Abstract

The monocrystalline silicon wafer is the key material for micro-electro–mechanical systems. The performance of these wafers depends on their surface and subsurface quality. This research aims to study the effect of process parameters on the reduction ratio rate in surface roughness (%ΔR˙) of monocrystalline silicon wafers during the magnetic abrasive finishing process using response surface methodology. The parameters studied are machining gap, rotational speed, abrasive size, and magnetic abrasive particle (MAP) size. Quadratic models are developed by applying Box–Behnken design. Also, experiments are carried out on the silicon wafer, and the results of surface roughness data are analyzed by using analysis of variance. The most significant factor on each experimental design response is identified. According to our findings, the maximum %ΔR˙ value and the best surface roughness of the silicon wafer achieve 3.70 and 31 nm, respectively. Furthermore, the material removal mechanism in wafers is investigated by using atomic force microscopy. Our observations show that both micro-fracture and micro-cutting mechanisms might happen, and it highly depends on polishing parameters.

© 2019 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Nano-finishing of BK7 optical glass using magnetic abrasive finishing process

Farzad Pashmforoush and Abdolreza Rahimi
Appl. Opt. 54(9) 2199-2207 (2015)

Mathematical modeling of surface roughness in magnetic abrasive finishing of BK7 optical glass

Farzad Pashmforoush, Abdolreza Rahimi, and Mehdi Kazemi
Appl. Opt. 54(28) 8275-8281 (2015)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (8)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (5)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (3)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription