Abstract

Studies of computer vision or machine vision applications using a light field camera have been increasing in recent years. However, the abilities that the light field camera has are not fully used in these applications. In this paper, we propose a method for direct separation of foreground and background that uses the gradient information and can be used in various applications such as pre-processing. From an optical phenomenon whereby the bundles of rays from the background are flipped, we derive that the disparity sign of the background in the captured three-dimensional scene has the opposite disparity sign of the foreground. Using the majority-weighted voting algorithm based on the gradient information with the Lambertian assumption and the gradient constraint, the foreground and background can be separated at each pixel. In regard to pre-processing, the proposed method can be used for various applications such as occlusion and saliency detection, disparity estimation, and so on. Experimental results with the EPFL light field dataset and Stanford Lytro light field dataset show that the proposed method achieves better performance in terms of the occlusion detection, and thus can be effectively used in pre-processing for saliency detection and disparity estimation.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Depth estimation algorithm for light field data by epipolar image analysis and region interpolation

Zhuang Ma, Zhaofeng Cen, and Xiaotong Li
Appl. Opt. 56(23) 6603-6610 (2017)

Iterative reconstruction of scene depth with fidelity based on light field data

Chang Liu, Jun Qiu, and Songnian Zhao
Appl. Opt. 56(11) 3185-3192 (2017)

Salient object detection using coarse-to-fine processing

Qiangqiang Zhou, Lin Zhang, Weidong Zhao, Xianhui Liu, Yufei Chen, and Zhicheng Wang
J. Opt. Soc. Am. A 34(3) 370-383 (2017)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (12)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (13)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription