Abstract

In the past decade, superconducting nanowire single-photon detectors (SNSPDs) have gradually become an indispensable part of any demanding quantum optics experiment. Until now, most SNSPDs have been coupled to single-mode fibers. SNSPDs coupled to multimode fibers have shown promising efficiencies but have yet to achieve high time resolution. For a number of applications ranging from quantum nano-photonics to bio-optics, high efficiency and high time resolution are desired at the same time. In this paper, we demonstrate the role of polarization on the efficiency of multimode-fiber-coupled detectors and fabricated high-performance 20 µm, 25 µm, and 50 µm diameter detectors targeted for visible, near-infrared, and telecom wavelengths. A custom-built setup was used to simulate realistic experiments with randomized modes in the fiber. We achieved over 80% system efficiency and $ {\lt} {20}\;{\rm ps}$ timing jitter for 20 µm SNSPDs. Also, we realized 70% system efficiency and $ {\lt} {20}\;{\rm ps}$ timing jitter for 50 µm SNSPDs. The high-efficiency multimode-fiber-coupled SNSPDs with unparalleled time resolution will benefit various quantum optics experiments and applications in the future.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Large-sensitive-area superconducting nanowire single-photon detector at 850 nm with high detection efficiency

Hao Li, Lu Zhang, Lixing You, Xiaoyan Yang, Weijun Zhang, Xiaoyu Liu, Sijing Chen, Zhen Wang, and Xiaoming Xie
Opt. Express 23(13) 17301-17308 (2015)

Multimode fiber-coupled superconducting nanowire single-photon detector with 70% system efficiency at visible wavelength

Dengkuan Liu, Shigehito Miki, Taro Yamashita, Lixing You, Zhen Wang, and Hirotaka Terai
Opt. Express 22(18) 21167-21174 (2014)

High-speed and high-efficiency superconducting nanowire single photon detector array

D. Rosenberg, A. J. Kerman, R. J. Molnar, and E. A. Dauler
Opt. Express 21(2) 1440-1447 (2013)

References

  • View by:
  • |
  • |
  • |

  1. P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75, 4337–4341 (1995).
    [Crossref]
  2. C. Kurtsiefer, S. Mayer, P. Zarda, and H. Weinfurter, “Stable solid-state source of single photons,” Phys. Rev. Lett. 85, 290–293 (2000).
    [Crossref]
  3. M. Saffman and T. Walker, “Creating single-atom and single-photon sources from entangled atomic ensembles,” Phys. Rev. A 66, 065403 (2002).
    [Crossref]
  4. B. Lounis and W. E. Moerner, “Single photons on demand from a single molecule at room temperature,” Nature 407, 491 (2000).
    [Crossref]
  5. M. E. Reimer, G. Bulgarini, N. Akopian, M. Hocevar, M. B. Bavinck, M. A. Verheijen, E. P. Bakkers, L. P. Kouwenhoven, and V. Zwiller, “Bright single-photon sources in bottom-up tailored nanowires,” Nat. Commun. 3, 737 (2012).
    [Crossref]
  6. L. Schweickert, K. D. Jöns, K. D. Zeuner, S. F. Covre da Silva, H. Huang, T. Lettner, M. Reindl, J. Zichi, R. Trotta, A. Rastelli, and V. Zwiller, “On-demand generation of background-free single photons from a solid-state source,” Appl. Phys. Lett. 112, 093106 (2018).
    [Crossref]
  7. N. Akopian, N. Lindner, E. Poem, Y. Berlatzky, J. Avron, D. Gershoni, B. Gerardot, and P. Petroff, “Entangled photon pairs from semiconductor quantum dots,” Phys. Rev. Lett. 96, 130501 (2006).
    [Crossref]
  8. Y. Chen, J. Zhang, M. Zopf, K. Jung, Y. Zhang, R. Keil, F. Ding, and O. G. Schmidt, “Wavelength-tunable entangled photons from silicon-integrated iii-v quantum dots,” Nat. Commun. 7, 10387 (2016).
    [Crossref]
  9. M. Pelton, C. Santori, J. Vučković, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, “Efficient source of single photons: a single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89, 233602 (2002).
    [Crossref]
  10. P. Schnauber, A. Thoma, C. V. Heine, A. Schlehahn, L. Gantz, M. Gschrey, R. Schmidt, C. Hopfmann, B. Wohlfeil, J.-H. Schulze, A. Strittmatter, T. Heindel, S. Rodt, U. Woggon, D. Gershoni, and S. Reitzenstein, “Bright single-photon sources based on anti-reflection coated deterministic quantum dot microlenses,” Technologies 4, 1 (2016).
    [Crossref]
  11. X. Ding, Y. He, Z.-C. Duan, N. Gregersen, M.-C. Chen, S. Unsleber, S. Maier, C. Schneider, M. Kamp, S. Höfling, C.-Y. Lu, and J.-W. Pan, “On-demand single photons with high extraction efficiency and near-unity indistinguishability from a resonantly driven quantum dot in a micropillar,” Phys. Rev. Lett. 116, 020401 (2016).
    [Crossref]
  12. J. A. Moon, R. Mahon, M. D. Duncan, and J. Reintjes, “Resolution limits for imaging through turbid media with diffuse light,” Opt. Lett. 18, 1591–1593 (1993).
    [Crossref]
  13. J. Zhu, Y. Chen, L. Zhang, X. Jia, Z. Feng, G. Wu, X. Yan, J. Zhai, Y. Wu, Q. Chen, and X. Zhou, “Demonstration of measuring sea fog with an SNSPD-based lidar system,” Sci. Rep. 7, 15113 (2017).
    [Crossref]
  14. I. E. Zadeh, J. W. Los, R. B. Gourgues, V. Steinmetz, G. Bulgarini, S. M. Dobrovolskiy, V. Zwiller, and S. N. Dorenbos, “Single-photon detectors combining high efficiency, high detection rates, and ultra-high timing resolution,” APL Photon. 2, 111301 (2017).
    [Crossref]
  15. D. Liu, S. Miki, T. Yamashita, L. You, Z. Wang, and H. Terai, “Multimode fiber-coupled superconducting nanowire single-photon detector with 70% system efficiency at visible wavelength,” Opt. Express 22, 21167–21174 (2014).
    [Crossref]
  16. H. Li, L. Zhang, L. You, X. Yang, W. Zhang, X. Liu, S. Chen, Z. Wang, and X. Xie, “Large-sensitive-area superconducting nanowire single-photon detector at 850  nm with high detection efficiency,” Opt. Express 23, 17301–17308 (2015).
    [Crossref]
  17. C. Lv, H. Zhou, H. Li, L. You, X. Liu, Y. Wang, W. Zhang, S. Chen, Z. Wang, and X. Xie, “Large active area superconducting single-nanowire photon detector with a 100  µm diameter,” Supercond. Sci. Technol. 30, 115018 (2017).
    [Crossref]
  18. L. Zhang, M. Gu, T. Jia, R. Xu, C. Wan, L. Kang, J. Chen, and P. Wu, “Multimode fiber coupled superconductor nanowire single-photon detector,” IEEE Photon. J. 6, 6802608 (2014).
    [Crossref]
  19. L. Zhang, C. Wan, M. Gu, R. Xu, S. Zhang, L. Kang, J. Chen, and P. Wu, “Dual-lens beam compression for optical coupling in superconducting nanowire single-photon detectors,” Sci. Bull. 60(16), 1434–1438 (2015).
    [Crossref]
  20. Q. Chen, B. Zhang, L. Zhang, R. Ge, R. Xu, Y. Wu, X. Tu, X. Jia, L. Kang, J. Chen, and P. Wu, “A 16-pixel NBN nanowire single photon detector coupled with 300  micrometer fiber,” arXiv:1811.09779 (2018).
  21. N. Calandri, Q.-Y. Zhao, D. Zhu, A. Dane, and K. K. Berggren, “Superconducting nanowire detector jitter limited by detector geometry,” Appl. Phys. Lett. 109, 152601 (2016).
    [Crossref]
  22. M. Sidorova, A. Semenov, H.-W. Hübers, I. Charaev, A. Kuzmin, S. Doerner, and M. Siegel, “Physical mechanisms of timing jitter in photon detection by current-carrying superconducting nanowires,” Phys. Rev. B 96, 184504 (2017).
    [Crossref]
  23. J. Wu, L. You, S. Chen, H. Li, Y. He, C. Lv, Z. Wang, and X. Xie, “Improving the timing jitter of a superconducting nanowire single-photon detection system,” Appl. Opt. 56, 2195–2200 (2017).
    [Crossref]
  24. I. E. Zadeh, J. W. Los, R. Gourgues, G. Bulgarini, S. M. Dobrovolskiy, V. Zwiller, and S. N. Dorenbos, “A single-photon detector with high efficiency and sub-10  ps time resolution,” arXiv:1801.06574 (2018).
  25. H. Wang, H. Li, L. You, P. Hu, X. Zhang, W. Yong, W. Zhang, X. Yang, L. Zhang, H. Zhou, and Z. Wang, “Large-area multispectral superconducting nanowire single-photon detector,” Appl. Opt. 58, 8148–8152 (2019).
    [Crossref]
  26. S. N. Dorenbos, E. M. Reiger, N. Akopian, U. Perinetti, V. Zwiller, T. Zijlstra, and T. M. Klapwijk, “Superconducting single photon detectors with minimized polarization dependence,” Appl. Phys. Lett. 93, 161102 (2008).
    [Crossref]
  27. A. Mukhtarova, L. Redaelli, D. Hazra, H. Machhadani, S. Lequien, M. Hofheinz, J.-L. Thomassin, F. Gustavo, J. Zichi, V. Zwiller, and E. Monroy, “Polarization-insensitive fiber-coupled superconducting-nanowire single photon detector using a high-index dielectric capping layer,” Opt. Express 26, 17697–17704 (2018).
    [Crossref]
  28. L. Redaelli, V. Zwiller, E. Monroy, and J. Gérard, “Design of polarization-insensitive superconducting single photon detectors with high-index dielectrics,” Supercond. Sci. Technol. 30, 035005 (2017).
    [Crossref]
  29. X. Chi, K. Zou, C. Gu, J. Zichi, Y. Cheng, N. Hu, X. Lan, S. Chen, Z. Lin, V. Zwiller, and X. Hu, “Fractal superconducting nanowire single-photon detectors with reduced polarization sensitivity,” Opt. Lett. 43, 5017–5020 (2018).
    [Crossref]
  30. Y. Cheng, C. Gu, and X. Hu, “Inhomogeneity-induced timing jitter of superconducting nanowire single-photon detectors,” Appl. Phys. Lett. 111, 062604 (2017).
    [Crossref]

2019 (1)

2018 (3)

2017 (7)

J. Zhu, Y. Chen, L. Zhang, X. Jia, Z. Feng, G. Wu, X. Yan, J. Zhai, Y. Wu, Q. Chen, and X. Zhou, “Demonstration of measuring sea fog with an SNSPD-based lidar system,” Sci. Rep. 7, 15113 (2017).
[Crossref]

I. E. Zadeh, J. W. Los, R. B. Gourgues, V. Steinmetz, G. Bulgarini, S. M. Dobrovolskiy, V. Zwiller, and S. N. Dorenbos, “Single-photon detectors combining high efficiency, high detection rates, and ultra-high timing resolution,” APL Photon. 2, 111301 (2017).
[Crossref]

C. Lv, H. Zhou, H. Li, L. You, X. Liu, Y. Wang, W. Zhang, S. Chen, Z. Wang, and X. Xie, “Large active area superconducting single-nanowire photon detector with a 100  µm diameter,” Supercond. Sci. Technol. 30, 115018 (2017).
[Crossref]

M. Sidorova, A. Semenov, H.-W. Hübers, I. Charaev, A. Kuzmin, S. Doerner, and M. Siegel, “Physical mechanisms of timing jitter in photon detection by current-carrying superconducting nanowires,” Phys. Rev. B 96, 184504 (2017).
[Crossref]

L. Redaelli, V. Zwiller, E. Monroy, and J. Gérard, “Design of polarization-insensitive superconducting single photon detectors with high-index dielectrics,” Supercond. Sci. Technol. 30, 035005 (2017).
[Crossref]

Y. Cheng, C. Gu, and X. Hu, “Inhomogeneity-induced timing jitter of superconducting nanowire single-photon detectors,” Appl. Phys. Lett. 111, 062604 (2017).
[Crossref]

J. Wu, L. You, S. Chen, H. Li, Y. He, C. Lv, Z. Wang, and X. Xie, “Improving the timing jitter of a superconducting nanowire single-photon detection system,” Appl. Opt. 56, 2195–2200 (2017).
[Crossref]

2016 (4)

N. Calandri, Q.-Y. Zhao, D. Zhu, A. Dane, and K. K. Berggren, “Superconducting nanowire detector jitter limited by detector geometry,” Appl. Phys. Lett. 109, 152601 (2016).
[Crossref]

P. Schnauber, A. Thoma, C. V. Heine, A. Schlehahn, L. Gantz, M. Gschrey, R. Schmidt, C. Hopfmann, B. Wohlfeil, J.-H. Schulze, A. Strittmatter, T. Heindel, S. Rodt, U. Woggon, D. Gershoni, and S. Reitzenstein, “Bright single-photon sources based on anti-reflection coated deterministic quantum dot microlenses,” Technologies 4, 1 (2016).
[Crossref]

X. Ding, Y. He, Z.-C. Duan, N. Gregersen, M.-C. Chen, S. Unsleber, S. Maier, C. Schneider, M. Kamp, S. Höfling, C.-Y. Lu, and J.-W. Pan, “On-demand single photons with high extraction efficiency and near-unity indistinguishability from a resonantly driven quantum dot in a micropillar,” Phys. Rev. Lett. 116, 020401 (2016).
[Crossref]

Y. Chen, J. Zhang, M. Zopf, K. Jung, Y. Zhang, R. Keil, F. Ding, and O. G. Schmidt, “Wavelength-tunable entangled photons from silicon-integrated iii-v quantum dots,” Nat. Commun. 7, 10387 (2016).
[Crossref]

2015 (2)

L. Zhang, C. Wan, M. Gu, R. Xu, S. Zhang, L. Kang, J. Chen, and P. Wu, “Dual-lens beam compression for optical coupling in superconducting nanowire single-photon detectors,” Sci. Bull. 60(16), 1434–1438 (2015).
[Crossref]

H. Li, L. Zhang, L. You, X. Yang, W. Zhang, X. Liu, S. Chen, Z. Wang, and X. Xie, “Large-sensitive-area superconducting nanowire single-photon detector at 850  nm with high detection efficiency,” Opt. Express 23, 17301–17308 (2015).
[Crossref]

2014 (2)

D. Liu, S. Miki, T. Yamashita, L. You, Z. Wang, and H. Terai, “Multimode fiber-coupled superconducting nanowire single-photon detector with 70% system efficiency at visible wavelength,” Opt. Express 22, 21167–21174 (2014).
[Crossref]

L. Zhang, M. Gu, T. Jia, R. Xu, C. Wan, L. Kang, J. Chen, and P. Wu, “Multimode fiber coupled superconductor nanowire single-photon detector,” IEEE Photon. J. 6, 6802608 (2014).
[Crossref]

2012 (1)

M. E. Reimer, G. Bulgarini, N. Akopian, M. Hocevar, M. B. Bavinck, M. A. Verheijen, E. P. Bakkers, L. P. Kouwenhoven, and V. Zwiller, “Bright single-photon sources in bottom-up tailored nanowires,” Nat. Commun. 3, 737 (2012).
[Crossref]

2008 (1)

S. N. Dorenbos, E. M. Reiger, N. Akopian, U. Perinetti, V. Zwiller, T. Zijlstra, and T. M. Klapwijk, “Superconducting single photon detectors with minimized polarization dependence,” Appl. Phys. Lett. 93, 161102 (2008).
[Crossref]

2006 (1)

N. Akopian, N. Lindner, E. Poem, Y. Berlatzky, J. Avron, D. Gershoni, B. Gerardot, and P. Petroff, “Entangled photon pairs from semiconductor quantum dots,” Phys. Rev. Lett. 96, 130501 (2006).
[Crossref]

2002 (2)

M. Pelton, C. Santori, J. Vučković, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, “Efficient source of single photons: a single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89, 233602 (2002).
[Crossref]

M. Saffman and T. Walker, “Creating single-atom and single-photon sources from entangled atomic ensembles,” Phys. Rev. A 66, 065403 (2002).
[Crossref]

2000 (2)

B. Lounis and W. E. Moerner, “Single photons on demand from a single molecule at room temperature,” Nature 407, 491 (2000).
[Crossref]

C. Kurtsiefer, S. Mayer, P. Zarda, and H. Weinfurter, “Stable solid-state source of single photons,” Phys. Rev. Lett. 85, 290–293 (2000).
[Crossref]

1995 (1)

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75, 4337–4341 (1995).
[Crossref]

1993 (1)

Akopian, N.

M. E. Reimer, G. Bulgarini, N. Akopian, M. Hocevar, M. B. Bavinck, M. A. Verheijen, E. P. Bakkers, L. P. Kouwenhoven, and V. Zwiller, “Bright single-photon sources in bottom-up tailored nanowires,” Nat. Commun. 3, 737 (2012).
[Crossref]

S. N. Dorenbos, E. M. Reiger, N. Akopian, U. Perinetti, V. Zwiller, T. Zijlstra, and T. M. Klapwijk, “Superconducting single photon detectors with minimized polarization dependence,” Appl. Phys. Lett. 93, 161102 (2008).
[Crossref]

N. Akopian, N. Lindner, E. Poem, Y. Berlatzky, J. Avron, D. Gershoni, B. Gerardot, and P. Petroff, “Entangled photon pairs from semiconductor quantum dots,” Phys. Rev. Lett. 96, 130501 (2006).
[Crossref]

Avron, J.

N. Akopian, N. Lindner, E. Poem, Y. Berlatzky, J. Avron, D. Gershoni, B. Gerardot, and P. Petroff, “Entangled photon pairs from semiconductor quantum dots,” Phys. Rev. Lett. 96, 130501 (2006).
[Crossref]

Bakkers, E. P.

M. E. Reimer, G. Bulgarini, N. Akopian, M. Hocevar, M. B. Bavinck, M. A. Verheijen, E. P. Bakkers, L. P. Kouwenhoven, and V. Zwiller, “Bright single-photon sources in bottom-up tailored nanowires,” Nat. Commun. 3, 737 (2012).
[Crossref]

Bavinck, M. B.

M. E. Reimer, G. Bulgarini, N. Akopian, M. Hocevar, M. B. Bavinck, M. A. Verheijen, E. P. Bakkers, L. P. Kouwenhoven, and V. Zwiller, “Bright single-photon sources in bottom-up tailored nanowires,” Nat. Commun. 3, 737 (2012).
[Crossref]

Berggren, K. K.

N. Calandri, Q.-Y. Zhao, D. Zhu, A. Dane, and K. K. Berggren, “Superconducting nanowire detector jitter limited by detector geometry,” Appl. Phys. Lett. 109, 152601 (2016).
[Crossref]

Berlatzky, Y.

N. Akopian, N. Lindner, E. Poem, Y. Berlatzky, J. Avron, D. Gershoni, B. Gerardot, and P. Petroff, “Entangled photon pairs from semiconductor quantum dots,” Phys. Rev. Lett. 96, 130501 (2006).
[Crossref]

Bulgarini, G.

I. E. Zadeh, J. W. Los, R. B. Gourgues, V. Steinmetz, G. Bulgarini, S. M. Dobrovolskiy, V. Zwiller, and S. N. Dorenbos, “Single-photon detectors combining high efficiency, high detection rates, and ultra-high timing resolution,” APL Photon. 2, 111301 (2017).
[Crossref]

M. E. Reimer, G. Bulgarini, N. Akopian, M. Hocevar, M. B. Bavinck, M. A. Verheijen, E. P. Bakkers, L. P. Kouwenhoven, and V. Zwiller, “Bright single-photon sources in bottom-up tailored nanowires,” Nat. Commun. 3, 737 (2012).
[Crossref]

I. E. Zadeh, J. W. Los, R. Gourgues, G. Bulgarini, S. M. Dobrovolskiy, V. Zwiller, and S. N. Dorenbos, “A single-photon detector with high efficiency and sub-10  ps time resolution,” arXiv:1801.06574 (2018).

Calandri, N.

N. Calandri, Q.-Y. Zhao, D. Zhu, A. Dane, and K. K. Berggren, “Superconducting nanowire detector jitter limited by detector geometry,” Appl. Phys. Lett. 109, 152601 (2016).
[Crossref]

Charaev, I.

M. Sidorova, A. Semenov, H.-W. Hübers, I. Charaev, A. Kuzmin, S. Doerner, and M. Siegel, “Physical mechanisms of timing jitter in photon detection by current-carrying superconducting nanowires,” Phys. Rev. B 96, 184504 (2017).
[Crossref]

Chen, J.

L. Zhang, C. Wan, M. Gu, R. Xu, S. Zhang, L. Kang, J. Chen, and P. Wu, “Dual-lens beam compression for optical coupling in superconducting nanowire single-photon detectors,” Sci. Bull. 60(16), 1434–1438 (2015).
[Crossref]

L. Zhang, M. Gu, T. Jia, R. Xu, C. Wan, L. Kang, J. Chen, and P. Wu, “Multimode fiber coupled superconductor nanowire single-photon detector,” IEEE Photon. J. 6, 6802608 (2014).
[Crossref]

Q. Chen, B. Zhang, L. Zhang, R. Ge, R. Xu, Y. Wu, X. Tu, X. Jia, L. Kang, J. Chen, and P. Wu, “A 16-pixel NBN nanowire single photon detector coupled with 300  micrometer fiber,” arXiv:1811.09779 (2018).

Chen, M.-C.

X. Ding, Y. He, Z.-C. Duan, N. Gregersen, M.-C. Chen, S. Unsleber, S. Maier, C. Schneider, M. Kamp, S. Höfling, C.-Y. Lu, and J.-W. Pan, “On-demand single photons with high extraction efficiency and near-unity indistinguishability from a resonantly driven quantum dot in a micropillar,” Phys. Rev. Lett. 116, 020401 (2016).
[Crossref]

Chen, Q.

J. Zhu, Y. Chen, L. Zhang, X. Jia, Z. Feng, G. Wu, X. Yan, J. Zhai, Y. Wu, Q. Chen, and X. Zhou, “Demonstration of measuring sea fog with an SNSPD-based lidar system,” Sci. Rep. 7, 15113 (2017).
[Crossref]

Q. Chen, B. Zhang, L. Zhang, R. Ge, R. Xu, Y. Wu, X. Tu, X. Jia, L. Kang, J. Chen, and P. Wu, “A 16-pixel NBN nanowire single photon detector coupled with 300  micrometer fiber,” arXiv:1811.09779 (2018).

Chen, S.

Chen, Y.

J. Zhu, Y. Chen, L. Zhang, X. Jia, Z. Feng, G. Wu, X. Yan, J. Zhai, Y. Wu, Q. Chen, and X. Zhou, “Demonstration of measuring sea fog with an SNSPD-based lidar system,” Sci. Rep. 7, 15113 (2017).
[Crossref]

Y. Chen, J. Zhang, M. Zopf, K. Jung, Y. Zhang, R. Keil, F. Ding, and O. G. Schmidt, “Wavelength-tunable entangled photons from silicon-integrated iii-v quantum dots,” Nat. Commun. 7, 10387 (2016).
[Crossref]

Cheng, Y.

Chi, X.

Covre da Silva, S. F.

L. Schweickert, K. D. Jöns, K. D. Zeuner, S. F. Covre da Silva, H. Huang, T. Lettner, M. Reindl, J. Zichi, R. Trotta, A. Rastelli, and V. Zwiller, “On-demand generation of background-free single photons from a solid-state source,” Appl. Phys. Lett. 112, 093106 (2018).
[Crossref]

Dane, A.

N. Calandri, Q.-Y. Zhao, D. Zhu, A. Dane, and K. K. Berggren, “Superconducting nanowire detector jitter limited by detector geometry,” Appl. Phys. Lett. 109, 152601 (2016).
[Crossref]

Ding, F.

Y. Chen, J. Zhang, M. Zopf, K. Jung, Y. Zhang, R. Keil, F. Ding, and O. G. Schmidt, “Wavelength-tunable entangled photons from silicon-integrated iii-v quantum dots,” Nat. Commun. 7, 10387 (2016).
[Crossref]

Ding, X.

X. Ding, Y. He, Z.-C. Duan, N. Gregersen, M.-C. Chen, S. Unsleber, S. Maier, C. Schneider, M. Kamp, S. Höfling, C.-Y. Lu, and J.-W. Pan, “On-demand single photons with high extraction efficiency and near-unity indistinguishability from a resonantly driven quantum dot in a micropillar,” Phys. Rev. Lett. 116, 020401 (2016).
[Crossref]

Dobrovolskiy, S. M.

I. E. Zadeh, J. W. Los, R. B. Gourgues, V. Steinmetz, G. Bulgarini, S. M. Dobrovolskiy, V. Zwiller, and S. N. Dorenbos, “Single-photon detectors combining high efficiency, high detection rates, and ultra-high timing resolution,” APL Photon. 2, 111301 (2017).
[Crossref]

I. E. Zadeh, J. W. Los, R. Gourgues, G. Bulgarini, S. M. Dobrovolskiy, V. Zwiller, and S. N. Dorenbos, “A single-photon detector with high efficiency and sub-10  ps time resolution,” arXiv:1801.06574 (2018).

Doerner, S.

M. Sidorova, A. Semenov, H.-W. Hübers, I. Charaev, A. Kuzmin, S. Doerner, and M. Siegel, “Physical mechanisms of timing jitter in photon detection by current-carrying superconducting nanowires,” Phys. Rev. B 96, 184504 (2017).
[Crossref]

Dorenbos, S. N.

I. E. Zadeh, J. W. Los, R. B. Gourgues, V. Steinmetz, G. Bulgarini, S. M. Dobrovolskiy, V. Zwiller, and S. N. Dorenbos, “Single-photon detectors combining high efficiency, high detection rates, and ultra-high timing resolution,” APL Photon. 2, 111301 (2017).
[Crossref]

S. N. Dorenbos, E. M. Reiger, N. Akopian, U. Perinetti, V. Zwiller, T. Zijlstra, and T. M. Klapwijk, “Superconducting single photon detectors with minimized polarization dependence,” Appl. Phys. Lett. 93, 161102 (2008).
[Crossref]

I. E. Zadeh, J. W. Los, R. Gourgues, G. Bulgarini, S. M. Dobrovolskiy, V. Zwiller, and S. N. Dorenbos, “A single-photon detector with high efficiency and sub-10  ps time resolution,” arXiv:1801.06574 (2018).

Duan, Z.-C.

X. Ding, Y. He, Z.-C. Duan, N. Gregersen, M.-C. Chen, S. Unsleber, S. Maier, C. Schneider, M. Kamp, S. Höfling, C.-Y. Lu, and J.-W. Pan, “On-demand single photons with high extraction efficiency and near-unity indistinguishability from a resonantly driven quantum dot in a micropillar,” Phys. Rev. Lett. 116, 020401 (2016).
[Crossref]

Duncan, M. D.

Feng, Z.

J. Zhu, Y. Chen, L. Zhang, X. Jia, Z. Feng, G. Wu, X. Yan, J. Zhai, Y. Wu, Q. Chen, and X. Zhou, “Demonstration of measuring sea fog with an SNSPD-based lidar system,” Sci. Rep. 7, 15113 (2017).
[Crossref]

Gantz, L.

P. Schnauber, A. Thoma, C. V. Heine, A. Schlehahn, L. Gantz, M. Gschrey, R. Schmidt, C. Hopfmann, B. Wohlfeil, J.-H. Schulze, A. Strittmatter, T. Heindel, S. Rodt, U. Woggon, D. Gershoni, and S. Reitzenstein, “Bright single-photon sources based on anti-reflection coated deterministic quantum dot microlenses,” Technologies 4, 1 (2016).
[Crossref]

Ge, R.

Q. Chen, B. Zhang, L. Zhang, R. Ge, R. Xu, Y. Wu, X. Tu, X. Jia, L. Kang, J. Chen, and P. Wu, “A 16-pixel NBN nanowire single photon detector coupled with 300  micrometer fiber,” arXiv:1811.09779 (2018).

Gérard, J.

L. Redaelli, V. Zwiller, E. Monroy, and J. Gérard, “Design of polarization-insensitive superconducting single photon detectors with high-index dielectrics,” Supercond. Sci. Technol. 30, 035005 (2017).
[Crossref]

Gerardot, B.

N. Akopian, N. Lindner, E. Poem, Y. Berlatzky, J. Avron, D. Gershoni, B. Gerardot, and P. Petroff, “Entangled photon pairs from semiconductor quantum dots,” Phys. Rev. Lett. 96, 130501 (2006).
[Crossref]

Gershoni, D.

P. Schnauber, A. Thoma, C. V. Heine, A. Schlehahn, L. Gantz, M. Gschrey, R. Schmidt, C. Hopfmann, B. Wohlfeil, J.-H. Schulze, A. Strittmatter, T. Heindel, S. Rodt, U. Woggon, D. Gershoni, and S. Reitzenstein, “Bright single-photon sources based on anti-reflection coated deterministic quantum dot microlenses,” Technologies 4, 1 (2016).
[Crossref]

N. Akopian, N. Lindner, E. Poem, Y. Berlatzky, J. Avron, D. Gershoni, B. Gerardot, and P. Petroff, “Entangled photon pairs from semiconductor quantum dots,” Phys. Rev. Lett. 96, 130501 (2006).
[Crossref]

Gourgues, R.

I. E. Zadeh, J. W. Los, R. Gourgues, G. Bulgarini, S. M. Dobrovolskiy, V. Zwiller, and S. N. Dorenbos, “A single-photon detector with high efficiency and sub-10  ps time resolution,” arXiv:1801.06574 (2018).

Gourgues, R. B.

I. E. Zadeh, J. W. Los, R. B. Gourgues, V. Steinmetz, G. Bulgarini, S. M. Dobrovolskiy, V. Zwiller, and S. N. Dorenbos, “Single-photon detectors combining high efficiency, high detection rates, and ultra-high timing resolution,” APL Photon. 2, 111301 (2017).
[Crossref]

Gregersen, N.

X. Ding, Y. He, Z.-C. Duan, N. Gregersen, M.-C. Chen, S. Unsleber, S. Maier, C. Schneider, M. Kamp, S. Höfling, C.-Y. Lu, and J.-W. Pan, “On-demand single photons with high extraction efficiency and near-unity indistinguishability from a resonantly driven quantum dot in a micropillar,” Phys. Rev. Lett. 116, 020401 (2016).
[Crossref]

Gschrey, M.

P. Schnauber, A. Thoma, C. V. Heine, A. Schlehahn, L. Gantz, M. Gschrey, R. Schmidt, C. Hopfmann, B. Wohlfeil, J.-H. Schulze, A. Strittmatter, T. Heindel, S. Rodt, U. Woggon, D. Gershoni, and S. Reitzenstein, “Bright single-photon sources based on anti-reflection coated deterministic quantum dot microlenses,” Technologies 4, 1 (2016).
[Crossref]

Gu, C.

Gu, M.

L. Zhang, C. Wan, M. Gu, R. Xu, S. Zhang, L. Kang, J. Chen, and P. Wu, “Dual-lens beam compression for optical coupling in superconducting nanowire single-photon detectors,” Sci. Bull. 60(16), 1434–1438 (2015).
[Crossref]

L. Zhang, M. Gu, T. Jia, R. Xu, C. Wan, L. Kang, J. Chen, and P. Wu, “Multimode fiber coupled superconductor nanowire single-photon detector,” IEEE Photon. J. 6, 6802608 (2014).
[Crossref]

Gustavo, F.

Hazra, D.

He, Y.

J. Wu, L. You, S. Chen, H. Li, Y. He, C. Lv, Z. Wang, and X. Xie, “Improving the timing jitter of a superconducting nanowire single-photon detection system,” Appl. Opt. 56, 2195–2200 (2017).
[Crossref]

X. Ding, Y. He, Z.-C. Duan, N. Gregersen, M.-C. Chen, S. Unsleber, S. Maier, C. Schneider, M. Kamp, S. Höfling, C.-Y. Lu, and J.-W. Pan, “On-demand single photons with high extraction efficiency and near-unity indistinguishability from a resonantly driven quantum dot in a micropillar,” Phys. Rev. Lett. 116, 020401 (2016).
[Crossref]

Heindel, T.

P. Schnauber, A. Thoma, C. V. Heine, A. Schlehahn, L. Gantz, M. Gschrey, R. Schmidt, C. Hopfmann, B. Wohlfeil, J.-H. Schulze, A. Strittmatter, T. Heindel, S. Rodt, U. Woggon, D. Gershoni, and S. Reitzenstein, “Bright single-photon sources based on anti-reflection coated deterministic quantum dot microlenses,” Technologies 4, 1 (2016).
[Crossref]

Heine, C. V.

P. Schnauber, A. Thoma, C. V. Heine, A. Schlehahn, L. Gantz, M. Gschrey, R. Schmidt, C. Hopfmann, B. Wohlfeil, J.-H. Schulze, A. Strittmatter, T. Heindel, S. Rodt, U. Woggon, D. Gershoni, and S. Reitzenstein, “Bright single-photon sources based on anti-reflection coated deterministic quantum dot microlenses,” Technologies 4, 1 (2016).
[Crossref]

Hocevar, M.

M. E. Reimer, G. Bulgarini, N. Akopian, M. Hocevar, M. B. Bavinck, M. A. Verheijen, E. P. Bakkers, L. P. Kouwenhoven, and V. Zwiller, “Bright single-photon sources in bottom-up tailored nanowires,” Nat. Commun. 3, 737 (2012).
[Crossref]

Hofheinz, M.

Höfling, S.

X. Ding, Y. He, Z.-C. Duan, N. Gregersen, M.-C. Chen, S. Unsleber, S. Maier, C. Schneider, M. Kamp, S. Höfling, C.-Y. Lu, and J.-W. Pan, “On-demand single photons with high extraction efficiency and near-unity indistinguishability from a resonantly driven quantum dot in a micropillar,” Phys. Rev. Lett. 116, 020401 (2016).
[Crossref]

Hopfmann, C.

P. Schnauber, A. Thoma, C. V. Heine, A. Schlehahn, L. Gantz, M. Gschrey, R. Schmidt, C. Hopfmann, B. Wohlfeil, J.-H. Schulze, A. Strittmatter, T. Heindel, S. Rodt, U. Woggon, D. Gershoni, and S. Reitzenstein, “Bright single-photon sources based on anti-reflection coated deterministic quantum dot microlenses,” Technologies 4, 1 (2016).
[Crossref]

Hu, N.

Hu, P.

Hu, X.

Huang, H.

L. Schweickert, K. D. Jöns, K. D. Zeuner, S. F. Covre da Silva, H. Huang, T. Lettner, M. Reindl, J. Zichi, R. Trotta, A. Rastelli, and V. Zwiller, “On-demand generation of background-free single photons from a solid-state source,” Appl. Phys. Lett. 112, 093106 (2018).
[Crossref]

Hübers, H.-W.

M. Sidorova, A. Semenov, H.-W. Hübers, I. Charaev, A. Kuzmin, S. Doerner, and M. Siegel, “Physical mechanisms of timing jitter in photon detection by current-carrying superconducting nanowires,” Phys. Rev. B 96, 184504 (2017).
[Crossref]

Jia, T.

L. Zhang, M. Gu, T. Jia, R. Xu, C. Wan, L. Kang, J. Chen, and P. Wu, “Multimode fiber coupled superconductor nanowire single-photon detector,” IEEE Photon. J. 6, 6802608 (2014).
[Crossref]

Jia, X.

J. Zhu, Y. Chen, L. Zhang, X. Jia, Z. Feng, G. Wu, X. Yan, J. Zhai, Y. Wu, Q. Chen, and X. Zhou, “Demonstration of measuring sea fog with an SNSPD-based lidar system,” Sci. Rep. 7, 15113 (2017).
[Crossref]

Q. Chen, B. Zhang, L. Zhang, R. Ge, R. Xu, Y. Wu, X. Tu, X. Jia, L. Kang, J. Chen, and P. Wu, “A 16-pixel NBN nanowire single photon detector coupled with 300  micrometer fiber,” arXiv:1811.09779 (2018).

Jöns, K. D.

L. Schweickert, K. D. Jöns, K. D. Zeuner, S. F. Covre da Silva, H. Huang, T. Lettner, M. Reindl, J. Zichi, R. Trotta, A. Rastelli, and V. Zwiller, “On-demand generation of background-free single photons from a solid-state source,” Appl. Phys. Lett. 112, 093106 (2018).
[Crossref]

Jung, K.

Y. Chen, J. Zhang, M. Zopf, K. Jung, Y. Zhang, R. Keil, F. Ding, and O. G. Schmidt, “Wavelength-tunable entangled photons from silicon-integrated iii-v quantum dots,” Nat. Commun. 7, 10387 (2016).
[Crossref]

Kamp, M.

X. Ding, Y. He, Z.-C. Duan, N. Gregersen, M.-C. Chen, S. Unsleber, S. Maier, C. Schneider, M. Kamp, S. Höfling, C.-Y. Lu, and J.-W. Pan, “On-demand single photons with high extraction efficiency and near-unity indistinguishability from a resonantly driven quantum dot in a micropillar,” Phys. Rev. Lett. 116, 020401 (2016).
[Crossref]

Kang, L.

L. Zhang, C. Wan, M. Gu, R. Xu, S. Zhang, L. Kang, J. Chen, and P. Wu, “Dual-lens beam compression for optical coupling in superconducting nanowire single-photon detectors,” Sci. Bull. 60(16), 1434–1438 (2015).
[Crossref]

L. Zhang, M. Gu, T. Jia, R. Xu, C. Wan, L. Kang, J. Chen, and P. Wu, “Multimode fiber coupled superconductor nanowire single-photon detector,” IEEE Photon. J. 6, 6802608 (2014).
[Crossref]

Q. Chen, B. Zhang, L. Zhang, R. Ge, R. Xu, Y. Wu, X. Tu, X. Jia, L. Kang, J. Chen, and P. Wu, “A 16-pixel NBN nanowire single photon detector coupled with 300  micrometer fiber,” arXiv:1811.09779 (2018).

Keil, R.

Y. Chen, J. Zhang, M. Zopf, K. Jung, Y. Zhang, R. Keil, F. Ding, and O. G. Schmidt, “Wavelength-tunable entangled photons from silicon-integrated iii-v quantum dots,” Nat. Commun. 7, 10387 (2016).
[Crossref]

Klapwijk, T. M.

S. N. Dorenbos, E. M. Reiger, N. Akopian, U. Perinetti, V. Zwiller, T. Zijlstra, and T. M. Klapwijk, “Superconducting single photon detectors with minimized polarization dependence,” Appl. Phys. Lett. 93, 161102 (2008).
[Crossref]

Kouwenhoven, L. P.

M. E. Reimer, G. Bulgarini, N. Akopian, M. Hocevar, M. B. Bavinck, M. A. Verheijen, E. P. Bakkers, L. P. Kouwenhoven, and V. Zwiller, “Bright single-photon sources in bottom-up tailored nanowires,” Nat. Commun. 3, 737 (2012).
[Crossref]

Kurtsiefer, C.

C. Kurtsiefer, S. Mayer, P. Zarda, and H. Weinfurter, “Stable solid-state source of single photons,” Phys. Rev. Lett. 85, 290–293 (2000).
[Crossref]

Kuzmin, A.

M. Sidorova, A. Semenov, H.-W. Hübers, I. Charaev, A. Kuzmin, S. Doerner, and M. Siegel, “Physical mechanisms of timing jitter in photon detection by current-carrying superconducting nanowires,” Phys. Rev. B 96, 184504 (2017).
[Crossref]

Kwiat, P. G.

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75, 4337–4341 (1995).
[Crossref]

Lan, X.

Lequien, S.

Lettner, T.

L. Schweickert, K. D. Jöns, K. D. Zeuner, S. F. Covre da Silva, H. Huang, T. Lettner, M. Reindl, J. Zichi, R. Trotta, A. Rastelli, and V. Zwiller, “On-demand generation of background-free single photons from a solid-state source,” Appl. Phys. Lett. 112, 093106 (2018).
[Crossref]

Li, H.

Lin, Z.

Lindner, N.

N. Akopian, N. Lindner, E. Poem, Y. Berlatzky, J. Avron, D. Gershoni, B. Gerardot, and P. Petroff, “Entangled photon pairs from semiconductor quantum dots,” Phys. Rev. Lett. 96, 130501 (2006).
[Crossref]

Liu, D.

Liu, X.

C. Lv, H. Zhou, H. Li, L. You, X. Liu, Y. Wang, W. Zhang, S. Chen, Z. Wang, and X. Xie, “Large active area superconducting single-nanowire photon detector with a 100  µm diameter,” Supercond. Sci. Technol. 30, 115018 (2017).
[Crossref]

H. Li, L. Zhang, L. You, X. Yang, W. Zhang, X. Liu, S. Chen, Z. Wang, and X. Xie, “Large-sensitive-area superconducting nanowire single-photon detector at 850  nm with high detection efficiency,” Opt. Express 23, 17301–17308 (2015).
[Crossref]

Los, J. W.

I. E. Zadeh, J. W. Los, R. B. Gourgues, V. Steinmetz, G. Bulgarini, S. M. Dobrovolskiy, V. Zwiller, and S. N. Dorenbos, “Single-photon detectors combining high efficiency, high detection rates, and ultra-high timing resolution,” APL Photon. 2, 111301 (2017).
[Crossref]

I. E. Zadeh, J. W. Los, R. Gourgues, G. Bulgarini, S. M. Dobrovolskiy, V. Zwiller, and S. N. Dorenbos, “A single-photon detector with high efficiency and sub-10  ps time resolution,” arXiv:1801.06574 (2018).

Lounis, B.

B. Lounis and W. E. Moerner, “Single photons on demand from a single molecule at room temperature,” Nature 407, 491 (2000).
[Crossref]

Lu, C.-Y.

X. Ding, Y. He, Z.-C. Duan, N. Gregersen, M.-C. Chen, S. Unsleber, S. Maier, C. Schneider, M. Kamp, S. Höfling, C.-Y. Lu, and J.-W. Pan, “On-demand single photons with high extraction efficiency and near-unity indistinguishability from a resonantly driven quantum dot in a micropillar,” Phys. Rev. Lett. 116, 020401 (2016).
[Crossref]

Lv, C.

C. Lv, H. Zhou, H. Li, L. You, X. Liu, Y. Wang, W. Zhang, S. Chen, Z. Wang, and X. Xie, “Large active area superconducting single-nanowire photon detector with a 100  µm diameter,” Supercond. Sci. Technol. 30, 115018 (2017).
[Crossref]

J. Wu, L. You, S. Chen, H. Li, Y. He, C. Lv, Z. Wang, and X. Xie, “Improving the timing jitter of a superconducting nanowire single-photon detection system,” Appl. Opt. 56, 2195–2200 (2017).
[Crossref]

Machhadani, H.

Mahon, R.

Maier, S.

X. Ding, Y. He, Z.-C. Duan, N. Gregersen, M.-C. Chen, S. Unsleber, S. Maier, C. Schneider, M. Kamp, S. Höfling, C.-Y. Lu, and J.-W. Pan, “On-demand single photons with high extraction efficiency and near-unity indistinguishability from a resonantly driven quantum dot in a micropillar,” Phys. Rev. Lett. 116, 020401 (2016).
[Crossref]

Mattle, K.

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75, 4337–4341 (1995).
[Crossref]

Mayer, S.

C. Kurtsiefer, S. Mayer, P. Zarda, and H. Weinfurter, “Stable solid-state source of single photons,” Phys. Rev. Lett. 85, 290–293 (2000).
[Crossref]

Miki, S.

Moerner, W. E.

B. Lounis and W. E. Moerner, “Single photons on demand from a single molecule at room temperature,” Nature 407, 491 (2000).
[Crossref]

Monroy, E.

Moon, J. A.

Mukhtarova, A.

Pan, J.-W.

X. Ding, Y. He, Z.-C. Duan, N. Gregersen, M.-C. Chen, S. Unsleber, S. Maier, C. Schneider, M. Kamp, S. Höfling, C.-Y. Lu, and J.-W. Pan, “On-demand single photons with high extraction efficiency and near-unity indistinguishability from a resonantly driven quantum dot in a micropillar,” Phys. Rev. Lett. 116, 020401 (2016).
[Crossref]

Pelton, M.

M. Pelton, C. Santori, J. Vučković, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, “Efficient source of single photons: a single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89, 233602 (2002).
[Crossref]

Perinetti, U.

S. N. Dorenbos, E. M. Reiger, N. Akopian, U. Perinetti, V. Zwiller, T. Zijlstra, and T. M. Klapwijk, “Superconducting single photon detectors with minimized polarization dependence,” Appl. Phys. Lett. 93, 161102 (2008).
[Crossref]

Petroff, P.

N. Akopian, N. Lindner, E. Poem, Y. Berlatzky, J. Avron, D. Gershoni, B. Gerardot, and P. Petroff, “Entangled photon pairs from semiconductor quantum dots,” Phys. Rev. Lett. 96, 130501 (2006).
[Crossref]

Plant, J.

M. Pelton, C. Santori, J. Vučković, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, “Efficient source of single photons: a single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89, 233602 (2002).
[Crossref]

Poem, E.

N. Akopian, N. Lindner, E. Poem, Y. Berlatzky, J. Avron, D. Gershoni, B. Gerardot, and P. Petroff, “Entangled photon pairs from semiconductor quantum dots,” Phys. Rev. Lett. 96, 130501 (2006).
[Crossref]

Rastelli, A.

L. Schweickert, K. D. Jöns, K. D. Zeuner, S. F. Covre da Silva, H. Huang, T. Lettner, M. Reindl, J. Zichi, R. Trotta, A. Rastelli, and V. Zwiller, “On-demand generation of background-free single photons from a solid-state source,” Appl. Phys. Lett. 112, 093106 (2018).
[Crossref]

Redaelli, L.

Reiger, E. M.

S. N. Dorenbos, E. M. Reiger, N. Akopian, U. Perinetti, V. Zwiller, T. Zijlstra, and T. M. Klapwijk, “Superconducting single photon detectors with minimized polarization dependence,” Appl. Phys. Lett. 93, 161102 (2008).
[Crossref]

Reimer, M. E.

M. E. Reimer, G. Bulgarini, N. Akopian, M. Hocevar, M. B. Bavinck, M. A. Verheijen, E. P. Bakkers, L. P. Kouwenhoven, and V. Zwiller, “Bright single-photon sources in bottom-up tailored nanowires,” Nat. Commun. 3, 737 (2012).
[Crossref]

Reindl, M.

L. Schweickert, K. D. Jöns, K. D. Zeuner, S. F. Covre da Silva, H. Huang, T. Lettner, M. Reindl, J. Zichi, R. Trotta, A. Rastelli, and V. Zwiller, “On-demand generation of background-free single photons from a solid-state source,” Appl. Phys. Lett. 112, 093106 (2018).
[Crossref]

Reintjes, J.

Reitzenstein, S.

P. Schnauber, A. Thoma, C. V. Heine, A. Schlehahn, L. Gantz, M. Gschrey, R. Schmidt, C. Hopfmann, B. Wohlfeil, J.-H. Schulze, A. Strittmatter, T. Heindel, S. Rodt, U. Woggon, D. Gershoni, and S. Reitzenstein, “Bright single-photon sources based on anti-reflection coated deterministic quantum dot microlenses,” Technologies 4, 1 (2016).
[Crossref]

Rodt, S.

P. Schnauber, A. Thoma, C. V. Heine, A. Schlehahn, L. Gantz, M. Gschrey, R. Schmidt, C. Hopfmann, B. Wohlfeil, J.-H. Schulze, A. Strittmatter, T. Heindel, S. Rodt, U. Woggon, D. Gershoni, and S. Reitzenstein, “Bright single-photon sources based on anti-reflection coated deterministic quantum dot microlenses,” Technologies 4, 1 (2016).
[Crossref]

Saffman, M.

M. Saffman and T. Walker, “Creating single-atom and single-photon sources from entangled atomic ensembles,” Phys. Rev. A 66, 065403 (2002).
[Crossref]

Santori, C.

M. Pelton, C. Santori, J. Vučković, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, “Efficient source of single photons: a single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89, 233602 (2002).
[Crossref]

Schlehahn, A.

P. Schnauber, A. Thoma, C. V. Heine, A. Schlehahn, L. Gantz, M. Gschrey, R. Schmidt, C. Hopfmann, B. Wohlfeil, J.-H. Schulze, A. Strittmatter, T. Heindel, S. Rodt, U. Woggon, D. Gershoni, and S. Reitzenstein, “Bright single-photon sources based on anti-reflection coated deterministic quantum dot microlenses,” Technologies 4, 1 (2016).
[Crossref]

Schmidt, O. G.

Y. Chen, J. Zhang, M. Zopf, K. Jung, Y. Zhang, R. Keil, F. Ding, and O. G. Schmidt, “Wavelength-tunable entangled photons from silicon-integrated iii-v quantum dots,” Nat. Commun. 7, 10387 (2016).
[Crossref]

Schmidt, R.

P. Schnauber, A. Thoma, C. V. Heine, A. Schlehahn, L. Gantz, M. Gschrey, R. Schmidt, C. Hopfmann, B. Wohlfeil, J.-H. Schulze, A. Strittmatter, T. Heindel, S. Rodt, U. Woggon, D. Gershoni, and S. Reitzenstein, “Bright single-photon sources based on anti-reflection coated deterministic quantum dot microlenses,” Technologies 4, 1 (2016).
[Crossref]

Schnauber, P.

P. Schnauber, A. Thoma, C. V. Heine, A. Schlehahn, L. Gantz, M. Gschrey, R. Schmidt, C. Hopfmann, B. Wohlfeil, J.-H. Schulze, A. Strittmatter, T. Heindel, S. Rodt, U. Woggon, D. Gershoni, and S. Reitzenstein, “Bright single-photon sources based on anti-reflection coated deterministic quantum dot microlenses,” Technologies 4, 1 (2016).
[Crossref]

Schneider, C.

X. Ding, Y. He, Z.-C. Duan, N. Gregersen, M.-C. Chen, S. Unsleber, S. Maier, C. Schneider, M. Kamp, S. Höfling, C.-Y. Lu, and J.-W. Pan, “On-demand single photons with high extraction efficiency and near-unity indistinguishability from a resonantly driven quantum dot in a micropillar,” Phys. Rev. Lett. 116, 020401 (2016).
[Crossref]

Schulze, J.-H.

P. Schnauber, A. Thoma, C. V. Heine, A. Schlehahn, L. Gantz, M. Gschrey, R. Schmidt, C. Hopfmann, B. Wohlfeil, J.-H. Schulze, A. Strittmatter, T. Heindel, S. Rodt, U. Woggon, D. Gershoni, and S. Reitzenstein, “Bright single-photon sources based on anti-reflection coated deterministic quantum dot microlenses,” Technologies 4, 1 (2016).
[Crossref]

Schweickert, L.

L. Schweickert, K. D. Jöns, K. D. Zeuner, S. F. Covre da Silva, H. Huang, T. Lettner, M. Reindl, J. Zichi, R. Trotta, A. Rastelli, and V. Zwiller, “On-demand generation of background-free single photons from a solid-state source,” Appl. Phys. Lett. 112, 093106 (2018).
[Crossref]

Semenov, A.

M. Sidorova, A. Semenov, H.-W. Hübers, I. Charaev, A. Kuzmin, S. Doerner, and M. Siegel, “Physical mechanisms of timing jitter in photon detection by current-carrying superconducting nanowires,” Phys. Rev. B 96, 184504 (2017).
[Crossref]

Sergienko, A. V.

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75, 4337–4341 (1995).
[Crossref]

Shih, Y.

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75, 4337–4341 (1995).
[Crossref]

Sidorova, M.

M. Sidorova, A. Semenov, H.-W. Hübers, I. Charaev, A. Kuzmin, S. Doerner, and M. Siegel, “Physical mechanisms of timing jitter in photon detection by current-carrying superconducting nanowires,” Phys. Rev. B 96, 184504 (2017).
[Crossref]

Siegel, M.

M. Sidorova, A. Semenov, H.-W. Hübers, I. Charaev, A. Kuzmin, S. Doerner, and M. Siegel, “Physical mechanisms of timing jitter in photon detection by current-carrying superconducting nanowires,” Phys. Rev. B 96, 184504 (2017).
[Crossref]

Solomon, G. S.

M. Pelton, C. Santori, J. Vučković, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, “Efficient source of single photons: a single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89, 233602 (2002).
[Crossref]

Steinmetz, V.

I. E. Zadeh, J. W. Los, R. B. Gourgues, V. Steinmetz, G. Bulgarini, S. M. Dobrovolskiy, V. Zwiller, and S. N. Dorenbos, “Single-photon detectors combining high efficiency, high detection rates, and ultra-high timing resolution,” APL Photon. 2, 111301 (2017).
[Crossref]

Strittmatter, A.

P. Schnauber, A. Thoma, C. V. Heine, A. Schlehahn, L. Gantz, M. Gschrey, R. Schmidt, C. Hopfmann, B. Wohlfeil, J.-H. Schulze, A. Strittmatter, T. Heindel, S. Rodt, U. Woggon, D. Gershoni, and S. Reitzenstein, “Bright single-photon sources based on anti-reflection coated deterministic quantum dot microlenses,” Technologies 4, 1 (2016).
[Crossref]

Terai, H.

Thoma, A.

P. Schnauber, A. Thoma, C. V. Heine, A. Schlehahn, L. Gantz, M. Gschrey, R. Schmidt, C. Hopfmann, B. Wohlfeil, J.-H. Schulze, A. Strittmatter, T. Heindel, S. Rodt, U. Woggon, D. Gershoni, and S. Reitzenstein, “Bright single-photon sources based on anti-reflection coated deterministic quantum dot microlenses,” Technologies 4, 1 (2016).
[Crossref]

Thomassin, J.-L.

Trotta, R.

L. Schweickert, K. D. Jöns, K. D. Zeuner, S. F. Covre da Silva, H. Huang, T. Lettner, M. Reindl, J. Zichi, R. Trotta, A. Rastelli, and V. Zwiller, “On-demand generation of background-free single photons from a solid-state source,” Appl. Phys. Lett. 112, 093106 (2018).
[Crossref]

Tu, X.

Q. Chen, B. Zhang, L. Zhang, R. Ge, R. Xu, Y. Wu, X. Tu, X. Jia, L. Kang, J. Chen, and P. Wu, “A 16-pixel NBN nanowire single photon detector coupled with 300  micrometer fiber,” arXiv:1811.09779 (2018).

Unsleber, S.

X. Ding, Y. He, Z.-C. Duan, N. Gregersen, M.-C. Chen, S. Unsleber, S. Maier, C. Schneider, M. Kamp, S. Höfling, C.-Y. Lu, and J.-W. Pan, “On-demand single photons with high extraction efficiency and near-unity indistinguishability from a resonantly driven quantum dot in a micropillar,” Phys. Rev. Lett. 116, 020401 (2016).
[Crossref]

Verheijen, M. A.

M. E. Reimer, G. Bulgarini, N. Akopian, M. Hocevar, M. B. Bavinck, M. A. Verheijen, E. P. Bakkers, L. P. Kouwenhoven, and V. Zwiller, “Bright single-photon sources in bottom-up tailored nanowires,” Nat. Commun. 3, 737 (2012).
[Crossref]

Vuckovic, J.

M. Pelton, C. Santori, J. Vučković, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, “Efficient source of single photons: a single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89, 233602 (2002).
[Crossref]

Walker, T.

M. Saffman and T. Walker, “Creating single-atom and single-photon sources from entangled atomic ensembles,” Phys. Rev. A 66, 065403 (2002).
[Crossref]

Wan, C.

L. Zhang, C. Wan, M. Gu, R. Xu, S. Zhang, L. Kang, J. Chen, and P. Wu, “Dual-lens beam compression for optical coupling in superconducting nanowire single-photon detectors,” Sci. Bull. 60(16), 1434–1438 (2015).
[Crossref]

L. Zhang, M. Gu, T. Jia, R. Xu, C. Wan, L. Kang, J. Chen, and P. Wu, “Multimode fiber coupled superconductor nanowire single-photon detector,” IEEE Photon. J. 6, 6802608 (2014).
[Crossref]

Wang, H.

Wang, Y.

C. Lv, H. Zhou, H. Li, L. You, X. Liu, Y. Wang, W. Zhang, S. Chen, Z. Wang, and X. Xie, “Large active area superconducting single-nanowire photon detector with a 100  µm diameter,” Supercond. Sci. Technol. 30, 115018 (2017).
[Crossref]

Wang, Z.

Weinfurter, H.

C. Kurtsiefer, S. Mayer, P. Zarda, and H. Weinfurter, “Stable solid-state source of single photons,” Phys. Rev. Lett. 85, 290–293 (2000).
[Crossref]

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75, 4337–4341 (1995).
[Crossref]

Woggon, U.

P. Schnauber, A. Thoma, C. V. Heine, A. Schlehahn, L. Gantz, M. Gschrey, R. Schmidt, C. Hopfmann, B. Wohlfeil, J.-H. Schulze, A. Strittmatter, T. Heindel, S. Rodt, U. Woggon, D. Gershoni, and S. Reitzenstein, “Bright single-photon sources based on anti-reflection coated deterministic quantum dot microlenses,” Technologies 4, 1 (2016).
[Crossref]

Wohlfeil, B.

P. Schnauber, A. Thoma, C. V. Heine, A. Schlehahn, L. Gantz, M. Gschrey, R. Schmidt, C. Hopfmann, B. Wohlfeil, J.-H. Schulze, A. Strittmatter, T. Heindel, S. Rodt, U. Woggon, D. Gershoni, and S. Reitzenstein, “Bright single-photon sources based on anti-reflection coated deterministic quantum dot microlenses,” Technologies 4, 1 (2016).
[Crossref]

Wu, G.

J. Zhu, Y. Chen, L. Zhang, X. Jia, Z. Feng, G. Wu, X. Yan, J. Zhai, Y. Wu, Q. Chen, and X. Zhou, “Demonstration of measuring sea fog with an SNSPD-based lidar system,” Sci. Rep. 7, 15113 (2017).
[Crossref]

Wu, J.

Wu, P.

L. Zhang, C. Wan, M. Gu, R. Xu, S. Zhang, L. Kang, J. Chen, and P. Wu, “Dual-lens beam compression for optical coupling in superconducting nanowire single-photon detectors,” Sci. Bull. 60(16), 1434–1438 (2015).
[Crossref]

L. Zhang, M. Gu, T. Jia, R. Xu, C. Wan, L. Kang, J. Chen, and P. Wu, “Multimode fiber coupled superconductor nanowire single-photon detector,” IEEE Photon. J. 6, 6802608 (2014).
[Crossref]

Q. Chen, B. Zhang, L. Zhang, R. Ge, R. Xu, Y. Wu, X. Tu, X. Jia, L. Kang, J. Chen, and P. Wu, “A 16-pixel NBN nanowire single photon detector coupled with 300  micrometer fiber,” arXiv:1811.09779 (2018).

Wu, Y.

J. Zhu, Y. Chen, L. Zhang, X. Jia, Z. Feng, G. Wu, X. Yan, J. Zhai, Y. Wu, Q. Chen, and X. Zhou, “Demonstration of measuring sea fog with an SNSPD-based lidar system,” Sci. Rep. 7, 15113 (2017).
[Crossref]

Q. Chen, B. Zhang, L. Zhang, R. Ge, R. Xu, Y. Wu, X. Tu, X. Jia, L. Kang, J. Chen, and P. Wu, “A 16-pixel NBN nanowire single photon detector coupled with 300  micrometer fiber,” arXiv:1811.09779 (2018).

Xie, X.

Xu, R.

L. Zhang, C. Wan, M. Gu, R. Xu, S. Zhang, L. Kang, J. Chen, and P. Wu, “Dual-lens beam compression for optical coupling in superconducting nanowire single-photon detectors,” Sci. Bull. 60(16), 1434–1438 (2015).
[Crossref]

L. Zhang, M. Gu, T. Jia, R. Xu, C. Wan, L. Kang, J. Chen, and P. Wu, “Multimode fiber coupled superconductor nanowire single-photon detector,” IEEE Photon. J. 6, 6802608 (2014).
[Crossref]

Q. Chen, B. Zhang, L. Zhang, R. Ge, R. Xu, Y. Wu, X. Tu, X. Jia, L. Kang, J. Chen, and P. Wu, “A 16-pixel NBN nanowire single photon detector coupled with 300  micrometer fiber,” arXiv:1811.09779 (2018).

Yamamoto, Y.

M. Pelton, C. Santori, J. Vučković, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, “Efficient source of single photons: a single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89, 233602 (2002).
[Crossref]

Yamashita, T.

Yan, X.

J. Zhu, Y. Chen, L. Zhang, X. Jia, Z. Feng, G. Wu, X. Yan, J. Zhai, Y. Wu, Q. Chen, and X. Zhou, “Demonstration of measuring sea fog with an SNSPD-based lidar system,” Sci. Rep. 7, 15113 (2017).
[Crossref]

Yang, X.

Yong, W.

You, L.

Zadeh, I. E.

I. E. Zadeh, J. W. Los, R. B. Gourgues, V. Steinmetz, G. Bulgarini, S. M. Dobrovolskiy, V. Zwiller, and S. N. Dorenbos, “Single-photon detectors combining high efficiency, high detection rates, and ultra-high timing resolution,” APL Photon. 2, 111301 (2017).
[Crossref]

I. E. Zadeh, J. W. Los, R. Gourgues, G. Bulgarini, S. M. Dobrovolskiy, V. Zwiller, and S. N. Dorenbos, “A single-photon detector with high efficiency and sub-10  ps time resolution,” arXiv:1801.06574 (2018).

Zarda, P.

C. Kurtsiefer, S. Mayer, P. Zarda, and H. Weinfurter, “Stable solid-state source of single photons,” Phys. Rev. Lett. 85, 290–293 (2000).
[Crossref]

Zeilinger, A.

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75, 4337–4341 (1995).
[Crossref]

Zeuner, K. D.

L. Schweickert, K. D. Jöns, K. D. Zeuner, S. F. Covre da Silva, H. Huang, T. Lettner, M. Reindl, J. Zichi, R. Trotta, A. Rastelli, and V. Zwiller, “On-demand generation of background-free single photons from a solid-state source,” Appl. Phys. Lett. 112, 093106 (2018).
[Crossref]

Zhai, J.

J. Zhu, Y. Chen, L. Zhang, X. Jia, Z. Feng, G. Wu, X. Yan, J. Zhai, Y. Wu, Q. Chen, and X. Zhou, “Demonstration of measuring sea fog with an SNSPD-based lidar system,” Sci. Rep. 7, 15113 (2017).
[Crossref]

Zhang, B.

M. Pelton, C. Santori, J. Vučković, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, “Efficient source of single photons: a single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89, 233602 (2002).
[Crossref]

Q. Chen, B. Zhang, L. Zhang, R. Ge, R. Xu, Y. Wu, X. Tu, X. Jia, L. Kang, J. Chen, and P. Wu, “A 16-pixel NBN nanowire single photon detector coupled with 300  micrometer fiber,” arXiv:1811.09779 (2018).

Zhang, J.

Y. Chen, J. Zhang, M. Zopf, K. Jung, Y. Zhang, R. Keil, F. Ding, and O. G. Schmidt, “Wavelength-tunable entangled photons from silicon-integrated iii-v quantum dots,” Nat. Commun. 7, 10387 (2016).
[Crossref]

Zhang, L.

H. Wang, H. Li, L. You, P. Hu, X. Zhang, W. Yong, W. Zhang, X. Yang, L. Zhang, H. Zhou, and Z. Wang, “Large-area multispectral superconducting nanowire single-photon detector,” Appl. Opt. 58, 8148–8152 (2019).
[Crossref]

J. Zhu, Y. Chen, L. Zhang, X. Jia, Z. Feng, G. Wu, X. Yan, J. Zhai, Y. Wu, Q. Chen, and X. Zhou, “Demonstration of measuring sea fog with an SNSPD-based lidar system,” Sci. Rep. 7, 15113 (2017).
[Crossref]

L. Zhang, C. Wan, M. Gu, R. Xu, S. Zhang, L. Kang, J. Chen, and P. Wu, “Dual-lens beam compression for optical coupling in superconducting nanowire single-photon detectors,” Sci. Bull. 60(16), 1434–1438 (2015).
[Crossref]

H. Li, L. Zhang, L. You, X. Yang, W. Zhang, X. Liu, S. Chen, Z. Wang, and X. Xie, “Large-sensitive-area superconducting nanowire single-photon detector at 850  nm with high detection efficiency,” Opt. Express 23, 17301–17308 (2015).
[Crossref]

L. Zhang, M. Gu, T. Jia, R. Xu, C. Wan, L. Kang, J. Chen, and P. Wu, “Multimode fiber coupled superconductor nanowire single-photon detector,” IEEE Photon. J. 6, 6802608 (2014).
[Crossref]

Q. Chen, B. Zhang, L. Zhang, R. Ge, R. Xu, Y. Wu, X. Tu, X. Jia, L. Kang, J. Chen, and P. Wu, “A 16-pixel NBN nanowire single photon detector coupled with 300  micrometer fiber,” arXiv:1811.09779 (2018).

Zhang, S.

L. Zhang, C. Wan, M. Gu, R. Xu, S. Zhang, L. Kang, J. Chen, and P. Wu, “Dual-lens beam compression for optical coupling in superconducting nanowire single-photon detectors,” Sci. Bull. 60(16), 1434–1438 (2015).
[Crossref]

Zhang, W.

Zhang, X.

Zhang, Y.

Y. Chen, J. Zhang, M. Zopf, K. Jung, Y. Zhang, R. Keil, F. Ding, and O. G. Schmidt, “Wavelength-tunable entangled photons from silicon-integrated iii-v quantum dots,” Nat. Commun. 7, 10387 (2016).
[Crossref]

Zhao, Q.-Y.

N. Calandri, Q.-Y. Zhao, D. Zhu, A. Dane, and K. K. Berggren, “Superconducting nanowire detector jitter limited by detector geometry,” Appl. Phys. Lett. 109, 152601 (2016).
[Crossref]

Zhou, H.

H. Wang, H. Li, L. You, P. Hu, X. Zhang, W. Yong, W. Zhang, X. Yang, L. Zhang, H. Zhou, and Z. Wang, “Large-area multispectral superconducting nanowire single-photon detector,” Appl. Opt. 58, 8148–8152 (2019).
[Crossref]

C. Lv, H. Zhou, H. Li, L. You, X. Liu, Y. Wang, W. Zhang, S. Chen, Z. Wang, and X. Xie, “Large active area superconducting single-nanowire photon detector with a 100  µm diameter,” Supercond. Sci. Technol. 30, 115018 (2017).
[Crossref]

Zhou, X.

J. Zhu, Y. Chen, L. Zhang, X. Jia, Z. Feng, G. Wu, X. Yan, J. Zhai, Y. Wu, Q. Chen, and X. Zhou, “Demonstration of measuring sea fog with an SNSPD-based lidar system,” Sci. Rep. 7, 15113 (2017).
[Crossref]

Zhu, D.

N. Calandri, Q.-Y. Zhao, D. Zhu, A. Dane, and K. K. Berggren, “Superconducting nanowire detector jitter limited by detector geometry,” Appl. Phys. Lett. 109, 152601 (2016).
[Crossref]

Zhu, J.

J. Zhu, Y. Chen, L. Zhang, X. Jia, Z. Feng, G. Wu, X. Yan, J. Zhai, Y. Wu, Q. Chen, and X. Zhou, “Demonstration of measuring sea fog with an SNSPD-based lidar system,” Sci. Rep. 7, 15113 (2017).
[Crossref]

Zichi, J.

Zijlstra, T.

S. N. Dorenbos, E. M. Reiger, N. Akopian, U. Perinetti, V. Zwiller, T. Zijlstra, and T. M. Klapwijk, “Superconducting single photon detectors with minimized polarization dependence,” Appl. Phys. Lett. 93, 161102 (2008).
[Crossref]

Zopf, M.

Y. Chen, J. Zhang, M. Zopf, K. Jung, Y. Zhang, R. Keil, F. Ding, and O. G. Schmidt, “Wavelength-tunable entangled photons from silicon-integrated iii-v quantum dots,” Nat. Commun. 7, 10387 (2016).
[Crossref]

Zou, K.

Zwiller, V.

A. Mukhtarova, L. Redaelli, D. Hazra, H. Machhadani, S. Lequien, M. Hofheinz, J.-L. Thomassin, F. Gustavo, J. Zichi, V. Zwiller, and E. Monroy, “Polarization-insensitive fiber-coupled superconducting-nanowire single photon detector using a high-index dielectric capping layer,” Opt. Express 26, 17697–17704 (2018).
[Crossref]

X. Chi, K. Zou, C. Gu, J. Zichi, Y. Cheng, N. Hu, X. Lan, S. Chen, Z. Lin, V. Zwiller, and X. Hu, “Fractal superconducting nanowire single-photon detectors with reduced polarization sensitivity,” Opt. Lett. 43, 5017–5020 (2018).
[Crossref]

L. Schweickert, K. D. Jöns, K. D. Zeuner, S. F. Covre da Silva, H. Huang, T. Lettner, M. Reindl, J. Zichi, R. Trotta, A. Rastelli, and V. Zwiller, “On-demand generation of background-free single photons from a solid-state source,” Appl. Phys. Lett. 112, 093106 (2018).
[Crossref]

I. E. Zadeh, J. W. Los, R. B. Gourgues, V. Steinmetz, G. Bulgarini, S. M. Dobrovolskiy, V. Zwiller, and S. N. Dorenbos, “Single-photon detectors combining high efficiency, high detection rates, and ultra-high timing resolution,” APL Photon. 2, 111301 (2017).
[Crossref]

L. Redaelli, V. Zwiller, E. Monroy, and J. Gérard, “Design of polarization-insensitive superconducting single photon detectors with high-index dielectrics,” Supercond. Sci. Technol. 30, 035005 (2017).
[Crossref]

M. E. Reimer, G. Bulgarini, N. Akopian, M. Hocevar, M. B. Bavinck, M. A. Verheijen, E. P. Bakkers, L. P. Kouwenhoven, and V. Zwiller, “Bright single-photon sources in bottom-up tailored nanowires,” Nat. Commun. 3, 737 (2012).
[Crossref]

S. N. Dorenbos, E. M. Reiger, N. Akopian, U. Perinetti, V. Zwiller, T. Zijlstra, and T. M. Klapwijk, “Superconducting single photon detectors with minimized polarization dependence,” Appl. Phys. Lett. 93, 161102 (2008).
[Crossref]

I. E. Zadeh, J. W. Los, R. Gourgues, G. Bulgarini, S. M. Dobrovolskiy, V. Zwiller, and S. N. Dorenbos, “A single-photon detector with high efficiency and sub-10  ps time resolution,” arXiv:1801.06574 (2018).

APL Photon. (1)

I. E. Zadeh, J. W. Los, R. B. Gourgues, V. Steinmetz, G. Bulgarini, S. M. Dobrovolskiy, V. Zwiller, and S. N. Dorenbos, “Single-photon detectors combining high efficiency, high detection rates, and ultra-high timing resolution,” APL Photon. 2, 111301 (2017).
[Crossref]

Appl. Opt. (2)

Appl. Phys. Lett. (4)

S. N. Dorenbos, E. M. Reiger, N. Akopian, U. Perinetti, V. Zwiller, T. Zijlstra, and T. M. Klapwijk, “Superconducting single photon detectors with minimized polarization dependence,” Appl. Phys. Lett. 93, 161102 (2008).
[Crossref]

Y. Cheng, C. Gu, and X. Hu, “Inhomogeneity-induced timing jitter of superconducting nanowire single-photon detectors,” Appl. Phys. Lett. 111, 062604 (2017).
[Crossref]

N. Calandri, Q.-Y. Zhao, D. Zhu, A. Dane, and K. K. Berggren, “Superconducting nanowire detector jitter limited by detector geometry,” Appl. Phys. Lett. 109, 152601 (2016).
[Crossref]

L. Schweickert, K. D. Jöns, K. D. Zeuner, S. F. Covre da Silva, H. Huang, T. Lettner, M. Reindl, J. Zichi, R. Trotta, A. Rastelli, and V. Zwiller, “On-demand generation of background-free single photons from a solid-state source,” Appl. Phys. Lett. 112, 093106 (2018).
[Crossref]

IEEE Photon. J. (1)

L. Zhang, M. Gu, T. Jia, R. Xu, C. Wan, L. Kang, J. Chen, and P. Wu, “Multimode fiber coupled superconductor nanowire single-photon detector,” IEEE Photon. J. 6, 6802608 (2014).
[Crossref]

Nat. Commun. (2)

Y. Chen, J. Zhang, M. Zopf, K. Jung, Y. Zhang, R. Keil, F. Ding, and O. G. Schmidt, “Wavelength-tunable entangled photons from silicon-integrated iii-v quantum dots,” Nat. Commun. 7, 10387 (2016).
[Crossref]

M. E. Reimer, G. Bulgarini, N. Akopian, M. Hocevar, M. B. Bavinck, M. A. Verheijen, E. P. Bakkers, L. P. Kouwenhoven, and V. Zwiller, “Bright single-photon sources in bottom-up tailored nanowires,” Nat. Commun. 3, 737 (2012).
[Crossref]

Nature (1)

B. Lounis and W. E. Moerner, “Single photons on demand from a single molecule at room temperature,” Nature 407, 491 (2000).
[Crossref]

Opt. Express (3)

Opt. Lett. (2)

Phys. Rev. A (1)

M. Saffman and T. Walker, “Creating single-atom and single-photon sources from entangled atomic ensembles,” Phys. Rev. A 66, 065403 (2002).
[Crossref]

Phys. Rev. B (1)

M. Sidorova, A. Semenov, H.-W. Hübers, I. Charaev, A. Kuzmin, S. Doerner, and M. Siegel, “Physical mechanisms of timing jitter in photon detection by current-carrying superconducting nanowires,” Phys. Rev. B 96, 184504 (2017).
[Crossref]

Phys. Rev. Lett. (5)

X. Ding, Y. He, Z.-C. Duan, N. Gregersen, M.-C. Chen, S. Unsleber, S. Maier, C. Schneider, M. Kamp, S. Höfling, C.-Y. Lu, and J.-W. Pan, “On-demand single photons with high extraction efficiency and near-unity indistinguishability from a resonantly driven quantum dot in a micropillar,” Phys. Rev. Lett. 116, 020401 (2016).
[Crossref]

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75, 4337–4341 (1995).
[Crossref]

C. Kurtsiefer, S. Mayer, P. Zarda, and H. Weinfurter, “Stable solid-state source of single photons,” Phys. Rev. Lett. 85, 290–293 (2000).
[Crossref]

M. Pelton, C. Santori, J. Vučković, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, “Efficient source of single photons: a single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89, 233602 (2002).
[Crossref]

N. Akopian, N. Lindner, E. Poem, Y. Berlatzky, J. Avron, D. Gershoni, B. Gerardot, and P. Petroff, “Entangled photon pairs from semiconductor quantum dots,” Phys. Rev. Lett. 96, 130501 (2006).
[Crossref]

Sci. Bull. (1)

L. Zhang, C. Wan, M. Gu, R. Xu, S. Zhang, L. Kang, J. Chen, and P. Wu, “Dual-lens beam compression for optical coupling in superconducting nanowire single-photon detectors,” Sci. Bull. 60(16), 1434–1438 (2015).
[Crossref]

Sci. Rep. (1)

J. Zhu, Y. Chen, L. Zhang, X. Jia, Z. Feng, G. Wu, X. Yan, J. Zhai, Y. Wu, Q. Chen, and X. Zhou, “Demonstration of measuring sea fog with an SNSPD-based lidar system,” Sci. Rep. 7, 15113 (2017).
[Crossref]

Supercond. Sci. Technol. (2)

C. Lv, H. Zhou, H. Li, L. You, X. Liu, Y. Wang, W. Zhang, S. Chen, Z. Wang, and X. Xie, “Large active area superconducting single-nanowire photon detector with a 100  µm diameter,” Supercond. Sci. Technol. 30, 115018 (2017).
[Crossref]

L. Redaelli, V. Zwiller, E. Monroy, and J. Gérard, “Design of polarization-insensitive superconducting single photon detectors with high-index dielectrics,” Supercond. Sci. Technol. 30, 035005 (2017).
[Crossref]

Technologies (1)

P. Schnauber, A. Thoma, C. V. Heine, A. Schlehahn, L. Gantz, M. Gschrey, R. Schmidt, C. Hopfmann, B. Wohlfeil, J.-H. Schulze, A. Strittmatter, T. Heindel, S. Rodt, U. Woggon, D. Gershoni, and S. Reitzenstein, “Bright single-photon sources based on anti-reflection coated deterministic quantum dot microlenses,” Technologies 4, 1 (2016).
[Crossref]

Other (2)

Q. Chen, B. Zhang, L. Zhang, R. Ge, R. Xu, Y. Wu, X. Tu, X. Jia, L. Kang, J. Chen, and P. Wu, “A 16-pixel NBN nanowire single photon detector coupled with 300  micrometer fiber,” arXiv:1811.09779 (2018).

I. E. Zadeh, J. W. Los, R. Gourgues, G. Bulgarini, S. M. Dobrovolskiy, V. Zwiller, and S. N. Dorenbos, “A single-photon detector with high efficiency and sub-10  ps time resolution,” arXiv:1801.06574 (2018).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1. (a) Scanning electron microscopy images of a 20 µm diameter SNSPD (left) and 50 µm diameter SNSPD (right). System detection efficiency measurement with two different setups: (b) SM fiber setup and (c) MM fiber setup.
Fig. 2.
Fig. 2. Simulated reflectivity of (a) $ {\rm Aluminum}/{{\rm SiO}_2} $ cavity for visible wavelength, (b) DBR for 900 nm, and (c) DBR for 1550 nm wavelength.
Fig. 3.
Fig. 3. (a) SDE of 25/50 µm diameter SNSPD at 516 nm, (b) SDE of a 20 µm diameter SNSPD at 878 nm, and (c) SDE of a 20 µm diameter SNSPD at 1550 nm.
Fig. 4.
Fig. 4. Jitter measurement of (a) 20 µm diameter SNSPD with step-index MM fiber/room-temperature amplifier, (b) 20 µm diameter SNSPD with graded-index MM fiber/cryogenic amplifier, (c) 50 µm diameter SNSPD with SM fiber plugged tightly/cryogenic amplifier, and (d) 50 µm diameter SNSPD with SM fiber unplugged from detector/cryogenic amplifier.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

b 2 a 2 = 11.5 ( p s ) .

Metrics