Abstract

The incorporation of materials with controllable electromagnetic constitutive parameters allows the conceptualization and realization of controllable metasurfaces. With the aim of formulating and investigating a tricontrollable metasurface for efficiently absorbing terahertz radiation, we adopted a pixel-based approach in which the meta-atoms are biperiodic assemblies of discrete pixels. We patched some pixels with indium antimonide (InSb) and some with graphene, leaving the others unpatched. The bottom of each meta-atom was taken to comprise a metal-backed substrate of silicon nitride. The InSb-patched pixels facilitate the thermal and magnetic control modalities, whereas the graphene-patched pixels facilitate the electrical control modality. With proper configuration of patched and unpatched pixels, and with proper selection of the patching material for each patched pixel, the absorptance spectra of the pixelated metasurface were found to contain peak-shaped features with maximum absorptance exceeding 0.95, full-width-at-half-maximum bandwidth of less than 0.7 THz, and maximum-absorptance frequency lying between 2 THz and 4 THz. The location of the maximum-absorptance frequency can be thermally, magnetically, and electrically controllable. The lack of rotational invariance of the optimal meta-atom adds mechanical rotation as the fourth control modality.

© 2019 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Graphene pixel-based polarization-insensitive metasurface for almost perfect and wideband terahertz absorption

Pankaj Kumar, Akhlesh Lakhtakia, and Pradip K. Jain
J. Opt. Soc. Am. B 36(8) F84-F88 (2019)

Experimental realization of a terahertz all-dielectric metasurface absorber

Xinyu Liu, Kebin Fan, Ilya V. Shadrivov, and Willie J. Padilla
Opt. Express 25(1) 191-201 (2017)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (9)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (11)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription