Abstract

In high-energy laser systems, the energy absorption coefficient of silicon optical elements is one of the most critical performance indicators. The absorption coefficient of substrate limits the absorption of the overall elements. Since mono-crystalline silicon is transparent in working wavelength range, the subsurface absorption precursors also influence the entire absorption dramatically. In this paper, the subsurface of a super-polished silicon substrate is exposed by ion beam etching (IBE) as deep as 4.6 μm. In different depth layers, morphology and energy absorption are measured with an atom force microscope and photothermal instrument, respectively. In the 100 nm layer, microstructures are found, and their heights decrease while widths increase with IBE. Finally, structures are diminished below the 1.12 μm layer. Absorption increases with the structures’ appearance. When the structures are fully exposed, absorption reaches the peak value, 327.5% of the unremoved surface. Once structures are removed, the absorption value falls down to the lowest point, 67.5%, which verifies that structures influence the absorption significantly. According to the structure depth and energy dispersive spectrometer results, the structures are most likely the densificated micro zones, generated by fabrication processes. In practical fabrication, a subsurface layer of 1.12 μm thick needs to be removed by stress-less processes, to obtain a low-absorption element.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Investigation of laser-induced damage threshold improvement mechanism during ion beam sputtering of fused silica

Mingjin Xu, Feng Shi, Lin Zhou, Yifan Dai, Xiaoqiang Peng, and Wenlin Liao
Opt. Express 25(23) 29260-29271 (2017)

Investigation of surface damage precursor evolutions and laser-induced damage threshold improvement mechanism during Ion beam etching of fused silica

Feng Shi, Yaoyu Zhong, Yifan Dai, Xiaoqiang Peng, Mingjin Xu, and Tingting Sui
Opt. Express 24(18) 20842-20854 (2016)

Reaction ion etching process for improving laser damage resistance of fused silica optical surface

Laixi Sun, Hongjie Liu, Jin Huang, Xin Ye, Handing Xia, Qingzhi Li, Xiaodong Jiang, Weidong Wu, Liming Yang, and Wanguo Zheng
Opt. Express 24(1) 199-211 (2016)

References

  • View by:
  • |
  • |
  • |

  1. C. Danson, D. Hillier, N. Hopps, and D. Neely, “Petawatt class lasers worldwide,” High Power Laser Sci. Eng. 3, e3 (2015).
    [Crossref]
  2. X. Zeng, K. Zhou, Y. Zuo, Q. Zhu, J. Su, X. Wang, X. Wang, X. Huang, X. Jiang, D. Jiang, Y. Guo, N. Xie, S. Zhou, Z. Wu, J. Mu, H. Peng, and F. Jing, “Multi-petawatt laser facility fully based on optical parametric chirped-pulse amplification,” Opt. Lett. 42, 2014–2017 (2017).
    [Crossref]
  3. B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Optical ablation by high-power short-pulse lasers,” J. Opt. Soc. Am. B 13, 459–468 (1996).
    [Crossref]
  4. Y. Chai, M. Zhu, H. Wang, H. Xing, Y. Cui, J. Sun, K. Yi, and J. Shao, “Laser-resistance sensitivity to substrate pit size of multilayer coatings,” Sci. Rep. 6, 27076 (2016).
    [Crossref]
  5. J. Penano, P. Sprangle, A. Ting, R. Fischer, B. Hafizi, and P. Serafim, “Optical quality of high-power laser beams in lenses,” J. Opt. Soc. Am. B 26, 503–510 (2009).
    [Crossref]
  6. M. R. Kozlowski, R. Mouser, S. Maricle, P. Wegner, and T. Weiland, “Laser damage performance of fused silica optical components measured on the beamlet laser at 351  nm,” Proc. SPIE 3578, 436 (1998).
    [Crossref]
  7. N. Bloembergen, “Role of cracks, pores, and absorbing inclusions on laser induced damage threshold at surfaces of transparent dielectrics,” Appl. Opt. 12, 661–664 (1973).
    [Crossref]
  8. S. Du, “Study on thermal deformation in high energy laser and transmission system,” Ph.D. thesis (National University of Defense Technology, 2001).
  9. W. A. Goodman and M. S. Goorsky, “Reduction of the bulk absorption coefficient in silicon optics for high-energy lasers through defect engineering,” Appl. Opt. 34, 3367–3373 (1995).
    [Crossref]
  10. Y. Lu, Z. Cheng, Y. Zhang, F. Sun, and W. Yu, “Investigations and experiments of a new multi-layer complex liquid-cooled mirror,” Chin. Opt. Lett. 2, 407–410 (2004).
  11. Y. Zhang and Y. Zhang, “Defect study on several fluoride coatings,” Proc. SPIE 7283, 72832Q (2009).
    [Crossref]
  12. Y. Zhang, H. Xu, N. Ling, and Y. Zhang, “Defect study on infrared thin film of 3.8  μm,” Proc. SPIE 6149, 614912 (2006).
    [Crossref]
  13. Y. Chai, M. Zhu, Z. Bai, K. Yi, H. Wang, Y. Cui, and J. Shao, “Impact of substrate pits on laser-induced damage performance of 1064-nm high-reflective coatings,” Opt. Lett. 40, 1330–1333 (2015).
    [Crossref]
  14. P. E. Miller, J. D. Bude, T. I. Suratwala, N. Shen, T. A. Laurence, W. A. Steele, J. Menapace, M. D. Feit, and L. L. Wong, “Fracture-induced subbandgap absorption as a precursor to optical damage on fused silica surfaces,” Opt. Lett. 35, 2702–2704 (2010).
    [Crossref]
  15. C. A. Klein, “Thermal induced optical distortion in high-energy laser systems,” Opt. Eng. 6, 36 (1979).
  16. F. Shi, Y. Tian, X. Q. Peng, and Y. F. Dai, “Combined technique of elastic magnetorheological finishing and HF etching for high-efficiency improving of the laser-induced damage threshold of fused silica optics,” Appl. Opt. 53, 598–604 (2014).
    [Crossref]
  17. X. Cheng, A. Tuniyazi, J. Zhang, T. Ding, H. Jiao, B. Ma, Z. Wei, H. Li, and Z. Wang, “Nanosecond laser-induced damage of nodular defects in dielectric multilayer mirrors,” Appl. Opt. 53, A62–A69 (2014).
    [Crossref]
  18. Y. Chai, M. Zhu, K. Yi, W. Zhang, H. Wang, Z. Fang, Z. Bai, Y. Cui, and J. Shao, “Experimental demonstration of laser damage caused by interface coupling effects of substrate surface and coating layers,” Opt. Lett. 40, 3731–3734 (2015).
    [Crossref]
  19. J. A. Randi, J. C. Lambropoulos, and S. D. Jacobs, “Subsurface damage in some single crystalline optical materials,” Appl. Opt. 44, 2241–2249 (2005).
    [Crossref]
  20. S. Papernov and A. W. Schmid, “Laser-induced surface damage of optical materials: absorption sources, initiation, growth, and mitigation,” Proc. SPIE 7132, 713211 (2008).
    [Crossref]
  21. Z. Wu, C. J. Stolz, S. C. Weakley, J. D. Hughes, and Q. Zhao, “Damage threshold prediction of hafnia-silica multilayer coatings by nondestructive evaluation of fluence-limiting defects,” Appl. Opt. 40, 1897–1906 (2001).
    [Crossref]
  22. E. Welsh and D. Ristau, “Photothermal measurements on optical thin films,” Appl. Opt. 34, 31–39 (1995).
    [Crossref]
  23. R. M. Bradley and J. M. E. Harper, “Theory of ripple topography induced by ion bombardment,” J. Vac. Sci. Technol. A 6, 2390–2395 (1988).
    [Crossref]
  24. P. Sigmund, “Theory of sputtering. I. Sputtering yield of amorphous and polycrystalline targets,” Phys. Rev. 184, 383–416 (1969).
    [Crossref]
  25. A. Keller, S. Facsko, and W. Moller, “Evolution of ion-induced ripple patterns on SiO2 surfaces,” Nucl. Instrum. Methods Phys. Res. B 267, 656–659 (2009).
    [Crossref]
  26. T. M. Mayer, E. Chason, and A. J. Howard, “Roughening instability and ion-induced viscous relaxation of SiO2 surfaces,” J. Appl. Phys. 76, 1633–1643 (1994).
    [Crossref]

2017 (1)

2016 (1)

Y. Chai, M. Zhu, H. Wang, H. Xing, Y. Cui, J. Sun, K. Yi, and J. Shao, “Laser-resistance sensitivity to substrate pit size of multilayer coatings,” Sci. Rep. 6, 27076 (2016).
[Crossref]

2015 (3)

2014 (2)

2010 (1)

2009 (3)

J. Penano, P. Sprangle, A. Ting, R. Fischer, B. Hafizi, and P. Serafim, “Optical quality of high-power laser beams in lenses,” J. Opt. Soc. Am. B 26, 503–510 (2009).
[Crossref]

Y. Zhang and Y. Zhang, “Defect study on several fluoride coatings,” Proc. SPIE 7283, 72832Q (2009).
[Crossref]

A. Keller, S. Facsko, and W. Moller, “Evolution of ion-induced ripple patterns on SiO2 surfaces,” Nucl. Instrum. Methods Phys. Res. B 267, 656–659 (2009).
[Crossref]

2008 (1)

S. Papernov and A. W. Schmid, “Laser-induced surface damage of optical materials: absorption sources, initiation, growth, and mitigation,” Proc. SPIE 7132, 713211 (2008).
[Crossref]

2006 (1)

Y. Zhang, H. Xu, N. Ling, and Y. Zhang, “Defect study on infrared thin film of 3.8  μm,” Proc. SPIE 6149, 614912 (2006).
[Crossref]

2005 (1)

2004 (1)

2001 (1)

1998 (1)

M. R. Kozlowski, R. Mouser, S. Maricle, P. Wegner, and T. Weiland, “Laser damage performance of fused silica optical components measured on the beamlet laser at 351  nm,” Proc. SPIE 3578, 436 (1998).
[Crossref]

1996 (1)

1995 (2)

1994 (1)

T. M. Mayer, E. Chason, and A. J. Howard, “Roughening instability and ion-induced viscous relaxation of SiO2 surfaces,” J. Appl. Phys. 76, 1633–1643 (1994).
[Crossref]

1988 (1)

R. M. Bradley and J. M. E. Harper, “Theory of ripple topography induced by ion bombardment,” J. Vac. Sci. Technol. A 6, 2390–2395 (1988).
[Crossref]

1979 (1)

C. A. Klein, “Thermal induced optical distortion in high-energy laser systems,” Opt. Eng. 6, 36 (1979).

1973 (1)

1969 (1)

P. Sigmund, “Theory of sputtering. I. Sputtering yield of amorphous and polycrystalline targets,” Phys. Rev. 184, 383–416 (1969).
[Crossref]

Bai, Z.

Bloembergen, N.

Bradley, R. M.

R. M. Bradley and J. M. E. Harper, “Theory of ripple topography induced by ion bombardment,” J. Vac. Sci. Technol. A 6, 2390–2395 (1988).
[Crossref]

Bude, J. D.

Chai, Y.

Chason, E.

T. M. Mayer, E. Chason, and A. J. Howard, “Roughening instability and ion-induced viscous relaxation of SiO2 surfaces,” J. Appl. Phys. 76, 1633–1643 (1994).
[Crossref]

Cheng, X.

Cheng, Z.

Cui, Y.

Dai, Y. F.

Danson, C.

C. Danson, D. Hillier, N. Hopps, and D. Neely, “Petawatt class lasers worldwide,” High Power Laser Sci. Eng. 3, e3 (2015).
[Crossref]

Ding, T.

Du, S.

S. Du, “Study on thermal deformation in high energy laser and transmission system,” Ph.D. thesis (National University of Defense Technology, 2001).

Facsko, S.

A. Keller, S. Facsko, and W. Moller, “Evolution of ion-induced ripple patterns on SiO2 surfaces,” Nucl. Instrum. Methods Phys. Res. B 267, 656–659 (2009).
[Crossref]

Fang, Z.

Feit, M. D.

Fischer, R.

Goodman, W. A.

Goorsky, M. S.

Guo, Y.

Hafizi, B.

Harper, J. M. E.

R. M. Bradley and J. M. E. Harper, “Theory of ripple topography induced by ion bombardment,” J. Vac. Sci. Technol. A 6, 2390–2395 (1988).
[Crossref]

Herman, S.

Hillier, D.

C. Danson, D. Hillier, N. Hopps, and D. Neely, “Petawatt class lasers worldwide,” High Power Laser Sci. Eng. 3, e3 (2015).
[Crossref]

Hopps, N.

C. Danson, D. Hillier, N. Hopps, and D. Neely, “Petawatt class lasers worldwide,” High Power Laser Sci. Eng. 3, e3 (2015).
[Crossref]

Howard, A. J.

T. M. Mayer, E. Chason, and A. J. Howard, “Roughening instability and ion-induced viscous relaxation of SiO2 surfaces,” J. Appl. Phys. 76, 1633–1643 (1994).
[Crossref]

Huang, X.

Hughes, J. D.

Jacobs, S. D.

Jiang, D.

Jiang, X.

Jiao, H.

Jing, F.

Keller, A.

A. Keller, S. Facsko, and W. Moller, “Evolution of ion-induced ripple patterns on SiO2 surfaces,” Nucl. Instrum. Methods Phys. Res. B 267, 656–659 (2009).
[Crossref]

Klein, C. A.

C. A. Klein, “Thermal induced optical distortion in high-energy laser systems,” Opt. Eng. 6, 36 (1979).

Kozlowski, M. R.

M. R. Kozlowski, R. Mouser, S. Maricle, P. Wegner, and T. Weiland, “Laser damage performance of fused silica optical components measured on the beamlet laser at 351  nm,” Proc. SPIE 3578, 436 (1998).
[Crossref]

Lambropoulos, J. C.

Laurence, T. A.

Li, H.

Ling, N.

Y. Zhang, H. Xu, N. Ling, and Y. Zhang, “Defect study on infrared thin film of 3.8  μm,” Proc. SPIE 6149, 614912 (2006).
[Crossref]

Lu, Y.

Ma, B.

Maricle, S.

M. R. Kozlowski, R. Mouser, S. Maricle, P. Wegner, and T. Weiland, “Laser damage performance of fused silica optical components measured on the beamlet laser at 351  nm,” Proc. SPIE 3578, 436 (1998).
[Crossref]

Mayer, T. M.

T. M. Mayer, E. Chason, and A. J. Howard, “Roughening instability and ion-induced viscous relaxation of SiO2 surfaces,” J. Appl. Phys. 76, 1633–1643 (1994).
[Crossref]

Menapace, J.

Miller, P. E.

Moller, W.

A. Keller, S. Facsko, and W. Moller, “Evolution of ion-induced ripple patterns on SiO2 surfaces,” Nucl. Instrum. Methods Phys. Res. B 267, 656–659 (2009).
[Crossref]

Mouser, R.

M. R. Kozlowski, R. Mouser, S. Maricle, P. Wegner, and T. Weiland, “Laser damage performance of fused silica optical components measured on the beamlet laser at 351  nm,” Proc. SPIE 3578, 436 (1998).
[Crossref]

Mu, J.

Neely, D.

C. Danson, D. Hillier, N. Hopps, and D. Neely, “Petawatt class lasers worldwide,” High Power Laser Sci. Eng. 3, e3 (2015).
[Crossref]

Papernov, S.

S. Papernov and A. W. Schmid, “Laser-induced surface damage of optical materials: absorption sources, initiation, growth, and mitigation,” Proc. SPIE 7132, 713211 (2008).
[Crossref]

Penano, J.

Peng, H.

Peng, X. Q.

Perry, M. D.

Randi, J. A.

Ristau, D.

Rubenchik, A. M.

Schmid, A. W.

S. Papernov and A. W. Schmid, “Laser-induced surface damage of optical materials: absorption sources, initiation, growth, and mitigation,” Proc. SPIE 7132, 713211 (2008).
[Crossref]

Serafim, P.

Shao, J.

Shen, N.

Shi, F.

Shore, B. W.

Sigmund, P.

P. Sigmund, “Theory of sputtering. I. Sputtering yield of amorphous and polycrystalline targets,” Phys. Rev. 184, 383–416 (1969).
[Crossref]

Sprangle, P.

Steele, W. A.

Stolz, C. J.

Stuart, B. C.

Su, J.

Sun, F.

Sun, J.

Y. Chai, M. Zhu, H. Wang, H. Xing, Y. Cui, J. Sun, K. Yi, and J. Shao, “Laser-resistance sensitivity to substrate pit size of multilayer coatings,” Sci. Rep. 6, 27076 (2016).
[Crossref]

Suratwala, T. I.

Tian, Y.

Ting, A.

Tuniyazi, A.

Wang, H.

Wang, X.

Wang, Z.

Weakley, S. C.

Wegner, P.

M. R. Kozlowski, R. Mouser, S. Maricle, P. Wegner, and T. Weiland, “Laser damage performance of fused silica optical components measured on the beamlet laser at 351  nm,” Proc. SPIE 3578, 436 (1998).
[Crossref]

Wei, Z.

Weiland, T.

M. R. Kozlowski, R. Mouser, S. Maricle, P. Wegner, and T. Weiland, “Laser damage performance of fused silica optical components measured on the beamlet laser at 351  nm,” Proc. SPIE 3578, 436 (1998).
[Crossref]

Welsh, E.

Wong, L. L.

Wu, Z.

Xie, N.

Xing, H.

Y. Chai, M. Zhu, H. Wang, H. Xing, Y. Cui, J. Sun, K. Yi, and J. Shao, “Laser-resistance sensitivity to substrate pit size of multilayer coatings,” Sci. Rep. 6, 27076 (2016).
[Crossref]

Xu, H.

Y. Zhang, H. Xu, N. Ling, and Y. Zhang, “Defect study on infrared thin film of 3.8  μm,” Proc. SPIE 6149, 614912 (2006).
[Crossref]

Yi, K.

Yu, W.

Zeng, X.

Zhang, J.

Zhang, W.

Zhang, Y.

Y. Zhang and Y. Zhang, “Defect study on several fluoride coatings,” Proc. SPIE 7283, 72832Q (2009).
[Crossref]

Y. Zhang and Y. Zhang, “Defect study on several fluoride coatings,” Proc. SPIE 7283, 72832Q (2009).
[Crossref]

Y. Zhang, H. Xu, N. Ling, and Y. Zhang, “Defect study on infrared thin film of 3.8  μm,” Proc. SPIE 6149, 614912 (2006).
[Crossref]

Y. Zhang, H. Xu, N. Ling, and Y. Zhang, “Defect study on infrared thin film of 3.8  μm,” Proc. SPIE 6149, 614912 (2006).
[Crossref]

Y. Lu, Z. Cheng, Y. Zhang, F. Sun, and W. Yu, “Investigations and experiments of a new multi-layer complex liquid-cooled mirror,” Chin. Opt. Lett. 2, 407–410 (2004).

Zhao, Q.

Zhou, K.

Zhou, S.

Zhu, M.

Zhu, Q.

Zuo, Y.

Appl. Opt. (7)

Chin. Opt. Lett. (1)

High Power Laser Sci. Eng. (1)

C. Danson, D. Hillier, N. Hopps, and D. Neely, “Petawatt class lasers worldwide,” High Power Laser Sci. Eng. 3, e3 (2015).
[Crossref]

J. Appl. Phys. (1)

T. M. Mayer, E. Chason, and A. J. Howard, “Roughening instability and ion-induced viscous relaxation of SiO2 surfaces,” J. Appl. Phys. 76, 1633–1643 (1994).
[Crossref]

J. Opt. Soc. Am. B (2)

J. Vac. Sci. Technol. A (1)

R. M. Bradley and J. M. E. Harper, “Theory of ripple topography induced by ion bombardment,” J. Vac. Sci. Technol. A 6, 2390–2395 (1988).
[Crossref]

Nucl. Instrum. Methods Phys. Res. B (1)

A. Keller, S. Facsko, and W. Moller, “Evolution of ion-induced ripple patterns on SiO2 surfaces,” Nucl. Instrum. Methods Phys. Res. B 267, 656–659 (2009).
[Crossref]

Opt. Eng. (1)

C. A. Klein, “Thermal induced optical distortion in high-energy laser systems,” Opt. Eng. 6, 36 (1979).

Opt. Lett. (4)

Phys. Rev. (1)

P. Sigmund, “Theory of sputtering. I. Sputtering yield of amorphous and polycrystalline targets,” Phys. Rev. 184, 383–416 (1969).
[Crossref]

Proc. SPIE (4)

S. Papernov and A. W. Schmid, “Laser-induced surface damage of optical materials: absorption sources, initiation, growth, and mitigation,” Proc. SPIE 7132, 713211 (2008).
[Crossref]

Y. Zhang and Y. Zhang, “Defect study on several fluoride coatings,” Proc. SPIE 7283, 72832Q (2009).
[Crossref]

Y. Zhang, H. Xu, N. Ling, and Y. Zhang, “Defect study on infrared thin film of 3.8  μm,” Proc. SPIE 6149, 614912 (2006).
[Crossref]

M. R. Kozlowski, R. Mouser, S. Maricle, P. Wegner, and T. Weiland, “Laser damage performance of fused silica optical components measured on the beamlet laser at 351  nm,” Proc. SPIE 3578, 436 (1998).
[Crossref]

Sci. Rep. (1)

Y. Chai, M. Zhu, H. Wang, H. Xing, Y. Cui, J. Sun, K. Yi, and J. Shao, “Laser-resistance sensitivity to substrate pit size of multilayer coatings,” Sci. Rep. 6, 27076 (2016).
[Crossref]

Other (1)

S. Du, “Study on thermal deformation in high energy laser and transmission system,” Ph.D. thesis (National University of Defense Technology, 2001).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Slope of subsurface and 13 zones.

Fig. 2.
Fig. 2.

Typical surface morphology and structures before IBE.

Fig. 3.
Fig. 3.

Evolution of the microstructures morphology.

Fig. 4.
Fig. 4.

SEM EDS results of structures and in different depths. (a) EDS map in different depths. (b) EDS point chemical composition spectrum.

Fig. 5.
Fig. 5.

PTM results.

Fig. 6.
Fig. 6.

Correlation between roughness RMS value and PTM value.

Fig. 7.
Fig. 7.

Difference between reflective PTM and real application.

Tables (3)

Tables Icon

Table 1. Parameters of Super-Polishing

Tables Icon

Table 2. Parameters of IBE

Tables Icon

Table 3. Parameters of PTM

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

v(x,y)=JMtρt(x,y)NAYθ(x,y),

Metrics