Abstract

In this work, a genetic algorithm (GA) was employed to select the intensity ratios of the spectral lines belonging to the target and domain matrix elements, then these selected line-intensity ratios were taken as inputs to construct an analysis model based on an artificial neural network (ANN) to analyze the elements copper (Cu) and vanadium (V) in steel samples. The results revealed that the root mean square errors of prediction (RMSEPs) for the elements Cu and V can reach 0.0040 wt. % and 0.0039 wt. %, respectively. Compared to 0.0190 wt. % and 0.0201 wt. % of the conventional internal calibration approach, the reduction rates of the RMSEP values reached 78.9% and 80.6%, respectively. These results indicate that the GA combining ANN can excellently execute the quantitative analysis in laser-induced breakdown spectroscopy for steel samples and further improve analytical accuracy.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Multivariate quantitative analysis of metal elements in steel using laser-induced breakdown spectroscopy

Zhi Wang, Yanwu Chu, Feng Chen, Ziqian Sheng, and Lianbo Guo
Appl. Opt. 58(27) 7615-7620 (2019)

Quantitative analysis of tin alloy combined with artificial neural network prediction

Seong Y. Oh, Fang-Yu Yueh, and Jagdish P. Singh
Appl. Opt. 49(13) C36-C41 (2010)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (6)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (7)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription