “Photonic microwave signals with zeptosecond-level absolute timing noise,” Nat. Photonics 11, 44–47 (2016).
[Crossref]

H. Zhang, H. Wei, H. Yang, and Y. Li, “Active laser ranging with frequency transfer using frequency comb,” Appl. Phys. Lett. 108, 181101 (2016).
[Crossref]

2015 (3)

S. Okubo, K. Iwakuni, H. Inaba, K. Hosaka, A. Onae, H. Sasada, and F. Hong, “Ultra-broadband dual-comb spectroscopy across 1.0–1.9  µm,” Appl. Phys. Express 8, 082402 (2015).
[Crossref]

L. Sinclair, J. Deschênes, L. Sonderhouse, W. Swann, I. Khader, E. Baumann, N. Newbury, and I. Coddington, “Invited article: a compact optically coherent fiber frequency comb,” Rev. Sci. Instrum. 86, 081301 (2015).
[Crossref]

M. Takamoto, I. Ushijima, M. Das, N. Nemitz, T. Ohkubo, K. Yamanaka, N. Ohmae, T. Takano, T. Akatsuka, A. Yamaguchi, and H. Katori, “Frequency ratios of Sr, Yb, and Hg based optical lattice clocks and their applications,” C. R. Phys. 16, 489–498 (2015).
[Crossref]

2014 (2)

2013 (2)

S. Amairi, T. Legero, T. Kessler, U. Sterr, J. Wübbena, O. Mandel, and P. Schmidt, “Reducing the effect of thermal noise in optical cavities,” Appl. Phys. B 113, 233–242 (2013).
[Crossref]

G. Cole, W. Zhang, M. Martin, J. Ye, and M. Aspelmeyer, “Tenfold reduction of Brownian noise in high-reflectivity optical coatings,” Nat. Photonics 7, 644–650 (2013).
[Crossref]

2012 (1)

2011 (1)

2010 (1)

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent dual-comb spectroscopy at high signal-to-noise ratio,” Phys. Rev. A 82, 043817 (2010).
[Crossref]

2009 (1)

I. Coddington, W. Swann, L. Nenadovic, and N. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics 3, 351–356 (2009).
[Crossref]

2008 (2)

I. Coddington, W. Swan, and N. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett. 100, 013902 (2008).
[Crossref]

J. Alnis, A. Matveev, N. Kolachevsky, T. Udem, and T. Hänsch, “Subhertz linewidth diode lasers by stabilization to vibrationally and thermally compensated ultralow-expansion glass Fabry-Pérot cavities,” Phys. Rev. A 77, 053809 (2008).
[Crossref]

2007 (1)

J. McFerran, W. Swann, B. Washburn, and N. Newbury, “Suppression of pump-induced frequency noise in fiber-laser frequency combs leading to sub-radian FCEO phase excursions,” Appl. Phys. B 86, 219–227 (2007).
[Crossref]

2006 (1)

2005 (1)

2004 (1)

2000 (1)

D. Jones, S. Diddams, J. Ranka, A. Stentz, R. Windeler, J. Hall, and S. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
[Crossref]

1994 (1)

1983 (1)

R. Drever, J. Hall, F. Kowalski, J. Hough, G. Ford, A. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[Crossref]

Akatsuka, T.

M. Takamoto, I. Ushijima, M. Das, N. Nemitz, T. Ohkubo, K. Yamanaka, N. Ohmae, T. Takano, T. Akatsuka, A. Yamaguchi, and H. Katori, “Frequency ratios of Sr, Yb, and Hg based optical lattice clocks and their applications,” C. R. Phys. 16, 489–498 (2015).
[Crossref]

Alexandre, C.

X. Xie, R. Bouchand, D. Nicolodi, M. Giunta, W. Hänsel, M. Lezius, A. Joshi, S. Datta, C. Alexandre, M. Lours, P. Tremblin, G. Santarelli, R. Holzwarth, and Y. Le Coq, “Photonic microwave signals with zeptosecond-level absolute timing noise,” Nat. Photonics 11, 44–47 (2016).
[Crossref]

Alnis, J.

J. Alnis, A. Matveev, N. Kolachevsky, T. Udem, and T. Hänsch, “Subhertz linewidth diode lasers by stabilization to vibrationally and thermally compensated ultralow-expansion glass Fabry-Pérot cavities,” Phys. Rev. A 77, 053809 (2008).
[Crossref]

Amairi, S.

S. Amairi, T. Legero, T. Kessler, U. Sterr, J. Wübbena, O. Mandel, and P. Schmidt, “Reducing the effect of thermal noise in optical cavities,” Appl. Phys. B 113, 233–242 (2013).
[Crossref]

Aspelmeyer, M.

Baumann, E.

L. Sinclair, H. Bergeron, W. C. Swann, E. Baumann, J.-D. Deschênes, and N. R. Newbury, “Comparing optical oscillators across the air to milliradians in phase and 10−17 in frequency,” Phys. Rev. Lett. 120, 050801 (2018).
[Crossref]

L. Sinclair, J. Deschênes, L. Sonderhouse, W. Swann, I. Khader, E. Baumann, N. Newbury, and I. Coddington, “Invited article: a compact optically coherent fiber frequency comb,” Rev. Sci. Instrum. 86, 081301 (2015).
[Crossref]

Benko, C.

Bergeron, H.

L. Sinclair, H. Bergeron, W. C. Swann, E. Baumann, J.-D. Deschênes, and N. R. Newbury, “Comparing optical oscillators across the air to milliradians in phase and 10−17 in frequency,” Phys. Rev. Lett. 120, 050801 (2018).
[Crossref]

Bothwell, T.

E. Oelker, R. B. Hutson, C. Kennedy, L. Sonderhouse, T. Bothwell, A. Goban, D. Kedar, C. Sanner, J. M. Robinson, G. Marti, D. Matei, T. Legero, M. Giunta, R. Holzwarth, F. Riehle, U. Sterr, and J. Ye, “Demonstration of 4.8 × 10−17 stability at 1  s for two independent optical clocks,” Nat. Photonics 13, 714–719 (2019).
[Crossref]

Bouchand, R.

X. Xie, R. Bouchand, D. Nicolodi, M. Giunta, W. Hänsel, M. Lezius, A. Joshi, S. Datta, C. Alexandre, M. Lours, P. Tremblin, G. Santarelli, R. Holzwarth, and Y. Le Coq, “Photonic microwave signals with zeptosecond-level absolute timing noise,” Nat. Photonics 11, 44–47 (2016).
[Crossref]

Chen, K.

Coddington, I.

L. Sinclair, J. Deschênes, L. Sonderhouse, W. Swann, I. Khader, E. Baumann, N. Newbury, and I. Coddington, “Invited article: a compact optically coherent fiber frequency comb,” Rev. Sci. Instrum. 86, 081301 (2015).
[Crossref]

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent dual-comb spectroscopy at high signal-to-noise ratio,” Phys. Rev. A 82, 043817 (2010).
[Crossref]

I. Coddington, W. Swann, L. Nenadovic, and N. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics 3, 351–356 (2009).
[Crossref]

I. Coddington, W. Swan, and N. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett. 100, 013902 (2008).
[Crossref]

W. Swann, J. McFerran, I. Coddington, N. Newbury, I. Hartl, M. Fermann, P. Westbrook, J. Nicholson, K. Feder, C. Langrock, and M. Fejer, “Fiber-laser frequency combs with subhertz relative linewidths,” Opt. Lett. 31, 3046–3048 (2006).
[Crossref]

Cole, G.

Cundiff, S.

D. Hudson, K. Holman, R. Jones, S. Cundiff, J. Ye, and D. Jones, “Mode-locked fiber laser frequency-controlled with an intracavity electro-optic modulator,” Opt. Lett. 30, 2948–2950 (2005).
[Crossref]

D. Jones, S. Diddams, J. Ranka, A. Stentz, R. Windeler, J. Hall, and S. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
[Crossref]

Das, M.

N. Nemitz, T. Ohkubo, M. Takamoto, I. Ushijima, M. Das, N. Ohmae, and H. Katori, “Frequency ratio of Yb and Sr clocks with 5 × 10−17 uncertainty at 150 seconds averaging time,” Nat. Photonics 10, 258–261 (2016).
[Crossref]

M. Takamoto, I. Ushijima, M. Das, N. Nemitz, T. Ohkubo, K. Yamanaka, N. Ohmae, T. Takano, T. Akatsuka, A. Yamaguchi, and H. Katori, “Frequency ratios of Sr, Yb, and Hg based optical lattice clocks and their applications,” C. R. Phys. 16, 489–498 (2015).
[Crossref]

Datta, S.

X. Xie, R. Bouchand, D. Nicolodi, M. Giunta, W. Hänsel, M. Lezius, A. Joshi, S. Datta, C. Alexandre, M. Lours, P. Tremblin, G. Santarelli, R. Holzwarth, and Y. Le Coq, “Photonic microwave signals with zeptosecond-level absolute timing noise,” Nat. Photonics 11, 44–47 (2016).
[Crossref]

Deschênes, J.

L. Sinclair, J. Deschênes, L. Sonderhouse, W. Swann, I. Khader, E. Baumann, N. Newbury, and I. Coddington, “Invited article: a compact optically coherent fiber frequency comb,” Rev. Sci. Instrum. 86, 081301 (2015).
[Crossref]

Deschênes, J.-D.

L. Sinclair, H. Bergeron, W. C. Swann, E. Baumann, J.-D. Deschênes, and N. R. Newbury, “Comparing optical oscillators across the air to milliradians in phase and 10−17 in frequency,” Phys. Rev. Lett. 120, 050801 (2018).
[Crossref]

Diddams, S.

F. Quinlan, T. Fortier, M. Kirchner, J. Taylor, M. Thorpe, N. Lemke, A. Ludlow, Y. Jiang, and S. Diddams, “Ultralow phase noise microwave generation with an Er:fiber-based optical frequency divider,” Opt. Lett. 36, 3260–3262 (2011).
[Crossref]

D. Jones, S. Diddams, J. Ranka, A. Stentz, R. Windeler, J. Hall, and S. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
[Crossref]

Drever, R.

R. Drever, J. Hall, F. Kowalski, J. Hough, G. Ford, A. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[Crossref]

Feder, K.

Fejer, M.

Fermann, M.

Ford, G.

R. Drever, J. Hall, F. Kowalski, J. Hough, G. Ford, A. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[Crossref]

Fortier, T.

Giunta, M.

E. Oelker, R. B. Hutson, C. Kennedy, L. Sonderhouse, T. Bothwell, A. Goban, D. Kedar, C. Sanner, J. M. Robinson, G. Marti, D. Matei, T. Legero, M. Giunta, R. Holzwarth, F. Riehle, U. Sterr, and J. Ye, “Demonstration of 4.8 × 10−17 stability at 1  s for two independent optical clocks,” Nat. Photonics 13, 714–719 (2019).
[Crossref]

X. Xie, R. Bouchand, D. Nicolodi, M. Giunta, W. Hänsel, M. Lezius, A. Joshi, S. Datta, C. Alexandre, M. Lours, P. Tremblin, G. Santarelli, R. Holzwarth, and Y. Le Coq, “Photonic microwave signals with zeptosecond-level absolute timing noise,” Nat. Photonics 11, 44–47 (2016).
[Crossref]

Goban, A.

E. Oelker, R. B. Hutson, C. Kennedy, L. Sonderhouse, T. Bothwell, A. Goban, D. Kedar, C. Sanner, J. M. Robinson, G. Marti, D. Matei, T. Legero, M. Giunta, R. Holzwarth, F. Riehle, U. Sterr, and J. Ye, “Demonstration of 4.8 × 10−17 stability at 1  s for two independent optical clocks,” Nat. Photonics 13, 714–719 (2019).
[Crossref]

Gohle, C.

Grebing, C.

D. G. Matei, T. Legero, S. Häfner, C. Grebing, R. Weyrich, W. Zhang, L. Sonderhouse, J. Robinson, J. Ye, F. Riehle, and U. Sterr, “1.5  µm lasers with sub-10  mHz linewidth,” Phys. Rev. Lett. 118, 263202 (2017).
[Crossref]

Guo, W.

Z. Tai, L. Yan, Y. Zhang, X. Zhang, W. Guo, S. Zhang, and H. Jiang, “Transportable 1555-nm ultra-stable laser with sub-0.185-Hz linewidth,” Chin. Phys. Lett. 34, 090602 (2017).
[Crossref]

Z. Tai, L. Yan, Y. Zhang, X. Zhang, W. Guo, S. Zhang, and H. Jiang, “Electro-optic modulator with ultra-low residual amplitude modulation for frequency modulation and laser stabilization,” Opt. Lett. 41, 5584–5587 (2016).
[Crossref]

Häfner, S.

D. G. Matei, T. Legero, S. Häfner, C. Grebing, R. Weyrich, W. Zhang, L. Sonderhouse, J. Robinson, J. Ye, F. Riehle, and U. Sterr, “1.5  µm lasers with sub-10  mHz linewidth,” Phys. Rev. Lett. 118, 263202 (2017).
[Crossref]

Hagemann, C.

Hall, J.

W. Zhang, M. J. Martin, C. Benko, J. Hall, J. Ye, C. Hagemann, T. Legero, U. Sterr, F. Riehle, G. Cole, and M. Aspelmeyer, “Reduction of residual amplitude modulation to 1 × 10−6for frequency modulation and laser stabilization,” Opt. Lett. 39, 1980–1983 (2014).
[Crossref]

D. Jones, S. Diddams, J. Ranka, A. Stentz, R. Windeler, J. Hall, and S. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
[Crossref]

R. Drever, J. Hall, F. Kowalski, J. Hough, G. Ford, A. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[Crossref]

Hall, J. L.

Hänsch, T.

J. Alnis, A. Matveev, N. Kolachevsky, T. Udem, and T. Hänsch, “Subhertz linewidth diode lasers by stabilization to vibrationally and thermally compensated ultralow-expansion glass Fabry-Pérot cavities,” Phys. Rev. A 77, 053809 (2008).
[Crossref]

Hänsel, W.

X. Xie, R. Bouchand, D. Nicolodi, M. Giunta, W. Hänsel, M. Lezius, A. Joshi, S. Datta, C. Alexandre, M. Lours, P. Tremblin, G. Santarelli, R. Holzwarth, and Y. Le Coq, “Photonic microwave signals with zeptosecond-level absolute timing noise,” Nat. Photonics 11, 44–47 (2016).
[Crossref]

Hartl, I.

Holman, K.

Holzwarth, R.

E. Oelker, R. B. Hutson, C. Kennedy, L. Sonderhouse, T. Bothwell, A. Goban, D. Kedar, C. Sanner, J. M. Robinson, G. Marti, D. Matei, T. Legero, M. Giunta, R. Holzwarth, F. Riehle, U. Sterr, and J. Ye, “Demonstration of 4.8 × 10−17 stability at 1  s for two independent optical clocks,” Nat. Photonics 13, 714–719 (2019).
[Crossref]

X. Xie, R. Bouchand, D. Nicolodi, M. Giunta, W. Hänsel, M. Lezius, A. Joshi, S. Datta, C. Alexandre, M. Lours, P. Tremblin, G. Santarelli, R. Holzwarth, and Y. Le Coq, “Photonic microwave signals with zeptosecond-level absolute timing noise,” Nat. Photonics 11, 44–47 (2016).
[Crossref]

F. Keilmann, C. Gohle, and R. Holzwarth, “Time-domain mid-infrared frequency-comb spectrometer,” Opt. Lett. 29, 1542–1544 (2004).
[Crossref]

Hong, F.

Hosaka, K.

Hough, J.

R. Drever, J. Hall, F. Kowalski, J. Hough, G. Ford, A. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[Crossref]

Hudson, D.

Hutson, R. B.

E. Oelker, R. B. Hutson, C. Kennedy, L. Sonderhouse, T. Bothwell, A. Goban, D. Kedar, C. Sanner, J. M. Robinson, G. Marti, D. Matei, T. Legero, M. Giunta, R. Holzwarth, F. Riehle, U. Sterr, and J. Ye, “Demonstration of 4.8 × 10−17 stability at 1  s for two independent optical clocks,” Nat. Photonics 13, 714–719 (2019).
[Crossref]

Inaba, H.

Iwakuni, K.

Jiang, H.

Z. Tai, L. Yan, Y. Zhang, X. Zhang, W. Guo, S. Zhang, and H. Jiang, “Transportable 1555-nm ultra-stable laser with sub-0.185-Hz linewidth,” Chin. Phys. Lett. 34, 090602 (2017).
[Crossref]

Z. Tai, L. Yan, Y. Zhang, X. Zhang, W. Guo, S. Zhang, and H. Jiang, “Electro-optic modulator with ultra-low residual amplitude modulation for frequency modulation and laser stabilization,” Opt. Lett. 41, 5584–5587 (2016).
[Crossref]

Jiang, Y.

Jones, D.

D. Hudson, K. Holman, R. Jones, S. Cundiff, J. Ye, and D. Jones, “Mode-locked fiber laser frequency-controlled with an intracavity electro-optic modulator,” Opt. Lett. 30, 2948–2950 (2005).
[Crossref]

D. Jones, S. Diddams, J. Ranka, A. Stentz, R. Windeler, J. Hall, and S. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
[Crossref]

Jones, R.

Joshi, A.

X. Xie, R. Bouchand, D. Nicolodi, M. Giunta, W. Hänsel, M. Lezius, A. Joshi, S. Datta, C. Alexandre, M. Lours, P. Tremblin, G. Santarelli, R. Holzwarth, and Y. Le Coq, “Photonic microwave signals with zeptosecond-level absolute timing noise,” Nat. Photonics 11, 44–47 (2016).
[Crossref]

Jungner, P.

Katori, H.

N. Nemitz, T. Ohkubo, M. Takamoto, I. Ushijima, M. Das, N. Ohmae, and H. Katori, “Frequency ratio of Yb and Sr clocks with 5 × 10−17 uncertainty at 150 seconds averaging time,” Nat. Photonics 10, 258–261 (2016).
[Crossref]

M. Takamoto, I. Ushijima, M. Das, N. Nemitz, T. Ohkubo, K. Yamanaka, N. Ohmae, T. Takano, T. Akatsuka, A. Yamaguchi, and H. Katori, “Frequency ratios of Sr, Yb, and Hg based optical lattice clocks and their applications,” C. R. Phys. 16, 489–498 (2015).
[Crossref]

Kedar, D.

E. Oelker, R. B. Hutson, C. Kennedy, L. Sonderhouse, T. Bothwell, A. Goban, D. Kedar, C. Sanner, J. M. Robinson, G. Marti, D. Matei, T. Legero, M. Giunta, R. Holzwarth, F. Riehle, U. Sterr, and J. Ye, “Demonstration of 4.8 × 10−17 stability at 1  s for two independent optical clocks,” Nat. Photonics 13, 714–719 (2019).
[Crossref]

Keilmann, F.

Kennedy, C.

E. Oelker, R. B. Hutson, C. Kennedy, L. Sonderhouse, T. Bothwell, A. Goban, D. Kedar, C. Sanner, J. M. Robinson, G. Marti, D. Matei, T. Legero, M. Giunta, R. Holzwarth, F. Riehle, U. Sterr, and J. Ye, “Demonstration of 4.8 × 10−17 stability at 1  s for two independent optical clocks,” Nat. Photonics 13, 714–719 (2019).
[Crossref]

Kessler, T.

S. Amairi, T. Legero, T. Kessler, U. Sterr, J. Wübbena, O. Mandel, and P. Schmidt, “Reducing the effect of thermal noise in optical cavities,” Appl. Phys. B 113, 233–242 (2013).
[Crossref]

Khader, I.

L. Sinclair, J. Deschênes, L. Sonderhouse, W. Swann, I. Khader, E. Baumann, N. Newbury, and I. Coddington, “Invited article: a compact optically coherent fiber frequency comb,” Rev. Sci. Instrum. 86, 081301 (2015).
[Crossref]

Kirchner, M.

Kobayashi, T.

Kolachevsky, N.

J. Alnis, A. Matveev, N. Kolachevsky, T. Udem, and T. Hänsch, “Subhertz linewidth diode lasers by stabilization to vibrationally and thermally compensated ultralow-expansion glass Fabry-Pérot cavities,” Phys. Rev. A 77, 053809 (2008).
[Crossref]

Kowalski, F.

R. Drever, J. Hall, F. Kowalski, J. Hough, G. Ford, A. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[Crossref]

Langrock, C.

Le Coq, Y.

X. Xie, R. Bouchand, D. Nicolodi, M. Giunta, W. Hänsel, M. Lezius, A. Joshi, S. Datta, C. Alexandre, M. Lours, P. Tremblin, G. Santarelli, R. Holzwarth, and Y. Le Coq, “Photonic microwave signals with zeptosecond-level absolute timing noise,” Nat. Photonics 11, 44–47 (2016).
[Crossref]

Legero, T.

E. Oelker, R. B. Hutson, C. Kennedy, L. Sonderhouse, T. Bothwell, A. Goban, D. Kedar, C. Sanner, J. M. Robinson, G. Marti, D. Matei, T. Legero, M. Giunta, R. Holzwarth, F. Riehle, U. Sterr, and J. Ye, “Demonstration of 4.8 × 10−17 stability at 1  s for two independent optical clocks,” Nat. Photonics 13, 714–719 (2019).
[Crossref]

D. G. Matei, T. Legero, S. Häfner, C. Grebing, R. Weyrich, W. Zhang, L. Sonderhouse, J. Robinson, J. Ye, F. Riehle, and U. Sterr, “1.5  µm lasers with sub-10  mHz linewidth,” Phys. Rev. Lett. 118, 263202 (2017).
[Crossref]

W. Zhang, M. J. Martin, C. Benko, J. Hall, J. Ye, C. Hagemann, T. Legero, U. Sterr, F. Riehle, G. Cole, and M. Aspelmeyer, “Reduction of residual amplitude modulation to 1 × 10−6for frequency modulation and laser stabilization,” Opt. Lett. 39, 1980–1983 (2014).
[Crossref]

S. Amairi, T. Legero, T. Kessler, U. Sterr, J. Wübbena, O. Mandel, and P. Schmidt, “Reducing the effect of thermal noise in optical cavities,” Appl. Phys. B 113, 233–242 (2013).
[Crossref]

Lemke, N.

Lezius, M.

X. Xie, R. Bouchand, D. Nicolodi, M. Giunta, W. Hänsel, M. Lezius, A. Joshi, S. Datta, C. Alexandre, M. Lours, P. Tremblin, G. Santarelli, R. Holzwarth, and Y. Le Coq, “Photonic microwave signals with zeptosecond-level absolute timing noise,” Nat. Photonics 11, 44–47 (2016).
[Crossref]

Li, Y.

Lours, M.

X. Xie, R. Bouchand, D. Nicolodi, M. Giunta, W. Hänsel, M. Lezius, A. Joshi, S. Datta, C. Alexandre, M. Lours, P. Tremblin, G. Santarelli, R. Holzwarth, and Y. Le Coq, “Photonic microwave signals with zeptosecond-level absolute timing noise,” Nat. Photonics 11, 44–47 (2016).
[Crossref]

Ludlow, A.

Ma, L.

Mandel, O.

S. Amairi, T. Legero, T. Kessler, U. Sterr, J. Wübbena, O. Mandel, and P. Schmidt, “Reducing the effect of thermal noise in optical cavities,” Appl. Phys. B 113, 233–242 (2013).
[Crossref]

Marti, G.

E. Oelker, R. B. Hutson, C. Kennedy, L. Sonderhouse, T. Bothwell, A. Goban, D. Kedar, C. Sanner, J. M. Robinson, G. Marti, D. Matei, T. Legero, M. Giunta, R. Holzwarth, F. Riehle, U. Sterr, and J. Ye, “Demonstration of 4.8 × 10−17 stability at 1  s for two independent optical clocks,” Nat. Photonics 13, 714–719 (2019).
[Crossref]

Martin, M.

G. Cole, W. Zhang, M. Martin, J. Ye, and M. Aspelmeyer, “Tenfold reduction of Brownian noise in high-reflectivity optical coatings,” Nat. Photonics 7, 644–650 (2013).
[Crossref]

Martin, M. J.

Matei, D.

E. Oelker, R. B. Hutson, C. Kennedy, L. Sonderhouse, T. Bothwell, A. Goban, D. Kedar, C. Sanner, J. M. Robinson, G. Marti, D. Matei, T. Legero, M. Giunta, R. Holzwarth, F. Riehle, U. Sterr, and J. Ye, “Demonstration of 4.8 × 10−17 stability at 1  s for two independent optical clocks,” Nat. Photonics 13, 714–719 (2019).
[Crossref]

Matei, D. G.

D. G. Matei, T. Legero, S. Häfner, C. Grebing, R. Weyrich, W. Zhang, L. Sonderhouse, J. Robinson, J. Ye, F. Riehle, and U. Sterr, “1.5  µm lasers with sub-10  mHz linewidth,” Phys. Rev. Lett. 118, 263202 (2017).
[Crossref]

Matveev, A.

J. Alnis, A. Matveev, N. Kolachevsky, T. Udem, and T. Hänsch, “Subhertz linewidth diode lasers by stabilization to vibrationally and thermally compensated ultralow-expansion glass Fabry-Pérot cavities,” Phys. Rev. A 77, 053809 (2008).
[Crossref]

McFerran, J.

J. McFerran, W. Swann, B. Washburn, and N. Newbury, “Suppression of pump-induced frequency noise in fiber-laser frequency combs leading to sub-radian FCEO phase excursions,” Appl. Phys. B 86, 219–227 (2007).
[Crossref]

W. Swann, J. McFerran, I. Coddington, N. Newbury, I. Hartl, M. Fermann, P. Westbrook, J. Nicholson, K. Feder, C. Langrock, and M. Fejer, “Fiber-laser frequency combs with subhertz relative linewidths,” Opt. Lett. 31, 3046–3048 (2006).
[Crossref]

Munley, A.

R. Drever, J. Hall, F. Kowalski, J. Hough, G. Ford, A. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[Crossref]

Nakajima, Y.

Nemitz, N.

N. Nemitz, T. Ohkubo, M. Takamoto, I. Ushijima, M. Das, N. Ohmae, and H. Katori, “Frequency ratio of Yb and Sr clocks with 5 × 10−17 uncertainty at 150 seconds averaging time,” Nat. Photonics 10, 258–261 (2016).
[Crossref]

M. Takamoto, I. Ushijima, M. Das, N. Nemitz, T. Ohkubo, K. Yamanaka, N. Ohmae, T. Takano, T. Akatsuka, A. Yamaguchi, and H. Katori, “Frequency ratios of Sr, Yb, and Hg based optical lattice clocks and their applications,” C. R. Phys. 16, 489–498 (2015).
[Crossref]

Nenadovic, L.

I. Coddington, W. Swann, L. Nenadovic, and N. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics 3, 351–356 (2009).
[Crossref]

Newbury, N.

L. Sinclair, J. Deschênes, L. Sonderhouse, W. Swann, I. Khader, E. Baumann, N. Newbury, and I. Coddington, “Invited article: a compact optically coherent fiber frequency comb,” Rev. Sci. Instrum. 86, 081301 (2015).
[Crossref]

I. Coddington, W. Swann, L. Nenadovic, and N. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics 3, 351–356 (2009).
[Crossref]

I. Coddington, W. Swan, and N. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett. 100, 013902 (2008).
[Crossref]

J. McFerran, W. Swann, B. Washburn, and N. Newbury, “Suppression of pump-induced frequency noise in fiber-laser frequency combs leading to sub-radian FCEO phase excursions,” Appl. Phys. B 86, 219–227 (2007).
[Crossref]

W. Swann, J. McFerran, I. Coddington, N. Newbury, I. Hartl, M. Fermann, P. Westbrook, J. Nicholson, K. Feder, C. Langrock, and M. Fejer, “Fiber-laser frequency combs with subhertz relative linewidths,” Opt. Lett. 31, 3046–3048 (2006).
[Crossref]

Newbury, N. R.

L. Sinclair, H. Bergeron, W. C. Swann, E. Baumann, J.-D. Deschênes, and N. R. Newbury, “Comparing optical oscillators across the air to milliradians in phase and 10−17 in frequency,” Phys. Rev. Lett. 120, 050801 (2018).
[Crossref]

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent dual-comb spectroscopy at high signal-to-noise ratio,” Phys. Rev. A 82, 043817 (2010).
[Crossref]

Nicholson, J.

Nicolodi, D.

X. Xie, R. Bouchand, D. Nicolodi, M. Giunta, W. Hänsel, M. Lezius, A. Joshi, S. Datta, C. Alexandre, M. Lours, P. Tremblin, G. Santarelli, R. Holzwarth, and Y. Le Coq, “Photonic microwave signals with zeptosecond-level absolute timing noise,” Nat. Photonics 11, 44–47 (2016).
[Crossref]

Oelker, E.

E. Oelker, R. B. Hutson, C. Kennedy, L. Sonderhouse, T. Bothwell, A. Goban, D. Kedar, C. Sanner, J. M. Robinson, G. Marti, D. Matei, T. Legero, M. Giunta, R. Holzwarth, F. Riehle, U. Sterr, and J. Ye, “Demonstration of 4.8 × 10−17 stability at 1  s for two independent optical clocks,” Nat. Photonics 13, 714–719 (2019).
[Crossref]

Ohkubo, T.

N. Nemitz, T. Ohkubo, M. Takamoto, I. Ushijima, M. Das, N. Ohmae, and H. Katori, “Frequency ratio of Yb and Sr clocks with 5 × 10−17 uncertainty at 150 seconds averaging time,” Nat. Photonics 10, 258–261 (2016).
[Crossref]

M. Takamoto, I. Ushijima, M. Das, N. Nemitz, T. Ohkubo, K. Yamanaka, N. Ohmae, T. Takano, T. Akatsuka, A. Yamaguchi, and H. Katori, “Frequency ratios of Sr, Yb, and Hg based optical lattice clocks and their applications,” C. R. Phys. 16, 489–498 (2015).
[Crossref]

Ohmae, N.

N. Nemitz, T. Ohkubo, M. Takamoto, I. Ushijima, M. Das, N. Ohmae, and H. Katori, “Frequency ratio of Yb and Sr clocks with 5 × 10−17 uncertainty at 150 seconds averaging time,” Nat. Photonics 10, 258–261 (2016).
[Crossref]

M. Takamoto, I. Ushijima, M. Das, N. Nemitz, T. Ohkubo, K. Yamanaka, N. Ohmae, T. Takano, T. Akatsuka, A. Yamaguchi, and H. Katori, “Frequency ratios of Sr, Yb, and Hg based optical lattice clocks and their applications,” C. R. Phys. 16, 489–498 (2015).
[Crossref]

Okubo, S.

S. Okubo, K. Iwakuni, H. Inaba, K. Hosaka, A. Onae, H. Sasada, and F. Hong, “Ultra-broadband dual-comb spectroscopy across 1.0–1.9  µm,” Appl. Phys. Express 8, 082402 (2015).
[Crossref]

Onae, A.

Quinlan, F.

Ranka, J.

D. Jones, S. Diddams, J. Ranka, A. Stentz, R. Windeler, J. Hall, and S. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
[Crossref]

Riehle, F.

E. Oelker, R. B. Hutson, C. Kennedy, L. Sonderhouse, T. Bothwell, A. Goban, D. Kedar, C. Sanner, J. M. Robinson, G. Marti, D. Matei, T. Legero, M. Giunta, R. Holzwarth, F. Riehle, U. Sterr, and J. Ye, “Demonstration of 4.8 × 10−17 stability at 1  s for two independent optical clocks,” Nat. Photonics 13, 714–719 (2019).
[Crossref]

D. G. Matei, T. Legero, S. Häfner, C. Grebing, R. Weyrich, W. Zhang, L. Sonderhouse, J. Robinson, J. Ye, F. Riehle, and U. Sterr, “1.5  µm lasers with sub-10  mHz linewidth,” Phys. Rev. Lett. 118, 263202 (2017).
[Crossref]

W. Zhang, M. J. Martin, C. Benko, J. Hall, J. Ye, C. Hagemann, T. Legero, U. Sterr, F. Riehle, G. Cole, and M. Aspelmeyer, “Reduction of residual amplitude modulation to 1 × 10−6for frequency modulation and laser stabilization,” Opt. Lett. 39, 1980–1983 (2014).
[Crossref]

Robinson, J.

D. G. Matei, T. Legero, S. Häfner, C. Grebing, R. Weyrich, W. Zhang, L. Sonderhouse, J. Robinson, J. Ye, F. Riehle, and U. Sterr, “1.5  µm lasers with sub-10  mHz linewidth,” Phys. Rev. Lett. 118, 263202 (2017).
[Crossref]

Robinson, J. M.

E. Oelker, R. B. Hutson, C. Kennedy, L. Sonderhouse, T. Bothwell, A. Goban, D. Kedar, C. Sanner, J. M. Robinson, G. Marti, D. Matei, T. Legero, M. Giunta, R. Holzwarth, F. Riehle, U. Sterr, and J. Ye, “Demonstration of 4.8 × 10−17 stability at 1  s for two independent optical clocks,” Nat. Photonics 13, 714–719 (2019).
[Crossref]

Sanner, C.

E. Oelker, R. B. Hutson, C. Kennedy, L. Sonderhouse, T. Bothwell, A. Goban, D. Kedar, C. Sanner, J. M. Robinson, G. Marti, D. Matei, T. Legero, M. Giunta, R. Holzwarth, F. Riehle, U. Sterr, and J. Ye, “Demonstration of 4.8 × 10−17 stability at 1  s for two independent optical clocks,” Nat. Photonics 13, 714–719 (2019).
[Crossref]

Santarelli, G.

X. Xie, R. Bouchand, D. Nicolodi, M. Giunta, W. Hänsel, M. Lezius, A. Joshi, S. Datta, C. Alexandre, M. Lours, P. Tremblin, G. Santarelli, R. Holzwarth, and Y. Le Coq, “Photonic microwave signals with zeptosecond-level absolute timing noise,” Nat. Photonics 11, 44–47 (2016).
[Crossref]

Sasada, H.

S. Okubo, K. Iwakuni, H. Inaba, K. Hosaka, A. Onae, H. Sasada, and F. Hong, “Ultra-broadband dual-comb spectroscopy across 1.0–1.9  µm,” Appl. Phys. Express 8, 082402 (2015).
[Crossref]

Schmidt, P.

S. Amairi, T. Legero, T. Kessler, U. Sterr, J. Wübbena, O. Mandel, and P. Schmidt, “Reducing the effect of thermal noise in optical cavities,” Appl. Phys. B 113, 233–242 (2013).
[Crossref]

Sinclair, L.

L. Sinclair, H. Bergeron, W. C. Swann, E. Baumann, J.-D. Deschênes, and N. R. Newbury, “Comparing optical oscillators across the air to milliradians in phase and 10−17 in frequency,” Phys. Rev. Lett. 120, 050801 (2018).
[Crossref]

L. Sinclair, J. Deschênes, L. Sonderhouse, W. Swann, I. Khader, E. Baumann, N. Newbury, and I. Coddington, “Invited article: a compact optically coherent fiber frequency comb,” Rev. Sci. Instrum. 86, 081301 (2015).
[Crossref]

Smolski, V.

Sonderhouse, L.

E. Oelker, R. B. Hutson, C. Kennedy, L. Sonderhouse, T. Bothwell, A. Goban, D. Kedar, C. Sanner, J. M. Robinson, G. Marti, D. Matei, T. Legero, M. Giunta, R. Holzwarth, F. Riehle, U. Sterr, and J. Ye, “Demonstration of 4.8 × 10−17 stability at 1  s for two independent optical clocks,” Nat. Photonics 13, 714–719 (2019).
[Crossref]

D. G. Matei, T. Legero, S. Häfner, C. Grebing, R. Weyrich, W. Zhang, L. Sonderhouse, J. Robinson, J. Ye, F. Riehle, and U. Sterr, “1.5  µm lasers with sub-10  mHz linewidth,” Phys. Rev. Lett. 118, 263202 (2017).
[Crossref]

L. Sinclair, J. Deschênes, L. Sonderhouse, W. Swann, I. Khader, E. Baumann, N. Newbury, and I. Coddington, “Invited article: a compact optically coherent fiber frequency comb,” Rev. Sci. Instrum. 86, 081301 (2015).
[Crossref]

Stentz, A.

D. Jones, S. Diddams, J. Ranka, A. Stentz, R. Windeler, J. Hall, and S. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
[Crossref]

Sterr, U.

E. Oelker, R. B. Hutson, C. Kennedy, L. Sonderhouse, T. Bothwell, A. Goban, D. Kedar, C. Sanner, J. M. Robinson, G. Marti, D. Matei, T. Legero, M. Giunta, R. Holzwarth, F. Riehle, U. Sterr, and J. Ye, “Demonstration of 4.8 × 10−17 stability at 1  s for two independent optical clocks,” Nat. Photonics 13, 714–719 (2019).
[Crossref]

D. G. Matei, T. Legero, S. Häfner, C. Grebing, R. Weyrich, W. Zhang, L. Sonderhouse, J. Robinson, J. Ye, F. Riehle, and U. Sterr, “1.5  µm lasers with sub-10  mHz linewidth,” Phys. Rev. Lett. 118, 263202 (2017).
[Crossref]

W. Zhang, M. J. Martin, C. Benko, J. Hall, J. Ye, C. Hagemann, T. Legero, U. Sterr, F. Riehle, G. Cole, and M. Aspelmeyer, “Reduction of residual amplitude modulation to 1 × 10−6for frequency modulation and laser stabilization,” Opt. Lett. 39, 1980–1983 (2014).
[Crossref]

S. Amairi, T. Legero, T. Kessler, U. Sterr, J. Wübbena, O. Mandel, and P. Schmidt, “Reducing the effect of thermal noise in optical cavities,” Appl. Phys. B 113, 233–242 (2013).
[Crossref]

Swan, W.

I. Coddington, W. Swan, and N. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett. 100, 013902 (2008).
[Crossref]

Swann, W.

L. Sinclair, J. Deschênes, L. Sonderhouse, W. Swann, I. Khader, E. Baumann, N. Newbury, and I. Coddington, “Invited article: a compact optically coherent fiber frequency comb,” Rev. Sci. Instrum. 86, 081301 (2015).
[Crossref]

I. Coddington, W. Swann, L. Nenadovic, and N. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics 3, 351–356 (2009).
[Crossref]

J. McFerran, W. Swann, B. Washburn, and N. Newbury, “Suppression of pump-induced frequency noise in fiber-laser frequency combs leading to sub-radian FCEO phase excursions,” Appl. Phys. B 86, 219–227 (2007).
[Crossref]

W. Swann, J. McFerran, I. Coddington, N. Newbury, I. Hartl, M. Fermann, P. Westbrook, J. Nicholson, K. Feder, C. Langrock, and M. Fejer, “Fiber-laser frequency combs with subhertz relative linewidths,” Opt. Lett. 31, 3046–3048 (2006).
[Crossref]

Swann, W. C.

L. Sinclair, H. Bergeron, W. C. Swann, E. Baumann, J.-D. Deschênes, and N. R. Newbury, “Comparing optical oscillators across the air to milliradians in phase and 10−17 in frequency,” Phys. Rev. Lett. 120, 050801 (2018).
[Crossref]

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent dual-comb spectroscopy at high signal-to-noise ratio,” Phys. Rev. A 82, 043817 (2010).
[Crossref]

Tai, Z.

Z. Tai, L. Yan, Y. Zhang, X. Zhang, W. Guo, S. Zhang, and H. Jiang, “Transportable 1555-nm ultra-stable laser with sub-0.185-Hz linewidth,” Chin. Phys. Lett. 34, 090602 (2017).
[Crossref]

Z. Tai, L. Yan, Y. Zhang, X. Zhang, W. Guo, S. Zhang, and H. Jiang, “Electro-optic modulator with ultra-low residual amplitude modulation for frequency modulation and laser stabilization,” Opt. Lett. 41, 5584–5587 (2016).
[Crossref]

Takamoto, M.

N. Nemitz, T. Ohkubo, M. Takamoto, I. Ushijima, M. Das, N. Ohmae, and H. Katori, “Frequency ratio of Yb and Sr clocks with 5 × 10−17 uncertainty at 150 seconds averaging time,” Nat. Photonics 10, 258–261 (2016).
[Crossref]

M. Takamoto, I. Ushijima, M. Das, N. Nemitz, T. Ohkubo, K. Yamanaka, N. Ohmae, T. Takano, T. Akatsuka, A. Yamaguchi, and H. Katori, “Frequency ratios of Sr, Yb, and Hg based optical lattice clocks and their applications,” C. R. Phys. 16, 489–498 (2015).
[Crossref]

Takano, T.

M. Takamoto, I. Ushijima, M. Das, N. Nemitz, T. Ohkubo, K. Yamanaka, N. Ohmae, T. Takano, T. Akatsuka, A. Yamaguchi, and H. Katori, “Frequency ratios of Sr, Yb, and Hg based optical lattice clocks and their applications,” C. R. Phys. 16, 489–498 (2015).
[Crossref]

Taylor, J.

Thorpe, M.

Tremblin, P.

X. Xie, R. Bouchand, D. Nicolodi, M. Giunta, W. Hänsel, M. Lezius, A. Joshi, S. Datta, C. Alexandre, M. Lours, P. Tremblin, G. Santarelli, R. Holzwarth, and Y. Le Coq, “Photonic microwave signals with zeptosecond-level absolute timing noise,” Nat. Photonics 11, 44–47 (2016).
[Crossref]

Udem, T.

J. Alnis, A. Matveev, N. Kolachevsky, T. Udem, and T. Hänsch, “Subhertz linewidth diode lasers by stabilization to vibrationally and thermally compensated ultralow-expansion glass Fabry-Pérot cavities,” Phys. Rev. A 77, 053809 (2008).
[Crossref]

Ushijima, I.

N. Nemitz, T. Ohkubo, M. Takamoto, I. Ushijima, M. Das, N. Ohmae, and H. Katori, “Frequency ratio of Yb and Sr clocks with 5 × 10−17 uncertainty at 150 seconds averaging time,” Nat. Photonics 10, 258–261 (2016).
[Crossref]

M. Takamoto, I. Ushijima, M. Das, N. Nemitz, T. Ohkubo, K. Yamanaka, N. Ohmae, T. Takano, T. Akatsuka, A. Yamaguchi, and H. Katori, “Frequency ratios of Sr, Yb, and Hg based optical lattice clocks and their applications,” C. R. Phys. 16, 489–498 (2015).
[Crossref]

Vodopyanov, K.

Ward, H.

R. Drever, J. Hall, F. Kowalski, J. Hough, G. Ford, A. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[Crossref]

Washburn, B.

J. McFerran, W. Swann, B. Washburn, and N. Newbury, “Suppression of pump-induced frequency noise in fiber-laser frequency combs leading to sub-radian FCEO phase excursions,” Appl. Phys. B 86, 219–227 (2007).
[Crossref]

Wei, H.

Westbrook, P.

Weyrich, R.

D. G. Matei, T. Legero, S. Häfner, C. Grebing, R. Weyrich, W. Zhang, L. Sonderhouse, J. Robinson, J. Ye, F. Riehle, and U. Sterr, “1.5  µm lasers with sub-10  mHz linewidth,” Phys. Rev. Lett. 118, 263202 (2017).
[Crossref]

Windeler, R.

D. Jones, S. Diddams, J. Ranka, A. Stentz, R. Windeler, J. Hall, and S. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
[Crossref]

Wu, X.

Wübbena, J.

S. Amairi, T. Legero, T. Kessler, U. Sterr, J. Wübbena, O. Mandel, and P. Schmidt, “Reducing the effect of thermal noise in optical cavities,” Appl. Phys. B 113, 233–242 (2013).
[Crossref]

Xie, X.

X. Xie, R. Bouchand, D. Nicolodi, M. Giunta, W. Hänsel, M. Lezius, A. Joshi, S. Datta, C. Alexandre, M. Lours, P. Tremblin, G. Santarelli, R. Holzwarth, and Y. Le Coq, “Photonic microwave signals with zeptosecond-level absolute timing noise,” Nat. Photonics 11, 44–47 (2016).
[Crossref]

Yamaguchi, A.

M. Takamoto, I. Ushijima, M. Das, N. Nemitz, T. Ohkubo, K. Yamanaka, N. Ohmae, T. Takano, T. Akatsuka, A. Yamaguchi, and H. Katori, “Frequency ratios of Sr, Yb, and Hg based optical lattice clocks and their applications,” C. R. Phys. 16, 489–498 (2015).
[Crossref]

Yamanaka, K.

M. Takamoto, I. Ushijima, M. Das, N. Nemitz, T. Ohkubo, K. Yamanaka, N. Ohmae, T. Takano, T. Akatsuka, A. Yamaguchi, and H. Katori, “Frequency ratios of Sr, Yb, and Hg based optical lattice clocks and their applications,” C. R. Phys. 16, 489–498 (2015).
[Crossref]

Yan, L.

Z. Tai, L. Yan, Y. Zhang, X. Zhang, W. Guo, S. Zhang, and H. Jiang, “Transportable 1555-nm ultra-stable laser with sub-0.185-Hz linewidth,” Chin. Phys. Lett. 34, 090602 (2017).
[Crossref]

Z. Tai, L. Yan, Y. Zhang, X. Zhang, W. Guo, S. Zhang, and H. Jiang, “Electro-optic modulator with ultra-low residual amplitude modulation for frequency modulation and laser stabilization,” Opt. Lett. 41, 5584–5587 (2016).
[Crossref]

Yang, H.

Yang, L.

Ye, J.

E. Oelker, R. B. Hutson, C. Kennedy, L. Sonderhouse, T. Bothwell, A. Goban, D. Kedar, C. Sanner, J. M. Robinson, G. Marti, D. Matei, T. Legero, M. Giunta, R. Holzwarth, F. Riehle, U. Sterr, and J. Ye, “Demonstration of 4.8 × 10−17 stability at 1  s for two independent optical clocks,” Nat. Photonics 13, 714–719 (2019).
[Crossref]

D. G. Matei, T. Legero, S. Häfner, C. Grebing, R. Weyrich, W. Zhang, L. Sonderhouse, J. Robinson, J. Ye, F. Riehle, and U. Sterr, “1.5  µm lasers with sub-10  mHz linewidth,” Phys. Rev. Lett. 118, 263202 (2017).
[Crossref]

W. Zhang, M. J. Martin, C. Benko, J. Hall, J. Ye, C. Hagemann, T. Legero, U. Sterr, F. Riehle, G. Cole, and M. Aspelmeyer, “Reduction of residual amplitude modulation to 1 × 10−6for frequency modulation and laser stabilization,” Opt. Lett. 39, 1980–1983 (2014).
[Crossref]

G. Cole, W. Zhang, M. Martin, J. Ye, and M. Aspelmeyer, “Tenfold reduction of Brownian noise in high-reflectivity optical coatings,” Nat. Photonics 7, 644–650 (2013).
[Crossref]

D. Hudson, K. Holman, R. Jones, S. Cundiff, J. Ye, and D. Jones, “Mode-locked fiber laser frequency-controlled with an intracavity electro-optic modulator,” Opt. Lett. 30, 2948–2950 (2005).
[Crossref]

L. Ma, P. Jungner, J. Ye, and J. L. Hall, “Delivering the same optical frequency at two places: accurate cancellation of phase noise introduced by an optical fiber or other time-varying path,” Opt. Lett. 19, 1777–1779 (1994).
[Crossref]

Zhang, H.

Zhang, S.

Zhang, W.

D. G. Matei, T. Legero, S. Häfner, C. Grebing, R. Weyrich, W. Zhang, L. Sonderhouse, J. Robinson, J. Ye, F. Riehle, and U. Sterr, “1.5  µm lasers with sub-10  mHz linewidth,” Phys. Rev. Lett. 118, 263202 (2017).
[Crossref]

W. Zhang, M. J. Martin, C. Benko, J. Hall, J. Ye, C. Hagemann, T. Legero, U. Sterr, F. Riehle, G. Cole, and M. Aspelmeyer, “Reduction of residual amplitude modulation to 1 × 10−6for frequency modulation and laser stabilization,” Opt. Lett. 39, 1980–1983 (2014).
[Crossref]

G. Cole, W. Zhang, M. Martin, J. Ye, and M. Aspelmeyer, “Tenfold reduction of Brownian noise in high-reflectivity optical coatings,” Nat. Photonics 7, 644–650 (2013).
[Crossref]

Zhang, X.

Z. Tai, L. Yan, Y. Zhang, X. Zhang, W. Guo, S. Zhang, and H. Jiang, “Transportable 1555-nm ultra-stable laser with sub-0.185-Hz linewidth,” Chin. Phys. Lett. 34, 090602 (2017).
[Crossref]

Z. Tai, L. Yan, Y. Zhang, X. Zhang, W. Guo, S. Zhang, and H. Jiang, “Electro-optic modulator with ultra-low residual amplitude modulation for frequency modulation and laser stabilization,” Opt. Lett. 41, 5584–5587 (2016).
[Crossref]

Zhang, Y.

Z. Tai, L. Yan, Y. Zhang, X. Zhang, W. Guo, S. Zhang, and H. Jiang, “Transportable 1555-nm ultra-stable laser with sub-0.185-Hz linewidth,” Chin. Phys. Lett. 34, 090602 (2017).
[Crossref]

Z. Tai, L. Yan, Y. Zhang, X. Zhang, W. Guo, S. Zhang, and H. Jiang, “Electro-optic modulator with ultra-low residual amplitude modulation for frequency modulation and laser stabilization,” Opt. Lett. 41, 5584–5587 (2016).
[Crossref]

Zhao, S.

Appl. Opt. (2)

Appl. Phys. B (3)

R. Drever, J. Hall, F. Kowalski, J. Hough, G. Ford, A. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[Crossref]

S. Amairi, T. Legero, T. Kessler, U. Sterr, J. Wübbena, O. Mandel, and P. Schmidt, “Reducing the effect of thermal noise in optical cavities,” Appl. Phys. B 113, 233–242 (2013).
[Crossref]

J. McFerran, W. Swann, B. Washburn, and N. Newbury, “Suppression of pump-induced frequency noise in fiber-laser frequency combs leading to sub-radian FCEO phase excursions,” Appl. Phys. B 86, 219–227 (2007).
[Crossref]

Appl. Phys. Express (1)

S. Okubo, K. Iwakuni, H. Inaba, K. Hosaka, A. Onae, H. Sasada, and F. Hong, “Ultra-broadband dual-comb spectroscopy across 1.0–1.9  µm,” Appl. Phys. Express 8, 082402 (2015).
[Crossref]

Appl. Phys. Lett. (1)

H. Zhang, H. Wei, H. Yang, and Y. Li, “Active laser ranging with frequency transfer using frequency comb,” Appl. Phys. Lett. 108, 181101 (2016).
[Crossref]

C. R. Phys. (1)

M. Takamoto, I. Ushijima, M. Das, N. Nemitz, T. Ohkubo, K. Yamanaka, N. Ohmae, T. Takano, T. Akatsuka, A. Yamaguchi, and H. Katori, “Frequency ratios of Sr, Yb, and Hg based optical lattice clocks and their applications,” C. R. Phys. 16, 489–498 (2015).
[Crossref]

Chin. Phys. Lett. (1)

Z. Tai, L. Yan, Y. Zhang, X. Zhang, W. Guo, S. Zhang, and H. Jiang, “Transportable 1555-nm ultra-stable laser with sub-0.185-Hz linewidth,” Chin. Phys. Lett. 34, 090602 (2017).
[Crossref]

Nat. Photonics (5)

N. Nemitz, T. Ohkubo, M. Takamoto, I. Ushijima, M. Das, N. Ohmae, and H. Katori, “Frequency ratio of Yb and Sr clocks with 5 × 10−17 uncertainty at 150 seconds averaging time,” Nat. Photonics 10, 258–261 (2016).
[Crossref]

G. Cole, W. Zhang, M. Martin, J. Ye, and M. Aspelmeyer, “Tenfold reduction of Brownian noise in high-reflectivity optical coatings,” Nat. Photonics 7, 644–650 (2013).
[Crossref]

E. Oelker, R. B. Hutson, C. Kennedy, L. Sonderhouse, T. Bothwell, A. Goban, D. Kedar, C. Sanner, J. M. Robinson, G. Marti, D. Matei, T. Legero, M. Giunta, R. Holzwarth, F. Riehle, U. Sterr, and J. Ye, “Demonstration of 4.8 × 10−17 stability at 1  s for two independent optical clocks,” Nat. Photonics 13, 714–719 (2019).
[Crossref]

X. Xie, R. Bouchand, D. Nicolodi, M. Giunta, W. Hänsel, M. Lezius, A. Joshi, S. Datta, C. Alexandre, M. Lours, P. Tremblin, G. Santarelli, R. Holzwarth, and Y. Le Coq, “Photonic microwave signals with zeptosecond-level absolute timing noise,” Nat. Photonics 11, 44–47 (2016).
[Crossref]

I. Coddington, W. Swann, L. Nenadovic, and N. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics 3, 351–356 (2009).
[Crossref]

Opt. Express (3)

Opt. Lett. (7)

D. Hudson, K. Holman, R. Jones, S. Cundiff, J. Ye, and D. Jones, “Mode-locked fiber laser frequency-controlled with an intracavity electro-optic modulator,” Opt. Lett. 30, 2948–2950 (2005).
[Crossref]

W. Zhang, M. J. Martin, C. Benko, J. Hall, J. Ye, C. Hagemann, T. Legero, U. Sterr, F. Riehle, G. Cole, and M. Aspelmeyer, “Reduction of residual amplitude modulation to 1 × 10−6for frequency modulation and laser stabilization,” Opt. Lett. 39, 1980–1983 (2014).
[Crossref]

Z. Tai, L. Yan, Y. Zhang, X. Zhang, W. Guo, S. Zhang, and H. Jiang, “Electro-optic modulator with ultra-low residual amplitude modulation for frequency modulation and laser stabilization,” Opt. Lett. 41, 5584–5587 (2016).
[Crossref]

F. Quinlan, T. Fortier, M. Kirchner, J. Taylor, M. Thorpe, N. Lemke, A. Ludlow, Y. Jiang, and S. Diddams, “Ultralow phase noise microwave generation with an Er:fiber-based optical frequency divider,” Opt. Lett. 36, 3260–3262 (2011).
[Crossref]

F. Keilmann, C. Gohle, and R. Holzwarth, “Time-domain mid-infrared frequency-comb spectrometer,” Opt. Lett. 29, 1542–1544 (2004).
[Crossref]

W. Swann, J. McFerran, I. Coddington, N. Newbury, I. Hartl, M. Fermann, P. Westbrook, J. Nicholson, K. Feder, C. Langrock, and M. Fejer, “Fiber-laser frequency combs with subhertz relative linewidths,” Opt. Lett. 31, 3046–3048 (2006).
[Crossref]

L. Ma, P. Jungner, J. Ye, and J. L. Hall, “Delivering the same optical frequency at two places: accurate cancellation of phase noise introduced by an optical fiber or other time-varying path,” Opt. Lett. 19, 1777–1779 (1994).
[Crossref]

Phys. Rev. A (2)

J. Alnis, A. Matveev, N. Kolachevsky, T. Udem, and T. Hänsch, “Subhertz linewidth diode lasers by stabilization to vibrationally and thermally compensated ultralow-expansion glass Fabry-Pérot cavities,” Phys. Rev. A 77, 053809 (2008).
[Crossref]

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent dual-comb spectroscopy at high signal-to-noise ratio,” Phys. Rev. A 82, 043817 (2010).
[Crossref]

Phys. Rev. Lett. (3)

D. G. Matei, T. Legero, S. Häfner, C. Grebing, R. Weyrich, W. Zhang, L. Sonderhouse, J. Robinson, J. Ye, F. Riehle, and U. Sterr, “1.5  µm lasers with sub-10  mHz linewidth,” Phys. Rev. Lett. 118, 263202 (2017).
[Crossref]

I. Coddington, W. Swan, and N. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett. 100, 013902 (2008).
[Crossref]

L. Sinclair, H. Bergeron, W. C. Swann, E. Baumann, J.-D. Deschênes, and N. R. Newbury, “Comparing optical oscillators across the air to milliradians in phase and 10−17 in frequency,” Phys. Rev. Lett. 120, 050801 (2018).
[Crossref]

Rev. Sci. Instrum. (1)

L. Sinclair, J. Deschênes, L. Sonderhouse, W. Swann, I. Khader, E. Baumann, N. Newbury, and I. Coddington, “Invited article: a compact optically coherent fiber frequency comb,” Rev. Sci. Instrum. 86, 081301 (2015).
[Crossref]

Science (1)

D. Jones, S. Diddams, J. Ranka, A. Stentz, R. Windeler, J. Hall, and S. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1. Schematic of the homebuilt ultra-stable narrow-linewidth cavity-stabilized laser. CW Laser, continuous-wave laser; H, half-wave plate; P, polarizer; Q, quarter-wave plate; PBS, polarized beam splitter; L, lens; M, mirror; AOM, acousto-optic modulator; EOM, electro-optic modulator; F-P cavity, Fabry–Perot cavity; PD, photodiode; PS, phase shifter; LO, local oscillator; DBM, double-balanced mixer; LF, loop filter; PZT, piezo transducer. The solid red lines represent laser beams, and the dotted gray lines denote electronic cables.
Fig. 2.
Fig. 2. Fiber noise cancellation layout. H, half-wave plate; Q, quarter-wave plate; M, mirror; PBS, polarized beam splitter; P, polarizer; AOM, acousto-optic modulator; FR, Faraday rotator; FC/APC, FC/APC fiber collimator; FC/PC, FC/PC fiber collimator; PD, photodiode; AMP, amplifier; DBM, double-balanced mixer; LO, local oscillator; LF, loop filter; VCO voltage-controlled oscillator; DIV, frequency divider; Counter, frequency counter; FFT, FFT spectrum analyzer. The solid red lines represent laser beams, and the dotted grey lines denote electronic cables. A polarization-maintaining fiber is marked as a dashed orange curve for the instance of out-of-loop testing. Most of the time, it remains plunged into a beat detection unit (BDU), as depicted with the solid orange curve.
Fig. 3.
Fig. 3. Diagram of the narrow-linewidth coherent optical frequency synthesis and calibration method. The inset shows the homebuilt fiber-coupled BDUs. FNC, fiber noise cancellation; BDU, beat detection unit.
Fig. 4.
Fig. 4. Spectrum of the PDH error signal of the homebuilt cavity-stabilized laser.
Fig. 5.
Fig. 5. Finesse measurement with the cavity ringdown (CRD) method. The decay signal of the TEM00 mode, shown as a snapshot, was recorded at the transmission side of the high-finesse cavity (gray circles) and its exponential fitting (blue curve).
Fig. 6.
Fig. 6. Zero-expansion temperature determination. Frequency variations of the locked laser at discrete temperatures of the F-P cavity were read with the assistance of a self-referenced frequency comb (blue squares). Its parabolic fit (green curve) indicates a low temperature sensitivity at ${T_c}$.
Fig. 7.
Fig. 7. Performance characterization of fiber noise cancellation. (a) Additional fractional frequency instability, (b) RF spectrum of the down-mixed beat note. We observed the one-shot spectrum at a resolution bandwidth (RBW) of 7.8 mHz (blue circles) and retrieved the linewidth with its Lorentz fit (red curve).
Fig. 8.
Fig. 8. Single-shot phase noise power spectral densities and integrated RMS phase noise of the locked (a) ${f_{{\rm beat},1565.00}}$ and (b) ${f_{\rm ceo}}$; (c) calculated additional phase jitter of the laser frequency comb without taking the nonlinear optical process into consideration, and the comb output spectrum (red shadow). The out-of-loop data of ${f_{\rm ceo}}$ is assumed to be equal to its in-loop data, due to its identical structure of phase locking electronics and fast actuator to the ${f_{{\rm beat},1565.00}}$ loop, in which the out-of-loop and in-loop results are quite close. The blue curves denote in-loop results, and the gray curves denote out-of-loop results.
Fig. 9.
Fig. 9. Performance characterization of coherent optical frequency synthesis at 1542.14 nm. (a) Drift-subtracted beat note between the 1542.14 nm reference laser and adjacent mode of the laser frequency comb locked to the 1565.00 nm ultra-stable laser counted at a gate time of 1 s; (b) fractional frequency stability calculated with the data in (a); (c) RF spectrum of the down-mixed beat note at 1542.14 nm. The one-shot spectrum of the beat note is observed at a resolution bandwidth (RBW) of 1 Hz (blue circles) and retrieved the linewidth with its Lorentz fit (red curve).