Abstract

Temperature is an important parameter for characterizing chemical, physical, and flow processes occurring in combustion environments. Laser-induced breakdown is a process widely used to determine a material’s elemental components and its composition, known as laser-induced breakdown spectroscopy (LIBS). The breakdown event, or more specifically the breakdown threshold, for a low-pressure gas strongly depends on density effects emanating in the likelihood for multiphoton and avalanche ionization. In this work, a comparison of thermometry techniques using laser-induced breakdown is made and an approach to perform simultaneous gas-phase thermometry on a shot-to-shot basis and spectroscopy is demonstrated by monitoring the moment in time the thermal plasma develops along the intensity gradient of a laser pulse. Breakdown thresholds are profiled along the height of a lean methane-air and partially combusting rich propane-air McKenna flame, and correlated to radiation and convection-corrected thermocouple readings.

© 2019 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Comparison of nonintensified and intensified CCD detectors for laser-induced breakdown spectroscopy

Jorge E. Carranza, Emily Gibb, Ben W. Smith, David W. Hahn, and James D. Winefordner
Appl. Opt. 42(30) 6016-6021 (2003)

Movable fiber probe for gas-phase laser-induced breakdown spectroscopy

Cosmin E. Dumitrescu, Paulius V. Puzinauskas, and Semih Olcmen
Appl. Opt. 47(31) G88-G98 (2008)

Laser-induced breakdown spectroscopy of alkali metals in high-temperature gas

Alejandro Molina, Peter M. Walsh, Christopher R. Shaddix, Shane M. Sickafoose, and Linda G. Blevins
Appl. Opt. 45(18) 4411-4423 (2006)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (10)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (2)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription