Abstract

Herein, we present a tunable multifunctional reflection polarizer, based on a graphene metasurface, which is composed of an array of cross double-ellipse graphene patches. A dual band of linear-to-linear (LTL) polarization conversions is achieved due to the superimposition of the two reflection components with a near 0° or 180° phase difference, in the mid-infrared region. By carefully choosing the parameters, linear-to-circular polarization conversion and broadband of LTL polarization conversion (about 0.7 THz) are also realized. Also, the tunable responses of the proposed reflection polarizer are discussed under a different Fermi energy and electron scattering time. It is believed that our proposed polarizer can be widely used for multifunctional and tunable polarization conversion.

© 2019 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Triple-band cross-polarization converter based on an ultra-thin graphene-integrated metasurface

Zhifei Yao, Yueke Wang, Mengjia Lu, and Chunyang Zhang
J. Opt. Soc. Am. B 36(1) 7-11 (2019)

Ultra-thin and high-efficiency graphene metasurface for tunable terahertz wave manipulation

Zhen Liu and Benfeng Bai
Opt. Express 25(8) 8584-8592 (2017)

Ultra-wideband high-efficiency reflective linear-to-circular polarization converter based on metasurface at terahertz frequencies

Yannan Jiang, Lei Wang, Jiao Wang, Charles Nwakanma Akwuruoha, and Weiping Cao
Opt. Express 25(22) 27616-27623 (2017)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (8)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription