Abstract

A color projector screen was fabricated by filling three kinds of ceramic phosphor powders in the periodic hollow columns formed in a ${50}\;{{\rm mm}}\; \times \;{50}\;{{\rm mm}}\; \times \;{10}\;{{\rm mm}}$ acrylic waveguide. When a blue laser beam excited a single spot on the screen, a disk-shaped cross-talk pattern appeared. Its intensity was 5 orders of magnitude lower than that of the excited spot. The solar cells attached to the waveguide edge harvested less than 0.8% of the incident optical power. The photons scattered by the phosphors are responsible for these characteristics, and the use of non-scattering luminescent materials is desired for improving them.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Highly efficient narrow-band green and red phosphors enabling wider color-gamut LED backlight for more brilliant displays

Le Wang, Xiaojun Wang, Takahashi Kohsei, Ken-ichi Yoshimura, Makoto Izumi, Naoto Hirosaki, and Rong-Jun Xie
Opt. Express 23(22) 28707-28717 (2015)

Luminescent solar concentrators with fiber geometry

Oreane Y Edelenbosch, Martyn Fisher, Luca Patrignani, Wilfried G J H M van Sark, and Amanda J Chatten
Opt. Express 21(S3) A503-A514 (2013)

Rapid optimization of large-scale luminescent solar concentrators: evaluation for adoption in the built environment

E. P. J. Merkx, O. M. ten Kate, and E. van der Kolk
Opt. Express 25(12) A547-A563 (2017)

References

  • View by:
  • |
  • |
  • |

  1. W. H. Weber and J. Lambe, “Luminescent greenhouse collector for solar radiation,” Appl. Opt. 15, 2299–2300 (1976).
    [Crossref]
  2. J. S. Batchelder, A. H. Zewai, and T. Cole, “Luminescent solar concentrators. 1: theory of operation and techniques for performance evaluation,” Appl. Opt. 18, 3090–3110 (1979).
    [Crossref]
  3. J. S. Batchelder, A. H. Zewail, and T. Cole, “Luminescent solar concentrators. 2: experimental and theoretical analysis of their possible efficiencies,” Appl. Opt. 20, 3733–3754 (1981).
    [Crossref]
  4. J. Bomm, A. Büchtemann, A. Fiore, L. Manna, J. H. Nelson, D. Hill, and W. G. J. H. M. van Sark, “Fabrication and spectroscopic studies on highly luminescent CdSe/CdS nanorod polymer composites,” Beilstein J. Nanotechnol. 1, 94–100 (2010).
    [Crossref]
  5. M. V. Mukhina, V. V. Danilov, A. O. Orlova, M. V. Fedorov, M. V. Artemyev, and A. V. Baranov, “Electrically controlled polarized photoluminescence of CdSe/ZnS nanorods embedded in a liquid crystal template,” Nanotechnology 23, 325201 (2012).
    [Crossref]
  6. N. D. Bronstein, L. Li, L. Xu, Y. Yao, V. E. Ferry, A. P. Alivisatos, and R. G. Nuzzo, “Luminescent solar concentration with semiconductor nanorods and transfer-printed micro-silicon solar cells,” ACS Nano 8, 44–53 (2014).
    [Crossref]
  7. F. Meinardi, H. McDaniel, F. Carulli, A. Colombo, K. A. Velizhanin, N. S. Makarov, R. Simonutti, V. I. Klimov, and S. Brovelli, “Highly efficient large-area colourless luminescent solar concentrators using heavy-metal-free colloidal quantum dots,” Nat. Nanotechnol. 10, 878–885 (2015).
    [Crossref]
  8. C. L. Mulder, P. D. Reusswig, A. M. Velázquez, H. Kim, C. Rotschild, and M. A. Baldo, “Dye alignment in luminescent solar concentrators: I. Vertical alignment for improved waveguide coupling,” Opt. Express 18, A79–A90 (2010).
    [Crossref]
  9. Z. Krumer, W. G. J. H. M. van Sark, R. E. I. Schropp, and C. de Mello Donega, “Compensation of self-absorption losses in luminescent solar concentrators by increasing luminophore concentration,” Sol. Energy Mater. Sol. Cells 167, 133–139 (2017).
    [Crossref]
  10. R. Sumner, S. Eiselt, T. B. Kilburn, C. Erickson, B. Carlson, D. R. Gamelin, S. McDowall, and D. L. Patrick, “Analysis of optical losses in high-efficiency CuInS2-based nanocrystal luminescent solar concentrators: balancing absorption versus scattering,” J. Phys. Chem. C 121, 3252–3260 (2017).
    [Crossref]
  11. L. H. Slooff, E. E. Bende, A. R. Burgers, T. Budel, M. Pravettoni, R. P. Kenny, E. D. Dunlop, and A. Büchtemann, “A luminescent solar concentrator with 7.1% power conversion efficiency,” Phys. Status Solidi (RRL) 2, 257–259 (2008).
    [Crossref]
  12. M. Rafiee, S. Chandra, H. Ahmed, and S. J. McCormack, “An overview of various configurations of luminescent solar concentrators for photovoltaic applications,” Opt. Mater. 91, 212–227 (2019).
    [Crossref]
  13. M. G. Debije, “Solar energy collectors with tunable transmission,” Adv. Funct. Mater. 20, 1498–1502 (2010).
    [Crossref]
  14. J. A. H. P. Sol, G. H. Timmermans, A. J. van Breugel, A. P. H. J. Schenning, and M. G. Debije, “Multistate luminescent solar concentrator ‘smart’ windows,” Adv. Energy Mater. 8, 1702922 (2018).
    [Crossref]
  15. C. L. Mulder, P. D. Reusswig, A. P. Beyler, H. Kim, C. Rotschild, and M. A. Baldo, “Dye alignment in luminescent solar concentrators: II. Horizontal alignment for energy harvesting in linear polarizers,” Opt. Express 18, A91–A99 (2010).
    [Crossref]
  16. A. Menéndez-Velázquez, C. L. Mulder, N. J. Thompson, T. L. Andrew, P. D. Reusswig, C. Rotschild, and M. A. Baldo, “Light-recycling within electronic displays using deep red and near infrared photoluminescent polarizers,” Energy Environ. Sci. 6, 72–75 (2013).
    [Crossref]
  17. I. Fujieda, S. Itaya, M. Ohta, Y. Hirai, and T. Kohmoto, “Energy-harvesting laser phosphor display and its design considerations,” J. Photon. Energy 7, 028001 (2017).
    [Crossref]
  18. I. Fujieda, S. Itaya, M. Ohta, S. Ozawa, N. Di, and B. M. Azmi, “Characterization of a liquid crystal/dye cell for a future application in display-integrated photovoltaics,” J. Photon. Energy 6, 028001 (2016).
    [Crossref]
  19. M. Shigeta, I. Fujieda, and Y. Tsutsumi, “Proposal of energy-harvesting liquid crystal displays,” in 25th International Display Workshops, Tokyo, Japan (Institute of Image Information and Television Engineers, 2018), pp. 218–221.
  20. I. Fujieda, T. Kohmoto, K. Yunoki, M. Shigeta, and Y. Tsutsumi, “Fabrication and operation of an energy-harvesting color projector,” SID Symp. Dig. Tech. Pap. 50, 394–397 (2019).
    [Crossref]
  21. A. F. George, S. Al-Waisawy, J. T. Wright, W. M. Jadwisienczak, and F. Rahman, “Laser-driven phosphor-converted white light source for solid-state illumination,” Appl. Opt. 55, 1899–1905 (2016).
    [Crossref]
  22. Y. Chang, J. Chang, W. Cheng, Y. Kuo, C. Liu, L. Chen, and W. Cheng, “New scheme of a highly-reliable glass-based color wheel for next-generation laser light engine,” Opt. Mater. Express 7, 1029–1034 (2017).
    [Crossref]
  23. T. Kohmoto, M. Ohta, Y. Hirai, S. Ozawa, I. Fujieda, and W. Watanabe, “See-through phosphor screens for display applications,” in 24th International Display Workshops, Tokyo, Japan (Institute of Image Information and Television Engineers, 2017), pp. 637–640.
  24. M. D. Hughes, D. Borca-Tasciuc, and D. A. Kaminski, “Highly efficient luminescent solar concentrators employing commercially available luminescent phosphors,” Sol. Energy Mater. Sol. Cells 171, 293–301 (2017).
    [Crossref]
  25. D. K. G. de Boer, D. J. Broer, M. G. Debije, W. Keur, A. Meijerink, C. R. Ronda, and P. P. C. Verbunt, “Progress in phosphors and filters for luminescent solar concentrators,” Opt. Express 20, A395–A405 (2012).
    [Crossref]
  26. H. Tanno, S. Zhang, T. Shinoda, and H. Kajiyama, “Characteristics of photoluminescence, thermoluminescence and thermal degradation in Eu-doped BaMgAl10O17 and SrMgAl10O17,” J. Lumin. 130, 82–86 (2010).
    [Crossref]
  27. J. E. Murphy, F. Garcia-Santamaria, A. A. Setlur, and S. Sista, “PFS, K2SiF6:Mn4+: the red-line emitting LED phosphor behind GE’s TriGain technology platform,” SID Symp. Dig. Tech. Pap. 46, 927–930 (2015).
    [Crossref]
  28. R. A. Hajjar, “Introducing scalable, freeform, immersive, high-definition laser phosphor displays,” SID Symp. Dig. Tech. Pap. 43, 985–988 (2012).
    [Crossref]
  29. R. A. Hajjar, “Seamless scalable large format display,” SID Symp. Dig. Tech. Pap. 49, 737–739 (2018).
    [Crossref]
  30. I. Fujieda and M. Ohta, “Angle-resolved photoluminescence spectrum of a uniform phosphor layer,” AIP Adv. 7, 105223 (2017).
    [Crossref]
  31. I. Fujieda, D. Suzuki, and T. Masuda, “Tilted dipole model for bias-dependent photoluminescence pattern,” J. Appl. Phys. 116, 224507 (2014).
    [Crossref]
  32. J. Frischeisen, D. Yokoyama, C. Adachi, and W. Brütting, “Determination of molecular dipole orientation in doped fluorescent organic thin films by photoluminescence measurements,” Appl. Phys. Lett. 96, 073302 (2010).
    [Crossref]
  33. I. Fujieda, M. Ohta, M. Okuyama, and Y. Tsutsumi, “Measurement of optical power recovered by planar fluorescent waveguides for single-spot excitation,” in 25th International Display Workshops, Tokyo, Japan (Institute of Image Information and Television Engineers, 2018), pp. 494–497.
  34. I. Fujieda, Y. Tsutsumi, K. Yunoki, and Y. Yamada, “Edge collection function: an analytical expression for the optical efficiency of an energy-harvesting device based on photoluminescence,” Opt. Eng. 58, 104101 (2019).
    [Crossref]

2019 (3)

M. Rafiee, S. Chandra, H. Ahmed, and S. J. McCormack, “An overview of various configurations of luminescent solar concentrators for photovoltaic applications,” Opt. Mater. 91, 212–227 (2019).
[Crossref]

I. Fujieda, T. Kohmoto, K. Yunoki, M. Shigeta, and Y. Tsutsumi, “Fabrication and operation of an energy-harvesting color projector,” SID Symp. Dig. Tech. Pap. 50, 394–397 (2019).
[Crossref]

I. Fujieda, Y. Tsutsumi, K. Yunoki, and Y. Yamada, “Edge collection function: an analytical expression for the optical efficiency of an energy-harvesting device based on photoluminescence,” Opt. Eng. 58, 104101 (2019).
[Crossref]

2018 (2)

R. A. Hajjar, “Seamless scalable large format display,” SID Symp. Dig. Tech. Pap. 49, 737–739 (2018).
[Crossref]

J. A. H. P. Sol, G. H. Timmermans, A. J. van Breugel, A. P. H. J. Schenning, and M. G. Debije, “Multistate luminescent solar concentrator ‘smart’ windows,” Adv. Energy Mater. 8, 1702922 (2018).
[Crossref]

2017 (6)

I. Fujieda, S. Itaya, M. Ohta, Y. Hirai, and T. Kohmoto, “Energy-harvesting laser phosphor display and its design considerations,” J. Photon. Energy 7, 028001 (2017).
[Crossref]

Z. Krumer, W. G. J. H. M. van Sark, R. E. I. Schropp, and C. de Mello Donega, “Compensation of self-absorption losses in luminescent solar concentrators by increasing luminophore concentration,” Sol. Energy Mater. Sol. Cells 167, 133–139 (2017).
[Crossref]

R. Sumner, S. Eiselt, T. B. Kilburn, C. Erickson, B. Carlson, D. R. Gamelin, S. McDowall, and D. L. Patrick, “Analysis of optical losses in high-efficiency CuInS2-based nanocrystal luminescent solar concentrators: balancing absorption versus scattering,” J. Phys. Chem. C 121, 3252–3260 (2017).
[Crossref]

I. Fujieda and M. Ohta, “Angle-resolved photoluminescence spectrum of a uniform phosphor layer,” AIP Adv. 7, 105223 (2017).
[Crossref]

Y. Chang, J. Chang, W. Cheng, Y. Kuo, C. Liu, L. Chen, and W. Cheng, “New scheme of a highly-reliable glass-based color wheel for next-generation laser light engine,” Opt. Mater. Express 7, 1029–1034 (2017).
[Crossref]

M. D. Hughes, D. Borca-Tasciuc, and D. A. Kaminski, “Highly efficient luminescent solar concentrators employing commercially available luminescent phosphors,” Sol. Energy Mater. Sol. Cells 171, 293–301 (2017).
[Crossref]

2016 (2)

A. F. George, S. Al-Waisawy, J. T. Wright, W. M. Jadwisienczak, and F. Rahman, “Laser-driven phosphor-converted white light source for solid-state illumination,” Appl. Opt. 55, 1899–1905 (2016).
[Crossref]

I. Fujieda, S. Itaya, M. Ohta, S. Ozawa, N. Di, and B. M. Azmi, “Characterization of a liquid crystal/dye cell for a future application in display-integrated photovoltaics,” J. Photon. Energy 6, 028001 (2016).
[Crossref]

2015 (2)

F. Meinardi, H. McDaniel, F. Carulli, A. Colombo, K. A. Velizhanin, N. S. Makarov, R. Simonutti, V. I. Klimov, and S. Brovelli, “Highly efficient large-area colourless luminescent solar concentrators using heavy-metal-free colloidal quantum dots,” Nat. Nanotechnol. 10, 878–885 (2015).
[Crossref]

J. E. Murphy, F. Garcia-Santamaria, A. A. Setlur, and S. Sista, “PFS, K2SiF6:Mn4+: the red-line emitting LED phosphor behind GE’s TriGain technology platform,” SID Symp. Dig. Tech. Pap. 46, 927–930 (2015).
[Crossref]

2014 (2)

I. Fujieda, D. Suzuki, and T. Masuda, “Tilted dipole model for bias-dependent photoluminescence pattern,” J. Appl. Phys. 116, 224507 (2014).
[Crossref]

N. D. Bronstein, L. Li, L. Xu, Y. Yao, V. E. Ferry, A. P. Alivisatos, and R. G. Nuzzo, “Luminescent solar concentration with semiconductor nanorods and transfer-printed micro-silicon solar cells,” ACS Nano 8, 44–53 (2014).
[Crossref]

2013 (1)

A. Menéndez-Velázquez, C. L. Mulder, N. J. Thompson, T. L. Andrew, P. D. Reusswig, C. Rotschild, and M. A. Baldo, “Light-recycling within electronic displays using deep red and near infrared photoluminescent polarizers,” Energy Environ. Sci. 6, 72–75 (2013).
[Crossref]

2012 (3)

R. A. Hajjar, “Introducing scalable, freeform, immersive, high-definition laser phosphor displays,” SID Symp. Dig. Tech. Pap. 43, 985–988 (2012).
[Crossref]

D. K. G. de Boer, D. J. Broer, M. G. Debije, W. Keur, A. Meijerink, C. R. Ronda, and P. P. C. Verbunt, “Progress in phosphors and filters for luminescent solar concentrators,” Opt. Express 20, A395–A405 (2012).
[Crossref]

M. V. Mukhina, V. V. Danilov, A. O. Orlova, M. V. Fedorov, M. V. Artemyev, and A. V. Baranov, “Electrically controlled polarized photoluminescence of CdSe/ZnS nanorods embedded in a liquid crystal template,” Nanotechnology 23, 325201 (2012).
[Crossref]

2010 (6)

C. L. Mulder, P. D. Reusswig, A. M. Velázquez, H. Kim, C. Rotschild, and M. A. Baldo, “Dye alignment in luminescent solar concentrators: I. Vertical alignment for improved waveguide coupling,” Opt. Express 18, A79–A90 (2010).
[Crossref]

J. Bomm, A. Büchtemann, A. Fiore, L. Manna, J. H. Nelson, D. Hill, and W. G. J. H. M. van Sark, “Fabrication and spectroscopic studies on highly luminescent CdSe/CdS nanorod polymer composites,” Beilstein J. Nanotechnol. 1, 94–100 (2010).
[Crossref]

C. L. Mulder, P. D. Reusswig, A. P. Beyler, H. Kim, C. Rotschild, and M. A. Baldo, “Dye alignment in luminescent solar concentrators: II. Horizontal alignment for energy harvesting in linear polarizers,” Opt. Express 18, A91–A99 (2010).
[Crossref]

M. G. Debije, “Solar energy collectors with tunable transmission,” Adv. Funct. Mater. 20, 1498–1502 (2010).
[Crossref]

H. Tanno, S. Zhang, T. Shinoda, and H. Kajiyama, “Characteristics of photoluminescence, thermoluminescence and thermal degradation in Eu-doped BaMgAl10O17 and SrMgAl10O17,” J. Lumin. 130, 82–86 (2010).
[Crossref]

J. Frischeisen, D. Yokoyama, C. Adachi, and W. Brütting, “Determination of molecular dipole orientation in doped fluorescent organic thin films by photoluminescence measurements,” Appl. Phys. Lett. 96, 073302 (2010).
[Crossref]

2008 (1)

L. H. Slooff, E. E. Bende, A. R. Burgers, T. Budel, M. Pravettoni, R. P. Kenny, E. D. Dunlop, and A. Büchtemann, “A luminescent solar concentrator with 7.1% power conversion efficiency,” Phys. Status Solidi (RRL) 2, 257–259 (2008).
[Crossref]

1981 (1)

1979 (1)

1976 (1)

Adachi, C.

J. Frischeisen, D. Yokoyama, C. Adachi, and W. Brütting, “Determination of molecular dipole orientation in doped fluorescent organic thin films by photoluminescence measurements,” Appl. Phys. Lett. 96, 073302 (2010).
[Crossref]

Ahmed, H.

M. Rafiee, S. Chandra, H. Ahmed, and S. J. McCormack, “An overview of various configurations of luminescent solar concentrators for photovoltaic applications,” Opt. Mater. 91, 212–227 (2019).
[Crossref]

Alivisatos, A. P.

N. D. Bronstein, L. Li, L. Xu, Y. Yao, V. E. Ferry, A. P. Alivisatos, and R. G. Nuzzo, “Luminescent solar concentration with semiconductor nanorods and transfer-printed micro-silicon solar cells,” ACS Nano 8, 44–53 (2014).
[Crossref]

Al-Waisawy, S.

Andrew, T. L.

A. Menéndez-Velázquez, C. L. Mulder, N. J. Thompson, T. L. Andrew, P. D. Reusswig, C. Rotschild, and M. A. Baldo, “Light-recycling within electronic displays using deep red and near infrared photoluminescent polarizers,” Energy Environ. Sci. 6, 72–75 (2013).
[Crossref]

Artemyev, M. V.

M. V. Mukhina, V. V. Danilov, A. O. Orlova, M. V. Fedorov, M. V. Artemyev, and A. V. Baranov, “Electrically controlled polarized photoluminescence of CdSe/ZnS nanorods embedded in a liquid crystal template,” Nanotechnology 23, 325201 (2012).
[Crossref]

Azmi, B. M.

I. Fujieda, S. Itaya, M. Ohta, S. Ozawa, N. Di, and B. M. Azmi, “Characterization of a liquid crystal/dye cell for a future application in display-integrated photovoltaics,” J. Photon. Energy 6, 028001 (2016).
[Crossref]

Baldo, M. A.

Baranov, A. V.

M. V. Mukhina, V. V. Danilov, A. O. Orlova, M. V. Fedorov, M. V. Artemyev, and A. V. Baranov, “Electrically controlled polarized photoluminescence of CdSe/ZnS nanorods embedded in a liquid crystal template,” Nanotechnology 23, 325201 (2012).
[Crossref]

Batchelder, J. S.

Bende, E. E.

L. H. Slooff, E. E. Bende, A. R. Burgers, T. Budel, M. Pravettoni, R. P. Kenny, E. D. Dunlop, and A. Büchtemann, “A luminescent solar concentrator with 7.1% power conversion efficiency,” Phys. Status Solidi (RRL) 2, 257–259 (2008).
[Crossref]

Beyler, A. P.

Bomm, J.

J. Bomm, A. Büchtemann, A. Fiore, L. Manna, J. H. Nelson, D. Hill, and W. G. J. H. M. van Sark, “Fabrication and spectroscopic studies on highly luminescent CdSe/CdS nanorod polymer composites,” Beilstein J. Nanotechnol. 1, 94–100 (2010).
[Crossref]

Borca-Tasciuc, D.

M. D. Hughes, D. Borca-Tasciuc, and D. A. Kaminski, “Highly efficient luminescent solar concentrators employing commercially available luminescent phosphors,” Sol. Energy Mater. Sol. Cells 171, 293–301 (2017).
[Crossref]

Broer, D. J.

Bronstein, N. D.

N. D. Bronstein, L. Li, L. Xu, Y. Yao, V. E. Ferry, A. P. Alivisatos, and R. G. Nuzzo, “Luminescent solar concentration with semiconductor nanorods and transfer-printed micro-silicon solar cells,” ACS Nano 8, 44–53 (2014).
[Crossref]

Brovelli, S.

F. Meinardi, H. McDaniel, F. Carulli, A. Colombo, K. A. Velizhanin, N. S. Makarov, R. Simonutti, V. I. Klimov, and S. Brovelli, “Highly efficient large-area colourless luminescent solar concentrators using heavy-metal-free colloidal quantum dots,” Nat. Nanotechnol. 10, 878–885 (2015).
[Crossref]

Brütting, W.

J. Frischeisen, D. Yokoyama, C. Adachi, and W. Brütting, “Determination of molecular dipole orientation in doped fluorescent organic thin films by photoluminescence measurements,” Appl. Phys. Lett. 96, 073302 (2010).
[Crossref]

Büchtemann, A.

J. Bomm, A. Büchtemann, A. Fiore, L. Manna, J. H. Nelson, D. Hill, and W. G. J. H. M. van Sark, “Fabrication and spectroscopic studies on highly luminescent CdSe/CdS nanorod polymer composites,” Beilstein J. Nanotechnol. 1, 94–100 (2010).
[Crossref]

L. H. Slooff, E. E. Bende, A. R. Burgers, T. Budel, M. Pravettoni, R. P. Kenny, E. D. Dunlop, and A. Büchtemann, “A luminescent solar concentrator with 7.1% power conversion efficiency,” Phys. Status Solidi (RRL) 2, 257–259 (2008).
[Crossref]

Budel, T.

L. H. Slooff, E. E. Bende, A. R. Burgers, T. Budel, M. Pravettoni, R. P. Kenny, E. D. Dunlop, and A. Büchtemann, “A luminescent solar concentrator with 7.1% power conversion efficiency,” Phys. Status Solidi (RRL) 2, 257–259 (2008).
[Crossref]

Burgers, A. R.

L. H. Slooff, E. E. Bende, A. R. Burgers, T. Budel, M. Pravettoni, R. P. Kenny, E. D. Dunlop, and A. Büchtemann, “A luminescent solar concentrator with 7.1% power conversion efficiency,” Phys. Status Solidi (RRL) 2, 257–259 (2008).
[Crossref]

Carlson, B.

R. Sumner, S. Eiselt, T. B. Kilburn, C. Erickson, B. Carlson, D. R. Gamelin, S. McDowall, and D. L. Patrick, “Analysis of optical losses in high-efficiency CuInS2-based nanocrystal luminescent solar concentrators: balancing absorption versus scattering,” J. Phys. Chem. C 121, 3252–3260 (2017).
[Crossref]

Carulli, F.

F. Meinardi, H. McDaniel, F. Carulli, A. Colombo, K. A. Velizhanin, N. S. Makarov, R. Simonutti, V. I. Klimov, and S. Brovelli, “Highly efficient large-area colourless luminescent solar concentrators using heavy-metal-free colloidal quantum dots,” Nat. Nanotechnol. 10, 878–885 (2015).
[Crossref]

Chandra, S.

M. Rafiee, S. Chandra, H. Ahmed, and S. J. McCormack, “An overview of various configurations of luminescent solar concentrators for photovoltaic applications,” Opt. Mater. 91, 212–227 (2019).
[Crossref]

Chang, J.

Chang, Y.

Chen, L.

Cheng, W.

Cole, T.

Colombo, A.

F. Meinardi, H. McDaniel, F. Carulli, A. Colombo, K. A. Velizhanin, N. S. Makarov, R. Simonutti, V. I. Klimov, and S. Brovelli, “Highly efficient large-area colourless luminescent solar concentrators using heavy-metal-free colloidal quantum dots,” Nat. Nanotechnol. 10, 878–885 (2015).
[Crossref]

Danilov, V. V.

M. V. Mukhina, V. V. Danilov, A. O. Orlova, M. V. Fedorov, M. V. Artemyev, and A. V. Baranov, “Electrically controlled polarized photoluminescence of CdSe/ZnS nanorods embedded in a liquid crystal template,” Nanotechnology 23, 325201 (2012).
[Crossref]

de Boer, D. K. G.

de Mello Donega, C.

Z. Krumer, W. G. J. H. M. van Sark, R. E. I. Schropp, and C. de Mello Donega, “Compensation of self-absorption losses in luminescent solar concentrators by increasing luminophore concentration,” Sol. Energy Mater. Sol. Cells 167, 133–139 (2017).
[Crossref]

Debije, M. G.

J. A. H. P. Sol, G. H. Timmermans, A. J. van Breugel, A. P. H. J. Schenning, and M. G. Debije, “Multistate luminescent solar concentrator ‘smart’ windows,” Adv. Energy Mater. 8, 1702922 (2018).
[Crossref]

D. K. G. de Boer, D. J. Broer, M. G. Debije, W. Keur, A. Meijerink, C. R. Ronda, and P. P. C. Verbunt, “Progress in phosphors and filters for luminescent solar concentrators,” Opt. Express 20, A395–A405 (2012).
[Crossref]

M. G. Debije, “Solar energy collectors with tunable transmission,” Adv. Funct. Mater. 20, 1498–1502 (2010).
[Crossref]

Di, N.

I. Fujieda, S. Itaya, M. Ohta, S. Ozawa, N. Di, and B. M. Azmi, “Characterization of a liquid crystal/dye cell for a future application in display-integrated photovoltaics,” J. Photon. Energy 6, 028001 (2016).
[Crossref]

Dunlop, E. D.

L. H. Slooff, E. E. Bende, A. R. Burgers, T. Budel, M. Pravettoni, R. P. Kenny, E. D. Dunlop, and A. Büchtemann, “A luminescent solar concentrator with 7.1% power conversion efficiency,” Phys. Status Solidi (RRL) 2, 257–259 (2008).
[Crossref]

Eiselt, S.

R. Sumner, S. Eiselt, T. B. Kilburn, C. Erickson, B. Carlson, D. R. Gamelin, S. McDowall, and D. L. Patrick, “Analysis of optical losses in high-efficiency CuInS2-based nanocrystal luminescent solar concentrators: balancing absorption versus scattering,” J. Phys. Chem. C 121, 3252–3260 (2017).
[Crossref]

Erickson, C.

R. Sumner, S. Eiselt, T. B. Kilburn, C. Erickson, B. Carlson, D. R. Gamelin, S. McDowall, and D. L. Patrick, “Analysis of optical losses in high-efficiency CuInS2-based nanocrystal luminescent solar concentrators: balancing absorption versus scattering,” J. Phys. Chem. C 121, 3252–3260 (2017).
[Crossref]

Fedorov, M. V.

M. V. Mukhina, V. V. Danilov, A. O. Orlova, M. V. Fedorov, M. V. Artemyev, and A. V. Baranov, “Electrically controlled polarized photoluminescence of CdSe/ZnS nanorods embedded in a liquid crystal template,” Nanotechnology 23, 325201 (2012).
[Crossref]

Ferry, V. E.

N. D. Bronstein, L. Li, L. Xu, Y. Yao, V. E. Ferry, A. P. Alivisatos, and R. G. Nuzzo, “Luminescent solar concentration with semiconductor nanorods and transfer-printed micro-silicon solar cells,” ACS Nano 8, 44–53 (2014).
[Crossref]

Fiore, A.

J. Bomm, A. Büchtemann, A. Fiore, L. Manna, J. H. Nelson, D. Hill, and W. G. J. H. M. van Sark, “Fabrication and spectroscopic studies on highly luminescent CdSe/CdS nanorod polymer composites,” Beilstein J. Nanotechnol. 1, 94–100 (2010).
[Crossref]

Frischeisen, J.

J. Frischeisen, D. Yokoyama, C. Adachi, and W. Brütting, “Determination of molecular dipole orientation in doped fluorescent organic thin films by photoluminescence measurements,” Appl. Phys. Lett. 96, 073302 (2010).
[Crossref]

Fujieda, I.

I. Fujieda, Y. Tsutsumi, K. Yunoki, and Y. Yamada, “Edge collection function: an analytical expression for the optical efficiency of an energy-harvesting device based on photoluminescence,” Opt. Eng. 58, 104101 (2019).
[Crossref]

I. Fujieda, T. Kohmoto, K. Yunoki, M. Shigeta, and Y. Tsutsumi, “Fabrication and operation of an energy-harvesting color projector,” SID Symp. Dig. Tech. Pap. 50, 394–397 (2019).
[Crossref]

I. Fujieda and M. Ohta, “Angle-resolved photoluminescence spectrum of a uniform phosphor layer,” AIP Adv. 7, 105223 (2017).
[Crossref]

I. Fujieda, S. Itaya, M. Ohta, Y. Hirai, and T. Kohmoto, “Energy-harvesting laser phosphor display and its design considerations,” J. Photon. Energy 7, 028001 (2017).
[Crossref]

I. Fujieda, S. Itaya, M. Ohta, S. Ozawa, N. Di, and B. M. Azmi, “Characterization of a liquid crystal/dye cell for a future application in display-integrated photovoltaics,” J. Photon. Energy 6, 028001 (2016).
[Crossref]

I. Fujieda, D. Suzuki, and T. Masuda, “Tilted dipole model for bias-dependent photoluminescence pattern,” J. Appl. Phys. 116, 224507 (2014).
[Crossref]

I. Fujieda, M. Ohta, M. Okuyama, and Y. Tsutsumi, “Measurement of optical power recovered by planar fluorescent waveguides for single-spot excitation,” in 25th International Display Workshops, Tokyo, Japan (Institute of Image Information and Television Engineers, 2018), pp. 494–497.

M. Shigeta, I. Fujieda, and Y. Tsutsumi, “Proposal of energy-harvesting liquid crystal displays,” in 25th International Display Workshops, Tokyo, Japan (Institute of Image Information and Television Engineers, 2018), pp. 218–221.

T. Kohmoto, M. Ohta, Y. Hirai, S. Ozawa, I. Fujieda, and W. Watanabe, “See-through phosphor screens for display applications,” in 24th International Display Workshops, Tokyo, Japan (Institute of Image Information and Television Engineers, 2017), pp. 637–640.

Gamelin, D. R.

R. Sumner, S. Eiselt, T. B. Kilburn, C. Erickson, B. Carlson, D. R. Gamelin, S. McDowall, and D. L. Patrick, “Analysis of optical losses in high-efficiency CuInS2-based nanocrystal luminescent solar concentrators: balancing absorption versus scattering,” J. Phys. Chem. C 121, 3252–3260 (2017).
[Crossref]

Garcia-Santamaria, F.

J. E. Murphy, F. Garcia-Santamaria, A. A. Setlur, and S. Sista, “PFS, K2SiF6:Mn4+: the red-line emitting LED phosphor behind GE’s TriGain technology platform,” SID Symp. Dig. Tech. Pap. 46, 927–930 (2015).
[Crossref]

George, A. F.

Hajjar, R. A.

R. A. Hajjar, “Seamless scalable large format display,” SID Symp. Dig. Tech. Pap. 49, 737–739 (2018).
[Crossref]

R. A. Hajjar, “Introducing scalable, freeform, immersive, high-definition laser phosphor displays,” SID Symp. Dig. Tech. Pap. 43, 985–988 (2012).
[Crossref]

Hill, D.

J. Bomm, A. Büchtemann, A. Fiore, L. Manna, J. H. Nelson, D. Hill, and W. G. J. H. M. van Sark, “Fabrication and spectroscopic studies on highly luminescent CdSe/CdS nanorod polymer composites,” Beilstein J. Nanotechnol. 1, 94–100 (2010).
[Crossref]

Hirai, Y.

I. Fujieda, S. Itaya, M. Ohta, Y. Hirai, and T. Kohmoto, “Energy-harvesting laser phosphor display and its design considerations,” J. Photon. Energy 7, 028001 (2017).
[Crossref]

T. Kohmoto, M. Ohta, Y. Hirai, S. Ozawa, I. Fujieda, and W. Watanabe, “See-through phosphor screens for display applications,” in 24th International Display Workshops, Tokyo, Japan (Institute of Image Information and Television Engineers, 2017), pp. 637–640.

Hughes, M. D.

M. D. Hughes, D. Borca-Tasciuc, and D. A. Kaminski, “Highly efficient luminescent solar concentrators employing commercially available luminescent phosphors,” Sol. Energy Mater. Sol. Cells 171, 293–301 (2017).
[Crossref]

Itaya, S.

I. Fujieda, S. Itaya, M. Ohta, Y. Hirai, and T. Kohmoto, “Energy-harvesting laser phosphor display and its design considerations,” J. Photon. Energy 7, 028001 (2017).
[Crossref]

I. Fujieda, S. Itaya, M. Ohta, S. Ozawa, N. Di, and B. M. Azmi, “Characterization of a liquid crystal/dye cell for a future application in display-integrated photovoltaics,” J. Photon. Energy 6, 028001 (2016).
[Crossref]

Jadwisienczak, W. M.

Kajiyama, H.

H. Tanno, S. Zhang, T. Shinoda, and H. Kajiyama, “Characteristics of photoluminescence, thermoluminescence and thermal degradation in Eu-doped BaMgAl10O17 and SrMgAl10O17,” J. Lumin. 130, 82–86 (2010).
[Crossref]

Kaminski, D. A.

M. D. Hughes, D. Borca-Tasciuc, and D. A. Kaminski, “Highly efficient luminescent solar concentrators employing commercially available luminescent phosphors,” Sol. Energy Mater. Sol. Cells 171, 293–301 (2017).
[Crossref]

Kenny, R. P.

L. H. Slooff, E. E. Bende, A. R. Burgers, T. Budel, M. Pravettoni, R. P. Kenny, E. D. Dunlop, and A. Büchtemann, “A luminescent solar concentrator with 7.1% power conversion efficiency,” Phys. Status Solidi (RRL) 2, 257–259 (2008).
[Crossref]

Keur, W.

Kilburn, T. B.

R. Sumner, S. Eiselt, T. B. Kilburn, C. Erickson, B. Carlson, D. R. Gamelin, S. McDowall, and D. L. Patrick, “Analysis of optical losses in high-efficiency CuInS2-based nanocrystal luminescent solar concentrators: balancing absorption versus scattering,” J. Phys. Chem. C 121, 3252–3260 (2017).
[Crossref]

Kim, H.

Klimov, V. I.

F. Meinardi, H. McDaniel, F. Carulli, A. Colombo, K. A. Velizhanin, N. S. Makarov, R. Simonutti, V. I. Klimov, and S. Brovelli, “Highly efficient large-area colourless luminescent solar concentrators using heavy-metal-free colloidal quantum dots,” Nat. Nanotechnol. 10, 878–885 (2015).
[Crossref]

Kohmoto, T.

I. Fujieda, T. Kohmoto, K. Yunoki, M. Shigeta, and Y. Tsutsumi, “Fabrication and operation of an energy-harvesting color projector,” SID Symp. Dig. Tech. Pap. 50, 394–397 (2019).
[Crossref]

I. Fujieda, S. Itaya, M. Ohta, Y. Hirai, and T. Kohmoto, “Energy-harvesting laser phosphor display and its design considerations,” J. Photon. Energy 7, 028001 (2017).
[Crossref]

T. Kohmoto, M. Ohta, Y. Hirai, S. Ozawa, I. Fujieda, and W. Watanabe, “See-through phosphor screens for display applications,” in 24th International Display Workshops, Tokyo, Japan (Institute of Image Information and Television Engineers, 2017), pp. 637–640.

Krumer, Z.

Z. Krumer, W. G. J. H. M. van Sark, R. E. I. Schropp, and C. de Mello Donega, “Compensation of self-absorption losses in luminescent solar concentrators by increasing luminophore concentration,” Sol. Energy Mater. Sol. Cells 167, 133–139 (2017).
[Crossref]

Kuo, Y.

Lambe, J.

Li, L.

N. D. Bronstein, L. Li, L. Xu, Y. Yao, V. E. Ferry, A. P. Alivisatos, and R. G. Nuzzo, “Luminescent solar concentration with semiconductor nanorods and transfer-printed micro-silicon solar cells,” ACS Nano 8, 44–53 (2014).
[Crossref]

Liu, C.

Makarov, N. S.

F. Meinardi, H. McDaniel, F. Carulli, A. Colombo, K. A. Velizhanin, N. S. Makarov, R. Simonutti, V. I. Klimov, and S. Brovelli, “Highly efficient large-area colourless luminescent solar concentrators using heavy-metal-free colloidal quantum dots,” Nat. Nanotechnol. 10, 878–885 (2015).
[Crossref]

Manna, L.

J. Bomm, A. Büchtemann, A. Fiore, L. Manna, J. H. Nelson, D. Hill, and W. G. J. H. M. van Sark, “Fabrication and spectroscopic studies on highly luminescent CdSe/CdS nanorod polymer composites,” Beilstein J. Nanotechnol. 1, 94–100 (2010).
[Crossref]

Masuda, T.

I. Fujieda, D. Suzuki, and T. Masuda, “Tilted dipole model for bias-dependent photoluminescence pattern,” J. Appl. Phys. 116, 224507 (2014).
[Crossref]

McCormack, S. J.

M. Rafiee, S. Chandra, H. Ahmed, and S. J. McCormack, “An overview of various configurations of luminescent solar concentrators for photovoltaic applications,” Opt. Mater. 91, 212–227 (2019).
[Crossref]

McDaniel, H.

F. Meinardi, H. McDaniel, F. Carulli, A. Colombo, K. A. Velizhanin, N. S. Makarov, R. Simonutti, V. I. Klimov, and S. Brovelli, “Highly efficient large-area colourless luminescent solar concentrators using heavy-metal-free colloidal quantum dots,” Nat. Nanotechnol. 10, 878–885 (2015).
[Crossref]

McDowall, S.

R. Sumner, S. Eiselt, T. B. Kilburn, C. Erickson, B. Carlson, D. R. Gamelin, S. McDowall, and D. L. Patrick, “Analysis of optical losses in high-efficiency CuInS2-based nanocrystal luminescent solar concentrators: balancing absorption versus scattering,” J. Phys. Chem. C 121, 3252–3260 (2017).
[Crossref]

Meijerink, A.

Meinardi, F.

F. Meinardi, H. McDaniel, F. Carulli, A. Colombo, K. A. Velizhanin, N. S. Makarov, R. Simonutti, V. I. Klimov, and S. Brovelli, “Highly efficient large-area colourless luminescent solar concentrators using heavy-metal-free colloidal quantum dots,” Nat. Nanotechnol. 10, 878–885 (2015).
[Crossref]

Menéndez-Velázquez, A.

A. Menéndez-Velázquez, C. L. Mulder, N. J. Thompson, T. L. Andrew, P. D. Reusswig, C. Rotschild, and M. A. Baldo, “Light-recycling within electronic displays using deep red and near infrared photoluminescent polarizers,” Energy Environ. Sci. 6, 72–75 (2013).
[Crossref]

Mukhina, M. V.

M. V. Mukhina, V. V. Danilov, A. O. Orlova, M. V. Fedorov, M. V. Artemyev, and A. V. Baranov, “Electrically controlled polarized photoluminescence of CdSe/ZnS nanorods embedded in a liquid crystal template,” Nanotechnology 23, 325201 (2012).
[Crossref]

Mulder, C. L.

Murphy, J. E.

J. E. Murphy, F. Garcia-Santamaria, A. A. Setlur, and S. Sista, “PFS, K2SiF6:Mn4+: the red-line emitting LED phosphor behind GE’s TriGain technology platform,” SID Symp. Dig. Tech. Pap. 46, 927–930 (2015).
[Crossref]

Nelson, J. H.

J. Bomm, A. Büchtemann, A. Fiore, L. Manna, J. H. Nelson, D. Hill, and W. G. J. H. M. van Sark, “Fabrication and spectroscopic studies on highly luminescent CdSe/CdS nanorod polymer composites,” Beilstein J. Nanotechnol. 1, 94–100 (2010).
[Crossref]

Nuzzo, R. G.

N. D. Bronstein, L. Li, L. Xu, Y. Yao, V. E. Ferry, A. P. Alivisatos, and R. G. Nuzzo, “Luminescent solar concentration with semiconductor nanorods and transfer-printed micro-silicon solar cells,” ACS Nano 8, 44–53 (2014).
[Crossref]

Ohta, M.

I. Fujieda, S. Itaya, M. Ohta, Y. Hirai, and T. Kohmoto, “Energy-harvesting laser phosphor display and its design considerations,” J. Photon. Energy 7, 028001 (2017).
[Crossref]

I. Fujieda and M. Ohta, “Angle-resolved photoluminescence spectrum of a uniform phosphor layer,” AIP Adv. 7, 105223 (2017).
[Crossref]

I. Fujieda, S. Itaya, M. Ohta, S. Ozawa, N. Di, and B. M. Azmi, “Characterization of a liquid crystal/dye cell for a future application in display-integrated photovoltaics,” J. Photon. Energy 6, 028001 (2016).
[Crossref]

T. Kohmoto, M. Ohta, Y. Hirai, S. Ozawa, I. Fujieda, and W. Watanabe, “See-through phosphor screens for display applications,” in 24th International Display Workshops, Tokyo, Japan (Institute of Image Information and Television Engineers, 2017), pp. 637–640.

I. Fujieda, M. Ohta, M. Okuyama, and Y. Tsutsumi, “Measurement of optical power recovered by planar fluorescent waveguides for single-spot excitation,” in 25th International Display Workshops, Tokyo, Japan (Institute of Image Information and Television Engineers, 2018), pp. 494–497.

Okuyama, M.

I. Fujieda, M. Ohta, M. Okuyama, and Y. Tsutsumi, “Measurement of optical power recovered by planar fluorescent waveguides for single-spot excitation,” in 25th International Display Workshops, Tokyo, Japan (Institute of Image Information and Television Engineers, 2018), pp. 494–497.

Orlova, A. O.

M. V. Mukhina, V. V. Danilov, A. O. Orlova, M. V. Fedorov, M. V. Artemyev, and A. V. Baranov, “Electrically controlled polarized photoluminescence of CdSe/ZnS nanorods embedded in a liquid crystal template,” Nanotechnology 23, 325201 (2012).
[Crossref]

Ozawa, S.

I. Fujieda, S. Itaya, M. Ohta, S. Ozawa, N. Di, and B. M. Azmi, “Characterization of a liquid crystal/dye cell for a future application in display-integrated photovoltaics,” J. Photon. Energy 6, 028001 (2016).
[Crossref]

T. Kohmoto, M. Ohta, Y. Hirai, S. Ozawa, I. Fujieda, and W. Watanabe, “See-through phosphor screens for display applications,” in 24th International Display Workshops, Tokyo, Japan (Institute of Image Information and Television Engineers, 2017), pp. 637–640.

Patrick, D. L.

R. Sumner, S. Eiselt, T. B. Kilburn, C. Erickson, B. Carlson, D. R. Gamelin, S. McDowall, and D. L. Patrick, “Analysis of optical losses in high-efficiency CuInS2-based nanocrystal luminescent solar concentrators: balancing absorption versus scattering,” J. Phys. Chem. C 121, 3252–3260 (2017).
[Crossref]

Pravettoni, M.

L. H. Slooff, E. E. Bende, A. R. Burgers, T. Budel, M. Pravettoni, R. P. Kenny, E. D. Dunlop, and A. Büchtemann, “A luminescent solar concentrator with 7.1% power conversion efficiency,” Phys. Status Solidi (RRL) 2, 257–259 (2008).
[Crossref]

Rafiee, M.

M. Rafiee, S. Chandra, H. Ahmed, and S. J. McCormack, “An overview of various configurations of luminescent solar concentrators for photovoltaic applications,” Opt. Mater. 91, 212–227 (2019).
[Crossref]

Rahman, F.

Reusswig, P. D.

Ronda, C. R.

Rotschild, C.

Schenning, A. P. H. J.

J. A. H. P. Sol, G. H. Timmermans, A. J. van Breugel, A. P. H. J. Schenning, and M. G. Debije, “Multistate luminescent solar concentrator ‘smart’ windows,” Adv. Energy Mater. 8, 1702922 (2018).
[Crossref]

Schropp, R. E. I.

Z. Krumer, W. G. J. H. M. van Sark, R. E. I. Schropp, and C. de Mello Donega, “Compensation of self-absorption losses in luminescent solar concentrators by increasing luminophore concentration,” Sol. Energy Mater. Sol. Cells 167, 133–139 (2017).
[Crossref]

Setlur, A. A.

J. E. Murphy, F. Garcia-Santamaria, A. A. Setlur, and S. Sista, “PFS, K2SiF6:Mn4+: the red-line emitting LED phosphor behind GE’s TriGain technology platform,” SID Symp. Dig. Tech. Pap. 46, 927–930 (2015).
[Crossref]

Shigeta, M.

I. Fujieda, T. Kohmoto, K. Yunoki, M. Shigeta, and Y. Tsutsumi, “Fabrication and operation of an energy-harvesting color projector,” SID Symp. Dig. Tech. Pap. 50, 394–397 (2019).
[Crossref]

M. Shigeta, I. Fujieda, and Y. Tsutsumi, “Proposal of energy-harvesting liquid crystal displays,” in 25th International Display Workshops, Tokyo, Japan (Institute of Image Information and Television Engineers, 2018), pp. 218–221.

Shinoda, T.

H. Tanno, S. Zhang, T. Shinoda, and H. Kajiyama, “Characteristics of photoluminescence, thermoluminescence and thermal degradation in Eu-doped BaMgAl10O17 and SrMgAl10O17,” J. Lumin. 130, 82–86 (2010).
[Crossref]

Simonutti, R.

F. Meinardi, H. McDaniel, F. Carulli, A. Colombo, K. A. Velizhanin, N. S. Makarov, R. Simonutti, V. I. Klimov, and S. Brovelli, “Highly efficient large-area colourless luminescent solar concentrators using heavy-metal-free colloidal quantum dots,” Nat. Nanotechnol. 10, 878–885 (2015).
[Crossref]

Sista, S.

J. E. Murphy, F. Garcia-Santamaria, A. A. Setlur, and S. Sista, “PFS, K2SiF6:Mn4+: the red-line emitting LED phosphor behind GE’s TriGain technology platform,” SID Symp. Dig. Tech. Pap. 46, 927–930 (2015).
[Crossref]

Slooff, L. H.

L. H. Slooff, E. E. Bende, A. R. Burgers, T. Budel, M. Pravettoni, R. P. Kenny, E. D. Dunlop, and A. Büchtemann, “A luminescent solar concentrator with 7.1% power conversion efficiency,” Phys. Status Solidi (RRL) 2, 257–259 (2008).
[Crossref]

Sol, J. A. H. P.

J. A. H. P. Sol, G. H. Timmermans, A. J. van Breugel, A. P. H. J. Schenning, and M. G. Debije, “Multistate luminescent solar concentrator ‘smart’ windows,” Adv. Energy Mater. 8, 1702922 (2018).
[Crossref]

Sumner, R.

R. Sumner, S. Eiselt, T. B. Kilburn, C. Erickson, B. Carlson, D. R. Gamelin, S. McDowall, and D. L. Patrick, “Analysis of optical losses in high-efficiency CuInS2-based nanocrystal luminescent solar concentrators: balancing absorption versus scattering,” J. Phys. Chem. C 121, 3252–3260 (2017).
[Crossref]

Suzuki, D.

I. Fujieda, D. Suzuki, and T. Masuda, “Tilted dipole model for bias-dependent photoluminescence pattern,” J. Appl. Phys. 116, 224507 (2014).
[Crossref]

Tanno, H.

H. Tanno, S. Zhang, T. Shinoda, and H. Kajiyama, “Characteristics of photoluminescence, thermoluminescence and thermal degradation in Eu-doped BaMgAl10O17 and SrMgAl10O17,” J. Lumin. 130, 82–86 (2010).
[Crossref]

Thompson, N. J.

A. Menéndez-Velázquez, C. L. Mulder, N. J. Thompson, T. L. Andrew, P. D. Reusswig, C. Rotschild, and M. A. Baldo, “Light-recycling within electronic displays using deep red and near infrared photoluminescent polarizers,” Energy Environ. Sci. 6, 72–75 (2013).
[Crossref]

Timmermans, G. H.

J. A. H. P. Sol, G. H. Timmermans, A. J. van Breugel, A. P. H. J. Schenning, and M. G. Debije, “Multistate luminescent solar concentrator ‘smart’ windows,” Adv. Energy Mater. 8, 1702922 (2018).
[Crossref]

Tsutsumi, Y.

I. Fujieda, T. Kohmoto, K. Yunoki, M. Shigeta, and Y. Tsutsumi, “Fabrication and operation of an energy-harvesting color projector,” SID Symp. Dig. Tech. Pap. 50, 394–397 (2019).
[Crossref]

I. Fujieda, Y. Tsutsumi, K. Yunoki, and Y. Yamada, “Edge collection function: an analytical expression for the optical efficiency of an energy-harvesting device based on photoluminescence,” Opt. Eng. 58, 104101 (2019).
[Crossref]

I. Fujieda, M. Ohta, M. Okuyama, and Y. Tsutsumi, “Measurement of optical power recovered by planar fluorescent waveguides for single-spot excitation,” in 25th International Display Workshops, Tokyo, Japan (Institute of Image Information and Television Engineers, 2018), pp. 494–497.

M. Shigeta, I. Fujieda, and Y. Tsutsumi, “Proposal of energy-harvesting liquid crystal displays,” in 25th International Display Workshops, Tokyo, Japan (Institute of Image Information and Television Engineers, 2018), pp. 218–221.

van Breugel, A. J.

J. A. H. P. Sol, G. H. Timmermans, A. J. van Breugel, A. P. H. J. Schenning, and M. G. Debije, “Multistate luminescent solar concentrator ‘smart’ windows,” Adv. Energy Mater. 8, 1702922 (2018).
[Crossref]

van Sark, W. G. J. H. M.

Z. Krumer, W. G. J. H. M. van Sark, R. E. I. Schropp, and C. de Mello Donega, “Compensation of self-absorption losses in luminescent solar concentrators by increasing luminophore concentration,” Sol. Energy Mater. Sol. Cells 167, 133–139 (2017).
[Crossref]

J. Bomm, A. Büchtemann, A. Fiore, L. Manna, J. H. Nelson, D. Hill, and W. G. J. H. M. van Sark, “Fabrication and spectroscopic studies on highly luminescent CdSe/CdS nanorod polymer composites,” Beilstein J. Nanotechnol. 1, 94–100 (2010).
[Crossref]

Velázquez, A. M.

Velizhanin, K. A.

F. Meinardi, H. McDaniel, F. Carulli, A. Colombo, K. A. Velizhanin, N. S. Makarov, R. Simonutti, V. I. Klimov, and S. Brovelli, “Highly efficient large-area colourless luminescent solar concentrators using heavy-metal-free colloidal quantum dots,” Nat. Nanotechnol. 10, 878–885 (2015).
[Crossref]

Verbunt, P. P. C.

Watanabe, W.

T. Kohmoto, M. Ohta, Y. Hirai, S. Ozawa, I. Fujieda, and W. Watanabe, “See-through phosphor screens for display applications,” in 24th International Display Workshops, Tokyo, Japan (Institute of Image Information and Television Engineers, 2017), pp. 637–640.

Weber, W. H.

Wright, J. T.

Xu, L.

N. D. Bronstein, L. Li, L. Xu, Y. Yao, V. E. Ferry, A. P. Alivisatos, and R. G. Nuzzo, “Luminescent solar concentration with semiconductor nanorods and transfer-printed micro-silicon solar cells,” ACS Nano 8, 44–53 (2014).
[Crossref]

Yamada, Y.

I. Fujieda, Y. Tsutsumi, K. Yunoki, and Y. Yamada, “Edge collection function: an analytical expression for the optical efficiency of an energy-harvesting device based on photoluminescence,” Opt. Eng. 58, 104101 (2019).
[Crossref]

Yao, Y.

N. D. Bronstein, L. Li, L. Xu, Y. Yao, V. E. Ferry, A. P. Alivisatos, and R. G. Nuzzo, “Luminescent solar concentration with semiconductor nanorods and transfer-printed micro-silicon solar cells,” ACS Nano 8, 44–53 (2014).
[Crossref]

Yokoyama, D.

J. Frischeisen, D. Yokoyama, C. Adachi, and W. Brütting, “Determination of molecular dipole orientation in doped fluorescent organic thin films by photoluminescence measurements,” Appl. Phys. Lett. 96, 073302 (2010).
[Crossref]

Yunoki, K.

I. Fujieda, Y. Tsutsumi, K. Yunoki, and Y. Yamada, “Edge collection function: an analytical expression for the optical efficiency of an energy-harvesting device based on photoluminescence,” Opt. Eng. 58, 104101 (2019).
[Crossref]

I. Fujieda, T. Kohmoto, K. Yunoki, M. Shigeta, and Y. Tsutsumi, “Fabrication and operation of an energy-harvesting color projector,” SID Symp. Dig. Tech. Pap. 50, 394–397 (2019).
[Crossref]

Zewai, A. H.

Zewail, A. H.

Zhang, S.

H. Tanno, S. Zhang, T. Shinoda, and H. Kajiyama, “Characteristics of photoluminescence, thermoluminescence and thermal degradation in Eu-doped BaMgAl10O17 and SrMgAl10O17,” J. Lumin. 130, 82–86 (2010).
[Crossref]

ACS Nano (1)

N. D. Bronstein, L. Li, L. Xu, Y. Yao, V. E. Ferry, A. P. Alivisatos, and R. G. Nuzzo, “Luminescent solar concentration with semiconductor nanorods and transfer-printed micro-silicon solar cells,” ACS Nano 8, 44–53 (2014).
[Crossref]

Adv. Energy Mater. (1)

J. A. H. P. Sol, G. H. Timmermans, A. J. van Breugel, A. P. H. J. Schenning, and M. G. Debije, “Multistate luminescent solar concentrator ‘smart’ windows,” Adv. Energy Mater. 8, 1702922 (2018).
[Crossref]

Adv. Funct. Mater. (1)

M. G. Debije, “Solar energy collectors with tunable transmission,” Adv. Funct. Mater. 20, 1498–1502 (2010).
[Crossref]

AIP Adv. (1)

I. Fujieda and M. Ohta, “Angle-resolved photoluminescence spectrum of a uniform phosphor layer,” AIP Adv. 7, 105223 (2017).
[Crossref]

Appl. Opt. (4)

Appl. Phys. Lett. (1)

J. Frischeisen, D. Yokoyama, C. Adachi, and W. Brütting, “Determination of molecular dipole orientation in doped fluorescent organic thin films by photoluminescence measurements,” Appl. Phys. Lett. 96, 073302 (2010).
[Crossref]

Beilstein J. Nanotechnol. (1)

J. Bomm, A. Büchtemann, A. Fiore, L. Manna, J. H. Nelson, D. Hill, and W. G. J. H. M. van Sark, “Fabrication and spectroscopic studies on highly luminescent CdSe/CdS nanorod polymer composites,” Beilstein J. Nanotechnol. 1, 94–100 (2010).
[Crossref]

Energy Environ. Sci. (1)

A. Menéndez-Velázquez, C. L. Mulder, N. J. Thompson, T. L. Andrew, P. D. Reusswig, C. Rotschild, and M. A. Baldo, “Light-recycling within electronic displays using deep red and near infrared photoluminescent polarizers,” Energy Environ. Sci. 6, 72–75 (2013).
[Crossref]

J. Appl. Phys. (1)

I. Fujieda, D. Suzuki, and T. Masuda, “Tilted dipole model for bias-dependent photoluminescence pattern,” J. Appl. Phys. 116, 224507 (2014).
[Crossref]

J. Lumin. (1)

H. Tanno, S. Zhang, T. Shinoda, and H. Kajiyama, “Characteristics of photoluminescence, thermoluminescence and thermal degradation in Eu-doped BaMgAl10O17 and SrMgAl10O17,” J. Lumin. 130, 82–86 (2010).
[Crossref]

J. Photon. Energy (2)

I. Fujieda, S. Itaya, M. Ohta, Y. Hirai, and T. Kohmoto, “Energy-harvesting laser phosphor display and its design considerations,” J. Photon. Energy 7, 028001 (2017).
[Crossref]

I. Fujieda, S. Itaya, M. Ohta, S. Ozawa, N. Di, and B. M. Azmi, “Characterization of a liquid crystal/dye cell for a future application in display-integrated photovoltaics,” J. Photon. Energy 6, 028001 (2016).
[Crossref]

J. Phys. Chem. C (1)

R. Sumner, S. Eiselt, T. B. Kilburn, C. Erickson, B. Carlson, D. R. Gamelin, S. McDowall, and D. L. Patrick, “Analysis of optical losses in high-efficiency CuInS2-based nanocrystal luminescent solar concentrators: balancing absorption versus scattering,” J. Phys. Chem. C 121, 3252–3260 (2017).
[Crossref]

Nanotechnology (1)

M. V. Mukhina, V. V. Danilov, A. O. Orlova, M. V. Fedorov, M. V. Artemyev, and A. V. Baranov, “Electrically controlled polarized photoluminescence of CdSe/ZnS nanorods embedded in a liquid crystal template,” Nanotechnology 23, 325201 (2012).
[Crossref]

Nat. Nanotechnol. (1)

F. Meinardi, H. McDaniel, F. Carulli, A. Colombo, K. A. Velizhanin, N. S. Makarov, R. Simonutti, V. I. Klimov, and S. Brovelli, “Highly efficient large-area colourless luminescent solar concentrators using heavy-metal-free colloidal quantum dots,” Nat. Nanotechnol. 10, 878–885 (2015).
[Crossref]

Opt. Eng. (1)

I. Fujieda, Y. Tsutsumi, K. Yunoki, and Y. Yamada, “Edge collection function: an analytical expression for the optical efficiency of an energy-harvesting device based on photoluminescence,” Opt. Eng. 58, 104101 (2019).
[Crossref]

Opt. Express (3)

Opt. Mater. (1)

M. Rafiee, S. Chandra, H. Ahmed, and S. J. McCormack, “An overview of various configurations of luminescent solar concentrators for photovoltaic applications,” Opt. Mater. 91, 212–227 (2019).
[Crossref]

Opt. Mater. Express (1)

Phys. Status Solidi (RRL) (1)

L. H. Slooff, E. E. Bende, A. R. Burgers, T. Budel, M. Pravettoni, R. P. Kenny, E. D. Dunlop, and A. Büchtemann, “A luminescent solar concentrator with 7.1% power conversion efficiency,” Phys. Status Solidi (RRL) 2, 257–259 (2008).
[Crossref]

SID Symp. Dig. Tech. Pap. (4)

J. E. Murphy, F. Garcia-Santamaria, A. A. Setlur, and S. Sista, “PFS, K2SiF6:Mn4+: the red-line emitting LED phosphor behind GE’s TriGain technology platform,” SID Symp. Dig. Tech. Pap. 46, 927–930 (2015).
[Crossref]

R. A. Hajjar, “Introducing scalable, freeform, immersive, high-definition laser phosphor displays,” SID Symp. Dig. Tech. Pap. 43, 985–988 (2012).
[Crossref]

R. A. Hajjar, “Seamless scalable large format display,” SID Symp. Dig. Tech. Pap. 49, 737–739 (2018).
[Crossref]

I. Fujieda, T. Kohmoto, K. Yunoki, M. Shigeta, and Y. Tsutsumi, “Fabrication and operation of an energy-harvesting color projector,” SID Symp. Dig. Tech. Pap. 50, 394–397 (2019).
[Crossref]

Sol. Energy Mater. Sol. Cells (2)

M. D. Hughes, D. Borca-Tasciuc, and D. A. Kaminski, “Highly efficient luminescent solar concentrators employing commercially available luminescent phosphors,” Sol. Energy Mater. Sol. Cells 171, 293–301 (2017).
[Crossref]

Z. Krumer, W. G. J. H. M. van Sark, R. E. I. Schropp, and C. de Mello Donega, “Compensation of self-absorption losses in luminescent solar concentrators by increasing luminophore concentration,” Sol. Energy Mater. Sol. Cells 167, 133–139 (2017).
[Crossref]

Other (3)

M. Shigeta, I. Fujieda, and Y. Tsutsumi, “Proposal of energy-harvesting liquid crystal displays,” in 25th International Display Workshops, Tokyo, Japan (Institute of Image Information and Television Engineers, 2018), pp. 218–221.

I. Fujieda, M. Ohta, M. Okuyama, and Y. Tsutsumi, “Measurement of optical power recovered by planar fluorescent waveguides for single-spot excitation,” in 25th International Display Workshops, Tokyo, Japan (Institute of Image Information and Television Engineers, 2018), pp. 494–497.

T. Kohmoto, M. Ohta, Y. Hirai, S. Ozawa, I. Fujieda, and W. Watanabe, “See-through phosphor screens for display applications,” in 24th International Display Workshops, Tokyo, Japan (Institute of Image Information and Television Engineers, 2017), pp. 637–640.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1. Phosphor screen fabricated for this demonstration. Three phosphor powders fill the periodic columns in acrylic plates. Solar cell modules are coupled to the top edge surface of the acrylic plates without index-matching oil for easy handling.
Fig. 2.
Fig. 2. Photograph of the assembly in operation. (a) While the letters “RI” are displayed on the screen, the multi-meter measures the photocurrent. (b) Enlarged photographs of the screen show letters displayed in pastel colors.
Fig. 3.
Fig. 3. Photographs of the phosphor screen taken by a digital camera in a dimly lit darkroom. (a) SCA, (b) BAMEM, and (c) PFS. A single spot on each phosphor stripe was excited by the 410 nm laser beam through neutral-density filters.
Fig. 4.
Fig. 4. Photographs of the screen taken by the 12 bit camera. (a) SCA, (b) BAMEM, and (c) PFS. Note that all of the sources of ambient light were turned off. The power of the 410 nm laser beam incident on each phosphor stripe was fixed to $ 12.8 \pm 0.1\,\, \unicode{x00B5}{\rm W} $. The exposure time was fixed at 1000 ms.
Fig. 5.
Fig. 5. Horizontal profiles of the cross-talk pattern. (a) SCA, (b) BAMEM, and (c) PFS. The inset shows the image taken with exposure time (denoted as $ {T_E} $) of 1000 ms. The red line indicates the approximate location for profiling.
Fig. 6.
Fig. 6. Experimental setup for measuring the intensity distribution of the photons emerging from one edge surface of the phosphor screen.
Fig. 7.
Fig. 7. Distributions of the optical power emerging from one edge when a single spot on a stripe is excited by the 410 nm laser light. The edge is either (a) perpendicular or (b) parallel to the stripe direction.
Fig. 8.
Fig. 8. Three possible scenarios for cross talk. (a) The excitation light scattered by one stripe excites other stripes. (b) The PL photons are scattered by the other stripes. (c) The PL photons with sufficient energy excite other stripes.
Fig. 9.
Fig. 9. Origin of the circular cross-talk pattern. (a) Cross section of a phosphor screen. (b) Numerical example for the factors $ {R_F} $ and $ {R_F}/{r^2} $. Assumed parameters are the refractive index $n = 1.5$ and the thickness of the screen $ \ell = 10\,\,{\rm mm} $.
Fig. 10.
Fig. 10. Dependency of the power recovery efficiency on the distance between the edge and the excitation spot. The legend indicates the phosphor stripe and the direction of the PD array with respect to the stripe direction.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

I ( r ) = R F 4 π r 2 ( F f + F b ) .
η r = P e d g e P i n .
P e d g e = A e d g e A P D i = 1 125 P i .

Metrics