Abstract

When considering the pseudo-heterodyne mode for detection of the modulus and phase of the near field from scattering scanning near-field optical microscopy (s-SNOM) measurements, processing only the modulus of the signal may produce an undesired constraint in the accessible values of the phase of the near field. A two-dimensional analysis of the signal provided by the data acquisition system makes it possible to obtain phase maps over the whole [0, 2π) range. This requires post-processing of the data to select the best coordinate system in which to represent the data along the direction of maximum variance. The analysis also provides a quantitative parameter describing how much of the total variance is included within the component selected for calculation of the modulus and phase of the near field. The dependence of the pseudo-heterodyne phase on the mean position of the reference mirror is analyzed, and the evolution of the global phase is extracted from the s-SNOM data. The results obtained from this technique compared well with the expected maps of the near-field phase obtained from simulations.

© 2017 Optical Society of America

Full Article  |  PDF Article

Corrections

3 February 2017: A correction was made to Refs. 2 and 5.


OSA Recommended Articles
A study on the image contrast of pseudo-heterodyned scattering scanning near-field optical microscopy

D. E. Tranca, C. Stoichita, R. Hristu, S. G. Stanciu, and G. A. Stanciu
Opt. Express 22(2) 1687-1696 (2014)

An analysis of heterodyne signals in apertureless scanning near-field optical microscopy

Chin-Ho Chuang and Yu-Lung Lo
Opt. Express 16(22) 17982-18003 (2008)

Heterodyne detection of guided waves using a scattering-type Scanning Near-Field Optical Microscope

Ilan Stefanon, Sylvain Blaize, Aurélien Bruyant, Sébastien Aubert, Gilles Lerondel, Renaud Bachelot, and Pascal Royer
Opt. Express 13(14) 5553-5564 (2005)

References

  • View by:
  • |
  • |
  • |

  1. J. Atkin, S. Berweger, A. Jones, and M. Raschke, “Nano-optical imaging and spectroscopy of order, phases, and domains in complex solids,” Adv. Phys. 61, 745–842 (2012).
    [Crossref]
  2. S. G. Stanciu, D. E. Tranca, L. Tarpani, G. A. Stanciu, R. Hristu, and L. Latterini, “Investigations on organic fluorophore doped silica nanoparticles by apertureless scanning near-field optical microscopy,” in 16th International Conference on Transparent Optical Networks (ICTON) (2014), pp. 1–4.
  3. A. Singh, G. Ctistis, S. R. Huisman, J. P. Korterik, A. P. Mosk, J. L. Herek, and P. W. H. Pinkse, “Observation of nonlinear bands in near-field scanning optical microscopy of a photonic-crystal waveguide,” J. Appl. Phys. 117, 033104 (2015).
    [Crossref]
  4. G. Németh, D. Datz, H. M. Tóháti, Á. Pekker, and K. Kamarás, “Scattering near-field optical microscopy on metallic and semiconducting carbon nanotube bundles in the infrared,” Phys. Status Solidi B 253, 2413–2416 (2016).
  5. S. G. Stanciu, M. Costache, D. E. Tranca, R. Hristu, M. Popescu, V. Enache, and G. A. Stanciu, “Towards imaging skin cancer by apertureless scanning near-field optical microscopy,” Univ. Politeh. Buchar. Sci. Bull.-Ser. A-Appl. Math. Phys. 78, 235–244 (2016).
  6. R. Olmon, P. Krenz, A. Jones, G. Boreman, and M. Raschke, “Near-field imaging of optical antenna modes in the mid-infrared,” Opt. Express 16, 20295–20305 (2008).
    [Crossref]
  7. R. L. Olmon, M. Rang, P. Krenz, B. A. Lail, L. V. Saraf, G. D. Boreman, and M. B. Raschke, “Determination of the electric-field, magnetic-field, and electric-current distributions of infrared optical antennas: a near-field optical vector network analyzer,” Phys. Rev. Lett. 105, 167403 (2010).
    [Crossref]
  8. A. Ravichandran, E. C. Kinzel, J. C. Ginn, J. A. D’Archangel, E. Z. Tucker, B. A. Lail, M. B. Raschke, and G. D. Boreman, “Numerical modeling of scattering type scanning near-field optical microscopy,” Proc. SPIE 8815, 88150S (2013).
    [Crossref]
  9. D. Tranca, S. G. Stanciu, R. Hristu, C. Stoichita, and G. A. Stanciu, “Amplitude and phase reconstruction issues in scattering scanning near-field optical microscopy,” Sci. Bull. Politeh. Univ. Bucharest Ser. A 78, 253–262 (2016).
  10. B. Deutsch, R. Hillenbrand, and L. Novotny, “Near-field amplitude and phase recovery using phase-shifting interferometry,” Opt. Express 16, 494–501 (2008).
    [Crossref]
  11. P. Krenz, R. Olmon, B. Lail, M. Raschke, and G. Boreman, “Near-field measurements of infrared coplanar strip transmission line attenuation and propagation constants,” Opt. Express 18, 21678–21686 (2010).
    [Crossref]
  12. N. Ocelic, A. Huber, and R. Hillenbrand, “Pseudoheterodyne detection for background-free near-field spectroscopy,” Appl. Phys. Lett. 89, 101124 (2006).
    [Crossref]
  13. R. Krutokhvostov, A. Govyadinov, J. Stielgler, F. Huth, A. Chuvilin, P. Carney, and R. Hillenbrand, “Enhanced resolution in subsurface near-field optical microscopy,” Opt. Express 20, 593–600 (2012).
    [Crossref]
  14. P. Alonso-González, P. Albella, F. Golmar, L. Arzubiaga, F. Casanova, L. Hueso, J. Aizpurua, and R. Hillenbrand, “Visualizing the near-field coupling and interference of bonding and antibonding modes in infrared dimer nanoantennas,” Opt. Express 21, 1270–1280 (2013).
    [Crossref]
  15. M. Schnell, A. Garcia-Etxarri, A. Huber, K. Crozier, A. Borisov, J. Aizpurua, and R. Hillenbrand, “Amplitude and phase-resolved near-field mapping of infrared antenna modes by transmission-mode scattering-type near-field microscopy,” J. Phys. Chem. C 114, 7341–7345 (2010).
    [Crossref]
  16. M. Schnell, P. Sarriguarte, T. Neuman, A. Khanikaev, G. Shvets, J. Aizpurua, and R. Hillenbrand, “Real–space mapping of the chiral near-field distribution in spiral antennas and planar metasurfaces,” Nano Lett. 16, 663–670 (2016).
    [Crossref]
  17. L. Gomez, R. Bachelot, A. Bouhelier, G. Wiederrecht, S. Chang, S. Gray, F. Hua, S. Jeon, J. Rogers, M. Castro, S. Blaize, I. Stefanon, G. Lerondel, and P. Royer, “Apertureless scanning near-field optical microscopy: a comparison between homodyne and heterodyne approaches,” J. Opt. Soc. Am. B 23, 823–833 (2006).
    [Crossref]
  18. J. M. López-Alonso, B. Monacelli, J. Alda, and G. Boreman, “Infrared laser beam temporal fluctuations: characterization and filtering,” Opt. Eng. 44, 054203 (2005).
    [Crossref]
  19. D. E. Tranca, C. Stoichita, R. Hristu, S. G. Stanciu, and G. A. Stanciu, “A study on the image contrast of pseudo-heterodyned scattering scanning near-field optical microscopy,” Opt. Express 22, 1687–1696 (2014).
    [Crossref]
  20. M. Esslinger, J. Dorfmuller, W. Khunsin, R. Vogelgesang, and K. Kern, “Background-free imaging of plasmonic structures with cross-polarized apertureless scanning near-field optical microscopy,” Rev. Sci. Instrum. 83, 033704 (2012).
    [Crossref]
  21. J. M. López-Alonso, J. Alda, and E. Bernabéu, “Principal-component characterization of noise for infrared images,” Appl. Opt. 41, 320–331 (2002).
    [Crossref]
  22. I. Horcas, R. Fernandez, J. M. Gomez-Rodriguez, J. Colchero, J. Gomez-Herrero, and A. M. Baro, “WSXM: a software for scanning probe microscopy and a tool for nanotechnology,” Rev. Sci. Instrum. 78, 013705 (2007).
    [Crossref]
  23. Czech Metrology Institute, Gwyddion 2.43, http://gwyddion.net .
  24. The MathWorks Inc., MATLAB, http://www.mathworks.com .
  25. Ansys Inc., HFSS, http://www.ansys.com/Products/Electronics/ANSYS-HFSS .

2016 (4)

G. Németh, D. Datz, H. M. Tóháti, Á. Pekker, and K. Kamarás, “Scattering near-field optical microscopy on metallic and semiconducting carbon nanotube bundles in the infrared,” Phys. Status Solidi B 253, 2413–2416 (2016).

S. G. Stanciu, M. Costache, D. E. Tranca, R. Hristu, M. Popescu, V. Enache, and G. A. Stanciu, “Towards imaging skin cancer by apertureless scanning near-field optical microscopy,” Univ. Politeh. Buchar. Sci. Bull.-Ser. A-Appl. Math. Phys. 78, 235–244 (2016).

D. Tranca, S. G. Stanciu, R. Hristu, C. Stoichita, and G. A. Stanciu, “Amplitude and phase reconstruction issues in scattering scanning near-field optical microscopy,” Sci. Bull. Politeh. Univ. Bucharest Ser. A 78, 253–262 (2016).

M. Schnell, P. Sarriguarte, T. Neuman, A. Khanikaev, G. Shvets, J. Aizpurua, and R. Hillenbrand, “Real–space mapping of the chiral near-field distribution in spiral antennas and planar metasurfaces,” Nano Lett. 16, 663–670 (2016).
[Crossref]

2015 (1)

A. Singh, G. Ctistis, S. R. Huisman, J. P. Korterik, A. P. Mosk, J. L. Herek, and P. W. H. Pinkse, “Observation of nonlinear bands in near-field scanning optical microscopy of a photonic-crystal waveguide,” J. Appl. Phys. 117, 033104 (2015).
[Crossref]

2014 (1)

2013 (2)

P. Alonso-González, P. Albella, F. Golmar, L. Arzubiaga, F. Casanova, L. Hueso, J. Aizpurua, and R. Hillenbrand, “Visualizing the near-field coupling and interference of bonding and antibonding modes in infrared dimer nanoantennas,” Opt. Express 21, 1270–1280 (2013).
[Crossref]

A. Ravichandran, E. C. Kinzel, J. C. Ginn, J. A. D’Archangel, E. Z. Tucker, B. A. Lail, M. B. Raschke, and G. D. Boreman, “Numerical modeling of scattering type scanning near-field optical microscopy,” Proc. SPIE 8815, 88150S (2013).
[Crossref]

2012 (3)

J. Atkin, S. Berweger, A. Jones, and M. Raschke, “Nano-optical imaging and spectroscopy of order, phases, and domains in complex solids,” Adv. Phys. 61, 745–842 (2012).
[Crossref]

M. Esslinger, J. Dorfmuller, W. Khunsin, R. Vogelgesang, and K. Kern, “Background-free imaging of plasmonic structures with cross-polarized apertureless scanning near-field optical microscopy,” Rev. Sci. Instrum. 83, 033704 (2012).
[Crossref]

R. Krutokhvostov, A. Govyadinov, J. Stielgler, F. Huth, A. Chuvilin, P. Carney, and R. Hillenbrand, “Enhanced resolution in subsurface near-field optical microscopy,” Opt. Express 20, 593–600 (2012).
[Crossref]

2010 (3)

M. Schnell, A. Garcia-Etxarri, A. Huber, K. Crozier, A. Borisov, J. Aizpurua, and R. Hillenbrand, “Amplitude and phase-resolved near-field mapping of infrared antenna modes by transmission-mode scattering-type near-field microscopy,” J. Phys. Chem. C 114, 7341–7345 (2010).
[Crossref]

P. Krenz, R. Olmon, B. Lail, M. Raschke, and G. Boreman, “Near-field measurements of infrared coplanar strip transmission line attenuation and propagation constants,” Opt. Express 18, 21678–21686 (2010).
[Crossref]

R. L. Olmon, M. Rang, P. Krenz, B. A. Lail, L. V. Saraf, G. D. Boreman, and M. B. Raschke, “Determination of the electric-field, magnetic-field, and electric-current distributions of infrared optical antennas: a near-field optical vector network analyzer,” Phys. Rev. Lett. 105, 167403 (2010).
[Crossref]

2008 (2)

2007 (1)

I. Horcas, R. Fernandez, J. M. Gomez-Rodriguez, J. Colchero, J. Gomez-Herrero, and A. M. Baro, “WSXM: a software for scanning probe microscopy and a tool for nanotechnology,” Rev. Sci. Instrum. 78, 013705 (2007).
[Crossref]

2006 (2)

2005 (1)

J. M. López-Alonso, B. Monacelli, J. Alda, and G. Boreman, “Infrared laser beam temporal fluctuations: characterization and filtering,” Opt. Eng. 44, 054203 (2005).
[Crossref]

2002 (1)

Aizpurua, J.

M. Schnell, P. Sarriguarte, T. Neuman, A. Khanikaev, G. Shvets, J. Aizpurua, and R. Hillenbrand, “Real–space mapping of the chiral near-field distribution in spiral antennas and planar metasurfaces,” Nano Lett. 16, 663–670 (2016).
[Crossref]

P. Alonso-González, P. Albella, F. Golmar, L. Arzubiaga, F. Casanova, L. Hueso, J. Aizpurua, and R. Hillenbrand, “Visualizing the near-field coupling and interference of bonding and antibonding modes in infrared dimer nanoantennas,” Opt. Express 21, 1270–1280 (2013).
[Crossref]

M. Schnell, A. Garcia-Etxarri, A. Huber, K. Crozier, A. Borisov, J. Aizpurua, and R. Hillenbrand, “Amplitude and phase-resolved near-field mapping of infrared antenna modes by transmission-mode scattering-type near-field microscopy,” J. Phys. Chem. C 114, 7341–7345 (2010).
[Crossref]

Albella, P.

Alda, J.

J. M. López-Alonso, B. Monacelli, J. Alda, and G. Boreman, “Infrared laser beam temporal fluctuations: characterization and filtering,” Opt. Eng. 44, 054203 (2005).
[Crossref]

J. M. López-Alonso, J. Alda, and E. Bernabéu, “Principal-component characterization of noise for infrared images,” Appl. Opt. 41, 320–331 (2002).
[Crossref]

Alonso-González, P.

Arzubiaga, L.

Atkin, J.

J. Atkin, S. Berweger, A. Jones, and M. Raschke, “Nano-optical imaging and spectroscopy of order, phases, and domains in complex solids,” Adv. Phys. 61, 745–842 (2012).
[Crossref]

Bachelot, R.

Baro, A. M.

I. Horcas, R. Fernandez, J. M. Gomez-Rodriguez, J. Colchero, J. Gomez-Herrero, and A. M. Baro, “WSXM: a software for scanning probe microscopy and a tool for nanotechnology,” Rev. Sci. Instrum. 78, 013705 (2007).
[Crossref]

Bernabéu, E.

Berweger, S.

J. Atkin, S. Berweger, A. Jones, and M. Raschke, “Nano-optical imaging and spectroscopy of order, phases, and domains in complex solids,” Adv. Phys. 61, 745–842 (2012).
[Crossref]

Blaize, S.

Boreman, G.

Boreman, G. D.

A. Ravichandran, E. C. Kinzel, J. C. Ginn, J. A. D’Archangel, E. Z. Tucker, B. A. Lail, M. B. Raschke, and G. D. Boreman, “Numerical modeling of scattering type scanning near-field optical microscopy,” Proc. SPIE 8815, 88150S (2013).
[Crossref]

R. L. Olmon, M. Rang, P. Krenz, B. A. Lail, L. V. Saraf, G. D. Boreman, and M. B. Raschke, “Determination of the electric-field, magnetic-field, and electric-current distributions of infrared optical antennas: a near-field optical vector network analyzer,” Phys. Rev. Lett. 105, 167403 (2010).
[Crossref]

Borisov, A.

M. Schnell, A. Garcia-Etxarri, A. Huber, K. Crozier, A. Borisov, J. Aizpurua, and R. Hillenbrand, “Amplitude and phase-resolved near-field mapping of infrared antenna modes by transmission-mode scattering-type near-field microscopy,” J. Phys. Chem. C 114, 7341–7345 (2010).
[Crossref]

Bouhelier, A.

Carney, P.

Casanova, F.

Castro, M.

Chang, S.

Chuvilin, A.

Colchero, J.

I. Horcas, R. Fernandez, J. M. Gomez-Rodriguez, J. Colchero, J. Gomez-Herrero, and A. M. Baro, “WSXM: a software for scanning probe microscopy and a tool for nanotechnology,” Rev. Sci. Instrum. 78, 013705 (2007).
[Crossref]

Costache, M.

S. G. Stanciu, M. Costache, D. E. Tranca, R. Hristu, M. Popescu, V. Enache, and G. A. Stanciu, “Towards imaging skin cancer by apertureless scanning near-field optical microscopy,” Univ. Politeh. Buchar. Sci. Bull.-Ser. A-Appl. Math. Phys. 78, 235–244 (2016).

Crozier, K.

M. Schnell, A. Garcia-Etxarri, A. Huber, K. Crozier, A. Borisov, J. Aizpurua, and R. Hillenbrand, “Amplitude and phase-resolved near-field mapping of infrared antenna modes by transmission-mode scattering-type near-field microscopy,” J. Phys. Chem. C 114, 7341–7345 (2010).
[Crossref]

Ctistis, G.

A. Singh, G. Ctistis, S. R. Huisman, J. P. Korterik, A. P. Mosk, J. L. Herek, and P. W. H. Pinkse, “Observation of nonlinear bands in near-field scanning optical microscopy of a photonic-crystal waveguide,” J. Appl. Phys. 117, 033104 (2015).
[Crossref]

D’Archangel, J. A.

A. Ravichandran, E. C. Kinzel, J. C. Ginn, J. A. D’Archangel, E. Z. Tucker, B. A. Lail, M. B. Raschke, and G. D. Boreman, “Numerical modeling of scattering type scanning near-field optical microscopy,” Proc. SPIE 8815, 88150S (2013).
[Crossref]

Datz, D.

G. Németh, D. Datz, H. M. Tóháti, Á. Pekker, and K. Kamarás, “Scattering near-field optical microscopy on metallic and semiconducting carbon nanotube bundles in the infrared,” Phys. Status Solidi B 253, 2413–2416 (2016).

Deutsch, B.

Dorfmuller, J.

M. Esslinger, J. Dorfmuller, W. Khunsin, R. Vogelgesang, and K. Kern, “Background-free imaging of plasmonic structures with cross-polarized apertureless scanning near-field optical microscopy,” Rev. Sci. Instrum. 83, 033704 (2012).
[Crossref]

Enache, V.

S. G. Stanciu, M. Costache, D. E. Tranca, R. Hristu, M. Popescu, V. Enache, and G. A. Stanciu, “Towards imaging skin cancer by apertureless scanning near-field optical microscopy,” Univ. Politeh. Buchar. Sci. Bull.-Ser. A-Appl. Math. Phys. 78, 235–244 (2016).

Esslinger, M.

M. Esslinger, J. Dorfmuller, W. Khunsin, R. Vogelgesang, and K. Kern, “Background-free imaging of plasmonic structures with cross-polarized apertureless scanning near-field optical microscopy,” Rev. Sci. Instrum. 83, 033704 (2012).
[Crossref]

Fernandez, R.

I. Horcas, R. Fernandez, J. M. Gomez-Rodriguez, J. Colchero, J. Gomez-Herrero, and A. M. Baro, “WSXM: a software for scanning probe microscopy and a tool for nanotechnology,” Rev. Sci. Instrum. 78, 013705 (2007).
[Crossref]

Garcia-Etxarri, A.

M. Schnell, A. Garcia-Etxarri, A. Huber, K. Crozier, A. Borisov, J. Aizpurua, and R. Hillenbrand, “Amplitude and phase-resolved near-field mapping of infrared antenna modes by transmission-mode scattering-type near-field microscopy,” J. Phys. Chem. C 114, 7341–7345 (2010).
[Crossref]

Ginn, J. C.

A. Ravichandran, E. C. Kinzel, J. C. Ginn, J. A. D’Archangel, E. Z. Tucker, B. A. Lail, M. B. Raschke, and G. D. Boreman, “Numerical modeling of scattering type scanning near-field optical microscopy,” Proc. SPIE 8815, 88150S (2013).
[Crossref]

Golmar, F.

Gomez, L.

Gomez-Herrero, J.

I. Horcas, R. Fernandez, J. M. Gomez-Rodriguez, J. Colchero, J. Gomez-Herrero, and A. M. Baro, “WSXM: a software for scanning probe microscopy and a tool for nanotechnology,” Rev. Sci. Instrum. 78, 013705 (2007).
[Crossref]

Gomez-Rodriguez, J. M.

I. Horcas, R. Fernandez, J. M. Gomez-Rodriguez, J. Colchero, J. Gomez-Herrero, and A. M. Baro, “WSXM: a software for scanning probe microscopy and a tool for nanotechnology,” Rev. Sci. Instrum. 78, 013705 (2007).
[Crossref]

Govyadinov, A.

Gray, S.

Herek, J. L.

A. Singh, G. Ctistis, S. R. Huisman, J. P. Korterik, A. P. Mosk, J. L. Herek, and P. W. H. Pinkse, “Observation of nonlinear bands in near-field scanning optical microscopy of a photonic-crystal waveguide,” J. Appl. Phys. 117, 033104 (2015).
[Crossref]

Hillenbrand, R.

M. Schnell, P. Sarriguarte, T. Neuman, A. Khanikaev, G. Shvets, J. Aizpurua, and R. Hillenbrand, “Real–space mapping of the chiral near-field distribution in spiral antennas and planar metasurfaces,” Nano Lett. 16, 663–670 (2016).
[Crossref]

P. Alonso-González, P. Albella, F. Golmar, L. Arzubiaga, F. Casanova, L. Hueso, J. Aizpurua, and R. Hillenbrand, “Visualizing the near-field coupling and interference of bonding and antibonding modes in infrared dimer nanoantennas,” Opt. Express 21, 1270–1280 (2013).
[Crossref]

R. Krutokhvostov, A. Govyadinov, J. Stielgler, F. Huth, A. Chuvilin, P. Carney, and R. Hillenbrand, “Enhanced resolution in subsurface near-field optical microscopy,” Opt. Express 20, 593–600 (2012).
[Crossref]

M. Schnell, A. Garcia-Etxarri, A. Huber, K. Crozier, A. Borisov, J. Aizpurua, and R. Hillenbrand, “Amplitude and phase-resolved near-field mapping of infrared antenna modes by transmission-mode scattering-type near-field microscopy,” J. Phys. Chem. C 114, 7341–7345 (2010).
[Crossref]

B. Deutsch, R. Hillenbrand, and L. Novotny, “Near-field amplitude and phase recovery using phase-shifting interferometry,” Opt. Express 16, 494–501 (2008).
[Crossref]

N. Ocelic, A. Huber, and R. Hillenbrand, “Pseudoheterodyne detection for background-free near-field spectroscopy,” Appl. Phys. Lett. 89, 101124 (2006).
[Crossref]

Horcas, I.

I. Horcas, R. Fernandez, J. M. Gomez-Rodriguez, J. Colchero, J. Gomez-Herrero, and A. M. Baro, “WSXM: a software for scanning probe microscopy and a tool for nanotechnology,” Rev. Sci. Instrum. 78, 013705 (2007).
[Crossref]

Hristu, R.

D. Tranca, S. G. Stanciu, R. Hristu, C. Stoichita, and G. A. Stanciu, “Amplitude and phase reconstruction issues in scattering scanning near-field optical microscopy,” Sci. Bull. Politeh. Univ. Bucharest Ser. A 78, 253–262 (2016).

S. G. Stanciu, M. Costache, D. E. Tranca, R. Hristu, M. Popescu, V. Enache, and G. A. Stanciu, “Towards imaging skin cancer by apertureless scanning near-field optical microscopy,” Univ. Politeh. Buchar. Sci. Bull.-Ser. A-Appl. Math. Phys. 78, 235–244 (2016).

D. E. Tranca, C. Stoichita, R. Hristu, S. G. Stanciu, and G. A. Stanciu, “A study on the image contrast of pseudo-heterodyned scattering scanning near-field optical microscopy,” Opt. Express 22, 1687–1696 (2014).
[Crossref]

S. G. Stanciu, D. E. Tranca, L. Tarpani, G. A. Stanciu, R. Hristu, and L. Latterini, “Investigations on organic fluorophore doped silica nanoparticles by apertureless scanning near-field optical microscopy,” in 16th International Conference on Transparent Optical Networks (ICTON) (2014), pp. 1–4.

Hua, F.

Huber, A.

M. Schnell, A. Garcia-Etxarri, A. Huber, K. Crozier, A. Borisov, J. Aizpurua, and R. Hillenbrand, “Amplitude and phase-resolved near-field mapping of infrared antenna modes by transmission-mode scattering-type near-field microscopy,” J. Phys. Chem. C 114, 7341–7345 (2010).
[Crossref]

N. Ocelic, A. Huber, and R. Hillenbrand, “Pseudoheterodyne detection for background-free near-field spectroscopy,” Appl. Phys. Lett. 89, 101124 (2006).
[Crossref]

Hueso, L.

Huisman, S. R.

A. Singh, G. Ctistis, S. R. Huisman, J. P. Korterik, A. P. Mosk, J. L. Herek, and P. W. H. Pinkse, “Observation of nonlinear bands in near-field scanning optical microscopy of a photonic-crystal waveguide,” J. Appl. Phys. 117, 033104 (2015).
[Crossref]

Huth, F.

Jeon, S.

Jones, A.

J. Atkin, S. Berweger, A. Jones, and M. Raschke, “Nano-optical imaging and spectroscopy of order, phases, and domains in complex solids,” Adv. Phys. 61, 745–842 (2012).
[Crossref]

R. Olmon, P. Krenz, A. Jones, G. Boreman, and M. Raschke, “Near-field imaging of optical antenna modes in the mid-infrared,” Opt. Express 16, 20295–20305 (2008).
[Crossref]

Kamarás, K.

G. Németh, D. Datz, H. M. Tóháti, Á. Pekker, and K. Kamarás, “Scattering near-field optical microscopy on metallic and semiconducting carbon nanotube bundles in the infrared,” Phys. Status Solidi B 253, 2413–2416 (2016).

Kern, K.

M. Esslinger, J. Dorfmuller, W. Khunsin, R. Vogelgesang, and K. Kern, “Background-free imaging of plasmonic structures with cross-polarized apertureless scanning near-field optical microscopy,” Rev. Sci. Instrum. 83, 033704 (2012).
[Crossref]

Khanikaev, A.

M. Schnell, P. Sarriguarte, T. Neuman, A. Khanikaev, G. Shvets, J. Aizpurua, and R. Hillenbrand, “Real–space mapping of the chiral near-field distribution in spiral antennas and planar metasurfaces,” Nano Lett. 16, 663–670 (2016).
[Crossref]

Khunsin, W.

M. Esslinger, J. Dorfmuller, W. Khunsin, R. Vogelgesang, and K. Kern, “Background-free imaging of plasmonic structures with cross-polarized apertureless scanning near-field optical microscopy,” Rev. Sci. Instrum. 83, 033704 (2012).
[Crossref]

Kinzel, E. C.

A. Ravichandran, E. C. Kinzel, J. C. Ginn, J. A. D’Archangel, E. Z. Tucker, B. A. Lail, M. B. Raschke, and G. D. Boreman, “Numerical modeling of scattering type scanning near-field optical microscopy,” Proc. SPIE 8815, 88150S (2013).
[Crossref]

Korterik, J. P.

A. Singh, G. Ctistis, S. R. Huisman, J. P. Korterik, A. P. Mosk, J. L. Herek, and P. W. H. Pinkse, “Observation of nonlinear bands in near-field scanning optical microscopy of a photonic-crystal waveguide,” J. Appl. Phys. 117, 033104 (2015).
[Crossref]

Krenz, P.

R. L. Olmon, M. Rang, P. Krenz, B. A. Lail, L. V. Saraf, G. D. Boreman, and M. B. Raschke, “Determination of the electric-field, magnetic-field, and electric-current distributions of infrared optical antennas: a near-field optical vector network analyzer,” Phys. Rev. Lett. 105, 167403 (2010).
[Crossref]

P. Krenz, R. Olmon, B. Lail, M. Raschke, and G. Boreman, “Near-field measurements of infrared coplanar strip transmission line attenuation and propagation constants,” Opt. Express 18, 21678–21686 (2010).
[Crossref]

R. Olmon, P. Krenz, A. Jones, G. Boreman, and M. Raschke, “Near-field imaging of optical antenna modes in the mid-infrared,” Opt. Express 16, 20295–20305 (2008).
[Crossref]

Krutokhvostov, R.

Lail, B.

Lail, B. A.

A. Ravichandran, E. C. Kinzel, J. C. Ginn, J. A. D’Archangel, E. Z. Tucker, B. A. Lail, M. B. Raschke, and G. D. Boreman, “Numerical modeling of scattering type scanning near-field optical microscopy,” Proc. SPIE 8815, 88150S (2013).
[Crossref]

R. L. Olmon, M. Rang, P. Krenz, B. A. Lail, L. V. Saraf, G. D. Boreman, and M. B. Raschke, “Determination of the electric-field, magnetic-field, and electric-current distributions of infrared optical antennas: a near-field optical vector network analyzer,” Phys. Rev. Lett. 105, 167403 (2010).
[Crossref]

Latterini, L.

S. G. Stanciu, D. E. Tranca, L. Tarpani, G. A. Stanciu, R. Hristu, and L. Latterini, “Investigations on organic fluorophore doped silica nanoparticles by apertureless scanning near-field optical microscopy,” in 16th International Conference on Transparent Optical Networks (ICTON) (2014), pp. 1–4.

Lerondel, G.

López-Alonso, J. M.

J. M. López-Alonso, B. Monacelli, J. Alda, and G. Boreman, “Infrared laser beam temporal fluctuations: characterization and filtering,” Opt. Eng. 44, 054203 (2005).
[Crossref]

J. M. López-Alonso, J. Alda, and E. Bernabéu, “Principal-component characterization of noise for infrared images,” Appl. Opt. 41, 320–331 (2002).
[Crossref]

Monacelli, B.

J. M. López-Alonso, B. Monacelli, J. Alda, and G. Boreman, “Infrared laser beam temporal fluctuations: characterization and filtering,” Opt. Eng. 44, 054203 (2005).
[Crossref]

Mosk, A. P.

A. Singh, G. Ctistis, S. R. Huisman, J. P. Korterik, A. P. Mosk, J. L. Herek, and P. W. H. Pinkse, “Observation of nonlinear bands in near-field scanning optical microscopy of a photonic-crystal waveguide,” J. Appl. Phys. 117, 033104 (2015).
[Crossref]

Németh, G.

G. Németh, D. Datz, H. M. Tóháti, Á. Pekker, and K. Kamarás, “Scattering near-field optical microscopy on metallic and semiconducting carbon nanotube bundles in the infrared,” Phys. Status Solidi B 253, 2413–2416 (2016).

Neuman, T.

M. Schnell, P. Sarriguarte, T. Neuman, A. Khanikaev, G. Shvets, J. Aizpurua, and R. Hillenbrand, “Real–space mapping of the chiral near-field distribution in spiral antennas and planar metasurfaces,” Nano Lett. 16, 663–670 (2016).
[Crossref]

Novotny, L.

Ocelic, N.

N. Ocelic, A. Huber, and R. Hillenbrand, “Pseudoheterodyne detection for background-free near-field spectroscopy,” Appl. Phys. Lett. 89, 101124 (2006).
[Crossref]

Olmon, R.

Olmon, R. L.

R. L. Olmon, M. Rang, P. Krenz, B. A. Lail, L. V. Saraf, G. D. Boreman, and M. B. Raschke, “Determination of the electric-field, magnetic-field, and electric-current distributions of infrared optical antennas: a near-field optical vector network analyzer,” Phys. Rev. Lett. 105, 167403 (2010).
[Crossref]

Pekker, Á.

G. Németh, D. Datz, H. M. Tóháti, Á. Pekker, and K. Kamarás, “Scattering near-field optical microscopy on metallic and semiconducting carbon nanotube bundles in the infrared,” Phys. Status Solidi B 253, 2413–2416 (2016).

Pinkse, P. W. H.

A. Singh, G. Ctistis, S. R. Huisman, J. P. Korterik, A. P. Mosk, J. L. Herek, and P. W. H. Pinkse, “Observation of nonlinear bands in near-field scanning optical microscopy of a photonic-crystal waveguide,” J. Appl. Phys. 117, 033104 (2015).
[Crossref]

Popescu, M.

S. G. Stanciu, M. Costache, D. E. Tranca, R. Hristu, M. Popescu, V. Enache, and G. A. Stanciu, “Towards imaging skin cancer by apertureless scanning near-field optical microscopy,” Univ. Politeh. Buchar. Sci. Bull.-Ser. A-Appl. Math. Phys. 78, 235–244 (2016).

Rang, M.

R. L. Olmon, M. Rang, P. Krenz, B. A. Lail, L. V. Saraf, G. D. Boreman, and M. B. Raschke, “Determination of the electric-field, magnetic-field, and electric-current distributions of infrared optical antennas: a near-field optical vector network analyzer,” Phys. Rev. Lett. 105, 167403 (2010).
[Crossref]

Raschke, M.

Raschke, M. B.

A. Ravichandran, E. C. Kinzel, J. C. Ginn, J. A. D’Archangel, E. Z. Tucker, B. A. Lail, M. B. Raschke, and G. D. Boreman, “Numerical modeling of scattering type scanning near-field optical microscopy,” Proc. SPIE 8815, 88150S (2013).
[Crossref]

R. L. Olmon, M. Rang, P. Krenz, B. A. Lail, L. V. Saraf, G. D. Boreman, and M. B. Raschke, “Determination of the electric-field, magnetic-field, and electric-current distributions of infrared optical antennas: a near-field optical vector network analyzer,” Phys. Rev. Lett. 105, 167403 (2010).
[Crossref]

Ravichandran, A.

A. Ravichandran, E. C. Kinzel, J. C. Ginn, J. A. D’Archangel, E. Z. Tucker, B. A. Lail, M. B. Raschke, and G. D. Boreman, “Numerical modeling of scattering type scanning near-field optical microscopy,” Proc. SPIE 8815, 88150S (2013).
[Crossref]

Rogers, J.

Royer, P.

Saraf, L. V.

R. L. Olmon, M. Rang, P. Krenz, B. A. Lail, L. V. Saraf, G. D. Boreman, and M. B. Raschke, “Determination of the electric-field, magnetic-field, and electric-current distributions of infrared optical antennas: a near-field optical vector network analyzer,” Phys. Rev. Lett. 105, 167403 (2010).
[Crossref]

Sarriguarte, P.

M. Schnell, P. Sarriguarte, T. Neuman, A. Khanikaev, G. Shvets, J. Aizpurua, and R. Hillenbrand, “Real–space mapping of the chiral near-field distribution in spiral antennas and planar metasurfaces,” Nano Lett. 16, 663–670 (2016).
[Crossref]

Schnell, M.

M. Schnell, P. Sarriguarte, T. Neuman, A. Khanikaev, G. Shvets, J. Aizpurua, and R. Hillenbrand, “Real–space mapping of the chiral near-field distribution in spiral antennas and planar metasurfaces,” Nano Lett. 16, 663–670 (2016).
[Crossref]

M. Schnell, A. Garcia-Etxarri, A. Huber, K. Crozier, A. Borisov, J. Aizpurua, and R. Hillenbrand, “Amplitude and phase-resolved near-field mapping of infrared antenna modes by transmission-mode scattering-type near-field microscopy,” J. Phys. Chem. C 114, 7341–7345 (2010).
[Crossref]

Shvets, G.

M. Schnell, P. Sarriguarte, T. Neuman, A. Khanikaev, G. Shvets, J. Aizpurua, and R. Hillenbrand, “Real–space mapping of the chiral near-field distribution in spiral antennas and planar metasurfaces,” Nano Lett. 16, 663–670 (2016).
[Crossref]

Singh, A.

A. Singh, G. Ctistis, S. R. Huisman, J. P. Korterik, A. P. Mosk, J. L. Herek, and P. W. H. Pinkse, “Observation of nonlinear bands in near-field scanning optical microscopy of a photonic-crystal waveguide,” J. Appl. Phys. 117, 033104 (2015).
[Crossref]

Stanciu, G. A.

S. G. Stanciu, M. Costache, D. E. Tranca, R. Hristu, M. Popescu, V. Enache, and G. A. Stanciu, “Towards imaging skin cancer by apertureless scanning near-field optical microscopy,” Univ. Politeh. Buchar. Sci. Bull.-Ser. A-Appl. Math. Phys. 78, 235–244 (2016).

D. Tranca, S. G. Stanciu, R. Hristu, C. Stoichita, and G. A. Stanciu, “Amplitude and phase reconstruction issues in scattering scanning near-field optical microscopy,” Sci. Bull. Politeh. Univ. Bucharest Ser. A 78, 253–262 (2016).

D. E. Tranca, C. Stoichita, R. Hristu, S. G. Stanciu, and G. A. Stanciu, “A study on the image contrast of pseudo-heterodyned scattering scanning near-field optical microscopy,” Opt. Express 22, 1687–1696 (2014).
[Crossref]

S. G. Stanciu, D. E. Tranca, L. Tarpani, G. A. Stanciu, R. Hristu, and L. Latterini, “Investigations on organic fluorophore doped silica nanoparticles by apertureless scanning near-field optical microscopy,” in 16th International Conference on Transparent Optical Networks (ICTON) (2014), pp. 1–4.

Stanciu, S. G.

S. G. Stanciu, M. Costache, D. E. Tranca, R. Hristu, M. Popescu, V. Enache, and G. A. Stanciu, “Towards imaging skin cancer by apertureless scanning near-field optical microscopy,” Univ. Politeh. Buchar. Sci. Bull.-Ser. A-Appl. Math. Phys. 78, 235–244 (2016).

D. Tranca, S. G. Stanciu, R. Hristu, C. Stoichita, and G. A. Stanciu, “Amplitude and phase reconstruction issues in scattering scanning near-field optical microscopy,” Sci. Bull. Politeh. Univ. Bucharest Ser. A 78, 253–262 (2016).

D. E. Tranca, C. Stoichita, R. Hristu, S. G. Stanciu, and G. A. Stanciu, “A study on the image contrast of pseudo-heterodyned scattering scanning near-field optical microscopy,” Opt. Express 22, 1687–1696 (2014).
[Crossref]

S. G. Stanciu, D. E. Tranca, L. Tarpani, G. A. Stanciu, R. Hristu, and L. Latterini, “Investigations on organic fluorophore doped silica nanoparticles by apertureless scanning near-field optical microscopy,” in 16th International Conference on Transparent Optical Networks (ICTON) (2014), pp. 1–4.

Stefanon, I.

Stielgler, J.

Stoichita, C.

D. Tranca, S. G. Stanciu, R. Hristu, C. Stoichita, and G. A. Stanciu, “Amplitude and phase reconstruction issues in scattering scanning near-field optical microscopy,” Sci. Bull. Politeh. Univ. Bucharest Ser. A 78, 253–262 (2016).

D. E. Tranca, C. Stoichita, R. Hristu, S. G. Stanciu, and G. A. Stanciu, “A study on the image contrast of pseudo-heterodyned scattering scanning near-field optical microscopy,” Opt. Express 22, 1687–1696 (2014).
[Crossref]

Tarpani, L.

S. G. Stanciu, D. E. Tranca, L. Tarpani, G. A. Stanciu, R. Hristu, and L. Latterini, “Investigations on organic fluorophore doped silica nanoparticles by apertureless scanning near-field optical microscopy,” in 16th International Conference on Transparent Optical Networks (ICTON) (2014), pp. 1–4.

Tóháti, H. M.

G. Németh, D. Datz, H. M. Tóháti, Á. Pekker, and K. Kamarás, “Scattering near-field optical microscopy on metallic and semiconducting carbon nanotube bundles in the infrared,” Phys. Status Solidi B 253, 2413–2416 (2016).

Tranca, D.

D. Tranca, S. G. Stanciu, R. Hristu, C. Stoichita, and G. A. Stanciu, “Amplitude and phase reconstruction issues in scattering scanning near-field optical microscopy,” Sci. Bull. Politeh. Univ. Bucharest Ser. A 78, 253–262 (2016).

Tranca, D. E.

S. G. Stanciu, M. Costache, D. E. Tranca, R. Hristu, M. Popescu, V. Enache, and G. A. Stanciu, “Towards imaging skin cancer by apertureless scanning near-field optical microscopy,” Univ. Politeh. Buchar. Sci. Bull.-Ser. A-Appl. Math. Phys. 78, 235–244 (2016).

D. E. Tranca, C. Stoichita, R. Hristu, S. G. Stanciu, and G. A. Stanciu, “A study on the image contrast of pseudo-heterodyned scattering scanning near-field optical microscopy,” Opt. Express 22, 1687–1696 (2014).
[Crossref]

S. G. Stanciu, D. E. Tranca, L. Tarpani, G. A. Stanciu, R. Hristu, and L. Latterini, “Investigations on organic fluorophore doped silica nanoparticles by apertureless scanning near-field optical microscopy,” in 16th International Conference on Transparent Optical Networks (ICTON) (2014), pp. 1–4.

Tucker, E. Z.

A. Ravichandran, E. C. Kinzel, J. C. Ginn, J. A. D’Archangel, E. Z. Tucker, B. A. Lail, M. B. Raschke, and G. D. Boreman, “Numerical modeling of scattering type scanning near-field optical microscopy,” Proc. SPIE 8815, 88150S (2013).
[Crossref]

Vogelgesang, R.

M. Esslinger, J. Dorfmuller, W. Khunsin, R. Vogelgesang, and K. Kern, “Background-free imaging of plasmonic structures with cross-polarized apertureless scanning near-field optical microscopy,” Rev. Sci. Instrum. 83, 033704 (2012).
[Crossref]

Wiederrecht, G.

Adv. Phys. (1)

J. Atkin, S. Berweger, A. Jones, and M. Raschke, “Nano-optical imaging and spectroscopy of order, phases, and domains in complex solids,” Adv. Phys. 61, 745–842 (2012).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

N. Ocelic, A. Huber, and R. Hillenbrand, “Pseudoheterodyne detection for background-free near-field spectroscopy,” Appl. Phys. Lett. 89, 101124 (2006).
[Crossref]

J. Appl. Phys. (1)

A. Singh, G. Ctistis, S. R. Huisman, J. P. Korterik, A. P. Mosk, J. L. Herek, and P. W. H. Pinkse, “Observation of nonlinear bands in near-field scanning optical microscopy of a photonic-crystal waveguide,” J. Appl. Phys. 117, 033104 (2015).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. Chem. C (1)

M. Schnell, A. Garcia-Etxarri, A. Huber, K. Crozier, A. Borisov, J. Aizpurua, and R. Hillenbrand, “Amplitude and phase-resolved near-field mapping of infrared antenna modes by transmission-mode scattering-type near-field microscopy,” J. Phys. Chem. C 114, 7341–7345 (2010).
[Crossref]

Nano Lett. (1)

M. Schnell, P. Sarriguarte, T. Neuman, A. Khanikaev, G. Shvets, J. Aizpurua, and R. Hillenbrand, “Real–space mapping of the chiral near-field distribution in spiral antennas and planar metasurfaces,” Nano Lett. 16, 663–670 (2016).
[Crossref]

Opt. Eng. (1)

J. M. López-Alonso, B. Monacelli, J. Alda, and G. Boreman, “Infrared laser beam temporal fluctuations: characterization and filtering,” Opt. Eng. 44, 054203 (2005).
[Crossref]

Opt. Express (6)

Phys. Rev. Lett. (1)

R. L. Olmon, M. Rang, P. Krenz, B. A. Lail, L. V. Saraf, G. D. Boreman, and M. B. Raschke, “Determination of the electric-field, magnetic-field, and electric-current distributions of infrared optical antennas: a near-field optical vector network analyzer,” Phys. Rev. Lett. 105, 167403 (2010).
[Crossref]

Phys. Status Solidi B (1)

G. Németh, D. Datz, H. M. Tóháti, Á. Pekker, and K. Kamarás, “Scattering near-field optical microscopy on metallic and semiconducting carbon nanotube bundles in the infrared,” Phys. Status Solidi B 253, 2413–2416 (2016).

Proc. SPIE (1)

A. Ravichandran, E. C. Kinzel, J. C. Ginn, J. A. D’Archangel, E. Z. Tucker, B. A. Lail, M. B. Raschke, and G. D. Boreman, “Numerical modeling of scattering type scanning near-field optical microscopy,” Proc. SPIE 8815, 88150S (2013).
[Crossref]

Rev. Sci. Instrum. (2)

M. Esslinger, J. Dorfmuller, W. Khunsin, R. Vogelgesang, and K. Kern, “Background-free imaging of plasmonic structures with cross-polarized apertureless scanning near-field optical microscopy,” Rev. Sci. Instrum. 83, 033704 (2012).
[Crossref]

I. Horcas, R. Fernandez, J. M. Gomez-Rodriguez, J. Colchero, J. Gomez-Herrero, and A. M. Baro, “WSXM: a software for scanning probe microscopy and a tool for nanotechnology,” Rev. Sci. Instrum. 78, 013705 (2007).
[Crossref]

Sci. Bull. Politeh. Univ. Bucharest Ser. A (1)

D. Tranca, S. G. Stanciu, R. Hristu, C. Stoichita, and G. A. Stanciu, “Amplitude and phase reconstruction issues in scattering scanning near-field optical microscopy,” Sci. Bull. Politeh. Univ. Bucharest Ser. A 78, 253–262 (2016).

Univ. Politeh. Buchar. Sci. Bull.-Ser. A-Appl. Math. Phys. (1)

S. G. Stanciu, M. Costache, D. E. Tranca, R. Hristu, M. Popescu, V. Enache, and G. A. Stanciu, “Towards imaging skin cancer by apertureless scanning near-field optical microscopy,” Univ. Politeh. Buchar. Sci. Bull.-Ser. A-Appl. Math. Phys. 78, 235–244 (2016).

Other (4)

S. G. Stanciu, D. E. Tranca, L. Tarpani, G. A. Stanciu, R. Hristu, and L. Latterini, “Investigations on organic fluorophore doped silica nanoparticles by apertureless scanning near-field optical microscopy,” in 16th International Conference on Transparent Optical Networks (ICTON) (2014), pp. 1–4.

Czech Metrology Institute, Gwyddion 2.43, http://gwyddion.net .

The MathWorks Inc., MATLAB, http://www.mathworks.com .

Ansys Inc., HFSS, http://www.ansys.com/Products/Electronics/ANSYS-HFSS .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1. Schematic of s-SNOM system with interferometer leg dithered for pseudo-heterodyne detection and a wire-grid polarizer for cross-polarized detection (BS, beam splitter; WGP, wire-grid polarizer; QWP, quarter-wave plate; LIA, lock-in amplifier; MCT, HgCdTe detector; AFM, atomic force microscope).
Fig. 2.
Fig. 2. Maps of the topography and X and Y components of the near-field signal extracted from the first and second sidebands in pseudo-heterodyne detection mode for data set A. The angle of the signal, α , was set to zero before the measurement.
Fig. 3.
Fig. 3. Data cloud of the signals registered for the (a, c, e) first and (b, d, f) second sidebands. The original data are shown in plots (a) and (b). The signals from the structure are plotted in (c) and (d). In these plots, the signals are self-centered, and the straight lines in (c) and (d) represent the directions of the maximum and minimum variance of the data. The maximum-variance direction is slightly misaligned with respect to the X axis. Figures (e) and (f) represent the original signal rotated to align data along the maximum-variance direction and centered to the mean of the data obtained from the substrate.
Fig. 4.
Fig. 4. (a, c, e, g) Near-field modulus and (b, d, f, h) phase, corresponding to the square patches structures for data set A. Plots (a) and (b) correspond to the results of Eqs. (2) and (3) for the unsigned modulus of the signal. The results obtained from the method proposed in this paper are shown in plots (c) and (d), where the field is obtained from the X component of the signals. Plots (e) and (f) are obtained from component Y . Finally, these experimental results are compared with the simulations obtained from HFSS [see plots (g) and (h)] for the given structures under the same illumination that was used in the experiment.
Fig. 5.
Fig. 5. Data cloud of the signals registered for the (a, c) first and (b, d) second sidebands for data set B. The original data are shown in plots (a) and (b). In this case, the maximum variance direction is largely misaligned with respect to the X axis. Figures (c) and (d) represent the original signal rotated to align the data along the maximum-variance direction and centered to the mean of the data obtained from the substrate.
Fig. 6.
Fig. 6. (a) Near-field modulus and (b) phase, corresponding to the square-patches structures for data set B. Plot (c) corresponds to the results of Eq. (3) for the unsigned modulus of the signal.
Fig. 7.
Fig. 7. Left: distribution of the near field for a specific position of the reference mirror. Each point defines the modulus and phase of the electric field at a given location on the sample. Right: angular representation of the normalized function F ( θ ) for the mirror position presented in the left plot.
Fig. 8.
Fig. 8. Calculated phase, Ψ G , for different positions of the reference mirror. The origin of Ψ G is arbitrary, but it can be related to the position of a predetermined interference situation when the mirror is not vibrating.

Tables (1)

Tables Icon

Table 1. Rotation Angle, β , and Relative Weight, w max , along the Maximum Variance Direction for the Two Sidebands (Subscripts 1 and 2)

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

E R = m ρ m exp ( i m f mirror t ) ,
E z ( x , y ) = κ [ S 2,2 ( x , y ) i S 2,1 ( x , y ) ] exp [ i Ψ G ] ,
| E z ( x , y ) | = κ S 2,2 2 ( x , y ) + S 2,1 2 ( x , y ) ,
φ ( x , y ) = Ψ G Φ ( x , y ) ,
Φ ( x , y ) = tan 1 [ S 2,1 ( x , y ) S 2,2 ( x , y ) ] ,
w max = σ max 2 σ max 2 + σ min 2 ,
F ( θ ) = 1 M [ θ , θ + Δ θ ) j [ θ , θ + Δ θ ) | E z , j | ,

Metrics