Abstract

Fabry–Perot quantum cascade lasers (QCLs) were characterized following irradiation by high-energy (64 MeV) protons and Cobalt-60 gamma rays. Seven QCLs were exposed to total accumulated radiation doses that varied from 20 to 46.3 krad(Si), which are typical exposure levels for electronic components in a space environment. The QCLs did not show any measurable changes in threshold current or slope efficiency suggesting the suitability of QCLs for use in space-based missions.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Proton and gamma radiation tests on nonlinear crystals

Ulrich Roth, Michael Tröbs, Thomas Graf, Jürg E. Balmer, and Heinz P. Weber
Appl. Opt. 41(3) 464-469 (2002)

Behavior of optical thin-film materials and coatings under proton and gamma irradiation

Ilaria Di Sarcina, Maria Luisa Grilli, Francesca Menchini, Angela Piegari, Salvatore Scaglione, Anna Sytchkova, and Danilo Zola
Appl. Opt. 53(4) A314-A320 (2014)

Radiation hard mode-locked laser suitable as a spaceborne frequency comb

Gilles Buchs, Stefan Kundermann, Erwin Portuondo-Campa, and Steve Lecomte
Opt. Express 23(8) 9890-9900 (2015)

References

  • View by:
  • |
  • |
  • |

  1. J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264, 553–556 (1994).
    [Crossref]
  2. M. Razeghi, N. Bandyopadhyay, Y. Bai, Q. Lu, and S. Slivken, “Recent advances in mid infrared (3–5  μm) quantum cascade lasers,” Opt. Mater. Express 3, 1872–1884 (2013).
    [Crossref]
  3. M. Troccoli, A. Lyakh, J. Fan, X. Wang, R. Maulini, A. G. Tsekoun, R. Go, and C. K. N. Patel, “Long-wave ir quantum cascade lasers for emission in the λ = 8–12  μm spectral region,” Opt. Mater. Express 3, 1546–1560 (2013).
    [Crossref]
  4. M. Beck, D. Hofstetter, T. Aellen, J. Faist, U. Oesterle, M. Ilegems, E. Gini, and H. Melchior, “Continuous wave operation of a mid-infrared semiconductor laser at room temperature,” Science 295, 301–305 (2002).
    [Crossref]
  5. T. L. Myers, B. D. Cannon, M. S. Taubman, and B. E. Bernacki, “Performance and reliability of quantum cascade lasers,” Proc. SPIE 87330, 87330E (2013).
  6. F. Xie, C. G. Caneau, H. P. LeBlanc, C. A. Page, S. Chaparala, O. D. Deichmann, L. C. Hughes, and C.-E. Zah, “Reliability of 4.6-μm quantum cascade lasers under continuous-wave room-temperature operation,” Opt. Eng. 49, 111104 (2010).
    [Crossref]
  7. A. Evans and M. Razeghi, “Reliability of strain-balanced GaInAs/AlInAs/InP quantum-cascade lasers under continuous-wave room-temperature operation,” Appl. Phys. Lett. 88, 261106 (2006).
    [Crossref]
  8. E. G. Stassinopoulos and J. P. Raymond, “The space radiation environment for electronics,” Proc. IEEE 76, 1423–1442 (1988).
    [Crossref]
  9. C. E. Barnes, “Effects of Co60 gamma irradiation on epitaxial GaAs laser diodes,” Phys. Rev. B 1, 4735–4747 (1970).
  10. M. C. Hastings, B. L. Anderson, C. Bornain, and D. E. Holcomb, “Effects of gamma radiation on high-power infrared and visible laser diodes,” IEEE Trans. Nucl. Sci. 43, 2141–2149 (1996).
    [Crossref]
  11. A. H. Johnston and T. F. Miyahira, “Radiation degradation mechanisms in laser diodes,” IEEE Trans. Nucl. Sci. 51, 3564–3571 (2004).
    [Crossref]
  12. A. H. Johnston, T. F. Miyahira, and B. G. Rax, “Proton damage in advanced laser diodes,” IEEE Trans. Nucl. Sci. 48, 1764–1772 (2001).
  13. P. G. Piva, R. D. Goldberg, I. V. Mitchell, D. Labrie, R. Leon, S. Charbonneau, Z. R. Wasilewski, and S. Fafard, “Enhanced degradation resistance of quantum dot lasers to radiation damage,” Appl. Phys. Lett. 77, 624–626 (2000).
    [Crossref]
  14. J. W. Mares, J. Harben, A. V. Thompson, D. W. Schoenfeld, and W. V. Schoenfeld, “Gamma radiation induced degradation of operating quantum dot lasers,” IEEE Trans. Nucl. Sci. 55, 763–768 (2008).
  15. M. N. Ott, “Validation of commercial fiber optic components for aerospace environments,” Proc. SPIE 5758, 427–439 (2005).
  16. E. Troupaki, A. A. Vasilyev, N. B. Kashem, G. R. Allan, and M. A. Stephen, “Space qualification and environmental testing of quasicontinuous wave laser diode arrays,” J. Appl. Phys. 100, 063109 (2006).
    [Crossref]
  17. D. Hofstetter, M. Beck, T. Aellen, and J. Faist, “High-temperature operation of distributed feedback quantum-cascade lasers at 5.3  μm,” Appl. Phys. Lett. 78, 396–398 (2001).
    [Crossref]
  18. R. P. Leavitt, J. L. Bradshaw, K. M. Lascola, G. P. Meissner, F. Micalizzi, F. J. Towner, and J. T. Pham, “High-performance quantum cascade lasers in the 7.3- to 7.8-μm wavelength band using strained active regions,” Opt. Eng. 49, 111109 (2010).
    [Crossref]
  19. M. S. Taubman, T. L. Myers, R. M. Pratt, R. D. Stahl, and B. D. Cannon, “Precision control of multiple quantum cascade lasers for calibration systems,” Rev. Sci. Instrum. 85, 014704 (2014).
    [Crossref]
  20. M. S. Taubman, “Low-noise high-performance current controllers for quantum cascade lasers,” Rev. Sci. Instrum. 82, 064704 (2011).
    [Crossref]
  21. T. L. Myers, B. D. Cannon, C. S. Brauer, B. G. Crowther, and S. M. Hansen, “Qualification of quantum cascade lasers for space environments,” Proc. SPIE 91130, 91130Q (2014).

2014 (2)

M. S. Taubman, T. L. Myers, R. M. Pratt, R. D. Stahl, and B. D. Cannon, “Precision control of multiple quantum cascade lasers for calibration systems,” Rev. Sci. Instrum. 85, 014704 (2014).
[Crossref]

T. L. Myers, B. D. Cannon, C. S. Brauer, B. G. Crowther, and S. M. Hansen, “Qualification of quantum cascade lasers for space environments,” Proc. SPIE 91130, 91130Q (2014).

2013 (3)

2011 (1)

M. S. Taubman, “Low-noise high-performance current controllers for quantum cascade lasers,” Rev. Sci. Instrum. 82, 064704 (2011).
[Crossref]

2010 (2)

F. Xie, C. G. Caneau, H. P. LeBlanc, C. A. Page, S. Chaparala, O. D. Deichmann, L. C. Hughes, and C.-E. Zah, “Reliability of 4.6-μm quantum cascade lasers under continuous-wave room-temperature operation,” Opt. Eng. 49, 111104 (2010).
[Crossref]

R. P. Leavitt, J. L. Bradshaw, K. M. Lascola, G. P. Meissner, F. Micalizzi, F. J. Towner, and J. T. Pham, “High-performance quantum cascade lasers in the 7.3- to 7.8-μm wavelength band using strained active regions,” Opt. Eng. 49, 111109 (2010).
[Crossref]

2008 (1)

J. W. Mares, J. Harben, A. V. Thompson, D. W. Schoenfeld, and W. V. Schoenfeld, “Gamma radiation induced degradation of operating quantum dot lasers,” IEEE Trans. Nucl. Sci. 55, 763–768 (2008).

2006 (2)

E. Troupaki, A. A. Vasilyev, N. B. Kashem, G. R. Allan, and M. A. Stephen, “Space qualification and environmental testing of quasicontinuous wave laser diode arrays,” J. Appl. Phys. 100, 063109 (2006).
[Crossref]

A. Evans and M. Razeghi, “Reliability of strain-balanced GaInAs/AlInAs/InP quantum-cascade lasers under continuous-wave room-temperature operation,” Appl. Phys. Lett. 88, 261106 (2006).
[Crossref]

2005 (1)

M. N. Ott, “Validation of commercial fiber optic components for aerospace environments,” Proc. SPIE 5758, 427–439 (2005).

2004 (1)

A. H. Johnston and T. F. Miyahira, “Radiation degradation mechanisms in laser diodes,” IEEE Trans. Nucl. Sci. 51, 3564–3571 (2004).
[Crossref]

2002 (1)

M. Beck, D. Hofstetter, T. Aellen, J. Faist, U. Oesterle, M. Ilegems, E. Gini, and H. Melchior, “Continuous wave operation of a mid-infrared semiconductor laser at room temperature,” Science 295, 301–305 (2002).
[Crossref]

2001 (2)

A. H. Johnston, T. F. Miyahira, and B. G. Rax, “Proton damage in advanced laser diodes,” IEEE Trans. Nucl. Sci. 48, 1764–1772 (2001).

D. Hofstetter, M. Beck, T. Aellen, and J. Faist, “High-temperature operation of distributed feedback quantum-cascade lasers at 5.3  μm,” Appl. Phys. Lett. 78, 396–398 (2001).
[Crossref]

2000 (1)

P. G. Piva, R. D. Goldberg, I. V. Mitchell, D. Labrie, R. Leon, S. Charbonneau, Z. R. Wasilewski, and S. Fafard, “Enhanced degradation resistance of quantum dot lasers to radiation damage,” Appl. Phys. Lett. 77, 624–626 (2000).
[Crossref]

1996 (1)

M. C. Hastings, B. L. Anderson, C. Bornain, and D. E. Holcomb, “Effects of gamma radiation on high-power infrared and visible laser diodes,” IEEE Trans. Nucl. Sci. 43, 2141–2149 (1996).
[Crossref]

1994 (1)

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264, 553–556 (1994).
[Crossref]

1988 (1)

E. G. Stassinopoulos and J. P. Raymond, “The space radiation environment for electronics,” Proc. IEEE 76, 1423–1442 (1988).
[Crossref]

1970 (1)

C. E. Barnes, “Effects of Co60 gamma irradiation on epitaxial GaAs laser diodes,” Phys. Rev. B 1, 4735–4747 (1970).

Aellen, T.

M. Beck, D. Hofstetter, T. Aellen, J. Faist, U. Oesterle, M. Ilegems, E. Gini, and H. Melchior, “Continuous wave operation of a mid-infrared semiconductor laser at room temperature,” Science 295, 301–305 (2002).
[Crossref]

D. Hofstetter, M. Beck, T. Aellen, and J. Faist, “High-temperature operation of distributed feedback quantum-cascade lasers at 5.3  μm,” Appl. Phys. Lett. 78, 396–398 (2001).
[Crossref]

Allan, G. R.

E. Troupaki, A. A. Vasilyev, N. B. Kashem, G. R. Allan, and M. A. Stephen, “Space qualification and environmental testing of quasicontinuous wave laser diode arrays,” J. Appl. Phys. 100, 063109 (2006).
[Crossref]

Anderson, B. L.

M. C. Hastings, B. L. Anderson, C. Bornain, and D. E. Holcomb, “Effects of gamma radiation on high-power infrared and visible laser diodes,” IEEE Trans. Nucl. Sci. 43, 2141–2149 (1996).
[Crossref]

Bai, Y.

Bandyopadhyay, N.

Barnes, C. E.

C. E. Barnes, “Effects of Co60 gamma irradiation on epitaxial GaAs laser diodes,” Phys. Rev. B 1, 4735–4747 (1970).

Beck, M.

M. Beck, D. Hofstetter, T. Aellen, J. Faist, U. Oesterle, M. Ilegems, E. Gini, and H. Melchior, “Continuous wave operation of a mid-infrared semiconductor laser at room temperature,” Science 295, 301–305 (2002).
[Crossref]

D. Hofstetter, M. Beck, T. Aellen, and J. Faist, “High-temperature operation of distributed feedback quantum-cascade lasers at 5.3  μm,” Appl. Phys. Lett. 78, 396–398 (2001).
[Crossref]

Bernacki, B. E.

T. L. Myers, B. D. Cannon, M. S. Taubman, and B. E. Bernacki, “Performance and reliability of quantum cascade lasers,” Proc. SPIE 87330, 87330E (2013).

Bornain, C.

M. C. Hastings, B. L. Anderson, C. Bornain, and D. E. Holcomb, “Effects of gamma radiation on high-power infrared and visible laser diodes,” IEEE Trans. Nucl. Sci. 43, 2141–2149 (1996).
[Crossref]

Bradshaw, J. L.

R. P. Leavitt, J. L. Bradshaw, K. M. Lascola, G. P. Meissner, F. Micalizzi, F. J. Towner, and J. T. Pham, “High-performance quantum cascade lasers in the 7.3- to 7.8-μm wavelength band using strained active regions,” Opt. Eng. 49, 111109 (2010).
[Crossref]

Brauer, C. S.

T. L. Myers, B. D. Cannon, C. S. Brauer, B. G. Crowther, and S. M. Hansen, “Qualification of quantum cascade lasers for space environments,” Proc. SPIE 91130, 91130Q (2014).

Caneau, C. G.

F. Xie, C. G. Caneau, H. P. LeBlanc, C. A. Page, S. Chaparala, O. D. Deichmann, L. C. Hughes, and C.-E. Zah, “Reliability of 4.6-μm quantum cascade lasers under continuous-wave room-temperature operation,” Opt. Eng. 49, 111104 (2010).
[Crossref]

Cannon, B. D.

T. L. Myers, B. D. Cannon, C. S. Brauer, B. G. Crowther, and S. M. Hansen, “Qualification of quantum cascade lasers for space environments,” Proc. SPIE 91130, 91130Q (2014).

M. S. Taubman, T. L. Myers, R. M. Pratt, R. D. Stahl, and B. D. Cannon, “Precision control of multiple quantum cascade lasers for calibration systems,” Rev. Sci. Instrum. 85, 014704 (2014).
[Crossref]

T. L. Myers, B. D. Cannon, M. S. Taubman, and B. E. Bernacki, “Performance and reliability of quantum cascade lasers,” Proc. SPIE 87330, 87330E (2013).

Capasso, F.

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264, 553–556 (1994).
[Crossref]

Chaparala, S.

F. Xie, C. G. Caneau, H. P. LeBlanc, C. A. Page, S. Chaparala, O. D. Deichmann, L. C. Hughes, and C.-E. Zah, “Reliability of 4.6-μm quantum cascade lasers under continuous-wave room-temperature operation,” Opt. Eng. 49, 111104 (2010).
[Crossref]

Charbonneau, S.

P. G. Piva, R. D. Goldberg, I. V. Mitchell, D. Labrie, R. Leon, S. Charbonneau, Z. R. Wasilewski, and S. Fafard, “Enhanced degradation resistance of quantum dot lasers to radiation damage,” Appl. Phys. Lett. 77, 624–626 (2000).
[Crossref]

Cho, A. Y.

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264, 553–556 (1994).
[Crossref]

Crowther, B. G.

T. L. Myers, B. D. Cannon, C. S. Brauer, B. G. Crowther, and S. M. Hansen, “Qualification of quantum cascade lasers for space environments,” Proc. SPIE 91130, 91130Q (2014).

Deichmann, O. D.

F. Xie, C. G. Caneau, H. P. LeBlanc, C. A. Page, S. Chaparala, O. D. Deichmann, L. C. Hughes, and C.-E. Zah, “Reliability of 4.6-μm quantum cascade lasers under continuous-wave room-temperature operation,” Opt. Eng. 49, 111104 (2010).
[Crossref]

Evans, A.

A. Evans and M. Razeghi, “Reliability of strain-balanced GaInAs/AlInAs/InP quantum-cascade lasers under continuous-wave room-temperature operation,” Appl. Phys. Lett. 88, 261106 (2006).
[Crossref]

Fafard, S.

P. G. Piva, R. D. Goldberg, I. V. Mitchell, D. Labrie, R. Leon, S. Charbonneau, Z. R. Wasilewski, and S. Fafard, “Enhanced degradation resistance of quantum dot lasers to radiation damage,” Appl. Phys. Lett. 77, 624–626 (2000).
[Crossref]

Faist, J.

M. Beck, D. Hofstetter, T. Aellen, J. Faist, U. Oesterle, M. Ilegems, E. Gini, and H. Melchior, “Continuous wave operation of a mid-infrared semiconductor laser at room temperature,” Science 295, 301–305 (2002).
[Crossref]

D. Hofstetter, M. Beck, T. Aellen, and J. Faist, “High-temperature operation of distributed feedback quantum-cascade lasers at 5.3  μm,” Appl. Phys. Lett. 78, 396–398 (2001).
[Crossref]

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264, 553–556 (1994).
[Crossref]

Fan, J.

Gini, E.

M. Beck, D. Hofstetter, T. Aellen, J. Faist, U. Oesterle, M. Ilegems, E. Gini, and H. Melchior, “Continuous wave operation of a mid-infrared semiconductor laser at room temperature,” Science 295, 301–305 (2002).
[Crossref]

Go, R.

Goldberg, R. D.

P. G. Piva, R. D. Goldberg, I. V. Mitchell, D. Labrie, R. Leon, S. Charbonneau, Z. R. Wasilewski, and S. Fafard, “Enhanced degradation resistance of quantum dot lasers to radiation damage,” Appl. Phys. Lett. 77, 624–626 (2000).
[Crossref]

Hansen, S. M.

T. L. Myers, B. D. Cannon, C. S. Brauer, B. G. Crowther, and S. M. Hansen, “Qualification of quantum cascade lasers for space environments,” Proc. SPIE 91130, 91130Q (2014).

Harben, J.

J. W. Mares, J. Harben, A. V. Thompson, D. W. Schoenfeld, and W. V. Schoenfeld, “Gamma radiation induced degradation of operating quantum dot lasers,” IEEE Trans. Nucl. Sci. 55, 763–768 (2008).

Hastings, M. C.

M. C. Hastings, B. L. Anderson, C. Bornain, and D. E. Holcomb, “Effects of gamma radiation on high-power infrared and visible laser diodes,” IEEE Trans. Nucl. Sci. 43, 2141–2149 (1996).
[Crossref]

Hofstetter, D.

M. Beck, D. Hofstetter, T. Aellen, J. Faist, U. Oesterle, M. Ilegems, E. Gini, and H. Melchior, “Continuous wave operation of a mid-infrared semiconductor laser at room temperature,” Science 295, 301–305 (2002).
[Crossref]

D. Hofstetter, M. Beck, T. Aellen, and J. Faist, “High-temperature operation of distributed feedback quantum-cascade lasers at 5.3  μm,” Appl. Phys. Lett. 78, 396–398 (2001).
[Crossref]

Holcomb, D. E.

M. C. Hastings, B. L. Anderson, C. Bornain, and D. E. Holcomb, “Effects of gamma radiation on high-power infrared and visible laser diodes,” IEEE Trans. Nucl. Sci. 43, 2141–2149 (1996).
[Crossref]

Hughes, L. C.

F. Xie, C. G. Caneau, H. P. LeBlanc, C. A. Page, S. Chaparala, O. D. Deichmann, L. C. Hughes, and C.-E. Zah, “Reliability of 4.6-μm quantum cascade lasers under continuous-wave room-temperature operation,” Opt. Eng. 49, 111104 (2010).
[Crossref]

Hutchinson, A. L.

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264, 553–556 (1994).
[Crossref]

Ilegems, M.

M. Beck, D. Hofstetter, T. Aellen, J. Faist, U. Oesterle, M. Ilegems, E. Gini, and H. Melchior, “Continuous wave operation of a mid-infrared semiconductor laser at room temperature,” Science 295, 301–305 (2002).
[Crossref]

Johnston, A. H.

A. H. Johnston and T. F. Miyahira, “Radiation degradation mechanisms in laser diodes,” IEEE Trans. Nucl. Sci. 51, 3564–3571 (2004).
[Crossref]

A. H. Johnston, T. F. Miyahira, and B. G. Rax, “Proton damage in advanced laser diodes,” IEEE Trans. Nucl. Sci. 48, 1764–1772 (2001).

Kashem, N. B.

E. Troupaki, A. A. Vasilyev, N. B. Kashem, G. R. Allan, and M. A. Stephen, “Space qualification and environmental testing of quasicontinuous wave laser diode arrays,” J. Appl. Phys. 100, 063109 (2006).
[Crossref]

Labrie, D.

P. G. Piva, R. D. Goldberg, I. V. Mitchell, D. Labrie, R. Leon, S. Charbonneau, Z. R. Wasilewski, and S. Fafard, “Enhanced degradation resistance of quantum dot lasers to radiation damage,” Appl. Phys. Lett. 77, 624–626 (2000).
[Crossref]

Lascola, K. M.

R. P. Leavitt, J. L. Bradshaw, K. M. Lascola, G. P. Meissner, F. Micalizzi, F. J. Towner, and J. T. Pham, “High-performance quantum cascade lasers in the 7.3- to 7.8-μm wavelength band using strained active regions,” Opt. Eng. 49, 111109 (2010).
[Crossref]

Leavitt, R. P.

R. P. Leavitt, J. L. Bradshaw, K. M. Lascola, G. P. Meissner, F. Micalizzi, F. J. Towner, and J. T. Pham, “High-performance quantum cascade lasers in the 7.3- to 7.8-μm wavelength band using strained active regions,” Opt. Eng. 49, 111109 (2010).
[Crossref]

LeBlanc, H. P.

F. Xie, C. G. Caneau, H. P. LeBlanc, C. A. Page, S. Chaparala, O. D. Deichmann, L. C. Hughes, and C.-E. Zah, “Reliability of 4.6-μm quantum cascade lasers under continuous-wave room-temperature operation,” Opt. Eng. 49, 111104 (2010).
[Crossref]

Leon, R.

P. G. Piva, R. D. Goldberg, I. V. Mitchell, D. Labrie, R. Leon, S. Charbonneau, Z. R. Wasilewski, and S. Fafard, “Enhanced degradation resistance of quantum dot lasers to radiation damage,” Appl. Phys. Lett. 77, 624–626 (2000).
[Crossref]

Lu, Q.

Lyakh, A.

Mares, J. W.

J. W. Mares, J. Harben, A. V. Thompson, D. W. Schoenfeld, and W. V. Schoenfeld, “Gamma radiation induced degradation of operating quantum dot lasers,” IEEE Trans. Nucl. Sci. 55, 763–768 (2008).

Maulini, R.

Meissner, G. P.

R. P. Leavitt, J. L. Bradshaw, K. M. Lascola, G. P. Meissner, F. Micalizzi, F. J. Towner, and J. T. Pham, “High-performance quantum cascade lasers in the 7.3- to 7.8-μm wavelength band using strained active regions,” Opt. Eng. 49, 111109 (2010).
[Crossref]

Melchior, H.

M. Beck, D. Hofstetter, T. Aellen, J. Faist, U. Oesterle, M. Ilegems, E. Gini, and H. Melchior, “Continuous wave operation of a mid-infrared semiconductor laser at room temperature,” Science 295, 301–305 (2002).
[Crossref]

Micalizzi, F.

R. P. Leavitt, J. L. Bradshaw, K. M. Lascola, G. P. Meissner, F. Micalizzi, F. J. Towner, and J. T. Pham, “High-performance quantum cascade lasers in the 7.3- to 7.8-μm wavelength band using strained active regions,” Opt. Eng. 49, 111109 (2010).
[Crossref]

Mitchell, I. V.

P. G. Piva, R. D. Goldberg, I. V. Mitchell, D. Labrie, R. Leon, S. Charbonneau, Z. R. Wasilewski, and S. Fafard, “Enhanced degradation resistance of quantum dot lasers to radiation damage,” Appl. Phys. Lett. 77, 624–626 (2000).
[Crossref]

Miyahira, T. F.

A. H. Johnston and T. F. Miyahira, “Radiation degradation mechanisms in laser diodes,” IEEE Trans. Nucl. Sci. 51, 3564–3571 (2004).
[Crossref]

A. H. Johnston, T. F. Miyahira, and B. G. Rax, “Proton damage in advanced laser diodes,” IEEE Trans. Nucl. Sci. 48, 1764–1772 (2001).

Myers, T. L.

T. L. Myers, B. D. Cannon, C. S. Brauer, B. G. Crowther, and S. M. Hansen, “Qualification of quantum cascade lasers for space environments,” Proc. SPIE 91130, 91130Q (2014).

M. S. Taubman, T. L. Myers, R. M. Pratt, R. D. Stahl, and B. D. Cannon, “Precision control of multiple quantum cascade lasers for calibration systems,” Rev. Sci. Instrum. 85, 014704 (2014).
[Crossref]

T. L. Myers, B. D. Cannon, M. S. Taubman, and B. E. Bernacki, “Performance and reliability of quantum cascade lasers,” Proc. SPIE 87330, 87330E (2013).

Oesterle, U.

M. Beck, D. Hofstetter, T. Aellen, J. Faist, U. Oesterle, M. Ilegems, E. Gini, and H. Melchior, “Continuous wave operation of a mid-infrared semiconductor laser at room temperature,” Science 295, 301–305 (2002).
[Crossref]

Ott, M. N.

M. N. Ott, “Validation of commercial fiber optic components for aerospace environments,” Proc. SPIE 5758, 427–439 (2005).

Page, C. A.

F. Xie, C. G. Caneau, H. P. LeBlanc, C. A. Page, S. Chaparala, O. D. Deichmann, L. C. Hughes, and C.-E. Zah, “Reliability of 4.6-μm quantum cascade lasers under continuous-wave room-temperature operation,” Opt. Eng. 49, 111104 (2010).
[Crossref]

Patel, C. K. N.

Pham, J. T.

R. P. Leavitt, J. L. Bradshaw, K. M. Lascola, G. P. Meissner, F. Micalizzi, F. J. Towner, and J. T. Pham, “High-performance quantum cascade lasers in the 7.3- to 7.8-μm wavelength band using strained active regions,” Opt. Eng. 49, 111109 (2010).
[Crossref]

Piva, P. G.

P. G. Piva, R. D. Goldberg, I. V. Mitchell, D. Labrie, R. Leon, S. Charbonneau, Z. R. Wasilewski, and S. Fafard, “Enhanced degradation resistance of quantum dot lasers to radiation damage,” Appl. Phys. Lett. 77, 624–626 (2000).
[Crossref]

Pratt, R. M.

M. S. Taubman, T. L. Myers, R. M. Pratt, R. D. Stahl, and B. D. Cannon, “Precision control of multiple quantum cascade lasers for calibration systems,” Rev. Sci. Instrum. 85, 014704 (2014).
[Crossref]

Rax, B. G.

A. H. Johnston, T. F. Miyahira, and B. G. Rax, “Proton damage in advanced laser diodes,” IEEE Trans. Nucl. Sci. 48, 1764–1772 (2001).

Raymond, J. P.

E. G. Stassinopoulos and J. P. Raymond, “The space radiation environment for electronics,” Proc. IEEE 76, 1423–1442 (1988).
[Crossref]

Razeghi, M.

M. Razeghi, N. Bandyopadhyay, Y. Bai, Q. Lu, and S. Slivken, “Recent advances in mid infrared (3–5  μm) quantum cascade lasers,” Opt. Mater. Express 3, 1872–1884 (2013).
[Crossref]

A. Evans and M. Razeghi, “Reliability of strain-balanced GaInAs/AlInAs/InP quantum-cascade lasers under continuous-wave room-temperature operation,” Appl. Phys. Lett. 88, 261106 (2006).
[Crossref]

Schoenfeld, D. W.

J. W. Mares, J. Harben, A. V. Thompson, D. W. Schoenfeld, and W. V. Schoenfeld, “Gamma radiation induced degradation of operating quantum dot lasers,” IEEE Trans. Nucl. Sci. 55, 763–768 (2008).

Schoenfeld, W. V.

J. W. Mares, J. Harben, A. V. Thompson, D. W. Schoenfeld, and W. V. Schoenfeld, “Gamma radiation induced degradation of operating quantum dot lasers,” IEEE Trans. Nucl. Sci. 55, 763–768 (2008).

Sirtori, C.

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264, 553–556 (1994).
[Crossref]

Sivco, D. L.

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264, 553–556 (1994).
[Crossref]

Slivken, S.

Stahl, R. D.

M. S. Taubman, T. L. Myers, R. M. Pratt, R. D. Stahl, and B. D. Cannon, “Precision control of multiple quantum cascade lasers for calibration systems,” Rev. Sci. Instrum. 85, 014704 (2014).
[Crossref]

Stassinopoulos, E. G.

E. G. Stassinopoulos and J. P. Raymond, “The space radiation environment for electronics,” Proc. IEEE 76, 1423–1442 (1988).
[Crossref]

Stephen, M. A.

E. Troupaki, A. A. Vasilyev, N. B. Kashem, G. R. Allan, and M. A. Stephen, “Space qualification and environmental testing of quasicontinuous wave laser diode arrays,” J. Appl. Phys. 100, 063109 (2006).
[Crossref]

Taubman, M. S.

M. S. Taubman, T. L. Myers, R. M. Pratt, R. D. Stahl, and B. D. Cannon, “Precision control of multiple quantum cascade lasers for calibration systems,” Rev. Sci. Instrum. 85, 014704 (2014).
[Crossref]

T. L. Myers, B. D. Cannon, M. S. Taubman, and B. E. Bernacki, “Performance and reliability of quantum cascade lasers,” Proc. SPIE 87330, 87330E (2013).

M. S. Taubman, “Low-noise high-performance current controllers for quantum cascade lasers,” Rev. Sci. Instrum. 82, 064704 (2011).
[Crossref]

Thompson, A. V.

J. W. Mares, J. Harben, A. V. Thompson, D. W. Schoenfeld, and W. V. Schoenfeld, “Gamma radiation induced degradation of operating quantum dot lasers,” IEEE Trans. Nucl. Sci. 55, 763–768 (2008).

Towner, F. J.

R. P. Leavitt, J. L. Bradshaw, K. M. Lascola, G. P. Meissner, F. Micalizzi, F. J. Towner, and J. T. Pham, “High-performance quantum cascade lasers in the 7.3- to 7.8-μm wavelength band using strained active regions,” Opt. Eng. 49, 111109 (2010).
[Crossref]

Troccoli, M.

Troupaki, E.

E. Troupaki, A. A. Vasilyev, N. B. Kashem, G. R. Allan, and M. A. Stephen, “Space qualification and environmental testing of quasicontinuous wave laser diode arrays,” J. Appl. Phys. 100, 063109 (2006).
[Crossref]

Tsekoun, A. G.

Vasilyev, A. A.

E. Troupaki, A. A. Vasilyev, N. B. Kashem, G. R. Allan, and M. A. Stephen, “Space qualification and environmental testing of quasicontinuous wave laser diode arrays,” J. Appl. Phys. 100, 063109 (2006).
[Crossref]

Wang, X.

Wasilewski, Z. R.

P. G. Piva, R. D. Goldberg, I. V. Mitchell, D. Labrie, R. Leon, S. Charbonneau, Z. R. Wasilewski, and S. Fafard, “Enhanced degradation resistance of quantum dot lasers to radiation damage,” Appl. Phys. Lett. 77, 624–626 (2000).
[Crossref]

Xie, F.

F. Xie, C. G. Caneau, H. P. LeBlanc, C. A. Page, S. Chaparala, O. D. Deichmann, L. C. Hughes, and C.-E. Zah, “Reliability of 4.6-μm quantum cascade lasers under continuous-wave room-temperature operation,” Opt. Eng. 49, 111104 (2010).
[Crossref]

Zah, C.-E.

F. Xie, C. G. Caneau, H. P. LeBlanc, C. A. Page, S. Chaparala, O. D. Deichmann, L. C. Hughes, and C.-E. Zah, “Reliability of 4.6-μm quantum cascade lasers under continuous-wave room-temperature operation,” Opt. Eng. 49, 111104 (2010).
[Crossref]

Appl. Phys. Lett. (3)

A. Evans and M. Razeghi, “Reliability of strain-balanced GaInAs/AlInAs/InP quantum-cascade lasers under continuous-wave room-temperature operation,” Appl. Phys. Lett. 88, 261106 (2006).
[Crossref]

D. Hofstetter, M. Beck, T. Aellen, and J. Faist, “High-temperature operation of distributed feedback quantum-cascade lasers at 5.3  μm,” Appl. Phys. Lett. 78, 396–398 (2001).
[Crossref]

P. G. Piva, R. D. Goldberg, I. V. Mitchell, D. Labrie, R. Leon, S. Charbonneau, Z. R. Wasilewski, and S. Fafard, “Enhanced degradation resistance of quantum dot lasers to radiation damage,” Appl. Phys. Lett. 77, 624–626 (2000).
[Crossref]

IEEE Trans. Nucl. Sci. (4)

J. W. Mares, J. Harben, A. V. Thompson, D. W. Schoenfeld, and W. V. Schoenfeld, “Gamma radiation induced degradation of operating quantum dot lasers,” IEEE Trans. Nucl. Sci. 55, 763–768 (2008).

M. C. Hastings, B. L. Anderson, C. Bornain, and D. E. Holcomb, “Effects of gamma radiation on high-power infrared and visible laser diodes,” IEEE Trans. Nucl. Sci. 43, 2141–2149 (1996).
[Crossref]

A. H. Johnston and T. F. Miyahira, “Radiation degradation mechanisms in laser diodes,” IEEE Trans. Nucl. Sci. 51, 3564–3571 (2004).
[Crossref]

A. H. Johnston, T. F. Miyahira, and B. G. Rax, “Proton damage in advanced laser diodes,” IEEE Trans. Nucl. Sci. 48, 1764–1772 (2001).

J. Appl. Phys. (1)

E. Troupaki, A. A. Vasilyev, N. B. Kashem, G. R. Allan, and M. A. Stephen, “Space qualification and environmental testing of quasicontinuous wave laser diode arrays,” J. Appl. Phys. 100, 063109 (2006).
[Crossref]

Opt. Eng. (2)

F. Xie, C. G. Caneau, H. P. LeBlanc, C. A. Page, S. Chaparala, O. D. Deichmann, L. C. Hughes, and C.-E. Zah, “Reliability of 4.6-μm quantum cascade lasers under continuous-wave room-temperature operation,” Opt. Eng. 49, 111104 (2010).
[Crossref]

R. P. Leavitt, J. L. Bradshaw, K. M. Lascola, G. P. Meissner, F. Micalizzi, F. J. Towner, and J. T. Pham, “High-performance quantum cascade lasers in the 7.3- to 7.8-μm wavelength band using strained active regions,” Opt. Eng. 49, 111109 (2010).
[Crossref]

Opt. Mater. Express (2)

Phys. Rev. B (1)

C. E. Barnes, “Effects of Co60 gamma irradiation on epitaxial GaAs laser diodes,” Phys. Rev. B 1, 4735–4747 (1970).

Proc. IEEE (1)

E. G. Stassinopoulos and J. P. Raymond, “The space radiation environment for electronics,” Proc. IEEE 76, 1423–1442 (1988).
[Crossref]

Proc. SPIE (3)

T. L. Myers, B. D. Cannon, M. S. Taubman, and B. E. Bernacki, “Performance and reliability of quantum cascade lasers,” Proc. SPIE 87330, 87330E (2013).

M. N. Ott, “Validation of commercial fiber optic components for aerospace environments,” Proc. SPIE 5758, 427–439 (2005).

T. L. Myers, B. D. Cannon, C. S. Brauer, B. G. Crowther, and S. M. Hansen, “Qualification of quantum cascade lasers for space environments,” Proc. SPIE 91130, 91130Q (2014).

Rev. Sci. Instrum. (2)

M. S. Taubman, T. L. Myers, R. M. Pratt, R. D. Stahl, and B. D. Cannon, “Precision control of multiple quantum cascade lasers for calibration systems,” Rev. Sci. Instrum. 85, 014704 (2014).
[Crossref]

M. S. Taubman, “Low-noise high-performance current controllers for quantum cascade lasers,” Rev. Sci. Instrum. 82, 064704 (2011).
[Crossref]

Science (2)

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264, 553–556 (1994).
[Crossref]

M. Beck, D. Hofstetter, T. Aellen, J. Faist, U. Oesterle, M. Ilegems, E. Gini, and H. Melchior, “Continuous wave operation of a mid-infrared semiconductor laser at room temperature,” Science 295, 301–305 (2002).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. Expanded view of schematic for the commercial mounting fixture used in the testing station. Before a c-mount is attached, both surfaces are cleaned with methanol, and then a 2–56 mounting screw is torqued to ensure thermal contact between the two surfaces. A thermistor is integrated into the laser mount to control the temperature. Variations in thermal contact can lead to changes in the active region temperature of the QCL, which is attached to the top of the c-mount.
Fig. 2.
Fig. 2. Plot of the calculated average threshold current for (a) Ham-Ce and (b) Ham-Cf as a function of proton dose. The error bars are shown as 2 σ . The initial characterization prior to radiation exposure involved only one measurement so the error bars are assumed to be ± 0.2 % . After the first proton irradiation, five and six measurements are used for Ham-Ce and Ham-Cf, respectively. The measurements after the second proton irradiation involve three and two measurements for Ham-Ce and Ham-Cf, respectively.
Fig. 3.
Fig. 3. Plot of the calculated average threshold current for (a) Ham-Ce and (b) M664O as a function of gamma dose. The error bars are shown as 2 σ and involve 3–4 measurements for each data point.
Fig. 4.
Fig. 4. Measured change in (a) threshold current and (b) slope efficiency for the various QCLs after a proton dose of 10 krad(Si). The control QCL, M577G, remained in the laboratory and was not exposed to any radiation. The error bars were calculated using propagation of errors and are shown as 2 σ .
Fig. 5.
Fig. 5. Measured change in (a) threshold current and (b) slope efficiency for the various QCLs after an accumulated gamma dose of 26.3 krad(Si). The control QCL, M577G, remained in the laboratory and was not exposed to any radiation. The error bars were calculated using propagation of errors and are shown as 2 σ .
Fig. 6.
Fig. 6. Micrographs of the back of the c-mount before it has been mounted (left) and of the same c-mount after it has been mounted and dismounted 20 times (right).

Metrics