Abstract

In high-energy laser systems, the energy absorption coefficient of silicon optical elements is one of the most critical performance indicators. The absorption coefficient of substrate limits the absorption of the overall elements. Since mono-crystalline silicon is transparent in working wavelength range, the subsurface absorption precursors also influence the entire absorption dramatically. In this paper, the subsurface of a super-polished silicon substrate is exposed by ion beam etching (IBE) as deep as 4.6 μm. In different depth layers, morphology and energy absorption are measured with an atom force microscope and photothermal instrument, respectively. In the 100 nm layer, microstructures are found, and their heights decrease while widths increase with IBE. Finally, structures are diminished below the 1.12 μm layer. Absorption increases with the structures’ appearance. When the structures are fully exposed, absorption reaches the peak value, 327.5% of the unremoved surface. Once structures are removed, the absorption value falls down to the lowest point, 67.5%, which verifies that structures influence the absorption significantly. According to the structure depth and energy dispersive spectrometer results, the structures are most likely the densificated micro zones, generated by fabrication processes. In practical fabrication, a subsurface layer of 1.12 μm thick needs to be removed by stress-less processes, to obtain a low-absorption element.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Investigation of laser-induced damage threshold improvement mechanism during ion beam sputtering of fused silica

Mingjin Xu, Feng Shi, Lin Zhou, Yifan Dai, Xiaoqiang Peng, and Wenlin Liao
Opt. Express 25(23) 29260-29271 (2017)

Investigation of surface damage precursor evolutions and laser-induced damage threshold improvement mechanism during Ion beam etching of fused silica

Feng Shi, Yaoyu Zhong, Yifan Dai, Xiaoqiang Peng, Mingjin Xu, and Tingting Sui
Opt. Express 24(18) 20842-20854 (2016)

Reaction ion etching process for improving laser damage resistance of fused silica optical surface

Laixi Sun, Hongjie Liu, Jin Huang, Xin Ye, Handing Xia, Qingzhi Li, Xiaodong Jiang, Weidong Wu, Liming Yang, and Wanguo Zheng
Opt. Express 24(1) 199-211 (2016)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (3)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (1)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription