Abstract

In this study we report the development of a novel viral pathogen immunosensor technology based on the electrochemical modulation of the optical signal from a surface plasmon wave interacting with a redox dye reporter. The device is formed by incorporating a sandwich immunoassay onto the surface of a plasmonic device mounted in a micro-electrochemical flow cell, where it is functionalized with a monoclonal antibody aimed to a specific target pathogen antigen. Once the target antigen is bound to the surface, it promotes the capturing of a secondary polyclonal antibody that has been conjugated with a redox-active methylene blue dye. The methylene blue displays a reversible change in the complex refractive index throughout a reduction-oxidation transition, which generates an optical signal that can be electrochemically modulated and detected at high sensitivity. For proof-of-principle measurements, we have targeted the hemagglutinin protein from the H5N1 avian influenza A virus to demonstrate the capabilities of our device for detection and quantification of a critical influenza antigen. Our experimental results of the EC-SPR-based immunosensor under potential modulation showed a 300 pM limit of detection for the H5N1 antigen.

© 2019 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Influenza virus immunosensor with an electro-active optical waveguide under potential modulation

Jafar H. Ghithan, Monica Moreno, Guilherme Sombrio, Rajat Chauhan, Martin G. O’Toole, and Sergio B. Mendes
Opt. Lett. 42(7) 1205-1208 (2017)

Integration of Faradaic electrochemical impedance spectroscopy into a scalable surface plasmon biosensor for in tandem detection

Brandon Hong, Alexander Sun, Lin Pang, A. G. Venkatesh, Drew Hall, and Yeshaiahu Fainman
Opt. Express 23(23) 30237-30249 (2015)

Sensitive DNA biosensor based on a long-period grating formed on the side-polished fiber surface

Hyun Soo Jang, Kwang No Park, Jun P. Kim, Sang Jun Sim, Oh J. Kwon, Young-Geun Han, and Kyung Shik Lee
Opt. Express 17(5) 3855-3860 (2009)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription