Abstract

Targeting star-like water surface clutter, a clutter suppression method based on infrared polarization information is proposed. First, the clutter is suppressed from a global perspective using infrared polarization imaging technology, and a basic clutter-suppressed image is obtained. Then, using the Reed–Xiaoli anomaly detection algorithm, the remaining clutter positions in the basic image are determined from the polarization intensity image and basic image. Finally, an image filtering algorithm is utilized to further suppress the remaining clutter in the basic image. In experiments, the proposed method can not only improve the signal-to-clutter ratio as much as 152%, but also preserve the target information and background texture features effectively, indicating clear superiority of our method over existing clutter suppression algorithms. Clutter suppression and target detail preservation can enhance observer understanding of a scene significantly, so this method is applied to the detection and recognition of targets on the water surface.

© 2018 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Sea surface clutter suppression method based on time-domain polarization characteristics of sun glint

Jian-An Liang, Xia Wang, Si He, and Wei-Qi Jin
Opt. Express 27(3) 2142-2158 (2019)

Adaptive target detection with a polarization-sensitive optical system

Lingfei Meng and John P. Kerekes
Appl. Opt. 50(13) 1925-1932 (2011)

Directional support value of Gaussian transformation for infrared small target detection

Changcai Yang, Jiayi Ma, Shengxiang Qi, Jinwen Tian, Sheng Zheng, and Xin Tian
Appl. Opt. 54(9) 2255-2265 (2015)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (11)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (3)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (9)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription