Abstract

A temperature sensor based on a multimode interference thermometer is designed and fabricated. The operation mechanism is based on the thermal expansion of a specific volume of ethylene glycol contained in a glass bulb that is connected to a capillary of the same material, with a no-core fiber (NCF) inserted and centered into the capillary tube. As the temperature is increased, the liquid is expanded, and the NCF is gradually covered by the liquid, resulting in a peak wavelength shift that is correlated to the temperature variations. A sensitivity of 0.4447 nm/°C and highly linear response with an R2 of 0.99962 are obtained. The advantage of this configuration is that the sensing temperature range can be adjusted by changing either the inner diameter of the capillary tube or the bulb volume. We can also measure negative temperatures by simply modifying the freezing point of the liquid, which demonstrates the viability of the sensor for many applications.

© 2019 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Ultrahigh-sensitivity temperature fiber sensor based on multimode interference

Susana Silva, Edwin G. P. Pachon, Marcos A. R. Franco, Juliano G. Hayashi, F. Xavier Malcata, Orlando Frazão, Pedro Jorge, and Cristiano M. B. Cordeiro
Appl. Opt. 51(16) 3236-3242 (2012)

Compact optical fiber temperature sensor with high sensitivity based on liquid-filled silica capillary tube

Yu Mao, Yuxi Zhang, Ruikai Xue, Yi Liu, Kunjian Cao, and Shiliang Qu
Appl. Opt. 57(5) 1061-1066 (2018)

Highly sensitive displacement sensor based on composite interference established within a balloon-shaped bent multimode fiber structure

Ke Tian, Gerald Farrell, Xianfan Wang, Elfed Lewis, and Pengfei Wang
Appl. Opt. 57(32) 9662-9668 (2018)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (3)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription