Abstract

A recently proposed asymmetric cryptosystem based on coherent superposition and equal modulus decomposition has shown to be robust against a specific attack. In this paper, we have shown that it is vulnerable to a newly designed attack. With this attack, an intruder is able to access the exact private key and obtain precise attack results using a phase retrieval algorithm. In addition, we have also proposed a security-enhanced asymmetric cryptosystem using a random decomposition technique and a 4f optical system. In the proposed system, random decomposition is employed to create an effective trapdoor one-way function. As a result, it is able to avoid various types of attacks and maintain the asymmetric characteristics of the cryptosystem. Numerical simulations are presented to demonstrate the feasibility and robustness of the proposed method.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Improved method of attack on an asymmetric cryptosystem based on phase-truncated Fourier transform

Yong Wang, Chenggen Quan, and Cho Jui Tay
Appl. Opt. 54(22) 6874-6881 (2015)

Cryptanalysis of an “asymmetric optical cryptosystem based on coherent superposition and equal modulus decomposition”

Jingjing Wu, Wei Liu, Zhengjun Liu, and Shutian Liu
Appl. Opt. 54(30) 8921-8924 (2015)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (12)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (21)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription