Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Squeezing-enhanced heterodyne detection of 10 Hz atto-Watt optical signals

Not Accessible

Your library or personal account may give you access

Abstract

A phase-sensitive (PS) heterodyne detector is intrinsically resistant to classical noises and useful in measurement of low-frequency signals below the shot noise. Despite the existence of image band vacuum, we show that the quantum-noise power level of this heterodyne detector sensing a coherent signal is exactly one light quantum per measurement time, i.e., twice the vacuum fluctuation power, which can be further reduced by use of squeezed light. We then report on an experiment on a PS heterodyne detector with a 10 Hz 1.0×1018W optical signal (1064 nm wavelength) at its input. The noise floor of the unmodulated coherent light is 2.2(±0.1)×1019W/Hz from 2 Hz to 20 Hz, and the signal-to-noise ratio is about 6.6 dB for the measured signal when the resolution bandwidth is 1 Hz. The quantum noise floor is reduced by 1.6(±0.3)dB when squeezed light is used, and the sub-shot-noise power spectral density is 1.6(±0.1)×1019W/Hz between 2 Hz and 20 Hz. This work should be an important advance towards squeezing-improved precision measurements of low-frequency signals with heterodyne detectors, including audio-band gravitational-wave detection.

© 2018 Optical Society of America

Full Article  |  PDF Article
More Like This
Phase-sensitive heterodyne detection of two-mode squeezed light without noise penalty

Boya Xie, Peng Yang, and Sheng Feng
J. Opt. Soc. Am. B 35(10) 2342-2347 (2018)

Heterodyne laser Doppler vibrometer with squeezed light enhancement

Mengwei Yu, Pascal Gewecke, Jan Südbeck, Axel Schönbeck, Roman Schnabel, and Christian Rembe
Opt. Lett. 48(21) 5607-5610 (2023)

Detection and perfect fitting of 13.2  dB squeezed vacuum states by considering green-light-induced infrared absorption

Shaoping Shi, Yajun Wang, Wenhai Yang, Yaohui Zheng, and Kunchi Peng
Opt. Lett. 43(21) 5411-5414 (2018)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (17)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.