Abstract

In this paper, we propose a theoretical study dedicated to the assessment of plasma current measurement in magnetic confinement fusion reactors using a polarization optical time-domain reflectometer (POTDR) setup with a low-birefringence fiber used as the sensing fiber. We consider the general case of a non-uniform magnetic-field distribution along the sensing fiber. The numerical simulations, based on Jones formalism taking into account the OTDR noise, provide the measurement error as a function of the plasma current. The measurement performance is evaluated for an ITER-relevant sensor configuration. We demonstrate that a signal-to-noise ratio of 6 dB, achievable in modern POTDRs, allows us to comply with the ITER requirements for plasma currents from 0 to 1 MA, while for the 1 to 20 MA range, the level is relaxed to 4 dB.

© 2019 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Simulation of vibration-induced effect on plasma current measurement using a fiber optic current sensor

Frédéric Descamps, Matthieu Aerssens, Andrei Gusarov, Patrice Mégret, Vincent Massaut, and Marc Wuilpart
Opt. Express 22(12) 14666-14680 (2014)

Influence of the optical fiber type on the performances of fiber-optics current sensor dedicated to plasma current measurement in ITER

Matthieu Aerssens, Frédéric Descamps, Andrei Gusarov, Patrice Mégret, Philippe Moreau, and Marc Wuilpart
Appl. Opt. 54(19) 5983-5991 (2015)

Fiber-optic dosimeter based on radiation-induced attenuation in P-doped fiber: suppression of post-irradiation fading by using two working wavelengths in visible range

Alexander L. Tomashuk, Mikhail V. Grekov, Sergei A. Vasiliev, and Vyacheslav V. Svetukhin
Opt. Express 22(14) 16778-16783 (2014)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (10)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (16)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription