Abstract

Ga0.51In0.49P is a promising candidate for thermally tunable nanophotonic devices due to its low thermal conductivity. In this work we study its thermo-optical response. We obtain the linear thermo-optical coefficient dn/dT=2.0±0.3·104  K1 by investigating the transmission properties of a single mode-gap photonic crystal nanocavity.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Optical properties of red emitting self-assembled InP/(Al0.20Ga0.80)0.51In0.49P quantum dot based micropillars

Wolfgang-Michael Schulz, Tim Thomay, Marcus Eichfelder, Moritz Bommer, Michael Wiesner, Robert Roßbach, Michael Jetter, Rudolf Bratschitsch, Alfred Leitenstorfer, and Peter Michler
Opt. Express 18(12) 12543-12551 (2010)

Thermo-optical dynamics in an optically pumped Photonic Crystal nano-cavity

M. Brunstein, R. Braive, R. Hostein, A. Beveratos, I. Robert-Philip, I. Sagnes, T. J. Karle, A. M. Yacomotti, J. A. Levenson, V. Moreau, G. Tessier, and Y. De Wilde
Opt. Express 17(19) 17118-17129 (2009)

Narrowband optical parametric amplification measurements in Ga0.5In0.5P photonic crystal waveguides

A. Willinger, S. Roy, M. Santagiustina, S. Combrié, A. De Rossi, and G. Eisenstein
Opt. Express 23(14) 17751-17757 (2015)

References

  • View by:
  • |
  • |
  • |

  1. A. Faraon, D. Englund, D. Bulla, B. Luther-Davies, B. J. Eggleton, N. Stoltz, P. Petroff, and J. Vučković, “Local tuning of photonic crystal cavities using chalcogenide glasses,” Appl. Phys. Lett. 92, 043123 (2008).
    [Crossref]
  2. K. Rivoire, Z. Lin, F. Hatami, and J. Vučković, “Sum-frequency generation in doubly resonant GaP photonic crystal nanocavities,” Appl. Phys. Lett. 97, 043103 (2010).
    [Crossref]
  3. Y. Yu, E. Palushani, M. Heuck, N. Kuznetsova, P. Trøst, S. Ek, D. Vukovic, C. Peucheret, L. Katsuo, S. Combrié, A. D. Rossi, K. Yvind, and J. Mørk, “Switching characteristics of an InP photonic crystal nanocavity: experiment and theory,” Opt. Express 21, 9221–9231 (2013).
  4. M. Notomi and H. Taniyama, “On-demand ultrahigh-Q cavity formation and photon pinning via dynamic waveguide tuning,” Opt. Express 16, 18657–18666 (2008).
    [Crossref]
  5. F. Riboli, N. Caselli, S. Vignolini, F. Intonti, K. Vynck, P. Barthelemy, A. Gerardino, L. Balet, L. Li, A. Fiore, M. Gurioli, and D. Wiersma, “Engineering of light confinement in strongly scattering disordered media,” Nat. Mater. 13, 720–725 (2014).
    [Crossref]
  6. J. Pan, Y. Huo, K. Yamanaka, S. Sandhu, L. Scaccabarozzi, R. Timp, M. L. Povinelli, S. Fan, M. M. Fejer, and J. S. Harris, “Aligning microcavity resonances in silicon photonic-crystal slabs using laser-pumped thermal tuning,” Appl. Phys. Lett. 92, 103114 (2008).
    [Crossref]
  7. S. Sokolov, J. Lian, E. Yüce, S. Combrié, G. Lehoucq, A. De Rossi, and A. P. Mosk, “Local thermal resonance control of GaInP photonic crystal membrane cavities using ambient gas cooling,” Appl. Phys. Lett. 106, 171113 (2015).
    [Crossref]
  8. J. Lian, S. Sokolov, E. Yüce, S. Combrié, A. De Rossi, and A. P. Mosk, “Measurement of the profiles of disorder-induced localized resonances by local tuning,” Opt. Express 24, 21939–21947 (2016).
    [Crossref]
  9. A. Martin, G. Moille, S. Combrié, G. Lehoucq, T. Debuisschert, J. Lian, S. Sokolov, A. P. Mosk, and A. De Rossi, “Triply-resonant continuous wave parametric source with a microwatt pump,” ArXiv:1602.04833 (2016).
  10. S. Combrié, Q. V. Tran, A. De Rossi, C. Husko, and P. Colman, “High quality GaInP nonlinear photonic crystals with minimized nonlinear absorption,” Appl. Phys. Lett. 95, 221108 (2009).
    [Crossref]
  11. A. S. Clark, C. Husko, M. J. Collins, G. Lehoucq, S. Xavier, A. D. De Rossi, S. Combrié, C. Xiong, and B. J. Eggleton, “Heralded single-photon source in a III-V photonic crystal,” Opt. Lett. 38, 649–651 (2013).
    [Crossref]
  12. S. Adachi, “Lattice thermal conductivity of group-IV and III-V semiconductor alloys,” J. Appl. Phys. 102, 063502 (2007).
    [Crossref]
  13. E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, T. Tanabe, and T. Watanabe, “Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect,” Appl. Phys. Lett. 88, 041112 (2006).
    [Crossref]
  14. S. Combrié, A. De Rossi, Q. V. Tran, and H. Benisty, “GaAs photonic crystal cavity with ultrahigh Q: microwatt nonlinearity at 1.55 μm,” Opt. Lett. 33, 1908–1910 (2008).
    [Crossref]
  15. C. J. Chen, J. Zheng, T. Gu, J. F. McMillan, M. Yu, G. Lo, D. Kwong, and C. W. Wong, “Selective tuning of high-Q silicon photonic crystal nanocavities via laser-assisted local oxydation,” Opt. Express 19, 12480–12489 (2011).
    [Crossref]
  16. K. Navr, “Thermal oxidation of gallium arsenide,” Czech. J. Phys. B 18, 266–274 (1968).
    [Crossref]
  17. S. Sokolov, J. Lian, E. Yüce, S. Combrié, A. De Rossi, and A. P. Mosk, “Tuning out disorder-induced localization in nanophotonic cavity arrays,” Opt. Express 25, 4598–4606 (2017).
    [Crossref]
  18. U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev. 124, 1866–1878 (1961).
    [Crossref]
  19. W. Zhou, D. Zhao, Y. C. Shuai, H. Yang, S. Chuwongin, A. Chadha, J. H. Seo, K. X. Wang, V. Liu, Z. Ma, and S. Fan, “Progress in 2D photonic crystal Fano resonance photonics,” Prog. Quantum Electron. 38, 1–74 (2014).
    [Crossref]
  20. J. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light (Princeton University, 2008).
  21. J. Zhang, P. Huang, Y. Li, and H. Wei, “Design and performance of an absolute gas refractometer based on a synthetic pseudo-wavelength method,” Appl. Opt. 52, 3671–3679 (2013).
    [Crossref]
  22. I. Kudman and R. J. Paff, “Thermal expansion of InxGa1−xP alloys,” J. Appl. Phys. 43, 3760–3762 (1972).
    [Crossref]

2017 (1)

2016 (1)

2015 (1)

S. Sokolov, J. Lian, E. Yüce, S. Combrié, G. Lehoucq, A. De Rossi, and A. P. Mosk, “Local thermal resonance control of GaInP photonic crystal membrane cavities using ambient gas cooling,” Appl. Phys. Lett. 106, 171113 (2015).
[Crossref]

2014 (2)

F. Riboli, N. Caselli, S. Vignolini, F. Intonti, K. Vynck, P. Barthelemy, A. Gerardino, L. Balet, L. Li, A. Fiore, M. Gurioli, and D. Wiersma, “Engineering of light confinement in strongly scattering disordered media,” Nat. Mater. 13, 720–725 (2014).
[Crossref]

W. Zhou, D. Zhao, Y. C. Shuai, H. Yang, S. Chuwongin, A. Chadha, J. H. Seo, K. X. Wang, V. Liu, Z. Ma, and S. Fan, “Progress in 2D photonic crystal Fano resonance photonics,” Prog. Quantum Electron. 38, 1–74 (2014).
[Crossref]

2013 (3)

J. Zhang, P. Huang, Y. Li, and H. Wei, “Design and performance of an absolute gas refractometer based on a synthetic pseudo-wavelength method,” Appl. Opt. 52, 3671–3679 (2013).
[Crossref]

Y. Yu, E. Palushani, M. Heuck, N. Kuznetsova, P. Trøst, S. Ek, D. Vukovic, C. Peucheret, L. Katsuo, S. Combrié, A. D. Rossi, K. Yvind, and J. Mørk, “Switching characteristics of an InP photonic crystal nanocavity: experiment and theory,” Opt. Express 21, 9221–9231 (2013).

A. S. Clark, C. Husko, M. J. Collins, G. Lehoucq, S. Xavier, A. D. De Rossi, S. Combrié, C. Xiong, and B. J. Eggleton, “Heralded single-photon source in a III-V photonic crystal,” Opt. Lett. 38, 649–651 (2013).
[Crossref]

2011 (1)

2010 (1)

K. Rivoire, Z. Lin, F. Hatami, and J. Vučković, “Sum-frequency generation in doubly resonant GaP photonic crystal nanocavities,” Appl. Phys. Lett. 97, 043103 (2010).
[Crossref]

2009 (1)

S. Combrié, Q. V. Tran, A. De Rossi, C. Husko, and P. Colman, “High quality GaInP nonlinear photonic crystals with minimized nonlinear absorption,” Appl. Phys. Lett. 95, 221108 (2009).
[Crossref]

2008 (4)

J. Pan, Y. Huo, K. Yamanaka, S. Sandhu, L. Scaccabarozzi, R. Timp, M. L. Povinelli, S. Fan, M. M. Fejer, and J. S. Harris, “Aligning microcavity resonances in silicon photonic-crystal slabs using laser-pumped thermal tuning,” Appl. Phys. Lett. 92, 103114 (2008).
[Crossref]

A. Faraon, D. Englund, D. Bulla, B. Luther-Davies, B. J. Eggleton, N. Stoltz, P. Petroff, and J. Vučković, “Local tuning of photonic crystal cavities using chalcogenide glasses,” Appl. Phys. Lett. 92, 043123 (2008).
[Crossref]

M. Notomi and H. Taniyama, “On-demand ultrahigh-Q cavity formation and photon pinning via dynamic waveguide tuning,” Opt. Express 16, 18657–18666 (2008).
[Crossref]

S. Combrié, A. De Rossi, Q. V. Tran, and H. Benisty, “GaAs photonic crystal cavity with ultrahigh Q: microwatt nonlinearity at 1.55 μm,” Opt. Lett. 33, 1908–1910 (2008).
[Crossref]

2007 (1)

S. Adachi, “Lattice thermal conductivity of group-IV and III-V semiconductor alloys,” J. Appl. Phys. 102, 063502 (2007).
[Crossref]

2006 (1)

E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, T. Tanabe, and T. Watanabe, “Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect,” Appl. Phys. Lett. 88, 041112 (2006).
[Crossref]

1972 (1)

I. Kudman and R. J. Paff, “Thermal expansion of InxGa1−xP alloys,” J. Appl. Phys. 43, 3760–3762 (1972).
[Crossref]

1968 (1)

K. Navr, “Thermal oxidation of gallium arsenide,” Czech. J. Phys. B 18, 266–274 (1968).
[Crossref]

1961 (1)

U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev. 124, 1866–1878 (1961).
[Crossref]

Adachi, S.

S. Adachi, “Lattice thermal conductivity of group-IV and III-V semiconductor alloys,” J. Appl. Phys. 102, 063502 (2007).
[Crossref]

Balet, L.

F. Riboli, N. Caselli, S. Vignolini, F. Intonti, K. Vynck, P. Barthelemy, A. Gerardino, L. Balet, L. Li, A. Fiore, M. Gurioli, and D. Wiersma, “Engineering of light confinement in strongly scattering disordered media,” Nat. Mater. 13, 720–725 (2014).
[Crossref]

Barthelemy, P.

F. Riboli, N. Caselli, S. Vignolini, F. Intonti, K. Vynck, P. Barthelemy, A. Gerardino, L. Balet, L. Li, A. Fiore, M. Gurioli, and D. Wiersma, “Engineering of light confinement in strongly scattering disordered media,” Nat. Mater. 13, 720–725 (2014).
[Crossref]

Benisty, H.

Bulla, D.

A. Faraon, D. Englund, D. Bulla, B. Luther-Davies, B. J. Eggleton, N. Stoltz, P. Petroff, and J. Vučković, “Local tuning of photonic crystal cavities using chalcogenide glasses,” Appl. Phys. Lett. 92, 043123 (2008).
[Crossref]

Caselli, N.

F. Riboli, N. Caselli, S. Vignolini, F. Intonti, K. Vynck, P. Barthelemy, A. Gerardino, L. Balet, L. Li, A. Fiore, M. Gurioli, and D. Wiersma, “Engineering of light confinement in strongly scattering disordered media,” Nat. Mater. 13, 720–725 (2014).
[Crossref]

Chadha, A.

W. Zhou, D. Zhao, Y. C. Shuai, H. Yang, S. Chuwongin, A. Chadha, J. H. Seo, K. X. Wang, V. Liu, Z. Ma, and S. Fan, “Progress in 2D photonic crystal Fano resonance photonics,” Prog. Quantum Electron. 38, 1–74 (2014).
[Crossref]

Chen, C. J.

Chuwongin, S.

W. Zhou, D. Zhao, Y. C. Shuai, H. Yang, S. Chuwongin, A. Chadha, J. H. Seo, K. X. Wang, V. Liu, Z. Ma, and S. Fan, “Progress in 2D photonic crystal Fano resonance photonics,” Prog. Quantum Electron. 38, 1–74 (2014).
[Crossref]

Clark, A. S.

Collins, M. J.

Colman, P.

S. Combrié, Q. V. Tran, A. De Rossi, C. Husko, and P. Colman, “High quality GaInP nonlinear photonic crystals with minimized nonlinear absorption,” Appl. Phys. Lett. 95, 221108 (2009).
[Crossref]

Combrié, S.

S. Sokolov, J. Lian, E. Yüce, S. Combrié, A. De Rossi, and A. P. Mosk, “Tuning out disorder-induced localization in nanophotonic cavity arrays,” Opt. Express 25, 4598–4606 (2017).
[Crossref]

J. Lian, S. Sokolov, E. Yüce, S. Combrié, A. De Rossi, and A. P. Mosk, “Measurement of the profiles of disorder-induced localized resonances by local tuning,” Opt. Express 24, 21939–21947 (2016).
[Crossref]

S. Sokolov, J. Lian, E. Yüce, S. Combrié, G. Lehoucq, A. De Rossi, and A. P. Mosk, “Local thermal resonance control of GaInP photonic crystal membrane cavities using ambient gas cooling,” Appl. Phys. Lett. 106, 171113 (2015).
[Crossref]

Y. Yu, E. Palushani, M. Heuck, N. Kuznetsova, P. Trøst, S. Ek, D. Vukovic, C. Peucheret, L. Katsuo, S. Combrié, A. D. Rossi, K. Yvind, and J. Mørk, “Switching characteristics of an InP photonic crystal nanocavity: experiment and theory,” Opt. Express 21, 9221–9231 (2013).

A. S. Clark, C. Husko, M. J. Collins, G. Lehoucq, S. Xavier, A. D. De Rossi, S. Combrié, C. Xiong, and B. J. Eggleton, “Heralded single-photon source in a III-V photonic crystal,” Opt. Lett. 38, 649–651 (2013).
[Crossref]

S. Combrié, Q. V. Tran, A. De Rossi, C. Husko, and P. Colman, “High quality GaInP nonlinear photonic crystals with minimized nonlinear absorption,” Appl. Phys. Lett. 95, 221108 (2009).
[Crossref]

S. Combrié, A. De Rossi, Q. V. Tran, and H. Benisty, “GaAs photonic crystal cavity with ultrahigh Q: microwatt nonlinearity at 1.55 μm,” Opt. Lett. 33, 1908–1910 (2008).
[Crossref]

A. Martin, G. Moille, S. Combrié, G. Lehoucq, T. Debuisschert, J. Lian, S. Sokolov, A. P. Mosk, and A. De Rossi, “Triply-resonant continuous wave parametric source with a microwatt pump,” ArXiv:1602.04833 (2016).

De Rossi, A.

S. Sokolov, J. Lian, E. Yüce, S. Combrié, A. De Rossi, and A. P. Mosk, “Tuning out disorder-induced localization in nanophotonic cavity arrays,” Opt. Express 25, 4598–4606 (2017).
[Crossref]

J. Lian, S. Sokolov, E. Yüce, S. Combrié, A. De Rossi, and A. P. Mosk, “Measurement of the profiles of disorder-induced localized resonances by local tuning,” Opt. Express 24, 21939–21947 (2016).
[Crossref]

S. Sokolov, J. Lian, E. Yüce, S. Combrié, G. Lehoucq, A. De Rossi, and A. P. Mosk, “Local thermal resonance control of GaInP photonic crystal membrane cavities using ambient gas cooling,” Appl. Phys. Lett. 106, 171113 (2015).
[Crossref]

S. Combrié, Q. V. Tran, A. De Rossi, C. Husko, and P. Colman, “High quality GaInP nonlinear photonic crystals with minimized nonlinear absorption,” Appl. Phys. Lett. 95, 221108 (2009).
[Crossref]

S. Combrié, A. De Rossi, Q. V. Tran, and H. Benisty, “GaAs photonic crystal cavity with ultrahigh Q: microwatt nonlinearity at 1.55 μm,” Opt. Lett. 33, 1908–1910 (2008).
[Crossref]

A. Martin, G. Moille, S. Combrié, G. Lehoucq, T. Debuisschert, J. Lian, S. Sokolov, A. P. Mosk, and A. De Rossi, “Triply-resonant continuous wave parametric source with a microwatt pump,” ArXiv:1602.04833 (2016).

De Rossi, A. D.

Debuisschert, T.

A. Martin, G. Moille, S. Combrié, G. Lehoucq, T. Debuisschert, J. Lian, S. Sokolov, A. P. Mosk, and A. De Rossi, “Triply-resonant continuous wave parametric source with a microwatt pump,” ArXiv:1602.04833 (2016).

Eggleton, B. J.

A. S. Clark, C. Husko, M. J. Collins, G. Lehoucq, S. Xavier, A. D. De Rossi, S. Combrié, C. Xiong, and B. J. Eggleton, “Heralded single-photon source in a III-V photonic crystal,” Opt. Lett. 38, 649–651 (2013).
[Crossref]

A. Faraon, D. Englund, D. Bulla, B. Luther-Davies, B. J. Eggleton, N. Stoltz, P. Petroff, and J. Vučković, “Local tuning of photonic crystal cavities using chalcogenide glasses,” Appl. Phys. Lett. 92, 043123 (2008).
[Crossref]

Ek, S.

Y. Yu, E. Palushani, M. Heuck, N. Kuznetsova, P. Trøst, S. Ek, D. Vukovic, C. Peucheret, L. Katsuo, S. Combrié, A. D. Rossi, K. Yvind, and J. Mørk, “Switching characteristics of an InP photonic crystal nanocavity: experiment and theory,” Opt. Express 21, 9221–9231 (2013).

Englund, D.

A. Faraon, D. Englund, D. Bulla, B. Luther-Davies, B. J. Eggleton, N. Stoltz, P. Petroff, and J. Vučković, “Local tuning of photonic crystal cavities using chalcogenide glasses,” Appl. Phys. Lett. 92, 043123 (2008).
[Crossref]

Fan, S.

W. Zhou, D. Zhao, Y. C. Shuai, H. Yang, S. Chuwongin, A. Chadha, J. H. Seo, K. X. Wang, V. Liu, Z. Ma, and S. Fan, “Progress in 2D photonic crystal Fano resonance photonics,” Prog. Quantum Electron. 38, 1–74 (2014).
[Crossref]

J. Pan, Y. Huo, K. Yamanaka, S. Sandhu, L. Scaccabarozzi, R. Timp, M. L. Povinelli, S. Fan, M. M. Fejer, and J. S. Harris, “Aligning microcavity resonances in silicon photonic-crystal slabs using laser-pumped thermal tuning,” Appl. Phys. Lett. 92, 103114 (2008).
[Crossref]

Fano, U.

U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev. 124, 1866–1878 (1961).
[Crossref]

Faraon, A.

A. Faraon, D. Englund, D. Bulla, B. Luther-Davies, B. J. Eggleton, N. Stoltz, P. Petroff, and J. Vučković, “Local tuning of photonic crystal cavities using chalcogenide glasses,” Appl. Phys. Lett. 92, 043123 (2008).
[Crossref]

Fejer, M. M.

J. Pan, Y. Huo, K. Yamanaka, S. Sandhu, L. Scaccabarozzi, R. Timp, M. L. Povinelli, S. Fan, M. M. Fejer, and J. S. Harris, “Aligning microcavity resonances in silicon photonic-crystal slabs using laser-pumped thermal tuning,” Appl. Phys. Lett. 92, 103114 (2008).
[Crossref]

Fiore, A.

F. Riboli, N. Caselli, S. Vignolini, F. Intonti, K. Vynck, P. Barthelemy, A. Gerardino, L. Balet, L. Li, A. Fiore, M. Gurioli, and D. Wiersma, “Engineering of light confinement in strongly scattering disordered media,” Nat. Mater. 13, 720–725 (2014).
[Crossref]

Gerardino, A.

F. Riboli, N. Caselli, S. Vignolini, F. Intonti, K. Vynck, P. Barthelemy, A. Gerardino, L. Balet, L. Li, A. Fiore, M. Gurioli, and D. Wiersma, “Engineering of light confinement in strongly scattering disordered media,” Nat. Mater. 13, 720–725 (2014).
[Crossref]

Gu, T.

Gurioli, M.

F. Riboli, N. Caselli, S. Vignolini, F. Intonti, K. Vynck, P. Barthelemy, A. Gerardino, L. Balet, L. Li, A. Fiore, M. Gurioli, and D. Wiersma, “Engineering of light confinement in strongly scattering disordered media,” Nat. Mater. 13, 720–725 (2014).
[Crossref]

Harris, J. S.

J. Pan, Y. Huo, K. Yamanaka, S. Sandhu, L. Scaccabarozzi, R. Timp, M. L. Povinelli, S. Fan, M. M. Fejer, and J. S. Harris, “Aligning microcavity resonances in silicon photonic-crystal slabs using laser-pumped thermal tuning,” Appl. Phys. Lett. 92, 103114 (2008).
[Crossref]

Hatami, F.

K. Rivoire, Z. Lin, F. Hatami, and J. Vučković, “Sum-frequency generation in doubly resonant GaP photonic crystal nanocavities,” Appl. Phys. Lett. 97, 043103 (2010).
[Crossref]

Heuck, M.

Y. Yu, E. Palushani, M. Heuck, N. Kuznetsova, P. Trøst, S. Ek, D. Vukovic, C. Peucheret, L. Katsuo, S. Combrié, A. D. Rossi, K. Yvind, and J. Mørk, “Switching characteristics of an InP photonic crystal nanocavity: experiment and theory,” Opt. Express 21, 9221–9231 (2013).

Huang, P.

Huo, Y.

J. Pan, Y. Huo, K. Yamanaka, S. Sandhu, L. Scaccabarozzi, R. Timp, M. L. Povinelli, S. Fan, M. M. Fejer, and J. S. Harris, “Aligning microcavity resonances in silicon photonic-crystal slabs using laser-pumped thermal tuning,” Appl. Phys. Lett. 92, 103114 (2008).
[Crossref]

Husko, C.

A. S. Clark, C. Husko, M. J. Collins, G. Lehoucq, S. Xavier, A. D. De Rossi, S. Combrié, C. Xiong, and B. J. Eggleton, “Heralded single-photon source in a III-V photonic crystal,” Opt. Lett. 38, 649–651 (2013).
[Crossref]

S. Combrié, Q. V. Tran, A. De Rossi, C. Husko, and P. Colman, “High quality GaInP nonlinear photonic crystals with minimized nonlinear absorption,” Appl. Phys. Lett. 95, 221108 (2009).
[Crossref]

Intonti, F.

F. Riboli, N. Caselli, S. Vignolini, F. Intonti, K. Vynck, P. Barthelemy, A. Gerardino, L. Balet, L. Li, A. Fiore, M. Gurioli, and D. Wiersma, “Engineering of light confinement in strongly scattering disordered media,” Nat. Mater. 13, 720–725 (2014).
[Crossref]

Joannopoulos, J.

J. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light (Princeton University, 2008).

Johnson, S. G.

J. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light (Princeton University, 2008).

Katsuo, L.

Y. Yu, E. Palushani, M. Heuck, N. Kuznetsova, P. Trøst, S. Ek, D. Vukovic, C. Peucheret, L. Katsuo, S. Combrié, A. D. Rossi, K. Yvind, and J. Mørk, “Switching characteristics of an InP photonic crystal nanocavity: experiment and theory,” Opt. Express 21, 9221–9231 (2013).

Kudman, I.

I. Kudman and R. J. Paff, “Thermal expansion of InxGa1−xP alloys,” J. Appl. Phys. 43, 3760–3762 (1972).
[Crossref]

Kuramochi, E.

E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, T. Tanabe, and T. Watanabe, “Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect,” Appl. Phys. Lett. 88, 041112 (2006).
[Crossref]

Kuznetsova, N.

Y. Yu, E. Palushani, M. Heuck, N. Kuznetsova, P. Trøst, S. Ek, D. Vukovic, C. Peucheret, L. Katsuo, S. Combrié, A. D. Rossi, K. Yvind, and J. Mørk, “Switching characteristics of an InP photonic crystal nanocavity: experiment and theory,” Opt. Express 21, 9221–9231 (2013).

Kwong, D.

Lehoucq, G.

S. Sokolov, J. Lian, E. Yüce, S. Combrié, G. Lehoucq, A. De Rossi, and A. P. Mosk, “Local thermal resonance control of GaInP photonic crystal membrane cavities using ambient gas cooling,” Appl. Phys. Lett. 106, 171113 (2015).
[Crossref]

A. S. Clark, C. Husko, M. J. Collins, G. Lehoucq, S. Xavier, A. D. De Rossi, S. Combrié, C. Xiong, and B. J. Eggleton, “Heralded single-photon source in a III-V photonic crystal,” Opt. Lett. 38, 649–651 (2013).
[Crossref]

A. Martin, G. Moille, S. Combrié, G. Lehoucq, T. Debuisschert, J. Lian, S. Sokolov, A. P. Mosk, and A. De Rossi, “Triply-resonant continuous wave parametric source with a microwatt pump,” ArXiv:1602.04833 (2016).

Li, L.

F. Riboli, N. Caselli, S. Vignolini, F. Intonti, K. Vynck, P. Barthelemy, A. Gerardino, L. Balet, L. Li, A. Fiore, M. Gurioli, and D. Wiersma, “Engineering of light confinement in strongly scattering disordered media,” Nat. Mater. 13, 720–725 (2014).
[Crossref]

Li, Y.

Lian, J.

S. Sokolov, J. Lian, E. Yüce, S. Combrié, A. De Rossi, and A. P. Mosk, “Tuning out disorder-induced localization in nanophotonic cavity arrays,” Opt. Express 25, 4598–4606 (2017).
[Crossref]

J. Lian, S. Sokolov, E. Yüce, S. Combrié, A. De Rossi, and A. P. Mosk, “Measurement of the profiles of disorder-induced localized resonances by local tuning,” Opt. Express 24, 21939–21947 (2016).
[Crossref]

S. Sokolov, J. Lian, E. Yüce, S. Combrié, G. Lehoucq, A. De Rossi, and A. P. Mosk, “Local thermal resonance control of GaInP photonic crystal membrane cavities using ambient gas cooling,” Appl. Phys. Lett. 106, 171113 (2015).
[Crossref]

A. Martin, G. Moille, S. Combrié, G. Lehoucq, T. Debuisschert, J. Lian, S. Sokolov, A. P. Mosk, and A. De Rossi, “Triply-resonant continuous wave parametric source with a microwatt pump,” ArXiv:1602.04833 (2016).

Lin, Z.

K. Rivoire, Z. Lin, F. Hatami, and J. Vučković, “Sum-frequency generation in doubly resonant GaP photonic crystal nanocavities,” Appl. Phys. Lett. 97, 043103 (2010).
[Crossref]

Liu, V.

W. Zhou, D. Zhao, Y. C. Shuai, H. Yang, S. Chuwongin, A. Chadha, J. H. Seo, K. X. Wang, V. Liu, Z. Ma, and S. Fan, “Progress in 2D photonic crystal Fano resonance photonics,” Prog. Quantum Electron. 38, 1–74 (2014).
[Crossref]

Lo, G.

Luther-Davies, B.

A. Faraon, D. Englund, D. Bulla, B. Luther-Davies, B. J. Eggleton, N. Stoltz, P. Petroff, and J. Vučković, “Local tuning of photonic crystal cavities using chalcogenide glasses,” Appl. Phys. Lett. 92, 043123 (2008).
[Crossref]

Ma, Z.

W. Zhou, D. Zhao, Y. C. Shuai, H. Yang, S. Chuwongin, A. Chadha, J. H. Seo, K. X. Wang, V. Liu, Z. Ma, and S. Fan, “Progress in 2D photonic crystal Fano resonance photonics,” Prog. Quantum Electron. 38, 1–74 (2014).
[Crossref]

Martin, A.

A. Martin, G. Moille, S. Combrié, G. Lehoucq, T. Debuisschert, J. Lian, S. Sokolov, A. P. Mosk, and A. De Rossi, “Triply-resonant continuous wave parametric source with a microwatt pump,” ArXiv:1602.04833 (2016).

McMillan, J. F.

Meade, R. D.

J. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light (Princeton University, 2008).

Mitsugi, S.

E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, T. Tanabe, and T. Watanabe, “Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect,” Appl. Phys. Lett. 88, 041112 (2006).
[Crossref]

Moille, G.

A. Martin, G. Moille, S. Combrié, G. Lehoucq, T. Debuisschert, J. Lian, S. Sokolov, A. P. Mosk, and A. De Rossi, “Triply-resonant continuous wave parametric source with a microwatt pump,” ArXiv:1602.04833 (2016).

Mørk, J.

Y. Yu, E. Palushani, M. Heuck, N. Kuznetsova, P. Trøst, S. Ek, D. Vukovic, C. Peucheret, L. Katsuo, S. Combrié, A. D. Rossi, K. Yvind, and J. Mørk, “Switching characteristics of an InP photonic crystal nanocavity: experiment and theory,” Opt. Express 21, 9221–9231 (2013).

Mosk, A. P.

S. Sokolov, J. Lian, E. Yüce, S. Combrié, A. De Rossi, and A. P. Mosk, “Tuning out disorder-induced localization in nanophotonic cavity arrays,” Opt. Express 25, 4598–4606 (2017).
[Crossref]

J. Lian, S. Sokolov, E. Yüce, S. Combrié, A. De Rossi, and A. P. Mosk, “Measurement of the profiles of disorder-induced localized resonances by local tuning,” Opt. Express 24, 21939–21947 (2016).
[Crossref]

S. Sokolov, J. Lian, E. Yüce, S. Combrié, G. Lehoucq, A. De Rossi, and A. P. Mosk, “Local thermal resonance control of GaInP photonic crystal membrane cavities using ambient gas cooling,” Appl. Phys. Lett. 106, 171113 (2015).
[Crossref]

A. Martin, G. Moille, S. Combrié, G. Lehoucq, T. Debuisschert, J. Lian, S. Sokolov, A. P. Mosk, and A. De Rossi, “Triply-resonant continuous wave parametric source with a microwatt pump,” ArXiv:1602.04833 (2016).

Navr, K.

K. Navr, “Thermal oxidation of gallium arsenide,” Czech. J. Phys. B 18, 266–274 (1968).
[Crossref]

Notomi, M.

M. Notomi and H. Taniyama, “On-demand ultrahigh-Q cavity formation and photon pinning via dynamic waveguide tuning,” Opt. Express 16, 18657–18666 (2008).
[Crossref]

E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, T. Tanabe, and T. Watanabe, “Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect,” Appl. Phys. Lett. 88, 041112 (2006).
[Crossref]

Paff, R. J.

I. Kudman and R. J. Paff, “Thermal expansion of InxGa1−xP alloys,” J. Appl. Phys. 43, 3760–3762 (1972).
[Crossref]

Palushani, E.

Y. Yu, E. Palushani, M. Heuck, N. Kuznetsova, P. Trøst, S. Ek, D. Vukovic, C. Peucheret, L. Katsuo, S. Combrié, A. D. Rossi, K. Yvind, and J. Mørk, “Switching characteristics of an InP photonic crystal nanocavity: experiment and theory,” Opt. Express 21, 9221–9231 (2013).

Pan, J.

J. Pan, Y. Huo, K. Yamanaka, S. Sandhu, L. Scaccabarozzi, R. Timp, M. L. Povinelli, S. Fan, M. M. Fejer, and J. S. Harris, “Aligning microcavity resonances in silicon photonic-crystal slabs using laser-pumped thermal tuning,” Appl. Phys. Lett. 92, 103114 (2008).
[Crossref]

Petroff, P.

A. Faraon, D. Englund, D. Bulla, B. Luther-Davies, B. J. Eggleton, N. Stoltz, P. Petroff, and J. Vučković, “Local tuning of photonic crystal cavities using chalcogenide glasses,” Appl. Phys. Lett. 92, 043123 (2008).
[Crossref]

Peucheret, C.

Y. Yu, E. Palushani, M. Heuck, N. Kuznetsova, P. Trøst, S. Ek, D. Vukovic, C. Peucheret, L. Katsuo, S. Combrié, A. D. Rossi, K. Yvind, and J. Mørk, “Switching characteristics of an InP photonic crystal nanocavity: experiment and theory,” Opt. Express 21, 9221–9231 (2013).

Povinelli, M. L.

J. Pan, Y. Huo, K. Yamanaka, S. Sandhu, L. Scaccabarozzi, R. Timp, M. L. Povinelli, S. Fan, M. M. Fejer, and J. S. Harris, “Aligning microcavity resonances in silicon photonic-crystal slabs using laser-pumped thermal tuning,” Appl. Phys. Lett. 92, 103114 (2008).
[Crossref]

Riboli, F.

F. Riboli, N. Caselli, S. Vignolini, F. Intonti, K. Vynck, P. Barthelemy, A. Gerardino, L. Balet, L. Li, A. Fiore, M. Gurioli, and D. Wiersma, “Engineering of light confinement in strongly scattering disordered media,” Nat. Mater. 13, 720–725 (2014).
[Crossref]

Rivoire, K.

K. Rivoire, Z. Lin, F. Hatami, and J. Vučković, “Sum-frequency generation in doubly resonant GaP photonic crystal nanocavities,” Appl. Phys. Lett. 97, 043103 (2010).
[Crossref]

Rossi, A. D.

Y. Yu, E. Palushani, M. Heuck, N. Kuznetsova, P. Trøst, S. Ek, D. Vukovic, C. Peucheret, L. Katsuo, S. Combrié, A. D. Rossi, K. Yvind, and J. Mørk, “Switching characteristics of an InP photonic crystal nanocavity: experiment and theory,” Opt. Express 21, 9221–9231 (2013).

Sandhu, S.

J. Pan, Y. Huo, K. Yamanaka, S. Sandhu, L. Scaccabarozzi, R. Timp, M. L. Povinelli, S. Fan, M. M. Fejer, and J. S. Harris, “Aligning microcavity resonances in silicon photonic-crystal slabs using laser-pumped thermal tuning,” Appl. Phys. Lett. 92, 103114 (2008).
[Crossref]

Scaccabarozzi, L.

J. Pan, Y. Huo, K. Yamanaka, S. Sandhu, L. Scaccabarozzi, R. Timp, M. L. Povinelli, S. Fan, M. M. Fejer, and J. S. Harris, “Aligning microcavity resonances in silicon photonic-crystal slabs using laser-pumped thermal tuning,” Appl. Phys. Lett. 92, 103114 (2008).
[Crossref]

Seo, J. H.

W. Zhou, D. Zhao, Y. C. Shuai, H. Yang, S. Chuwongin, A. Chadha, J. H. Seo, K. X. Wang, V. Liu, Z. Ma, and S. Fan, “Progress in 2D photonic crystal Fano resonance photonics,” Prog. Quantum Electron. 38, 1–74 (2014).
[Crossref]

Shinya, A.

E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, T. Tanabe, and T. Watanabe, “Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect,” Appl. Phys. Lett. 88, 041112 (2006).
[Crossref]

Shuai, Y. C.

W. Zhou, D. Zhao, Y. C. Shuai, H. Yang, S. Chuwongin, A. Chadha, J. H. Seo, K. X. Wang, V. Liu, Z. Ma, and S. Fan, “Progress in 2D photonic crystal Fano resonance photonics,” Prog. Quantum Electron. 38, 1–74 (2014).
[Crossref]

Sokolov, S.

S. Sokolov, J. Lian, E. Yüce, S. Combrié, A. De Rossi, and A. P. Mosk, “Tuning out disorder-induced localization in nanophotonic cavity arrays,” Opt. Express 25, 4598–4606 (2017).
[Crossref]

J. Lian, S. Sokolov, E. Yüce, S. Combrié, A. De Rossi, and A. P. Mosk, “Measurement of the profiles of disorder-induced localized resonances by local tuning,” Opt. Express 24, 21939–21947 (2016).
[Crossref]

S. Sokolov, J. Lian, E. Yüce, S. Combrié, G. Lehoucq, A. De Rossi, and A. P. Mosk, “Local thermal resonance control of GaInP photonic crystal membrane cavities using ambient gas cooling,” Appl. Phys. Lett. 106, 171113 (2015).
[Crossref]

A. Martin, G. Moille, S. Combrié, G. Lehoucq, T. Debuisschert, J. Lian, S. Sokolov, A. P. Mosk, and A. De Rossi, “Triply-resonant continuous wave parametric source with a microwatt pump,” ArXiv:1602.04833 (2016).

Stoltz, N.

A. Faraon, D. Englund, D. Bulla, B. Luther-Davies, B. J. Eggleton, N. Stoltz, P. Petroff, and J. Vučković, “Local tuning of photonic crystal cavities using chalcogenide glasses,” Appl. Phys. Lett. 92, 043123 (2008).
[Crossref]

Tanabe, T.

E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, T. Tanabe, and T. Watanabe, “Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect,” Appl. Phys. Lett. 88, 041112 (2006).
[Crossref]

Taniyama, H.

Timp, R.

J. Pan, Y. Huo, K. Yamanaka, S. Sandhu, L. Scaccabarozzi, R. Timp, M. L. Povinelli, S. Fan, M. M. Fejer, and J. S. Harris, “Aligning microcavity resonances in silicon photonic-crystal slabs using laser-pumped thermal tuning,” Appl. Phys. Lett. 92, 103114 (2008).
[Crossref]

Tran, Q. V.

S. Combrié, Q. V. Tran, A. De Rossi, C. Husko, and P. Colman, “High quality GaInP nonlinear photonic crystals with minimized nonlinear absorption,” Appl. Phys. Lett. 95, 221108 (2009).
[Crossref]

S. Combrié, A. De Rossi, Q. V. Tran, and H. Benisty, “GaAs photonic crystal cavity with ultrahigh Q: microwatt nonlinearity at 1.55 μm,” Opt. Lett. 33, 1908–1910 (2008).
[Crossref]

Trøst, P.

Y. Yu, E. Palushani, M. Heuck, N. Kuznetsova, P. Trøst, S. Ek, D. Vukovic, C. Peucheret, L. Katsuo, S. Combrié, A. D. Rossi, K. Yvind, and J. Mørk, “Switching characteristics of an InP photonic crystal nanocavity: experiment and theory,” Opt. Express 21, 9221–9231 (2013).

Vignolini, S.

F. Riboli, N. Caselli, S. Vignolini, F. Intonti, K. Vynck, P. Barthelemy, A. Gerardino, L. Balet, L. Li, A. Fiore, M. Gurioli, and D. Wiersma, “Engineering of light confinement in strongly scattering disordered media,” Nat. Mater. 13, 720–725 (2014).
[Crossref]

Vuckovic, J.

K. Rivoire, Z. Lin, F. Hatami, and J. Vučković, “Sum-frequency generation in doubly resonant GaP photonic crystal nanocavities,” Appl. Phys. Lett. 97, 043103 (2010).
[Crossref]

A. Faraon, D. Englund, D. Bulla, B. Luther-Davies, B. J. Eggleton, N. Stoltz, P. Petroff, and J. Vučković, “Local tuning of photonic crystal cavities using chalcogenide glasses,” Appl. Phys. Lett. 92, 043123 (2008).
[Crossref]

Vukovic, D.

Y. Yu, E. Palushani, M. Heuck, N. Kuznetsova, P. Trøst, S. Ek, D. Vukovic, C. Peucheret, L. Katsuo, S. Combrié, A. D. Rossi, K. Yvind, and J. Mørk, “Switching characteristics of an InP photonic crystal nanocavity: experiment and theory,” Opt. Express 21, 9221–9231 (2013).

Vynck, K.

F. Riboli, N. Caselli, S. Vignolini, F. Intonti, K. Vynck, P. Barthelemy, A. Gerardino, L. Balet, L. Li, A. Fiore, M. Gurioli, and D. Wiersma, “Engineering of light confinement in strongly scattering disordered media,” Nat. Mater. 13, 720–725 (2014).
[Crossref]

Wang, K. X.

W. Zhou, D. Zhao, Y. C. Shuai, H. Yang, S. Chuwongin, A. Chadha, J. H. Seo, K. X. Wang, V. Liu, Z. Ma, and S. Fan, “Progress in 2D photonic crystal Fano resonance photonics,” Prog. Quantum Electron. 38, 1–74 (2014).
[Crossref]

Watanabe, T.

E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, T. Tanabe, and T. Watanabe, “Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect,” Appl. Phys. Lett. 88, 041112 (2006).
[Crossref]

Wei, H.

Wiersma, D.

F. Riboli, N. Caselli, S. Vignolini, F. Intonti, K. Vynck, P. Barthelemy, A. Gerardino, L. Balet, L. Li, A. Fiore, M. Gurioli, and D. Wiersma, “Engineering of light confinement in strongly scattering disordered media,” Nat. Mater. 13, 720–725 (2014).
[Crossref]

Winn, J. N.

J. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light (Princeton University, 2008).

Wong, C. W.

Xavier, S.

Xiong, C.

Yamanaka, K.

J. Pan, Y. Huo, K. Yamanaka, S. Sandhu, L. Scaccabarozzi, R. Timp, M. L. Povinelli, S. Fan, M. M. Fejer, and J. S. Harris, “Aligning microcavity resonances in silicon photonic-crystal slabs using laser-pumped thermal tuning,” Appl. Phys. Lett. 92, 103114 (2008).
[Crossref]

Yang, H.

W. Zhou, D. Zhao, Y. C. Shuai, H. Yang, S. Chuwongin, A. Chadha, J. H. Seo, K. X. Wang, V. Liu, Z. Ma, and S. Fan, “Progress in 2D photonic crystal Fano resonance photonics,” Prog. Quantum Electron. 38, 1–74 (2014).
[Crossref]

Yu, M.

Yu, Y.

Y. Yu, E. Palushani, M. Heuck, N. Kuznetsova, P. Trøst, S. Ek, D. Vukovic, C. Peucheret, L. Katsuo, S. Combrié, A. D. Rossi, K. Yvind, and J. Mørk, “Switching characteristics of an InP photonic crystal nanocavity: experiment and theory,” Opt. Express 21, 9221–9231 (2013).

Yüce, E.

Yvind, K.

Y. Yu, E. Palushani, M. Heuck, N. Kuznetsova, P. Trøst, S. Ek, D. Vukovic, C. Peucheret, L. Katsuo, S. Combrié, A. D. Rossi, K. Yvind, and J. Mørk, “Switching characteristics of an InP photonic crystal nanocavity: experiment and theory,” Opt. Express 21, 9221–9231 (2013).

Zhang, J.

Zhao, D.

W. Zhou, D. Zhao, Y. C. Shuai, H. Yang, S. Chuwongin, A. Chadha, J. H. Seo, K. X. Wang, V. Liu, Z. Ma, and S. Fan, “Progress in 2D photonic crystal Fano resonance photonics,” Prog. Quantum Electron. 38, 1–74 (2014).
[Crossref]

Zheng, J.

Zhou, W.

W. Zhou, D. Zhao, Y. C. Shuai, H. Yang, S. Chuwongin, A. Chadha, J. H. Seo, K. X. Wang, V. Liu, Z. Ma, and S. Fan, “Progress in 2D photonic crystal Fano resonance photonics,” Prog. Quantum Electron. 38, 1–74 (2014).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (6)

E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, T. Tanabe, and T. Watanabe, “Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect,” Appl. Phys. Lett. 88, 041112 (2006).
[Crossref]

A. Faraon, D. Englund, D. Bulla, B. Luther-Davies, B. J. Eggleton, N. Stoltz, P. Petroff, and J. Vučković, “Local tuning of photonic crystal cavities using chalcogenide glasses,” Appl. Phys. Lett. 92, 043123 (2008).
[Crossref]

K. Rivoire, Z. Lin, F. Hatami, and J. Vučković, “Sum-frequency generation in doubly resonant GaP photonic crystal nanocavities,” Appl. Phys. Lett. 97, 043103 (2010).
[Crossref]

J. Pan, Y. Huo, K. Yamanaka, S. Sandhu, L. Scaccabarozzi, R. Timp, M. L. Povinelli, S. Fan, M. M. Fejer, and J. S. Harris, “Aligning microcavity resonances in silicon photonic-crystal slabs using laser-pumped thermal tuning,” Appl. Phys. Lett. 92, 103114 (2008).
[Crossref]

S. Sokolov, J. Lian, E. Yüce, S. Combrié, G. Lehoucq, A. De Rossi, and A. P. Mosk, “Local thermal resonance control of GaInP photonic crystal membrane cavities using ambient gas cooling,” Appl. Phys. Lett. 106, 171113 (2015).
[Crossref]

S. Combrié, Q. V. Tran, A. De Rossi, C. Husko, and P. Colman, “High quality GaInP nonlinear photonic crystals with minimized nonlinear absorption,” Appl. Phys. Lett. 95, 221108 (2009).
[Crossref]

Czech. J. Phys. B (1)

K. Navr, “Thermal oxidation of gallium arsenide,” Czech. J. Phys. B 18, 266–274 (1968).
[Crossref]

J. Appl. Phys. (2)

S. Adachi, “Lattice thermal conductivity of group-IV and III-V semiconductor alloys,” J. Appl. Phys. 102, 063502 (2007).
[Crossref]

I. Kudman and R. J. Paff, “Thermal expansion of InxGa1−xP alloys,” J. Appl. Phys. 43, 3760–3762 (1972).
[Crossref]

Nat. Mater. (1)

F. Riboli, N. Caselli, S. Vignolini, F. Intonti, K. Vynck, P. Barthelemy, A. Gerardino, L. Balet, L. Li, A. Fiore, M. Gurioli, and D. Wiersma, “Engineering of light confinement in strongly scattering disordered media,” Nat. Mater. 13, 720–725 (2014).
[Crossref]

Opt. Express (5)

Opt. Lett. (2)

Phys. Rev. (1)

U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev. 124, 1866–1878 (1961).
[Crossref]

Prog. Quantum Electron. (1)

W. Zhou, D. Zhao, Y. C. Shuai, H. Yang, S. Chuwongin, A. Chadha, J. H. Seo, K. X. Wang, V. Liu, Z. Ma, and S. Fan, “Progress in 2D photonic crystal Fano resonance photonics,” Prog. Quantum Electron. 38, 1–74 (2014).
[Crossref]

Other (2)

J. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light (Princeton University, 2008).

A. Martin, G. Moille, S. Combrié, G. Lehoucq, T. Debuisschert, J. Lian, S. Sokolov, A. P. Mosk, and A. De Rossi, “Triply-resonant continuous wave parametric source with a microwatt pump,” ArXiv:1602.04833 (2016).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1. Experimental setup. Transmission through the sample is measured. The sample temperature is locked to ±0.001°C using a temperature controller. Inset shows the cavity structure. Holes are represented with circles. Different colors correspond to different hole shifts.
Fig. 2.
Fig. 2. Transmission spectrum. Transmission spectra of the sample at 48.7°C. Dashed line represents Fano lineshape fit.
Fig. 3.
Fig. 3. Transmission spectra. Patched graph showing all transmission spectra collected in this experiment. The color of the lines changes from black to red to emphasize the temperature difference.
Fig. 4.
Fig. 4. Resonance wavelength versus temperature of the sample. The red line represents a line fit of the experimental data. The error for temperature is smaller than the datapoint size.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Δλλ=Δλnλ+Δλaλ.
Δλnλ=Δnn·mebraneϵ|E(r)|2drallϵ|E(r)|2dr=1ndndTΔTEm,
Δλaλ=Δaa=αTΔT.
dndT=nλEm(dλdTαTλ).

Metrics