Abstract

In this paper, a plasmonically induced transparency (PIT)-like phenomenon in a metasurface composed of a periodic graphene ring and ribbon arrays is studied in the terahertz region. We used the Lorentz oscillator model to analyze the metasurface physically and theoretically. This PIT-like effect can be tuned by alternation of the chemical potential and dimension of the nano-graphene ring and ribbon. The resonance frequency of the PIT-like phenomenon is not sensitive to the incident lightwave angle. As an application of the structure, a refractive index sensor is proposed and simulated. Furthermore, we propose a metasurface composed of a double ring and graphene ribbon to realize the PIT-like effect with three dips. Our results express an appropriate approach for the expansion of mid-infrared absorbers and sensors.

© 2019 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Dynamically tunable plasmonically induced transparency in sinusoidally curved and planar graphene layers

Sheng-Xuan Xia, Xiang Zhai, Ling-Ling Wang, Bin Sun, Jian-Qiang Liu, and Shuang-Chun Wen
Opt. Express 24(16) 17886-17899 (2016)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (8)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (3)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (4)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription